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From entropy to information: Biased typewriters

and the origin of life
Christoph Adami and Thomas Labar

So much has been written about the possible origins of life on Earth (see, e.g., the
popular books (Deamer, 1994; deDuve, 1995; Koonin, 2011; Morowitz, 2004)) that
it sometimes seems that—barring an extraordinary breakthrough in experimental bio-
chemistry (for example (Patel et al., 2015)), or else the discovery of the remnants of an
ancient biochemistry (Davies et al., 2009)—nothing new can be said about the prob-
lem. But such a point of view does not take into account that perhaps not all the tools of
scientific inquiry have been fully utilized in this endeavor to unravel our ultimate origin
on this planet. Indeed, Origin-of-Life research has historically been confined to a fairly
narrow range of disciplines, such as biochemistry and geochemistry. Today, a much
broader set of tools is being unleashed on this problem, including mathematical (Eng-
land, 2013; Smith, 2008; Vetsigian et al., 2006) and computational approaches (Mathis
et al., 2015; Nowak and Ohtsuki, 2008; Segré et al., 2000; Vasas et al., 2012; Walker
et al., 2012). Computational approaches to the study of possible origins of life are of-
ten derided because they lack a particular feature of biochemistry, or “because they do
not take into account the specific properties of individual organic compounds and poly-
mers” (Lazcano and Miller, 1996). Such a point of view ignores the possibility that life
may not a feature that is dependent on a particular biochemistry (Benner et al., 2004),
but could instead be a feature of any chemistry that is capable of encoding information.

If the one invariant in life is information (information about how to replicate, that is),
it then becomes imperative to understand the general principles by which information
could arise by chance. It is generally understood that evolution, viewed as a computa-
tional process (Adami, 1998; Mayfield, 2013) leads to an increase in information on
average. The amount of information that evolution has accumulated to date di↵ers from
organism to organism of course, and precise numbers are not known. A rough estimate
of the amount of information stored in an organism’s genome can be obtained by calcu-
lating the amount of functional DNA in an organism1. The general idea here is that only
functional DNA can be under selection, as after all information is that which guarantees
survival (Adami, 2002, 2012). For humans (assuming a functional percentage of about
8% (Rands et al., 2014)), this means that our DNA codes for about half a billion bits2.

Almost all of the information contained in our genome (and any other organism’s)

1 It is not necessary to consider epigenetic variation in the estimate of information content, as
all epigenetic changes are performed by enzymes whose information is already stored within
DNA.

2 This number is (given the functional percentage of 8%) an upper limit on the information
content, as protein coding regions display considerable variation and redundancy, which
lowers information. However, as open reading frames only account for 1% of the human
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owes its existence to the evolutionary process. But the algorithm that is evolution cannot
be at work in the absence of replication, and therefore cannot explain the origin of life.
It is in principle possible that the first replicator did not originate on Earth but rather ar-
rived on Earth from extra-terrestrial sources (Arrhenius, 1908; Hoyle and Wickramas-
inghe, 1981; Wickramasinghe, 2011). Even if that was the case, such an origin story
does not obviate the need for emergence somewhere, so we may ask generally: “What
is the likelihood of spontaneous emergence of information?”. The question in itself is
not new, of course. Howard Pattee asked as early as 1961, shortly after the discovery of
the structure of DNA (but before the discovery of the genetic code) (Pattee, 1961):

(1) How did a disordered collection of elements which forms sequences with no restric-
tions produce, with reasonable probability, enough initial order to result in the general
property of self-replication? (2) Assuming the general property of self-replication for
all sequences, how did those particular sequences which now exist arise, with reason-
able probability, from the set of all possible sequences?

In order to estimate the likelihood of spontaneous emergence of a self-replicator, it
is necessary to estimate the minimal information necessary to replicate, because the
length of the sequence is not a good indicator of fitness. A quick gedankenexperiment
can clarify this. Imagine that a symbolic sequence (written using ASCII characters) can
replicate if and only if anywhere on the string the exact sequence origins appears. This
is a 7 letter sequence, and the total number of possible sequences of length 7 is 267, or
about 8 billion. The likelihood to find this sequence by chance if a billion sequences are
tried is, obviously, about 1 in 8. But suppose we try sequences of length 1,000. If we
only ask that the word appears anywhere in the sequence, increasing sequence length
obviously increases both the number of possible sequences and the number of self-
replicators. Thus, the likelihood to find a self-replicator does not scale exponentially
with the length of the sequence (it does not become 26�1,000), but rather with the of the
sequence (as we will see momentarily). In the present example, the information content
is clearly 7 letters. But how do you measure the information content of biomolecules?

