跳转到内容

土衛六大氣層:修订间差异

维基百科,自由的百科全书
删除的内容 添加的内容
SSR2000留言 | 贡献
无编辑摘要
SSR2000留言 | 贡献
无编辑摘要
第7行: 第7行:
}}
}}
[[File:Titan-Complex 'Anti-greenhouse'.jpg|thumb|300px|土衛六大氣層霾層的全彩影像。]]
[[File:Titan-Complex 'Anti-greenhouse'.jpg|thumb|300px|土衛六大氣層霾層的全彩影像。]]
'''土衛六大氣層'''是[[太陽系]]的天然[[衛星]]中唯一高度發展的衛星大氣層。
'''[[土衛六]]大氣層'''是[[太陽系]]的天然[[衛星]]中唯一高度發展的衛星大氣層。


==觀測歷史==
==觀測歷史==
第42行: 第42行:
土衛六的大氣層環流模式是和土衛六自轉方向同樣由西向東。卡西尼號於2004年對大氣層觀測結果表明存在類似金星大氣層的「超級自轉」,即大氣環流速度遠高於自轉速度<ref>{{cite web |url=http://www.astrobio.net/news/article1480.html |title=Wind or Rain or Cold of Titan's Night?|accessdate=2007-08-24 |date=March 11, 2005 |publisher=Astrobiology Magazine| archiveurl= http://web.archive.org/web/20070927030216/http://www.astrobio.net/news/article1480.html| archivedate= 27 September 2007 <!--DASHBot-->| deadurl= no}}</ref>。
土衛六的大氣層環流模式是和土衛六自轉方向同樣由西向東。卡西尼號於2004年對大氣層觀測結果表明存在類似金星大氣層的「超級自轉」,即大氣環流速度遠高於自轉速度<ref>{{cite web |url=http://www.astrobio.net/news/article1480.html |title=Wind or Rain or Cold of Titan's Night?|accessdate=2007-08-24 |date=March 11, 2005 |publisher=Astrobiology Magazine| archiveurl= http://web.archive.org/web/20070927030216/http://www.astrobio.net/news/article1480.html| archivedate= 27 September 2007 <!--DASHBot-->| deadurl= no}}</ref>。


土衛六的電離層結構較地球的複雜,主電離層高度1200公里,但在高度63公里處有另一個帶電粒子聚集層。這使土衛六大氣層在一定程度上分裂為兩個獨立的射頻共振腔。 The source of natural [[Extremely Low Frequency]] (ELF) waves on Titan, as [[Titan (moon)#Bulk characteristics|detected]] by ''[[Cassini-Huygens]]'', is unclear as there does not appear to be extensive lightning activity.
土衛六的電離層結構較地球的複雜,主電離層高度1200公里,但在高度63公里處有另一個帶電粒子聚集層。這使土衛六大氣層在一定程度上分裂為兩個獨立的射頻共振腔。卡西尼號在土衛六上觀測到了一個天然的[[極低頻]]電波源,但因為土衛六表面沒有明顯的閃電活動,因此仍無法了解其本質。而土衛六的內部磁場強度可說是微不足道,甚至可能根本不存在<ref name = Backes2005>
Titan's internal [[magnetic field]] is negligible, and perhaps even nonexistent.<ref name = Backes2005>
{{cite journal
{{cite journal
|author=H. Backes ''et al''.
|author=H. Backes ''et al''.
第52行: 第51行:
|doi=10.1126/science.1109763
|doi=10.1126/science.1109763
|pmid=15890875
|pmid=15890875
|bibcode = 2005Sci...308..992B }}</ref>。土衛六環繞土星的軌道半徑是土星半徑的20.3倍,因此有時候不會在土星的磁層範圍內。但是土星[[自轉週期]](10.7小時)和土衛六環繞土星(15.95日)的[[軌道週期]]差異使土星外圍的磁化[[電漿]]和土衛六之間的相對速度大約是{{val|100|u=km/s}}<ref name = Backes2005/>。這實際上會加劇大氣層散逸,而非降低太陽風玻璃大氣層速率<ref name = Mitchell2005>
|bibcode = 2005Sci...308..992B }}</ref> Its orbital distance of 20.3 Saturn [[radius|radii]] does place it within [[Magnetosphere of Saturn|Saturn's magnetosphere]] occasionally. However, the difference between Saturn's [[rotational period]] (10.7&nbsp;hours) and Titan's [[orbital period]] (15.95&nbsp;days) causes a relative speed of about {{val|100|u=km/s}} between the Saturn's magnetized [[plasma (physics)|plasma]] and Titan.<ref name = Backes2005/> That can actually intensify reactions causing atmospheric loss, instead of guarding the atmosphere from the [[solar wind]].<ref name = Mitchell2005>
{{cite journal
{{cite journal
|author=D.G. Mitchell ''et al''.
|author=D.G. Mitchell ''et al''.
第61行: 第60行:
|doi=10.1126/science.1109805
|doi=10.1126/science.1109805
|pmid=15890874
|pmid=15890874
|bibcode = 2005Sci...308..989M }}</ref>
|bibcode = 2005Sci...308..989M }}</ref>


