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Information is a key concept in evolutionary biology. Information stored in a biological organism’s genome is used
to generate the organism and to maintain and control it. Information is also that which evolves. When a population
adapts to a local environment, information about this environment is fixed in a representative genome. However,
when an environment changes, information can be lost. At the same time, information is processed by animal
brains to survive in complex environments, and the capacity for information processing also evolves. Here, I review
applications of information theory to the evolution of proteins and to the evolution of information processing in
simulated agents that adapt to perform a complex task.
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Introduction

Evolutionary biology has traditionally been a sci-
ence that used observation and the analysis of spec-
imens to draw inferences about common descent,
adaptation, variation, and selection.1,2 In contrast
to this discipline that requires fieldwork and metic-
ulous attention to detail, stands the mathematical
theory of population genetics,3,4 which developed
in parallel but somewhat removed from evolution-
ary biology, as it could treat exactly only very ab-
stract cases. The mathematical theory cast Darwin’s
insight about inheritance, variation, and selection
into formulae that could predict particular aspects
of the evolutionary process, such as the probability
that an allele that conferred a particular advantage
would go to fixation, how long this process would
take, and how the process would be modified by dif-
ferent forms of inheritance. Missing from these two
disciplines, however, was a framework that would al-
low us to understand the broad macro-evolutionary
arcs that we can see everywhere in the biosphere
and in the fossil record—the lines of descent that
connect simple to complex forms of life. Granted,
the existence of these unbroken lines—and the fact

that they are the result of the evolutionary mecha-
nisms at work—is not in doubt. Yet, mathematical
population genetics cannot quantify them because
the theory only deals with existing variation. At the
same time, the uniqueness of any particular line of
descent appears to preclude a generative principle,
or a framework that would allow us to understand
the generation of these lines from a perspective once
removed from the microscopic mechanisms that
shape genes one mutation at the time. In the last 24
years or so, the situation has changed dramatically
because of the advent of long-term evolution exper-
iments with replicate lines of bacteria adapting for
over 50,000 generations,5,6 and in silico evolution ex-
periments covering millions of generations.7,8 Both
experimental approaches, in their own way, have
provided us with key insights into the evolution of
complexity on macroscopic time scales.6,8–14

But there is a common concept that unifies the
digital and the biochemical approach: information.
That information is the essence of “that which
evolves” has been implicit in many writings (al-
though the word “information” does not appear in
Darwin’s On the Origin of Species). Indeed, shortly
after the genesis of the theory of information at the
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hands of a Bell Laboratories engineer,15 this the-
ory was thought to ultimately explain everything
from the higher functions of living organisms down
to metabolism, growth, and differentiation.16 How-
ever, this optimism soon gave way to a miasma of
confounding mathematical and philosophical argu-
ments that dampened enthusiasm for the concept
of information in biology for decades. To some ex-
tent, evolutionary biology was not yet ready for a
quantitative treatment of “that which evolves:” the
year of publication of “Information in Biology”16

coincided with the discovery of the structure of
DNA, and the wealth of sequence data that cata-
pulted evolutionary biology into the computer age
was still half a century away.

Colloquially, information is often described as
something that aids in decision making. Interest-
ingly, this is very close to the mathematical meaning
of “information,” which is concerned with quanti-
fying the ability to make predictions about uncer-
tain systems. Life—among many other aspects—
has the peculiar property of displaying behavior
or characters that are appropriate, given the envi-
ronment. We recognize this of course as the conse-
quence of adaptation, but the outcome is that the
adapted organism’s decisions are “in tune” with its
environment—the organism has information about
its environment. One of the insights that has
emerged from the theory of computation is that in-
formation must be physical—information cannot
exist without a physical substrate that encodes it.17

In computers, information is encoded in zeros and
ones, which themselves are represented by differ-
ent voltages on semiconductors. The information
we retain in our brains also has a physical substrate,
even though its physiological basis depends on the
type of memory and is far from certain. Context-
appropriate decisions require information, however
it is stored. For cells, we now know that this infor-
mation is stored in a cell’s inherited genetic material,
and is precisely the kind that Shannon described in
his 1948 articles. If inherited genetic material rep-
resents information, then how did the information-
carrying molecules acquire it? Is the amount of in-
formation stored in genes increasing throughout
evolution, and if so, why? How much information
does an organism store? How much in a single gene?
If we can replace a discussion of the evolution of
complexity along the various lines of descent with a
discussion of the evolution of information, perhaps

then we can find those general principles that have
eluded us so far.

In this review, I focus on two uses of informa-
tion theory in evolutionary biology: First, the quan-
tification of the information content of genes and
proteins and how this information may have evolved
along the branches of the tree of life. Second, the evo-
lution of information-processing structures (such
as brains) that control animals, and how the func-
tional complexity of these brains (and how they
evolve) could be quantified using information the-
ory. The latter approach reinforces a concept that
has appeared in neuroscience repeatedly: the value
of information for an adapted organism is fitness,18

and the complexity of an organism’s brain must
be reflected in how it manages to process, inte-
grate, and make use of information for its own
advantage.19

Entropy and information in molecular
sequences

To define entropy and information, we first must de-
fine the concept of a random variable. In probability
theory, a random variable X is a mathematical object
that can take on a finite number of different states
x1 · · · xN with specified probabilities p1, . . . , pN .