Information content of biomolecules
Generally speaking, the information content of a symbolic sequence is equal to the
amount of uncertainty (about a particular ensemble) it can reduce. This information can
be written mathematically in terms of the entropy of the ensemble (described by the
random variable X that can take on states x1, .., xn with probabilities p1, ..., pn

H(X) = �
nX

i=1

pi log pi (7.0)

and the conditional entropy H(X|s), where s is the sequence whose information content
we would like to measure, as

I(s) = H(X) � H(X|s) . (7.0)

The latter entropy is given by the conditional entropy distribution pi|s instead. So, for
example, the sequence Colonel Mustard reduces the uncertainty about the identity of the

genome and regulatory sequences (the other 7%) are much less redundant, the true
information content of human DNA is likely not much lower.
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murderer in a popular board game from log2 6 ⇡ 2.83 bits to zero (as there are a priori
six suspects, and the sequence fingers the perpetrator), so the information content is
2.83 bits. The sequence length, on the contrary, is 15 (counting the space as a symbol),
which translates to 15 log2(27) ⇡ 71.3 bits. Thus, sequence length and information
content can be very di↵erent: information is about something, while sequence length is
just entropy.

Unfortunately, we cannot measure the information content of biomolecules in the
same manner, because we do not know the entropy of the ensemble that the biomolec-
ular sequence is information about. Let us call this random variable E (for “environ-
ment”), as it represents the environment within which the sequence is functional, in
the same sense that X above was the environment within which the sequence Colonel
Mustard is functional. However, an information-theoretical “trick” allows us to make
progress. Let s be a functional biomolecule (a polymer of length L), and its information
content (per the formula above)

I(s) = H(E) � H(E|s) , (7.0)

that is, it is the entropy of the “world” minus the entropy of the world given that we
know s. We can also define the average information content as

hIi =
X

s

p(s)I(s) = H(E) � H(E|S ) = H(E : S ) , (7.0)

where H(E : S ) is the shared entropy between environment and sequences, but again
that formula is not useful because we do not know H(E). However, the formula can also
be written as

hIi = H(S ) � H(S |E) (7.0)

in terms of the entropy of sequences H(S ) and the conditional entropy of the sequences
given an average environment. This is also not useful, as the world is not an average
of environments, but one very particular one E = e. Could we write this in terms of a
di↵erence of entropies as in (7)? We then would guess that

I(s) = H(S ) � H(S |e) , (7.0)

but equation (7) is not mathematically identical to (7), as the identity only holds for the
averages. However, Eq. (7) can be derived from an approach embedded in Kolmogorov
complexity theory (Adami, 1998, 2002; Adami and Cerf, 2000), where that equation
represents the “physical complexity” of the sequence. Furthermore, (7) is practical to
the extent that its value can be estimated. For example, as S is the ensemble of se-
quences, its entropy is simply given by log N, where N is the total number of sequences
of that length (it is possible to extend this formalism to sequences of varying length).
Sequences with an arbitrary function in environment E = e have an entropy smaller
than log N. Let us imagine that the number of polymers with that function (in e 2 E) is
Ne (with Ne ⌧ N). Then (here we specify the base of the logarithm by the number of
possible monomers D)

I(s) = � logD
Ne

N
(7.0)

which, it turns out, is identical to Szostak’s “functional complexity” measure (Szostak,
2003). It allows us to quantify the information content of a biomolecular sequence if
the “density” of functional sequences Ne/N is known, and makes it possible to calculate
the likelihood of emergence (by chance), of a molecule with information content I. As
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the likelihood must be given by the density of molecules of that type within the set of
all molecules of that length, we find

P =
Ne

N
= D�I , (7.0)

where the relationship to information content follows directly from (7). Thus we see
(as advertised earlier), that this likelihood only depends on the information content of
the sequence, but not on its length. Below, we will test this prediction using the digital
life system Avida and find it violated. However, the origin of this apparent violation is
easily tracked down, and we are confident that the equality holds exactly in principle.