On April 3, 2013, NASA reported that complex [[organic chemicals]] could arise on Titan based on studies simulating the [[Titan (moon)#Atmosphere|atmosphere]] of Titan.<ref name="PhysOrg-20130403">{{cite web |authors=Staff |title=NASA team investigates complex chemistry at Titan |url=http://phys.org/news/2013-04-nasa-team-complex-chemistry-titan.html |date=April 3, 2013 |work=[[Phys.Org]] |accessdate=April 11, 2013 }}</ref>
2013年4月3日,[[NASA]] 宣布基於模擬土衛六大氣層的研究,在土衛六上能有複雜的[[有機化合物]]存在<ref name="PhysOrg-20130403">{{cite web |authors=Staff |title=NASA team investigates complex chemistry at Titan |url=http://phys.org/news/2013-04-nasa-team-complex-chemistry-titan.html |date=April 3, 2013 |work=[[Phys.Org]] |accessdate=April 11, 2013 }}</ref>


On June 6, 2013, scientists at the [[安達魯西亞天文物理研究所|IAA-CSIC]] reported the detection of [[polycyclic aromatic hydrocarbons]] in the upper atmosphere of Titan.<ref name="IAA-20130606">{{cite news |last=López-Puertas |first=Manuel |url=http://www.iaa.es/content/pahs-titans-upper-atmosphere |title=PAH's in Titan's Upper Atmosphere |date=June 6, 2013 |work=[[西班牙國家研究委員會|CSIC]] |accessdate=June 6, 2013 }}</ref>
2013年6月6日,[[安達魯西亞天文物理研究所]](IAA)和[[西班牙國家研究委員會]](CSIC)的科學家宣布在土衛六的高層大氣發現了多環芳香烴<ref name="IAA-20130606">{{cite news |last=López-Puertas |first=Manuel |url=http://www.iaa.es/content/pahs-titans-upper-atmosphere |title=PAH's in Titan's Upper Atmosphere |date=June 6, 2013 |work=[[西班牙國家研究委員會|CSIC]] |accessdate=June 6, 2013 }}</ref>


On September 30, 2013, [[propylene]] was detected in the atmosphere of Titan by [[NASA]]'s [[Cassini-Huygens|Cassini-Huygens spacecraft]], using its composite infrared spectrometer (CIRS).<ref>{{cite web|author=Jpl.Nasa.Gov |url=http://www.jpl.nasa.gov/news/news.php?release=2013-295 |title=NASA's Cassini Spacecraft Finds Ingredient of Household Plastic in Space - NASA Jet Propulsion Laboratory |publisher=Jpl.nasa.gov |date=2013-09-30 |accessdate=2013-10-04}}</ref>
2013年9月30日,[[卡西尼-惠更斯号]]的混合式紅外光譜儀(Composite infrared spectrometer,CIRS)在土衛六大氣層上發現了[[丙烯]]<ref>{{cite web|author=Jpl.Nasa.Gov |url=http://www.jpl.nasa.gov/news/news.php?release=2013-295 |title=NASA's Cassini Spacecraft Finds Ingredient of Household Plastic in Space - NASA Jet Propulsion Laboratory |publisher=Jpl.nasa.gov |date=2013-09-30 |accessdate=2013-10-04}}</ref>