We should keep in mind that a mathematical ran-
dom variable is a description—sometimes accurate,
sometimes not—of a physical object. For example,
the random variable that we would use to describe a
fair coin has two states: x1 = heads and x2 = tails,
with probabilities p1 = p2 = 0.5. Of course, an ac-
tual coin is a far more complex device—it may devi-
ate from being true, it may land on an edge once in
a while, and its faces can make different angles with
true North. Yet, when coins are used for demon-
strations in probability theory or statistics, they are
most succinctly described with two states and two
equal probabilities. Nucleic acids can be described
probabilistically in a similar manner. We can define
a nucleic acid random variable X as having four
states x1 = A, x2 = C, x3 = G, and x4 = T, which
it can take on with probabilities p1, . . . , p4, while
being perfectly aware that the nucleic acid molecules
themselves are far more complex, and deserve
a richer description than the four-state abstrac-
tion. But given the role that these molecules
play as information carriers of the genetic mate-
rial, this abstraction will serve us very well going
forward.
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Entropy
Using the concept of a random variable X , we can
define its entropy (sometimes called uncertainty)
as20,21

H(X) = –
N∑

i=1

pi log pi . (1)

Here, the logarithm is taken to an arbitrary base
that will normalize (and give units to) the entropy.
If we choose the dual logarithm, the units are “bits,”
whereas if we choose base e, the units are “nats.”
Here, I will often choose the size of the alphabet
as the base of the logarithm, and call the unit the
“mer.”22 So, if we describe nucleic acid sequences
(alphabet size 4), a single nucleotide can have up to
1 “mer” of entropy, whereas if we describe proteins
(logarithms taken to the base 20), a single residue
can have up to 1 mer of entropy. Naturally, a 5-mer
has up to 5 mers of entropy, and so on.

A true coin, we can immediately convince our-
selves, has an entropy of 1 bit. A single random
nucleotide, by the same reasoning, has an entropy
of 1 mer (or 2 bits) because

H(X) = –
4∑

i=1

1/4 log4 1/4 = 1. (2)

What is the entropy of a nonrandom nucleotide?
To determine this, we have to find the probabil-
ities pi with which that nucleotide is found at a
particular position within a gene. Say we are in-
terested in nucleotide 28 (counting from 5′ to 3′)
of the 76 base pair tRNA gene of the bacterium
Escherichia coli. What is its entropy? To determine
this, we need to obtain an estimate of the proba-
bility that any of the four nucleotides are found at
that particular position. This kind of information
can be gained from sequence repositories. For ex-
ample, the database tRNAdb23 contains sequences
for more than 12,000 tRNA genes. For the E. coli
tRNA gene, among 33 verified sequences (for differ-
ent anticodons), we find 5 that show an “A” at the
28th position, 17 have a “C,” 5 have a “G,” and 6
have a “T.” We can use these numbers to estimate
the substitution probabilities at this position as

p28 (A) = 5/33, p28 (C) = 17/33,

p28 (G) = 5/33, p28 (T) = 6/33, (3)

which, even though the statistics are not good, allow
us to infer that “C” is preferred at that position.

The entropy of position variable X28 can now be
estimated as

H (X28) = –2 × 5

33
log2

5

33
–

17

33
log2

17

33

–
6

33
log2

6

33
≈ 1.765 bits, (4)

or less than the maximal 2 bits we would expect
if all nucleotides appeared with equal probability.
Such an uneven distribution of states immediately
suggests a “betting” strategy that would allow us to
make predictions with accuracy better than chance
about the state of position variable X28: If we bet
that we would see a “C” there, then we would be
right over half the time on average, as opposed to
a quarter of the time for a variable that is evenly
distributed across the four states. In other words,
information is stored in this variable.

Information
To learn how to quantify the amount of information
stored, let us go through the same exercise for a dif-
ferent position (say, position 41a) of that molecule,
to find approximately

p41 (A) = 0.24, p41 (C) = 0.46,

p41(G) = 0.21, p41 (T) = 0.09, (5)

so that H(X41) ≈ 1.765 bits. To determine how
likely it is to find any particular nucleotide at posi-
tion 41 given position 28 is a “C,” for example, we
have to collect conditional probabilities. They are
easily obtained if we know the joint probability to
observe any of the 16 combinations AA. . .TT at the
two positions. The conditional probability to ob-
serve state j at position 41 given state i at position
28 is

pi | j = pi j

p j
, (6)

where pi j is the joint probability to observe state i at
position 28 and at the same time state j at position
41. The notation “i | j” is read as “i given j.” Col-
lecting these probabilities from the sequence data
gives the probability matrix that relates the random

aThe precise numbering of nucleotide positions differs
between databases.
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variable X28 to the variable X41:

p (X41|X28)

=





p (A | A) p (A | C) p (A | G) p (A | T)

p (C | A) p (C | C) p (C | G) p (C | T)

p (G | A) p (G | C) p (G | G) p (G | T)

p (T | A) p (T | C) p (T | G) p (T | T)





=





0.2 0.235 0 0.5

0 0.706 0.2 0.333

0.8 0 0.4 0.167

0 0.059 0.4 0




.