Testing the likelihood of emergence by chance
We first tested the likelihood to find the sequence origins by creating random ASCII
polymers of length 7 using an alphabet of D = 26 (no spaces or other punctuation), and
where each symbol was drawn from a uniform distribution over the letters a-z. When
testing a billion sequences we did not find origins, which is in accord with the proba-
bility P = 26�7 calculated above. Note that for ASCII strings (unlike the biomolecules)
there is never any redundancy, so that Ne = 1 always. We then randomly searched
for self-replicating sequences within the digital chemistry of the Avida Artificial Life
system. (Adami, 1998; Adami and Brown, 1994; Ofria et al., 2009; Ofria and Wilke,
2004). In Avida, ASCII sequences can self-replicate, but only because these sequences
are translated to instructions that are executed on virtual CPUs. In this sense, the se-
quences are really self-replicating computer programs, and because these sequences
can mutate as they are copied, they evolve in a strictly Darwinian manner (see Table
1 for the arbitrary assignment of ASCII letters to avidian instructions). The Avida sys-
tem has been used for over 20 years to test evolutionary dynamics (see, for example,
the review (Adami, 2006) covering mostly the first ten years), and the likelihood of
emergence of functional information (but not self-replication) has been studied in this
system before (Hazen et al., 2007). (See also (Pargellis, 2003) for an investigation of
spontaneous emergence of digital life in a related digital system).

The likelihood that any particular sequence coded within 26 instructions can repli-
cate depends strongly on the meaning of each instruction. If a single letter ( monomer)
were to be interpreted as “replicate the entire sequence it is in”, then self-replicators
would be very easy to find. Over the years of development of Avida, the meaning of
each symbol has changed as the instruction set itself has changed over time, so the
absolute values for the information content of self-replicators may also change in the
future. We are here only interested in the rate at which self-replicators can be found
in relationship to the information content, and how this rate depends on other factors
in the environment that can be modified. Translated to a search for the origins of life,
we are interested in how local (environmental) conditions can favorably increase the
likelihood to find a self-replicator with information content I purely by chance.

We first focused on avidian sequences constrained to length L = 15, as there al-
ready is a hand-written standard replicator of that length in Avida, given by the string
wzcagczvfcaxgab. If every instruction in this replicator were information, the likeli-
hood of finding it by chance would be 26�15 ⇡ 6 ⇥ 10�22. Even if we tested a million
sequences per second per CPU (central processing unit), on 1,000 CPUs running in
parallel, we only would expect to find a single self-replicator in about 50,000 years
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Instruction Description Symbol

nop-A no operation (type A) a
nop-B no operation (type B) b
nop-C no operation (type C) c
if-n-equ Execute next instruction only-if ?BX? does not equal complement d
if-less Execute next instruction only if ?BX? is less than its complement e
if-label Execute next instruction only if template complement was just copied f
mov-head Move instruction pointer to same position as flow-head g
jmp-head Move instruction pointer by fixed amount found in register CX h
get-head Write position of instruction pointer into register CX i
set-flow Move the flow-head to the memory position specified by ?CX? j
shift-r Shift all the bits in ?BX? one to the right k
shift-l Shift all the bits in ?BX? one to the left l
inc Increment ?BX? m
dec Decrement ?BX? n
push Copy value of ?BX? onto top of current stack o
pop Remove number from current stack and place in ?BX? p
swap-stk Toggle the active stack q
swap Swap the contents of ?BX? with its complement r
add Calculate sum of BX and CX; put result in ?BX? s
sub Calculate BX minus CX; put result in ?BX? t
nand Perform bitwise NAND on BX and CX; put result in ?BX? u
h-copy Copy instruction from read-head to write-head and advance both v
h-alloc Allocate memory for o↵spring w
h-divide Divide o↵ an o↵spring located between read-head and write-head x
IO Output value ?BX? and replace with new input y
h-search Find complement template and place flow-head after it z

Table 7.1 Instruction set of the avidian programming language used in this
study. The notation ?BX? implies that the command operates on a register

specified by the subsequent nop instruction (for example, nop-A specifies the
AX register, and so forth). If no nop instruction follows, use the register BX as
a default. More details about this instruction set can be found in (Ofria et al.,

2009).

of continuous search. We tested one billion sequences of L = 15 and found 58 self-
replicators (all of them unique) by chance, indicating that the information content of
self-replicators is vastly smaller than 15 mers. Indeed, we can estimate the information
content as

I(15) = � logD(58 ⇥ 10�9) ⇡ 5.11 ± 0.04 mers , (7.0)

with a one-� error. Here, the ‘mer’ is a unit of information obtained by taking loga-
rithms to the base of the alphabet size, so that a single monomer has up to one mer of
entropy (Adami, 2002, 2012). This means that, within the replicating 15-mers, only
about 5 of those 15 mers are information.