==Evolution==
==大氣演化==
The persistence of a dense atmosphere on Titan has been enigmatic as the atmospheres of the structurally similar [[natural satellite|satellites]] of [[Jupiter]], [[Ganymede (moon)|Ganymede]] and [[Callisto (moon)|Callisto]], are negligible. While the disparity is still poorly understood, data from recent missions have provided basic constraints on the evolution of Titan's atmosphere.
The persistence of a dense atmosphere on Titan has been enigmatic as the atmospheres of the structurally similar [[natural satellite|satellites]] of [[Jupiter]], [[Ganymede (moon)|Ganymede]] and [[Callisto (moon)|Callisto]], are negligible. While the disparity is still poorly understood, data from recent missions have provided basic constraints on the evolution of Titan's atmosphere.



2013年12月9日 (一) 14:19的版本

土衛六大氣層霾層的全彩影像。

土衛六大氣層太陽系的天然衛星中唯一高度發展的衛星大氣層。

觀測歷史

土衛六大氣層最初是由西班牙天文學家何塞·科马斯·索拉於1903年從土衛六的周邊昏暗現象推測其存在[1]。1944年杰拉德·柯伊伯光譜觀測證實了土衛六擁有大氣層,並推測大氣層內的甲烷气体分压為100毫巴(10千帕[2]。1970年代的後續觀測確認柯伊伯的甲烷分壓觀測結果是明顯低估,土衛六大氣層內的甲烷含量是柯伊伯觀測量的10倍,並且表面大氣壓至少是先前預測的2倍。土衛六表面的氣壓高就意味甲烷只能聚集在土衛六大氣層中的小區域[3]。1981年航海家1號對土衛六大氣層進行首次詳細觀測,發現土衛六表面大氣壓是高於地球的1.5巴[4]

概要

土衛六大氣層模型。

航海家計畫的太空探測器探測結果顯示土衛六的大氣層比地球大氣層更加濃密,表面壓力是地球表面大氣壓的1.45倍。土衛六大氣層總重量是地球大氣的1.19倍[5],或每單位面積重量7.3倍。大氣層內的不透明霾層遮蔽了來自太陽和其他光源的絕大多數可見光,並且讓土衛六表面的地形模糊而無法分辨。土衛六的大氣層相當濃密,並且因為土衛六的低表面重力,人類在土衛六表面甚至可以拍動裝在雙臂上的「翅膀」飛翔[6]。而土衛六的低重力也代表其大氣層頂遠高於地球大氣層頂,甚至高達975公里。這樣的大氣高度讓卡西尼號探測器不得不進行調整抵抗大氣拖曳來維持穩定軌道[7]。而土衛六的大氣層對許多波長範圍的電磁波是不透明的,並且土衛六表面的全反射光譜也使土衛六表面不可能接受到來自大氣層外的光線[8]。直到2004年卡西尼—惠更斯号任務到達土星系時才獲得了土衛六表面的影像。並且惠更斯号登陸艇在土星大氣層下降過程中無法偵測到太陽的位置。雖然惠更斯號登陸艇最終能在土衛六表面拍攝影像,但惠更斯號科學團隊比喻這就像是「在黃昏時拍攝柏油路面停車場照片」[9]