(7)

We can glean important information from these
probabilities. It is clear, for example, that positions
28 and 41 are not independent from each other. If
nucleotide 28 is an “A,” then position 41 can only
be an “A” or a “G,” but mostly (4/5 times) you
expect a “G.” But consider the dependence between
nucleotides 42 and 28

p (X42 | X28) =





0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0




. (8)

This dependence is striking—if you know posi-
tion 28, you can predict (based on the sequence
data given) position 42 with certainty. The reason
for this perfect correlation lies in the functional in-
teraction between the sites: 28 and 42 are paired in
a stem of the tRNA molecule in a Watson–Crick
pair—to enable the pairing, a “G” must be associ-
ated with a “C,” and a “T” (encoding a U) must be
associated with an “A.” It does not matter which is
at any position as long as the paired nucleotide is
complementary. And it is also clear that these as-
sociations are maintained by the selective pressures
of Darwinian evolution—a substitution that breaks
the pattern leads to a molecule that does not fold into
the correct shape to efficiently translate messenger
RNA into proteins. As a consequence, the organism
bearing such a mutation will be eliminated from
the gene pool. This simple example shows clearly
the relationship between information theory and
evolutionary biology: Fitness is reflected in infor-
mation, and when selective pressures maximize fit-
ness, information must be maximized concurrently.

We can now proceed and calculate the information
content. Each column in Eq. (7) represents a con-
ditional probability to find a particular nucleotide
at position 41, given a particular value is found at
position 28. We can use these values to calculate the
conditional entropy to find a particular nucleotide,
given that position 28 is “A,” for example, as

H(X41|X28 = A)

= –0.2 log2 0.2 – 0.8 log2 0.8 ≈ 0.72 bits. (9)

This allows us to calculate the amount of informa-
tion that is revealed (about X41) by knowing the
state of X28. If we do not know the state of X28, our
uncertainty about X41 is 1.795 bits, as calculated
earlier. But revealing that X28 actually is an “A” has
reduced our uncertainty to 0.72 bits, as we saw in
Eq. (9). The information we obtained is then just
the difference

I (X41 : X28 = A) = H (X41) – H (X41|X28 = A)

≈ 1.075 bits, (10)

that is, just over 1 bit. The notation in Eq. (10),
indicating information between two variables by a
colon (sometimes a semicolon) is conventional. We
can also calculate the average amount of information
about X41 that is gained by revealing the state of X28

as

I (X41 : X28) = H (X41) – H (X41|X28)

≈ 0.64 bits. (11)

Here, H(X41|X28) is the average conditional en-
tropy of X41 given X28, obtained by averaging the
four conditional entropies (for the four possible
states of X28) using the probabilities with which
X28 occurs in any of its four states, given by Eq. (3).
If we apply the same calculation to the pair of po-
sitions X42 and X28, we should find that knowing
X28 reduces our uncertainty about X42 to zero—
indeed, X28 carries perfect information about X42.

The covariance between residues in an RNA sec-
ondary structure captured by the mutual entropy
can be used to predict secondary structure from se-
quence alignments alone.24

Information content of proteins
We have seen that different positions within a
biomolecule can carry information about other po-
sitions, but how much information do they store
about the environment within which they evolve?
This question can be answered using the same
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information-theoretic formalism introduced ear-
lier. Information is defined as a reduction in our
uncertainty (caused by our ability to make predic-
tions with an accuracy better than chance) when
armed with information. Here we will use proteins
as our biomolecules, which means our random vari-
ables can take on 20 states, and our protein variable
will be given by the joint variable

X = X1 X2 · · · XL , (12)

where L is the number of residues in the protein.
We now ask: “How much information about the
environment (rather than about another residue)
is stored in a particular residue?” To answer this,
we have to first calculate the uncertainty about any
particular residue in the absence of information
about the environment. Clearly, it is the environ-
ment within which a protein finds itself that con-
strains the particular amino acids that a position
variable can take on. If I do not specify this environ-
ment, there is nothing that constrains any particu-
lar residue i, and as a consequence the entropy is
maximal

H (Xi ) = Hmax = log2 20 ≈ 4.32 bits. (13)

In any functional protein, the residue is highly
constrained, however. Let us imagine that the pos-
sible states of the environment can be described by
a random variable E (that takes on specific environ-
mental states e j with given probabilities). Then the
information about environment E = e j contained
in position variable Xi of protein X is given by

I (Xi : E = e j ) = Hmax – H(Xi | E = e j ),

(14)

in perfect analogy to Eq. (10). How do we calculate
the information content of the entire protein, armed
only with the information content of residues? If
residues do not interact (that is, the state of a residue
at one position does not reveal any information
about the state of a residue at another position),
then the information content of the protein would
just be a sum of the information content of each
residue

I (X : E = e j ) =
L∑

i=1

I (Xi : E = e j ). (15)

This independence of positions certainly could
not be assumed in RNA molecules that rely on

Watson–Crick binding to establish their secondary
structure. In proteins, correlations between residues
are much weaker (but certainly still important, see,
e.g., Refs. 25–33), and we can take Eq. (15) as a
first-order approximation of the information con-
tent, while keeping in mind that residue–residue
correlations encode important information about
the stability of the protein and its functional affinity
to other molecules. Note, however, that a population
with two or more subdivisions, where each subpop-
ulation has different amino acid frequencies, can
mimic residue correlations on the level of the whole
population when there are none on the level of the
subpopulations.34

For most cases that we will have to deal with, a
protein is only functional in a very defined cellular
environment, and as a consequence the conditional
entropy of a residue is fixed by the substitution prob-
abilities that we can observe. Let us take as an exam-
ple the rodent homeodomain protein,35 defined by
57 residues. The environment for this protein is of
course the rodent, and we might surmise that the in-
formation content of the homeodomain protein in
rodents is different from the homeodomain protein
in primates, for example, simply because primates
and rodents have diverged about 100 million years
ago,36 and have since then taken independent evo-
lutionary paths. We can test this hypothesis by cal-
culating the information content of rodent proteins
and compare it to the primate version, using substi-
tution probabilities inferred from sequence data that
can be found, for example, in the Pfam database.37