We next tested the information content of sequences constrained to several di↵erent
lengths. Among a billion random sequences of L = 30, we found 106 replicators, which
translates to

I(30) = � logD(106 ⇥ 10�9) ⇡ 4.93 ± 0.03 mers , (7.0)

which is significantly di↵erent from I(15). In fact, the calculated information content
suggests that perhaps replicators of length five or six might exist, but an exhaustive
search of all 11,881,376 L = 5 sequences and all 308,915,776 L = 6 sequences reveals
this not to be the case. When searching a billion sequences of L = 8 we found 6 unique
self-replicators, implying an information content

I(8) = � logD(6 ⇥ 10�9) ⇡ 5.81 ± 0.13 mers . (7.0)

The six sequences we found are qxrchcwv, vxfgwjgb, wxvxfggb, vhfgxwgb,
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Figure 7.1 Sketch of the avidian CPU, executing a segment of code. The CPU
uses three registers (AX,BX,CX) and an instruction pointer (IP) that reads the
program into the CPU. A read-head, a write-head, and a flow-head are used
to specify positions in the CPU’s memory. For example, the ‘copy’ com-
mand reads from the read-head and writes to the write-head, while ‘jump’-
type statements move the instruction pointer to the flow-head. The CPU uses
two stacks to simulate an “infinite Turing tape”, and input/output bu↵ers to
communicate with its environment (reproduced from (Ofria et al., 2009), with
permission).

wxrchcvz, and wvfgjxgb.
We can understand this trend of decreasing information content with increasing

length (violating Eq. (7)) as a consequence of the way we treat avidian sequences,
namely as having a beginning and an end. Indeed, while the genome itself is circular,
execution always begins at a marked instruction. We can see this e↵ect at work using
the example origins sequence that we used before. If we add a single letter to the
7-mer origins, the number of sequences that spell the word increases by 52 (adding
the letter to the beginning or the end of the word), while the total number of possi-
ble sequences only increases by 26. Thus, the density of self-replicators increases with
length, leading to a decrease of information.

We tested whether this decrease of information with increasing sequence length
would continue, by testing 300 million sequences of length 100. We found 17 self-
replicators among this set, which translates to I(100) = 5.10 ± 0.09 mers and suggests
that not only does the trend not continue (which of course would have been absurd),
but may reverse itself. There is a subtle information-theoretic reason for an increase in
information with increasing sequence length. Suppose that there is a single instruction
that could abrogate self-replication if it is to be found anywhere within the sequence,
when in its absence the sequence replicates (a ‘kill’ instruction, so to speak). Even
though such an instruction is obviously not information about how to self-replicate,
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its needed absence actually is information. When the sequence length increases, the
presence of such a ‘kill’ instruction becomes more and more likely, and therefore the
absence of the instruction over the increasing sequence length represents an increase in
information. This is the trend suggested in Fig. 7.2.

Biased typewriters
In a sense, the random search for self-replicators is very ine�cient: it is known that
functional molecular sequences cluster in genetic space, while vast regions of that space
are devoid of function. Yet, the random generation of sequences searches all of genetic
space evenly. Is there a way to focus the search more on sequences that are likely to
be functional? It turns out there is, and this method only requires the generation of
monomers using a biased probability density function that more resembles that gen-
erated by functional sequences (Adami, 2015). We first present a simple example (the
biased typewriter), and then outline the theory behind the enhanced search.

Words in the English language have a very characteristic letter-frequency distribution
that makes it possible to distinguish English text from random sequences of letters, and
even text written in di↵erent languages. Fig. 7.3 (using data from (Lewand, 2000))
shows the frequency distribution of letters in English text, showing that ‘e’ appears
more frequently than ‘t’, which itself is more frequent than ‘a’ and so on. As this is
the expected frequency of letters in English, a focused search should generate words
with these expected frequencies that is, the ‘ monomers’ of English words should be

Figure 7.2 Number of self-replicators per 108 found for various genome sizes
using an unbiased (uniform) probability distribution of monomers. The num-
ber of self-replicators per 108 for L = 100 is estimated from sampling 300
million sequences only (all others used samples of 109). Error bars are stan-
dard deviations.
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Figure 7.3 The probability distribution of letters in the English language.
Data from (Lewand, 2000).

generated with the frequency distribution in Fig. (7.3), rather than uniformly. When we
did this for 1 billion sequences of seven letters, we found origins twice. How large is
the expected increase in likelihood?

