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Abstract

This specification defines Cascading Style Sheets level 2. CSS is a style sheet language that allows au-
thors and users to attach style (e.g., fonts and spacing) to structured documents (e.g., HTML documents
and XML applications). By separating the presentation style of documents from the content of documents,
CSS simplifies Web authoring and site maintenance.

CSS 2.2 is the second revision of CSS level 2 [CSS2]p.363. It corrects a few errors in CSS 2.1, the first
revision of CSS level 2. It is not the latest version of CSS. See the "CSS Snapshot" [CSS]p.363 for an
overview of specifications that make up the whole of CSS.
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CSS level 2 supports media-specific style sheets so that authors may tailor the presentation of their doc-
uments to visual browsers, aural devices, printers, braille devices, handheld devices, etc. It also supports
content positioning, table layout, features for internationalization and some properties related to user inter-
face.

Status of this document

This section describes the status of this document at the time of its publication. Other documents may su-
persede this document. A list of current W3C publications and the latest revision of this technical report
can be found in the W3C technical reports index at http://www.w3.org/TR/.

Publication as a First Public Working Draft does not imply endorsement by the W3C Membership. This
is a draft document and may be updated, replaced or obsoleted by other documents at any time. It is inap-
propriate to cite this document as other than work in progress.

This document was produced by the CSS Working Group (part of the Style Activity).
The (archived) public mailing list www-style@w3.org (see instructions) is preferred for discussion of

this specification. When sending e-mail, please put the text “CSS22” in the subject, preferably like this:
“[CSS22] …summary of comment…”

This document was produced by a group operating under the 5 February 2004 W3C Patent Policy.
W3C maintains a public list of any patent disclosures made in connection with the deliverables of the
group; that page also includes instructions for disclosing a patent. An individual who has actual knowl-
edge of a patent which the individual believes contains Essential Claim(s) must disclose the information
in accordance with section 6 of the W3C Patent Policy.

This document is governed by the 1 September 2015 W3C Process Document.
All changes since the previous Recommendation are listed in appendix C.p.367
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1.1 CSS 2.2 vs CSS 2

The CSS community has gained significant experience with the CSS2 specification since it became a rec-
ommendation in 1998. Errors in the CSS2 specification have subsequently been corrected in the first re-
vised edition [CSS21]p.363 in 2011, but new errata were necessary.
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While many of the issues will be addressed by the upcoming CSS3 specifications, the current state of
affairs hinders the implementation and interoperability of CSS2. The CSS 2.2 specification attempts to ad-
dress this situation by:

• Maintaining compatibility with those portions of CSS2 that are widely accepted and implemented.

• Incorporating all published CSS2 errata.

• Where implementations overwhelmingly differ from the CSS2 specification, modifying the specifi-
cation to be in accordance with generally accepted practice.

• Removing CSS2 features which, by virtue of not having been implemented, have been rejected by
the CSS community. CSS 2.2 aims to reflect what CSS features are reasonably widely implemented
for HTML and XML languages in general (rather than only for a particular XML language, or only
for HTML).

• Removing CSS2 features that will be obsoleted by CSS3, thus encouraging adoption of the proposed
CSS3 features in their place.

• Adding a (very) small number of new property values, when implementation experience has shown
that they are needed for implementing CSS2.

Thus, while it is not the case that a CSS2 style sheet is necessarily forwards-compatible with CSS 2.2, it is
the case that a style sheet restricting itself to CSS 2.2 features is more likely to find a compliant user agent
today and to preserve forwards compatibility in the future. While breaking forward compatibility is not
desirable, we believe the advantages to the revisions in CSS 2.2 are worthwhile.

CSS 2.2 is derived from and is intended to replace CSS 2.1 and CSS2. Some parts of CSS2 are un-
changed in CSS 2.2, some parts have been altered, and some parts removed. The removed portions may
be used in a future CSS3 specification. Future specs should refer to CSS 2.2 (unless they need features
from CSS2 which have been dropped in CSS 2.2, and then they should only reference CSS2 for those fea-
tures, or preferably reference such feature(s) in the respective CSS3 Module that includes those fea-
ture(s)).

1.2 Reading the specification

This section is non-normative.
This specification has been written with two types of readers in mind: CSS authors and CSS implemen-

tors. We hope the specification will provide authors with the tools they need to write efficient, attractive,
and accessible documents, without overexposing them to CSS's implementation details. Implementors,
however, should find all they need to build conforming user agentsp.39. The specification begins with a
general presentation of CSS and becomes more and more technical and specific towards the end. For
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quick access to information, a general table of contents, specific tables of contents at the beginning of
each section, and an index provide easy navigation, in both the electronic and printed versions.

The specification has been written with two modes of presentation in mind: electronic and printed. Al-
though the two presentations will no doubt be similar, readers will find some differences. For example,
links will not work in the printed version (obviously), and page numbers will not appear in the electronic
version. In case of a discrepancy, the electronic version is considered the authoritative version of the doc-
ument.