Let us first look at the entropy per residue, along the
chain length of the 57 mer. But instead of calculating
the entropy in bits (by taking the base-2 logarithm),
we will calculate the entropy in “mers,” by taking
the logarithm to base 20. This way, a single residue
can have at most 1 mer of entropy, and the 57-mer
has at most 57 mers of entropy. The entropic pro-
file (entropy per site as a function of site) of the
rodent homeodomain protein depicted in Figure 1
shows that the entropy varies considerably from site
to site, with strongly conserved and highly variable
residues.

When estimating entropies from finite ensembles
(small number of sequences), care must be taken
to correct for the bias that is inherent in estimating
the probabilities from the frequencies. Rare residues
will be assigned zero probabilities in small ensem-
bles but not in larger ones. Because this error is not
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Figure 1. Entropic profile of the 57-amino acid rodent home-
odomain, obtained from 810 sequences in Pfam (accessed Febru-
ary 3, 2011). Error of the mean is smaller than the data points
shown. Residues are numbered 2–58 as is common for this
domain.35

symmetric (probabilities will always be underesti-
mated), the bias is always toward smaller entropies.
Several methods can be applied to correct for this,
and I have used here the second-order bias correc-
tion, described for example in Ref. 38. Summing up
the entropies per site shown in Figure 1, we can get
an estimate for the information content by applying
Eq. (15). The maximal entropy Hmax, when mea-
sured in mers, is of course 57, so the information
content is just

IRodentia = 57 –
57∑

i=1

H(Xi | eRodentia), (16)

which comes out to

IRodentia = 25.29 ± 0.09 mers, (17)

where the error of the mean is obtained from the
theoretical estimate of the variance given the fre-
quency estimate.38

The same analysis can be repeated for the primate
homeodomain protein. In Figure 2, we can see the
difference between the “entropic profile” of rodents
and primates

!Entropy = H(Xi | eRodentia) – H(Xi | ePrimates),

(18)

which shows some significant differences, in partic-
ular, it seems, at the edges between structural motifs
in the protein.

When summing up the entropies to arrive at the
total information content of the primate home-

odomain protein we obtain

IPrimates = 25.43 ± 0.08 mers, (19)

which is identical to the information content of ro-
dent homeodomains within statistical error. We can
thus conclude that although the information is en-
coded somewhat differently between the rodent and
the primate version of this protein, the total infor-
mation content is the same.

Evolution of information

Although the total information content of the
homeodomain protein has not changed between ro-
dents and primates, what about longer time inter-
vals? If we take a protein that is ubiquitous among
different forms of life (i.e., its homologue is present
in many different branches), has its information
content changed as it is used in more and more
complex forms of life? One line of argument tells
us that if the function of the protein is the same
throughout evolutionary history, then its informa-
tion content should be the same in each variant. We
saw a hint of that when comparing the information
content of the homeodomain protein between ro-
dents and primates. But we can also argue instead
that because information is measured relative to the
environment the protein (and thus the organism)
finds itself in, then organisms that live in very dif-
ferent environments can potentially have different
information content even if the sequences encoding
the proteins are homologous. Thus, we could ex-
pect differences in protein information content in
organisms that are different enough that the protein
is used in different ways. But it is certainly not clear
whether we should observe a trend of increasing or
decreasing information along the line of descent. To
get a first glimpse at what these differences could be
like, I will take a look here at the evolution of in-
formation in two proteins that are important in the
function of most animals—the homeodomain pro-
tein and the COX2 (cytochrome-c-oxidase subunit
2) protein.

The homeodomain (or homeobox) protein is es-
sential in determining the pattern of development
in animals—it is crucial in directing the arrange-
ment of cells according to a particular body plan.39

In other words, the homeobox determines where
the head goes and where the tail goes. Although it is
often said that these proteins are specific to animals,
some plants have homeodomain proteins that are
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Figure 2. Difference between entropic profile “!Entropy” of
the homeobox protein of rodents and primates (the latter from
903 sequences in Pfam, accessed February 3, 2011). Error bars
are the error of the mean of the difference, using the average of
the number of sequences. The colored boxes indicate structural
domains as determined for the fly version of this gene. (“N”
refers to the protein’s “N-terminus”).

homologous to those I study here.40 The COX2 pro-
tein, on the other hand, is a subunit of a large protein
complex with 13 subunits.41 Whereas a nonfunc-
tioning (or severely impaired) homeobox protein
certainly leads to aborted development, an impaired
COX complex has a much less drastic effect—it leads
to mitochondrial myopathy due to a cytochrome
oxidase deficiency,42 but is usually not fatal.43 Thus,
by testing the changes within these two proteins, we
are examining proteins with very different selective
pressures acting on them.