成分

土衛六北極雲層假色影像。

土衛六大氣層的平流層含量98.4%,是地球以外太陽系中唯一富含氮的濃密大氣層。其餘1.6%的成分主要是甲烷(1.4%)和(0.1-0.2%)[10]。因為甲烷在土衛六大氣層高處冷凝,甲烷的含量在高度約32公里處的對流層頂向下增加,在8公里高到土衛六表面處增加至接近4.9%以後逐漸平緩[10][11]。另外還有其他痕量的類,例如乙烷二乙炔丙炔乙炔丙烷;以及氰基乙炔氰化氢二氧化碳一氧化碳等其他極低含量氣體[11]。從太空所見土衛六大氣層的橙色必定是更加複雜的少量化學物質所造成,而這類物質可能是類似焦油狀的有機沉積物托林[12]。烴類被認為是來自太陽的紫外線使甲烷分裂後形成的,產生了厚層的橙色煙霧[13]。土衛六沒有磁場,雖然2008年的研究顯示土衛六經過土星的磁層並直接暴露於太陽風之後會有磁場殘留[14]。這可能會使土衛六的高層大氣部分分子被電離與逃逸。2007年11月,科學家發現土衛六電離層中的負離子質量大約是氫的1萬倍;一般相信是形成橙色霧的物質落到較低空處使土衛六表面被遮蔽。而這些物質目前仍不明,但可能是托林,而這些物質可能是形成多環芳香烴等更複雜分子的基礎[15]

土衛六和地球大氣層比較。

來自太陽的能量應該會讓所有土衛六大氣層中的甲烷在5千萬年內全數轉化為更複雜的碳氫化合物,這對太陽系的歷史而言相當短的時間。這表明在土衛六上必須有能隨時補充大氣層內甲烷的來源。土衛六大氣層內甲烷含量超過一氧化碳的1000倍,因此可以排除甲烷的來源是彗星撞擊土衛六,因為彗星內的一氧化碳含量超過甲烷。土衛六從形成土星系統的雲氣中累積的大氣層獲得甲烷這一假說可能性也不高;因為如果如此,土衛六的大氣層各種氣體豐度應該與太陽星雲相近,並包含一定量的氫和[16]。許多天文學家提出大氣層內的甲烷最終應該是來自土星本身,並且從土衛六表面的冰火山噴入大氣層[17][18][19]。而甲烷來自土衛六上的生物假說則並未被完全排除可能性(參見土衛六生命)。

土衛六的大氣層環流模式是和土衛六自轉方向同樣由西向東。卡西尼號於2004年對大氣層觀測結果表明存在類似金星大氣層的「超級自轉」,即大氣環流速度遠高於自轉速度[20]

土衛六的電離層結構較地球的複雜,主電離層高度1200公里,但在高度63公里處有另一個帶電粒子聚集層。這使土衛六大氣層在一定程度上分裂為兩個獨立的射頻共振腔。卡西尼號在土衛六上觀測到了一個天然的極低頻電波源,但因為土衛六表面沒有明顯的閃電活動,因此仍無法了解其本質。而土衛六的內部磁場強度可說是微不足道,甚至可能根本不存在[21]。土衛六環繞土星的軌道半徑是土星半徑的20.3倍,因此有時候不會在土星的磁層範圍內。但是土星自轉週期(10.7小時)和土衛六環繞土星(15.95日)的軌道週期差異使土星外圍的磁化電漿和土衛六之間的相對速度大約是100 km/s[21]。這實際上會加劇大氣層散逸,而非降低太陽風玻璃大氣層速率[22]

2013年4月3日,NASA 宣布基於模擬土衛六大氣層的研究,在土衛六上能有複雜的有機化合物存在[23]

2013年6月6日,安達魯西亞天文物理研究所(IAA)和西班牙國家研究委員會(CSIC)的科學家宣布在土衛六的高層大氣發現了多環芳香烴[24]

2013年9月30日,卡西尼-惠更斯号的混合式紅外光譜儀(Composite infrared spectrometer,CIRS)在土衛六大氣層上發現了丙烯[25]

大氣演化

The persistence of a dense atmosphere on Titan has been enigmatic as the atmospheres of the structurally similar satellites of Jupiter, Ganymede and Callisto, are negligible. While the disparity is still poorly understood, data from recent missions have provided basic constraints on the evolution of Titan's atmosphere.