We saw earlier that the information content of sequence s can be written as

I(s) = � log
Ne

N
, (7.0)

which itself is an approximation of the form

I(s) = H(S ) � H(S |e) , (7.0)

assuming that the distribution of functional sequences in genetic space is uniform3. The
remaining entropy (given the current environment E = e) H(S |e) is not known a priori,
but we can estimate it. This entropy of the polymer s 2 S can be written in terms of
the entropy of monomers, the shared entropy of all monomer pairs, triplets, and so on,
using a formula that was first derived by Fano in a very di↵erent context (Fano, 1961,
p. 58):

H =
LX

i=1

H(i) �
LX

i> j

H(i : j) +
LX

i> j>k

H(i : j : k) � · · · (7.0)

where H(i) is the entropy of the ith monomer, H(i : j) is the shared entropy between

3 The distinction between the entropy written as log Ne or else as �Ps p(s|e) log p(s|e) can
viewed as the same distinction that is made in thermodynamics, where the former is known as
the entropy in the “micro-canonical ensemble”, whereas the latter entropy pertains to a
“canonical ensemble” if p(s|e) is the canonical distribution, see, e.g. (Reif, 1965).
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the ith and jth monomer, and so on. The sum in (7) has alternating signs of correla-
tion entropies, culminating with a term (�1)L�1H(1 : 2 : 3 : · · · : L). The per-site
entropies H(i) can easily be obtained if ensembles of functional molecular sequences
are known, as multiple alignment of these sequences can give us the probability distri-
bution p(i) at each site. The pairwise entropies H(i : j) are important too, in particular
if the monomers in the polymer interact functionally, as is often the case if the sequence
folds into a structure (Gupta and Adami, 2014). Here we will use only the first term in
(7) to discuss the likelihood of information emergence by chance, but we will discuss
the e↵ect of neglecting the other terms below.

In the following, we will use the symbol I0 for the information content of a self-
replicator measured using only the first term in (7), given by

I0 = L �
LX

i=1

H(i) . (7.0)

The first term in (7) is, of course, the first term in (7) if H(S ) = log(N) and we agree to
take logarithms to the base of the size of the alphabet. In that case, logD N = logD DL =
L. Using this expression, the likelihood to find self-replicators by chance is approxi-
mated as

P0 = D�I0 = D�L+
PL

i=1 H(i) . (7.0)

Let us define the “average biotic entropy” Hb as the average entropy-per-site for func-
tional sequences (hence the name “biotic”)

Hb =
1
L

LX

i

H(i) (7.0)

We distinguish this biotic entropy from the “abiotic” entropy H?, which is the entropy
per-site within a sequence assembled at random. If each monomer appears with uniform
probability, then the abiotic entropy is maximal: H? = 1. Using this definition, we can
write (7) as

P0 = D�L(1�Hb) . (7.0)

If we were to generate ASCII sequences with a probability distribution obtained from
English words (the equivalent of the biotic sample, see Fig.7.3), the abiotic entropy
would be smaller than 1 (namely H? ⇡ 0.89, the entropy of the distribution in Fig. 7.3)
while the biotic entropy must be zero, as there is only a single origins among 7-
mers. Using the probability distribution of letters in English rather than the uniform
distribution raises the probability to find the 7-mer origins to

P? = 26�7(0.89) . (7.0)

This seems like a small change, but the mean number of successes out of 109 tries
is increased from about 1 in 8 billion to 1.53 per billion. And indeed, we found the
word twice when searching a billion sequences with the biased distribution shown in
Fig. 7.3. Note, however, that the entropy of English is equal to the entropy 1

L
PL

i H(i)
only if sequences cannot be aligned, and therefore that all H(i) ⇡ H?.

Can searching with a biased probability distribution increase the chance of finding a
self-replicator in Avida? We first took the 58 self-replicators we found when searching
L = 15 sequences, and created a monomer-probability distribution p? out of them. This
distribution in Fig. 7.4 shows that within these randomly created replicating sequences,
the 26 instructions appear far from uniformly in the sequence (as of course is expected),
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in the same way as English (because it conveys information) has a non-uniform letter
distribution. The entropy of the distribution shown in Fig. 7.4 is H? = 0.91 mers.