To calculate the information content of each of
these proteins along the evolutionary line of de-
scent, in principle we need access to the sequences
of extinct forms of life. Even though the resurrection
of such extinct sequences is possible in principle44

using an approach dubbed “paleogenetics,”45,46 we
can take a shortcut by grouping sequences accord-
ing to the depth that they occupy within the phy-
logenetic tree. So when we measure the informa-
tion content of the homeobox protein on the tax-
onomic level of the family, we include in there the
sequences of homeobox proteins of chimpanzees,
gorillas, and orangutans along with humans. As the
chimpanzee version, for example, is essentially iden-
tical with the human version, we do not expect to
see any change in information content when mov-
ing from the species level to the genus level. But
we can expect that by grouping the sequences on
the family level (rather than the genus or species

level), we move closer toward evolutionarily more
ancient proteins, in particular because this group
(the great apes) is used to reconstruct the sequence
of the ancestor of that group. The great apes are
but one family of the order primates which besides
the great apes also contains the families of mon-
keys, lemurs, lorises, tarsiers, and galagos. Looking
at the homeobox protein of all the primates then
takes us further back in time. A simplified version
of the phylogeny of animals is shown in Figure 3,
which shows the hierarchical organization of the
tree.

The database Pfam uses a range of different tax-
onomic levels (anywhere from 12 to 22, depend-
ing on the branch) defined by the NCBI Taxonomy
Project,47 which we can take as a convenient proxy
for taxonomic depth—ranging from the most basal
taxonomic identifications (such as phylum) to the
most specific ones. In Figure 4, we can see the total
sequence entropy

Hk(X) =
57∑

i=1

H(Xi |ek), (20)

for sequences with the NCBI taxonomic level k, as a
function of the level depth. Note that sequences at
level k always include all the sequences at level k–1.
Thus, H1(X), which is the entropy of all home-
odomain sequences at level k = 1, includes the se-
quences of all eukaryotes. Of course, the taxonomic
level description is not a perfect proxy for time. On
the vertebrate line, for example, the genus Homo oc-
cupies level k = 14, whereas the genus Mus occupies
level k = 16. If we now plot Hk(X) versus k (for the
major phylogenetic groups only), we see a curious
splitting of the lines based only on total sequence en-
tropy, and thus information (as information is just
I = 57 – H if we measure entropy in mers). At the
base of the tree, the metazoan sequences split into
chordate proteins with a lower information con-
tent (higher entropy) and arthropod sequences with
higher information content, possibly reflecting the
different uses of the homeobox in these two groups.
The chordate group itself splits into mammalian
proteins and the fish homeodomain. There is even a
notable split in information content into two major
groups within the fishes.

The same analysis applied to subunit II of the
COX protein (counting only 120 residue sites that
have sufficient statistics in the database) gives a very
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Figure 3. Simplified phylogenetic classification of animals. At the root of this tree (on the left tree) are the eukaryotes, but only
the animal branch is shown here. If we follow the line of descent of humans, we move on the branch toward the vertebrates. The
vertebrate clade itself is shown in the tree on the right, and the line of descent through this tree follows the branches that end in the
mammals. The mammal tree, finally, is shown at the bottom, with the line ending in Homo sapiens indicated in red.

different picture. Except for an obvious split of the
bacterial version of the protein and the eukaryotic
one, the total entropy markedly decreases across
the lines as the taxonomic depth increases. Further-
more, the arthropod COX2 is more entropic than
the vertebrate one (see Fig. 5) as opposed to the
ordering for the homeobox protein. This finding
suggests that the evolution of the protein informa-
tion content is specific to each protein, and most
likely reflects the adaptive value of the protein for
each family.

Evolution of information in robots
and animats

The evolution of information within the genes of
adapting organisms is but one use of information
theory in evolutionary biology. Just as anticipated
in the heydays of the “Cybernetics” movement,48

information theory has indeed something to say
about the evolution of information processing in
animal brains. The general idea behind the connec-
tion between information and function is simple:
Because information (about a particular system) is

what allows the bearer to make predictions (about
that particular system) with accuracy better than
chance, information is valuable as long as prediction
is valuable. In an uncertain world, making accu-
rate predictions is tantamount to survival. In other
words, we expect that information, acquired from
the environment and processed, has survival value
and therefore is selected for in evolution.

Predictive information
The connection between information and fitness
can be made much more precise. A key relation
between information and its value for agents that
survive in an uncertain world as a consequence of
their actions in it was provided by Ay et al.,49 who
applied a measure called “predictive information”
(defined earlier by Bialek et al.50 in the context of
dynamical systems theory) to characterize the be-
havioral complexity of an autonomous robot. These
authors showed that the mutual entropy between a
changing world (as represented by changing states
in an organism’s sensors) and the actions of mo-
tors that drive the agent’s behavior (thus changing
the future perceived states) is equivalent to Bialek’s
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Figure 4. Entropy of homeobox domain protein sequences (PF00046 in the Pfam database, accessed July 20, 2006) as a function of
taxonomic depth for different major groups that have at last 200 sequences in the database, connected by phylogenetic relationships.
Selected groups are annotated by name. Fifty-seven core residues were used to calculate the molecular entropy. Core residues have
at least 70% sequence in the database.

predictive information as long as the agent’s deci-
sions are Markovian, that is, only depend on the state
of the agent and the environment at the preceding
time. This predictive information is defined as the
shared entropy between motor variables Yt and the
sensor variables at the subsequent time point Xt+1

Ipred = I (Yt : Xt+1) = H(Xt+1) – H(Xt+1|Yt ).