Layers of atmosphere, image from the Cassini–Huygens spacecraft

Roughly speaking, at the distance of Saturn, solar insolation and solar wind flux are sufficiently low that elements and compounds that are volatile on the terrestrial planets tend to accumulate in all three phases.[26] Titan's surface temperature is also quite low, about 94 kelvins (K).[27][28] Consequently, the mass fractions of substances that can become atmospheric constituents are much larger on Titan than on Earth. In fact, current interpretations suggest that only about 50% of Titan's mass is silicates,[29] with the rest consisting primarily of various H2O (water) ices and NH3-H2O (ammonia hydrates). NH3, which may be the original source of Titan's atmospheric N2 (dinitrogen), may constitute as much as 8% of the NH3-H2O mass.[30] As Tobie et al. illustrate in Figure 1,[30] Titan is most likely differentiated into layers, where the liquid water layer beneath ice Ih may be rich in NH3.

True-color image of layers of haze in Titan's atmosphere
Titan's atmosphere backlit by the Sun, with Saturn's rings behind. An outer haze layer merges at top with the northern polar hood.
Titan's winter hemisphere (top) is slightly darker in visible light due to a high-altitude haze

Tentative constraints are available, with the current loss mostly due to low gravity[31] and solar wind[32] aided by photolysis. The loss of Titan's early atmosphere can be estimated with the 14N/15N isotopic ratio, as the lighter 14N is preferentially lost from the upper atmosphere under photolysis and heating. Since Titan's original 14N/15N ratio is poorly constrained, the early atmosphere may have had more N2 by factors ranging from 1.5 to 100 with certainty only in the lower factor.[31] Since N2 is the primary component (98%) of Titan's atmosphere,[33] the isotopic ratio suggests that much of the atmosphere has been lost over geologic time. Nevertheless, atmospheric pressure on its surface remains nearly 1.5 times that of Earth as it began with a proportionally greater volatile budget than Earth or Mars.[28] It is possible that most of the atmospheric loss was within 50 million years of accretion, from a highly energetic escape of light atoms carrying away a large portion of the atmosphere (hydrodynamic blow off event).[32] Such an event could be driven by heating and photolysis effects of the early Sun's higher output of X-ray and ultraviolet (XUV) photons.

Since Callisto and Ganymede are structurally similar to Titan, it is unclear why their atmospheres are insignificant relative to Titan's. Nevertheless, the origin of Titan's N2 via geologically ancient photolysis of accreted and degassed NH3, as opposed to degassing of N2 from accretionary clathrates, may be the key to a correct inference. Had N2 been released from clathrates, 36Ar and 38Ar that are inert primordial isotopes of the Solar System should also be present in the atmosphere, but neither has been detected in significant quantities.[34] The insignificant concentration of 36Ar and 38Ar also indicates that the ~40 K temperature required to trap them and N2 in clathrates did not exist in the Saturnian subnebula. Instead, the temperature may have been higher than 75 K, limiting even the accumulation of NH3 as hydrates.[35] Temperatures would have been even higher in the Jovian subnebula due to the greater gravitational potential energy release, mass, and proximity to the Sun, greatly reducing the NH3 inventory accreted by Callisto and Ganymede. The resulting N2 atmospheres may have been too thin to survive the atmospheric erosion effects that Titan has withstood.[35]

An alternative explanation is that cometary impacts release more energy on Callisto and Ganymede than they do at Titan due to the higher gravitational field of Jupiter. That could erode the atmospheres of Callisto and Ganymede, while the cometary material would actually build Titan's atmosphere. However, the 2H/1H (i.e., D/H) ratio of Titan's atmosphere is (2.3±0.5)×10−4,[34] nearly 1.5 times lower than that of comets.[33] The difference suggests that cometary material is unlikely to be the major contributor to Titan's atmosphere.