1.3 How the specification is organized

This section is non-normative.
The specification is organized into the following sections:

Section 2: An introduction to CSS 2.2
The introduction includes a brief tutorial on CSS 2.2 and a discussion of design principles behind
CSS 2.2.

Sections 3 - 18: CSS 2.2 reference manual.
The bulk of the reference manual consists of the CSS 2.2 language reference. This reference defines
what may go into a CSS 2.2 style sheet (syntax, properties, property values) and how user agents
must interpret these style sheets in order to claim conformancep.39.

Appendixes:
Appendixes contain information about aural propertiesp.335 (non-normative), a sample style sheet for
HTML 4p.381, changes from CSS 2.1p.367, the grammar of CSS 2.2p.407, a list of normative and in-
formative referencesp.361, and two indexes: one for propertiesp.391 and one general indexp.415.

1.4 Conventions

1.4.1 Document languagep.36 elements and attributes

• CSS property and pseudo-class names are delimited by single quotes.

• CSS values are delimited by single quotes.

• Document language attribute names are in lowercase letters and delimited by double quotes.

1.4.2 CSS property definitions

Each CSS property definition begins with a summary of key information that resembles the following:

Name: property-name
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Value: legal values & syntax

Initial: initial value

Applies to: elements this property applies to

Inherited: whether the property is inherited

Percentages: how percentage values are interpreted

Media: which media groups the property applies to

Computed value: how to compute the computed value

1.4.2.1 Value

This part specifies the set of valid values for the property whose name is 'property-name'p.19. A property
value can have one or more components. Component value types are designated in several ways:

1. keyword values (e.g., auto, disc, etc.)

2. basic data types, which appear between "<" and ">" (e.g., <length>, <percentage>, etc.). In the elec-
tronic version of the document, each instance of a basic data type links to its definition.

3. types that have the same range of values as a property bearing the same name (e.g., <'border-width'>
<'background-attachment'>, etc.). In this case, the type name is the property name (complete with
quotes) between "<" and ">" (e.g., <'border-width'>). Such a type does not include the value 'inherit'.
In the electronic version of the document, each instance of this type of non-terminal links to the cor-
responding property definition.

4. non-terminals that do not share the same name as a property. In this case, the non-terminal name ap-
pears between "<" and ">", as in <border-width>. Notice the distinction between <border-width> and
<'border-width'>; the latter is defined in terms of the former. The definition of a non-terminal is lo-
cated near its first appearance in the specification. In the electronic version of the document, each in-
stance of this type of value links to the corresponding value definition.

Other words in these definitions are keywords that must appear literally, without quotes (e.g., red). The
slash (/) and the comma (,) must also appear literally.

Component values may be arranged into property values as follows:

• Several juxtaposed words mean that all of them must occur, in the given order.
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• A bar (|) separates two or more alternatives: exactly one of them must occur.

• A double bar (||) separates two or more options: one or more of them must occur, in any order.

• A double ampersand (&&) separates two or more components, all of which must occur, in any order.

• Brackets ([ ]) are for grouping.

Juxtaposition is stronger than the double ampersand, the double ampersand is stronger than the double
bar, and the double bar is stronger than the bar. Thus, the following lines are equivalent:

a b   |   c ||   d &&   e f

[ a b ] | [ c || [ d && [ e f ]]]

Every type, keyword, or bracketed group may be followed by one of the following modifiers:

• An asterisk (*) indicates that the preceding type, word, or group occurs zero or more times.

• A plus (+) indicates that the preceding type, word, or group occurs one or more times.

• A question mark (?) indicates that the preceding type, word, or group is optional.

• A pair of numbers in curly braces ({A,B}) indicates that the preceding type, word, or group occurs at
least A and at most B times.

The following examples illustrate different value types:

Value: N | NW | NE
Value: [ <length> | thick | thin ]{1,4}
Value: [<family-name> , ]* <family-name>
Value: <uri>? <color> [ / <color> ]?
Value: <uri> || <color>
Value: inset? && [ <length>{2,4} && <color>? ]

Component values are specified in terms of tokens, as described in Appendix G.2p.410. As the grammar
allows spaces between tokens in the components of the expr production, spaces may appear between to-
kens in property values.

Note: In many cases, spaces will in fact be required between tokens in order to distinguish them from
each other. For example, the value '1em2em' would be parsed as a single DIMEN token with the num-
ber '1' and the identifier 'em2em', which is an invalid unit. In this case, a space would be required be-
fore the '2' to get this parsed as the two lengths '1em' and '2em'.
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1.4.2.2 Initial

This part specifies the property's initial value. Please consult the section on the cascadep.97 for informa-
tion about the interaction between style sheet-specified, inherited, and initial property values.

1.4.2.3 Applies to

This part lists the elements to which the property applies. All elements are considered to have all proper-
ties, but some properties have no rendering effect on some types of elements. For example, the 'clear'p.156

property only affects block-level elements.