(21)

Here, H(Xt+1) is the entropy of the sensor states
at time t + 1, defined as

H(Xt+1) = –
∑

xt+1

p(xt+1) log p(xt+1), (22)

using the probability distribution p(xt+1) over the
sensor states xt+1 at time t + 1. The conditional
entropy H(Xt+1|Yt) characterizes how much is left
uncertain about the future sensor states Xt+1 given
the robot’s actions in the present, that is, the state
of the motors at time t , and can be calculated in the
standard manner20,21 from the joint probability dis-
tribution of present motor states and future sensor
states p(xt+1, yt ).

As Eq. (21) implies, the predictive information
measures how much of the entropy of sensorial

states—that is, the uncertainty about what the de-
tectors will record next—is explained by the motor
states at the preceding time point. For example, if
the motor states at time t perfectly predict what
will appear in the sensors at time t + 1, then the
predictive information is maximal. Another version
of the predictive information studies not the effect
the motors have on future sensor states, but the
effect the sensors have on future motor states in-
stead, for example to guide an autonomous robot
through a maze.51 In the former case, the pre-
dictive information quantifies how actions change
the perceived world, whereas in the latter case the
predictive information characterizes how the per-
ceived world changes the robot’s actions. Both for-
mulations, however, are equivalent when taking
into account how world and robot states are being
updated.51 Although it is clear that measures such as
predictive information should increase as an agent
or robot learns to behave appropriately in a complex
world, it is not at all clear whether information could
be used as an objective function that, if maximized,
will lead to appropriate behavior of the robot. This
is the basic hypothesis of Linsker’s “Infomax” prin-
ciple,52 which posits that neural control structures
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Figure 5. Entropy of COX subunit II (PF00116 in the Pfam database, accessed June 22, 2006) protein sequences as a function
of taxonomic depth for selected different groups (at least 200 sequences per group), connected by phylogenetic relationships. One
hundred twenty core residues were used to calculate the molecular entropy.

evolve to maximize “information preservation” sub-
ject to constraints. This hypothesis implies that the
infomax principle could play the role of a guiding
force in the organization of perceptual systems. This
is precisely what has been observed in experiments
with autonomous robots evolved to perform a va-
riety of tasks. For example, in one task visual and
tactile information had to be integrated to grab an
object,53 whereas in another, groups of five robots
were evolved to move in a coordinated fashion54

or else to navigate according to a map.55 Such ex-

periments suggest that there may be a deeper con-
nection between information and fitness that goes
beyond the regularities induced by a perception–
action loop, that connects fitness (in the evolution-
ary sense as the growth rate of a population) directly
to information.

As a matter of fact, Rivoire and Leibler18 recently
studied abstract models of the population dynamics
of evolving “finite-state agents” that optimize their
response to a changing environment and found just
such a relationship. In such a description, agents
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respond to a changing environment with a proba-
bility distribution !("t | "t–1) of changing from state
"t–1 to state "t , to maximize the growth rate of the
population. Under fairly general assumptions, the
growth rate is maximized if the Shannon informa-
tion that the agents can extract from the changing
environment is maximal.18 For our purposes, this
Shannon information is nothing but the predictive
information discussed earlier (see supplementary
text S1 in Ref. 51 for a discussion of that point).
However, such a simple relationship only holds if
each agent perceives the environment in the same
manner, and if information is acquired only from
the environment. If information is inherited or re-
trieved from memory, on the other hand, predic-
tive information cannot maximize fitness. This is
easily seen if we consider an agent that makes deci-
sions based on a combination of sensory input and
memory. If memory states (instead of sensor states)
best predict an agent’s actions, the correlation be-
tween sensors and motors may be lost even though
the actions are appropriate. A typical case would
be navigation under conditions when the sensors
do not provide accurate information about the en-
vironment, but the agent has nevertheless learned
the required actions “by heart.” In such a scenario,
the predictive information would be low because the
actions do not correlate with the sensors. Yet, the
fitness is high because the actions were controlled
by memory, not by the sensors. Rivoire and Leibler
show further that if the actions of an agent are al-
ways optimal, given the environment, then a differ-
ent measure maximizes fitness, namely the shared
entropy between sensors and variables given the pre-
vious time step’s sensor statesb

Icausal = I (Xt : Yt+1|Xt–1). (23)

In most realistic situations, however, optimal nav-
igation strategies cannot be assumed. Indeed, as
optimal strategies are (in a sense) the goal of evolu-
tionary adaptation, such a measure could conceiv-
ably only apply at the endpoint of evolution. Thus,
no general expression can be derived that ties these
informational quantities directly to fitness.

bThe notation is slightly modified here to conform to the
formalism used in Ref. 51.

Integrated information
What are the aspects of information processing
that distinguish complex brains from simple ones?
Clearly, processing large amounts of information is
important, but a large capacity is not necessarily
a sign of high complexity. It has been argued that
a hallmark of complex brain function is its ability
to integrate disparate streams of information and
mold them into a complex gestalt that represents
more than the sum of its parts.56–65 These streams
of information come not only from different senso-
rial modalities such as vision, sound, and olfaction,
but also (and importantly) from memory, and create
a conscious experience in our brains that allows us
to function at levels not available to purely reactive
brains. One way to measure how much informa-
tion a network processes is to calculate the shared
entropy between the nodes at time t and time t + 1

Itotal = I (Zt : Zt+1). (24)

Here, Zt represents the state of the entire network
(not just the sensors or motors) at time t , and thus
the total information captures information process-
ing among all nodes of the network, and can in
principle be larger or smaller than the predictive in-
formation that only considers processing between
sensor and motors.