參見

參考資料

  1. ^ Moore, P. The Atlas of the Solar System. Mitchell Beazley. 1990. ISBN 0-517-00192-6. 
  2. ^ Kuiper, G. P. Titan: a Satellite with an Atmosphere. Astrophysical Journal. 1944, 100: 378. Bibcode:1944ApJ...100..378K. doi:10.1086/144679. 
  3. ^ Coustenis, pp. 13–15
  4. ^ Coustenis, p. 22
  5. ^ Coustenis, Athéna and Taylor, F. W. Titan: Exploring an Earthlike World. World Scientific. 2008: 130 [2010-03-25]. ISBN 978-981-270-501-3. 
  6. ^ Zubrin, Robert. Entering Space: Creating a Spacefaring Civilization. Section: Titan: Tarcher/Putnam. 1999: 163–166. ISBN 1-58542-036-0. 
  7. ^ Turtle, Elizabeth P. Exploring the Surface of Titan with Cassini–Huygens. Smithsonian. 2007 [2009-04-18]. 
  8. ^ Schröder, S. E.; Tomasko, M. G.; Keller, H. U. The reflectance spectrum of Titan's surface as determined by Huygens. American Astronomical Society, DPS meeting #37, #46.15; Bulletin of the American Astronomical Society. 2005, 37 (726): 726. Bibcode:2005DPS....37.4615S.  已忽略未知参数|month=(建议使用|date=) (帮助);
  9. ^ de Selding, Petre. Huygens Probe Sheds New Light on Titan. SPACE.com. January 21, 2005 [2005-03-28]. (原始内容存档于4 April 2005). 
  10. ^ 10.0 10.1 Coustenis & Taylor (2008) pp. 154-155
  11. ^ 11.0 11.1 Niemann, H. B.; et al. The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe. Nature. 2005, 438 (7069): 779–784. Bibcode:2005Natur.438..779N. PMID 16319830. doi:10.1038/nature04122. 
  12. ^ Baez, John. This Week's Finds in Mathematical Physics. University of California, Riverside. January 25, 2005 [2007-08-22]. 
  13. ^ Waite, J. H.; et al. The Process of Tholin Formation in Titan's Upper Atmosphere. Science. 2007, 316 (5826): 870. Bibcode:2007Sci...316..870W. PMID 17495166. doi:10.1126/science.1139727. 
  14. ^ Saturn's Magnetic Personality Rubs Off on Titan. NASA/JPL. 2008 [2009-04-20]. (原始内容存档于20 May 2009). 
  15. ^ Coates, A. J., F. J. Crary, G. R. Lewis, D. T. Young, J. H. Waite, and E. C. Sittler. Discovery of heavy negative ions in Titan's ionosphere. Geophys. Res. Lett. 2007, 34 (22): L22103. Bibcode:2007GeoRL..3422103C. doi:10.1029/2007GL030978. 
  16. ^ Coustenis, A. Formation and evolution of Titan’s atmosphere. Space Science Reviews. 2005, 116 (1-2): 171–184. Bibcode:2005SSRv..116..171C. doi:10.1007/s11214-005-1954-2. 
  17. ^ Sushil K. Atreyaa, Elena Y. Adamsa, Hasso B. Niemann; et al. Titan's methane cycle. Planetary and Space Science. 2006, 54 (12): 1177. Bibcode:2006P&SS...54.1177A. doi:10.1016/j.pss.2006.05.028. 
  18. ^ Stofan, E. R.; et al. The lakes of Titan.. Nature. 2007, 445 (7123): 61–4. Bibcode:2007Natur.445...61S. PMID 17203056. doi:10.1038/nature05438. 
  19. ^ Tobie, Gabriel; Lunine, Jonathan and Sotin, Cristophe. Episodic outgassing as the origin of atmospheric methane on Titan. Nature. 2006, 440 (7080): 61–64. Bibcode:2006Natur.440...61T. PMID 16511489. doi:10.1038/nature04497. 
  20. ^ Wind or Rain or Cold of Titan's Night?. Astrobiology Magazine. March 11, 2005 [2007-08-24]. (原始内容存档于27 September 2007). 