Figure 7.4 The biased probability distribution p? of Avida instructions ob-
tained from the genomes of 58 randomly generated L = 15 replicators (the
meaning of each letter is described in Table ??). The solid black line repre-
sents the probability for a uniform distribution.

According to the approximation we made above, biasing the monomer creation process
using this particular probability distribution should lead to an enhancement E of the
likelihood of finding a self-replicator

E =
P?
P0
⇡ D�L(H?�Hb)

D�L(1�Hb) = DL(1�H?) . (7.0)

Eq. (7) suggests that the enhancement factor E only depends on the bias in the distri-
bution and the length of sequence. However, we should not be fooled into believing
that any reduced entropy H? will lead to an enhancement in the probability to find self-
replicators by chance: the distribution p? needs to be close to the distribution of actual
replicators. For example, omitting the instruction ‘x’ (the h-divide instruction that
splits o↵ a completed copy, see Table 7.1) certainly leads to an entropy less than one,
but using such a biased distribution cannot net a self-replicator as h-divide is required
for replication.

We proceeded to test Eq. (7), by searching for self-replicators using the biased dis-
tribution p? (see Methods). Among a billion sequences of L = 15 generated in this
manner, we found 14,495 self-replicators, an enhancement of E = 14, 495/58 ⇡ 250,
while Eq. (7) predicted an enhancement of E = 81.3. We also tested whether changing
the probability distribution from uniform gradually towards p? leads to a gradual in-
crease in the E. The empirical enhancement factor shown in Fig. 7.5 indeed increases
with the bias, and is larger than the one predicted from the simple approximation (7).
This di↵erence is likely due to a number of e↵ects. On the one hand, we are neglect-
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ing any higher order correlations in Eq. (7). On the other hand, we are assuming that
H? ⇡ H(i) for all i, that is, that the entropy at each site is the same. This is not at all true
for functional sequences that can be aligned (see, e.g., (Adami and Cerf, 2000; Adami
et al., 2000; Gupta and Adami, 2014)). Sequences that are obtained from a random
procedure (rather than from an evolutionary process) are likely di�cult to align, and
therefore H? ⇡ H(i) may hold.

Figure 7.5 The enhancement factor E to find entropys for genomes of 15
instructions as a function of the bias, using an interpolated probability dis-
tribution p(i, b). Here, b = 0 means unbiased, and b = 1 uses a fully biased
distribution p?. Black circles represent estimates (calculated as the number
of self-replicators per 108 for a biased distribution divided by the number of
self-replicators per 108 for a uniform distribution), while error bars are stan-
dard deviations. The solid line is the naive prediction given by Eq. (7).

The enhancement works for sequences of any length, but depends on how well the
biased distribution represents actual functional replicators. For example, as we found
only 6 self-replicators of length 8, the distribution p?(8) is fairly coarse (see Fig. 7.6A),
while the distribution we obtained from the 106 L = 30 replicators has a significant
uniform contribution (Fig. 7.6B), because among the 30 instructions only a handful
need to carry information in order for the sequence to be able to replicate. We show in
Fig. 7.7 the enhancement achieved by biasing the search for each of the three length
classes L = 8, 15, and 30.

Could we use the probability distribution for sequences obtained in one length group
to bias the search in another length group? Such a procedure might be useful if the
statistics of monomer usage is poor (as for the case L = 8), or if the distribution was
obtained from a sequence with too much entropy (as for the case L = 30). It turns out
that this is not the case: biasing the L = 30 search using p?(15) does not work well
(144.3 replicators found per 108) compared to biasing with the “native” p?(30) (297
per 108). In the same manner, biasing the L = 8 search works best with the “native”
bias p?(8), yielding 230 per 108, as opposed to only 15.8 per 108 biasing with p?(15).
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A B

Figure 7.6 Probability distribution of instructions. A: p?(8) obtained from
the replicators of length L = 8, giving rise to an entropy H?(8) = 0.71 mers.
B: p?(30) obtained from the replicators of length L = 30, giving rise to an
entropy H?(30) = 0.98 mers. The solid horizontal line denotes the uniform
probability distribution 1/26 in both panels.

Figure 7.7 Empirical enhancement factor (black dots, with 1� counting er-
ror), along with the predicted enhancement factor using the entropy of the
distribution based on Eq.(7) (grey dots) for L = 8, 15, 30.