We can write the network random variable Zt as a
product of the random variables that describe each
node i, that is, each neuron, as (n is the number of
nodes in the network)

Zt = Z(1)
t Z(2)

t · · · Z(n)
t , (25)

which allows us to calculate the amount of informa-
tion processed by each individual node i as

I (i) = I
(

Z(i)
t : Z(i)

t+1

)
. (26)

Note that I omitted the index t on the left-hand
side of Eqs. (24) and (26), assuming that the dynam-
ics of the network becomes stationary as t → ∞,

and, thus, that a sampling of the network states
at any subsequent time points becomes represen-
tative of the agent’s behavior. If the nodes in the
network process information independently from
each other, then the sum (over all neurons) of the
information processed by each neuron would equal
the amount of information processed by the entire
network. The difference between the two then rep-
resents the amount of information that the network
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processes over and above the information processed
by the individual neurons, the synergistic informa-
tion51

S Iatom = I (Zt : Zt+1) –
n∑

i=1

I (i)
(

Z(i)
t : Z(i)

t+1

)
.

(27)

The index “atom” on the synergistic information
reminds us that the sum is over the indivisible ele-
ments of the network—the neurons themselves. As
we see later, other more general partitions of the
network are possible, and often times more appro-
priate to capture synergy. The synergistic informa-
tion is related to other measures of synergy that
have been introduced independently. One is simply
called “integration” and defined in terms of Shan-
non entropies as64,66,67

I =
n∑

i=1

H
(

Z(i)
t

)
– H(Zt ). (28)

This measure has been introduced earlier under
the name “multi-information.”68,69 Another mea-
sure, called "atom in Ref. 51, was independently in-
troduced by Ay and Wennekers70,71 as a measure
of the complexity of dynamical systems they called
“stochastic interaction,” and is defined as

"atom =
n∑

i=1

H
(

Z(i)
t |Z(i)

t+1

)
– H (Zt |Zt+1) .

(29)

Note the similarity between Eqs. (27)–(29):
whereas (27) measures synergistic information, (28)
measures “synergistic entropy” and (29) synergistic
conditional entropy in turn. The three are related
because entropy and information are related, as for
example in Eqs. (11) and (21). Using this relation,
it is easy to show that51

"atom = S Iatom + I. (30)

Although we can expect that measures such as Eqs.
(28)–(30) quantify some aspects of information in-
tegration, it is likely that they overestimate the in-
tegration because it is possible that elements of the
computation are performed by groups of neurons
that together behave as a single entity. In that case,
subdividing the whole network into independent
neurons may lead to the double counting of inte-
grated information. A cleaner (albeit computation-
ally much more expensive) approach is to find a

partition of the network into nonoverlapping
groups of nodes (parts) that are as independent of
each other (information theoretically speaking) as
possible. If we define the partition P of a network
into k parts via P = {P (1), P (2), . . . , P (k)}, where
each P (i) is a part of the network (a nonempty set
of neurons with no overlap between the parts), then
we can define a quantity that is analogous to Eq. (29)
except that the sum is over the parts rather than the
individual neurons61

"(P ) =
n∑

i=1

H
(

P (i)
t |P (i)

t+1

)
– H(Pt |Pt+1).

(31)

In Eq. (31), each part carries a time label because
every part takes on different states as time proceeds.
The so-called “minimum information partition” (or
MIP) is found by minimizing a normalized Eq. (31)
over all partitions

MIP = arg min
P

"(Pt )

N(Pt )
, (32)

where the normalization N(Pt ) = (k –
1) mini [Hmax(P (i)

t )] balances the parts of the
partition.62 Using this MIP, the integrated informa-
tion " is then simply given by

" = " (P = MIP) . (33)

Finally, we need to introduce one more concept to
measure information integration in realistic evolv-
ing networks. Because " of a network with a single
(or more) disconnected nodes vanishes (because the
MIP for such a network is always the partition into
the connected nodes in one part, and the discon-
nected in another), we should attempt to define the
computational “main complex,” which is that sub-
set of nodes for which " is maximal.62 This measure
will be called "MC hereafter.

Although all these measures attempt to capture
synergy, it is not clear whether any of them corre-
late with fitness when an agent evolves, that is, it
is not clear whether synergy or integration capture
an aspect of the functional complexity of control
structures that goes beyond the predictive infor-
mation defined earlier. To test this, Edlund et al.
evolved animats that learned, over 50,000 genera-
tions of evolution, to navigate a two-dimensional
maze,51 constructed in such a way that optimal nav-
igation requires memory. While measuring fitness,
they also recorded six different candidate measures
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Figure 6. (A) Three candidate measures of information integration "atom (29), "MC, and I (28) along the line of descent of a
representative evolutionary run in which animats adapted to solve a two-dimensional maze. (B) Three measures of information
processing, in the same run. Blue (solid): total information I total (24), green (dashed): atomic information SI atom(27), and red
(dotted): predictive information I pred (21) (from Ref. 51).

for brain complexity, among which are the predic-
tive information Eq. (21), the total information Eq.
(24), the synergistic information Eq. (27), the inte-
gration Eq. (28), the “atomic "” Eq. (29), and the
computationally intensive measure "MC. Figure 6
shows a representative run (of 64) that shows the six
candidate measures as a function of evolutionary
time measured in generations. During this run, the
fitness increased steadily, with a big step around gen-
eration 15,000 where this particular animat evolved
the capacity to use memory for navigation (from
Ref. 51).