  21. ^ 21.0 21.1 H. Backes; et al. Titan's magnetic field signature during the first Cassini encounter. Science. 2005, 308 (5724): 992–995. Bibcode:2005Sci...308..992B. PMID 15890875. doi:10.1126/science.1109763. 
  22. ^ D.G. Mitchell; et al. Energetic neutral atom emissions from Titan interaction with Saturn's magnetosphere. Science. 2005, 308 (5724): 989–992. Bibcode:2005Sci...308..989M. PMID 15890874. doi:10.1126/science.1109805. 
  23. ^ Staff. NASA team investigates complex chemistry at Titan. Phys.Org. April 3, 2013 [April 11, 2013]. 
  24. ^ López-Puertas, Manuel. PAH's in Titan's Upper Atmosphere. CSIC. June 6, 2013 [June 6, 2013]. 
  25. ^ Jpl.Nasa.Gov. NASA's Cassini Spacecraft Finds Ingredient of Household Plastic in Space - NASA Jet Propulsion Laboratory. Jpl.nasa.gov. 2013-09-30 [2013-10-04]. 
  26. ^ P.A. Bland; et al. Trace element carrier phases in primitive chondrite matrix: implications for volatile element fractionation in the inner solar system (PDF). Lunar and Planetary Science. 2005, XXXVI: 1841. 
  27. ^ F.M. Flasar; et al. Titan's atmospheric temperatures, winds, and composition. Science. 2005, 308 (5724): 975–978. Bibcode:2005Sci...308..975F. PMID 15894528. doi:10.1126/science.1111150. 
  28. ^ 28.0 28.1 G. Lindal; et al. The atmosphere of Titan: An analysis of the Voyager 1 radio occultation measurements. Icarus. 1983, 53 (2): 348–363. Bibcode:1983Icar...53..348L. doi:10.1016/0019-1035(83)90155-0. 
  29. ^ G. Tobie, J.I. Lunine, C. Sotin. Episodic outgassing as the origin of atmospheric methane on Titan. Nature. 2006, 440 (7080): 61–64. Bibcode:2006Natur.440...61T. PMID 16511489. doi:10.1038/nature04497. 
  30. ^ 30.0 30.1 G. Tobie; et al. Titan's internal structure inferred from a coupled thermal-orbital model. Icarus. 2005, 175 (2): 496–502. Bibcode:2005Icar..175..496T. doi:10.1016/j.icarus.2004.12.007. 
  31. ^ 31.0 31.1 J.H. Waite (Jr); et al. Ion neutral mass spectrometer results from the first flyby of Titan. Science. 2005, 308 (5724): 982–986. Bibcode:2005Sci...308..982W. PMID 15890873. doi:10.1126/science.1110652. 
  32. ^ 32.0 32.1 T. Penz, H. Lammer, Yu.N. Kulikov, H.K. Biernat. The influence of the solar particle and radiation environment on Titan's atmosphere evolution. Advances in Space Research. 2005, 36 (2): 241–250. Bibcode:2005AdSpR..36..241P. doi:10.1016/j.asr.2005.03.043. 
  33. ^ 33.0 33.1 A. Coustenis. Formation and Evolution of Titan's Atmosphere. Space Science Reviews. 2005, 116 (1-2): 171–184. Bibcode:2005SSRv..116..171C. doi:10.1007/s11214-005-1954-2. 
  34. ^ 34.0 34.1 H.B. Niemann; et al. The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe. Nature. 2005, 438 (7069): 779–784. Bibcode:2005Natur.438..779N. PMID 16319830. doi:10.1038/nature04122. 
  35. ^ 35.0 35.1 T.C. Owen, H. Niemann, S. Atreya, M.Y. Zolotov. Between heaven and Earth: the exploration of Titan. Faraday Discussions. 2006, 133: 387–391. Bibcode:2006FaDi..133..387O. PMID 17191458. doi:10.1039/b517174a. 

延伸閱讀