Finally we asked whether taking the self-replicators obtained from a biased search
(and that consequently nets many more replicators) gives rise to a more accurate proba-
bility distribution p?, which then could be used for a more ‘targeted’ biased search. By
“rebiasing” successively (see Methods), we did indeed obtain more and more replica-
tors, albeit with diminishing returns (see Fig. 7.8).
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Figure 7.8 A: Average per-site entropy H? for replicators in di↵erent length
classes, at various stages of biasing. “Unbiased” reports the average per-site
entropy obtained from the self-replicators that were found in an unbiased
search, and whose biased distribution was used to find the self-replicators
whose average per-site entropy is shown in “1st Bias”. Those in turn were
used for a biased search that gave rise to replicators with bias shown in “2nd
Bias”, and so on. B: Number of self-replicators (per billion) found at each
biasing stage. Biasing the distribution with more “focused” probability dis-
tributions p? leads to an increasing yield of self-replicators, albeit with a
diminishing return. In re-biasing with L = 8, some duplicate sequences were
obtained, and those are not included in the count.

Discussion
One of the defining characteristics of life (perhaps the defining characteristic) is that
life encodes information, and information leaves a trace in the monomer abundance
distribution (a non-random frequency distribution) (Dorn and Adami, 2011; Dorn et al.,
2011) of the informational polymers. As life evolves, the information contained in it in-
creases on average (Adami et al., 2000), but evolution cannot explain where the first bits
came from. Information can in principle arise by chance, just as an English word can
appear by chance within an ASCII string that is created randomly, as per the “ dacty-
lographic monkeys” metaphor. The “ infinite monkey theorem” posits that a million
monkeys typing on a million keyboards, if given enough time (and typing randomly)
could ultimately type out all of Shakespeare’s works. However, the theorem is mis-
leading, as even correctly typing out the first 30 characters of Hamlet’s soliloquy (“To
be or not to be...”) cannot occur during the time our universe has been around (about
4.36 ⇥ 1017 seconds), as Hamlet’s 30-mer is one in about 3 ⇥ 1042. Using biased type-
writers will not allow the monkeys to finish either, as it is only accelerating the search
by a factor E ⇡ 46, 700.

We can ask whether more sophisticated methods of biasing exist. One look at Eq.(7)
su�ces to answer this question in the positive. We could begin by generating sequences
biased in such a way that the more common 2-mers are generated with increased like-
lihood. In English text, for example, the “dimers” ‘th’, ‘he’, and ‘in’ appear with fre-
quencies 3.56%, 3.07%, and 2.43% respectively, which are significantly larger than the
random dimer expectation ⇡ 0.15%. Indeed, as the frequency of ‘or’ is 1.28%, while
‘ig’ appears at 0.255%, our 7-mer origins would be found fairly fast. Likewise, in
our 6 replicators of length L = 8 the dimer gb appears significantly more often than
expected by the product of the likelihood of g and b.
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Such biased search procedures can also accelerate the search for functional biomolecules
where the target is a function other than self-replication. For example, when designing
random peptide libraries (either for screening purposes or to perform directed evolu-
tion), researchers often bias the codons in such a way that the stop codon is rare (so-
called NNB or NNS/NNK libraries (Barbas et al., 1992)). Hackel et al. (Hackel et al.,
2010) went beyond such simple biases and constructed a protein library to screen for
binding to a set of 7 targets. To bias the random sequences, they mimicked the amino
acid distribution in human and mouse CDR-H3 loops (complementarity determining
regions, which are found in antibodies), and found that such a library outcompetes even
NNB libraries significantly: of the 20 binders that they found, 18 were traced back to
the CDR-biased library.

The implications of the present theoretical and computational analysis of the emer-
gence of informational “molecules” by chance for the problem of understanding the
origin of life are straightforward. It is well known that monomers do not form spon-
taneously at the same rate. The abiotic distribution of amino acids is heavily skewed
both in spark synthesis experiments as well as in meteorites (Dorn et al., 2011), and the
same is true for other monomers such as carboxylic acids, and many other candidate al-
phabets in biochemistry. In many cases, the abiotic skew (often due to thermodynamic
considerations) will work against the probability of spontaneous emergence of infor-
mation, but in some cases it may work in its favor. In particular, we might imagine
that in complex geochemical environments the biotic distributions can be significantly
di↵erent in one environment compared to another, raising the chance of abiogenesis in
one environment and lowering it in another.