It is not clear from a single run which of these
measures best correlates with fitness. If we take the
fitness attained at the end of each of 64 runs and plot
it against the fitness (here measured as the percent-
age of the achievable fitness in this environment),
the sophisticated measure "MC emerges as the clear
winner, with a Spearman rank correlation coeffi-
cient with achieved fitness of R = 0.937 (see Fig. 7).
This suggests that measures of information integra-
tion can go beyond simple “reactive” measures such
as Ipred in characterizing complex behavior, in par-
ticular when the task requires memory, as was the
case there.

Future directions

Needless to say, there are many more uses for in-
formation theory in evolutionary biology than re-
viewed here. For example, it is possible to describe
the evolution of drug resistance in terms of loss, and
subsequent gain, of information: when a pathogen
is treated with a drug, the fitness landscape of that

pathogen is changed (often dramatically), and as
a consequence the genomic sequence that repre-
sented information before the administration of the
drug is not information (or much less informa-
tion) about the new environment.22 As the pathogen
adapts to the new environment, it acquires informa-
tion about that environment and its fitness increases
commensurately.

Generally speaking, it appears that there is a fun-
damental law that links information to fitness (suit-
ably defined). Such a relationship can be written
down explicitly for specific systems, such as the re-
lationship between the information content of DNA
binding sites with the affinity the binding proteins
have with that site,72 or the relationship between
the information content of ribozymes and their cat-
alytic activity.73 We can expect such a relationship
to hold as long as information is valuable, and this
will always be the case as long as information can be
used in decision processes (broadly speaking) that
increase the long term of success of a lineage. It is
possible to imagine exceptions to such a law where
information would be harmful to an organism, in
the sense that signals perceived by a sensory appara-
tus overwhelm, rather than aid, an organism. Such
a situation could arise when the signals are unan-
ticipated, and simply cannot be acted upon in an
appropriate manner (for example in animal devel-
opment). It is conceivable that in such a case, mech-
anisms will evolve that protect an organism from
signals—this is the basic idea behind the evolution
of canalization,74 which is the capacity of an organ-
ism to maintain its phenotype in the face of genetic
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Figure 7. Correlation of information-based measures of complexity with fitness. "MC, I, "atom, I total, I pred, as a function of
fitness at the end of each of 64 independent runs. R indicates Spearman’s rank correlation coefficient. The red dot shows the run
depicted in Figure 6 (from Ref. 51).

and environmental variation. I would like to point
out, however, that strictly speaking, canalization is
the evolution of robustness with respect to entropy
(noise), not information. If a particular signal can-
not be used to make predictions, then this signal is
not information. In that respect, even the evolution
of canalization (if it increases organismal fitness)
increases the amount of information an organism
has about its environment, because insulating itself
from certain forms of noise will increase the reli-
ability of the signals that the organism can use to
further its existence.

An interesting example that illustrates the benefit
of information and the cost of entropy is the evo-
lution of cooperation, couched in the language of
evolutionary game theory.75 In evolutionary games,
cooperation can evolve as long as the decision to
cooperate benefits the group more than it costs
the individual.76–78 Groups can increase the ben-
efit accruing to them if they can choose judiciously
who to interact with. Thus, acquiring information
about the game environment (in this case, the other
players) increases the fitness of the group via mu-
tual cooperative behavior. Indeed, it was shown re-
cently that cooperation can evolve among players
that interact via the rules of the so-called “Pris-
oner’s Dilemma” game if the strategies that evolve
can take into account information about how the
opponent is playing.79 However, if this information
is marred by noise (either from genetic mutations
that decouple the phenotype from the genotype or

from other sources), the population will soon evolve
to defect rather than to cooperate. This happens be-
cause when the signals cannot be relied upon any-
more, information (as the noise increases) gradually
turns into entropy. In that case, canalization is the
better strategy and players evolve genes that ignore
the opponent’s moves.79 Thus, it appears entirely
possible that an information-theoretic formulation
of inclusive fitness theory (a theory that predicts the
fitness of groups76,77 that goes beyond Hamilton’s
kin selection theory) will lead to a predictive frame-
work in which reliable communication is the key to
cooperation.

Conclusions

Information is the central currency for organismal
fitness,80 and appears to be that which increases
when organisms adapt to their niche.13 Informa-
tion about the niche is stored in genes, and used to
make predictions about the future states of the envi-
ronment. Because fitness is higher in well-predicted
environments (simply because it is easier to take
advantage of the environment’s features for repro-
duction if they are predictable), organisms with
more information about their niche are expected to
outcompete those with less information, suggesting
a direct relationship between information content
and fitness within a niche (comparisons of informa-
tion content across niches, on the other hand, are
meaningless because the information is not about
the same system). A very similar relationship, also
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enforced by the rules of natural selection, can be
found for information acquired not through the
evolutionary process, but instead via an organism’s
sensors. When this information is used for navi-
gation, for example, then a measure called “pre-
dictive information” is a good proxy for fitness as
long as navigation is performed taking only sen-
sor states into account: indeed, appropriate behav-
ior can evolve, even when information, not fitness,
is maximized. If, instead, decisions are also influ-
enced by memory, different information-theoretic
constructions based on the concept of “integrated
information” appear to correlate better with fitness,
and capture how the brain forms more abstract rep-
resentations of the world81 that are used to predict
the states of the world on temporal scales much
larger than the immediate future. Thus, the ability
of making predictions about the world that range
far into the future may be the ultimate measure of
functional complexity82 and perhaps even intelli-
gence.83
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