We also immediately note that in chemistries where molecules do not self-replicate
but catalyze the formation of other molecules, the abundance distribution of monomers
would change in each catalysis step. If these monomers are recycled via reversible
polymerization (Walker et al., 2012), then the activity of the molecules can change the
entropy of monomers, which in turn changes the likelihood of spontaneous discovery.
Should this process “run in the right direction”, it is possible that self-replicators are
the inevitable outcome. This hypothesis seems testable in digital life systems such as
Avida.
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Methods
In order to explore the spontaneous emergence of self-replicators in Avida, we gen-
erated random genomes of length L. These genome sequences were generated with
di↵erent probability distributions for the avidian instructions (we used Avida version
2.14, which can be downloaded from https://github.com/devosoft/ Avida). First, we
generated 109 random genomes for lengths L = {8, 15, 30} and 3 ⇥ 108 sequences for
L = 100 with an unbiased (that is, uniform) instruction distribution 1/26 (because there
are 26 possible instructions). In order to decide whether a genome could successfully
self-replicate, we performed two tests. First, we checked whether the organism would
successfully divide within its lifespan. Here, we used the traditional Avida parameters
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for an organism’s lifespan: it must divide before it executes 20 ⇥ L instructions. While
this indicates that an avidian could successfully reproduce, it does not imply that the
avidian’s descendants could also reproduce. In our search we found many viable avid-
ians that would successfully divide into two non-viable organisms. Therefore, we only
counted avidians that could self-replicate and produce o↵spring that could also self-
replicate as true self-replicators (in other words, they are “ colony-forming”). This does
not mean that every self-replicator would produce a perfect copy of itself in the absence
of mutation; in fact, most of these replicators undergo implicit mutations solely due to
their genome sequence, and their o↵spring di↵er in length from the parent (LaBar et al.,
2015). In analyzing a genome’s ability to self-replicate, we used the default Avida set-
tings, described for example in (Ofria et al., 2009).

Next, we generated random genome sequences with a biased instruction distribution.
These biased distributions were calculated by altering the probability that each instruc-
tion was generated by our random search. The probability of an instruction i being
generated for a biased search was set at

p(i, b) = (1 � b)(1/26) + bp?(i), (7.0)

where b is the bias, 0  b  1, and p?(i) is the probability that instruction i appears
in the set of all genomes that were classified as self-replicators in the unbiased search.
When b = 0, the distribution is the uniform distribution and when b = 1, the distribution
is the frequency distribution for the instructions in the set of self-replicators p? found
with the unbiased search for a given length. The parameter b allows us to set the bias,
and thus the entropy, of the distribution to detect the role of the instruction entropy in
determining the likelihood of spontaneous self-replicator emergence. For genomes of
L = 15, we generated 109 random sequences with b = 1 and 108 random sequences
with b = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}.

Finally, we performed searches where we iteratively biased the distribution of in-
structions. First, we generated self-replicators with an un biased instruction distribution.
We then created another set of self-replicators with a biased distribution of instructions
using the above equation with b = 1 (referred to as “1st bias”). However, as opposed
to stopping the self-replicator generation process, we then searched for self-replicators
two more times (referred to as ‘2nd bias’ and ‘3rd bias’). Each time, we used the set
of self-replicators from the previous bias: the distribution of instructions for the 2nd
bias was derived from the set of self-replicators obtained from the 1st bias, and the
distribution of instructions for the 3rd bias was derived from the set of self-replicators
from the 2nd bias (in both of these we set b = 1). We generated 108 random genomes
using the 1st bias for L = {8, 30} and 108 random genomes using the 2nd and 3rd bias
for L = {8, 15, 30} with a biased instruction distribution. For L = 15, we used the 109

random genomes described above to obtain the 1st bias.
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Eörs. 2012. Evolution before genes. Biol Direct, 7, 1.
Vetsigian, Kalin, Woese, Carl, and Goldenfeld, Nigel. 2006. Collective evolution and

the genetic code. Proc Natl Acad Sci U S A, 103(28), 10696–701.
Walker, Sara Imari, Grover, Martha A, and Hud, Nicholas V. 2012. Universal sequence

replication, reversible polymerization and early functional biopolymers: a model
for the initiation of prebiotic sequence evolution. PLoS One, 7(4), e34166.



112 Adami and Labar

Wickramasinghe, Chandra. 2011. Bacterial morphologies supporting cometary
panspermia: a reappraisal. International Journal of Astrobiology, 10, 25–30.