1.4.2.4 Inherited

This part indicates whether the value of the property is inherited from an ancestor element. Please consult
the section on the cascadep.97 for information about the interaction between style sheet-specified, inherit-
ed, and initial property values.

1.4.2.5 Percentage values

This part indicates how percentages should be interpreted, if they occur in the value of the property. If "N/
A" appears here, it means that the property does not accept percentages in its values.

1.4.2.6 Media groups

This part indicates the media groupsp.110 to which the property applies. Information about media groups is
non-normative.

1.4.2.7 Computed value

This part describes the computed value for the property. See the section on computed valuesp.98 for how
this definition is used.

1.4.3 Shorthand properties

Some properties are shorthand properties, meaning that they allow authors to specify the values of sever-
al properties with a single property.

For instance, the 'font'p.277 property is a shorthand property for setting 'font-style'p.271, 'font-
variant'p.272, 'font-weight'p.273, 'font-size'p.276, 'line-height'p.204, and 'font-family'p.267 all at once.

When values are omitted from a shorthand form, each "missing" property is assigned its initial value
(see the section on the cascadep.97).

– 1 About the CSS 2.2 Specification –

– 22 –



The multiple style rules of this example:

h1 {

font-weight: bold;

font-size: 12pt;

line-height: 14pt;

font-family: Helvetica;

font-variant: normal;

font-style: normal;

}

may be rewritten with a single shorthand property:

h1 { font: bold 12pt/14pt Helvetica }

In this example, 'font-variant'p.272, and 'font-style'p.271 take their initial values.

1.4.4 Notes and examples

All examples that illustrate illegal usage are clearly marked as "ILLEGAL EXAMPLE".
HTML examples lacking DOCTYPE declarations are SGML Text Entities conforming to the HTML

4.01 Strict DTD [HTML4]p.361. Other HTML examples conform to the DTDs given in the examples.
All notes are informative only.
Examples and notes are marked within the source HTMLp.35 for the specification and CSS user agents

will render them specially.

1.4.5 Images and long descriptions

Most images in the electronic version of this specification are accompanied by "long descriptions" of what
they represent. A link to the long description is denoted by a "[D]" after the image.

Images and long descriptions are informative only.
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2 Introduction to CSS 2.2

Contents

2.1 A brief CSS 2.2 tutorial for HTML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 A brief CSS 2.2 tutorial for XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3 The CSS 2.2 processing model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 The canvas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.2 CSS 2.2 addressing model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 CSS design principles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1 A brief CSS 2.2 tutorial for HTML

This section is non-normative.
In this tutorial, we show how easy it can be to design simple style sheets. For this tutorial, you will need

to know a little HTML (see [HTML4]p.361) and some basic desktop publishing terminology.
We begin with a small HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Bach's home page</TITLE>

</HEAD>

<BODY>

<H1>Bach's home page</H1>

<P>Johann Sebastian Bach was a prolific composer.

</BODY>

</HTML>

To set the text color of the H1 elements to red, you can write the following CSS rules:

h1 { color: red }

A CSS rule consists of two main parts: selectorp.71 ('h1') and declaration ('color: red'). In HTML, element
names are case-insensitive so 'h1' works just as well as 'H1'. The declaration has two parts: property name
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('color') and property value ('red'). While the example above tries to influence only one of the properties
needed for rendering an HTML document, it qualifies as a style sheet on its own. Combined with other
style sheets (one fundamental feature of CSS is that style sheets are combined), the rule will determine the
final presentation of the document.

The HTML 4 specification defines how style sheet rules may be specified for HTML documents: either
within the HTML document, or via an external style sheet. To put the style sheet into the document, use
the STYLE element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Bach's home page</TITLE>

<STYLE type="text/css">

h1 { color: red }

</STYLE>

</HEAD>

<BODY>

<H1>Bach's home page</H1>

<P>Johann Sebastian Bach was a prolific composer.

</BODY>

</HTML>

For maximum flexibility, we recommend that authors specify external style sheets; they may be changed
without modifying the source HTML document, and they may be shared among several documents. To
link to an external style sheet, you can use the LINK element:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Bach's home page</TITLE>

<LINK rel="stylesheet" href="#bach.css" type="text/css">

</HEAD>

<BODY>

<H1>Bach's home page</H1>

<P>Johann Sebastian Bach was a prolific composer.

</BODY>

</HTML>

The LINK element specifies:

• the type of link: to a "stylesheet".
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• the location of the style sheet via the "href" attribute.

• the type of style sheet being linked: "text/css".

To show the close relationship between a style sheet and the structured markup, we continue to use the
STYLE element in this tutorial. Let's add more colors:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Bach's home page</TITLE>

<STYLE type="text/css">

body { color: black; background: white }

h1 { color: red; background: white }

</STYLE>

</HEAD>

<BODY>

<H1>Bach's home page</H1>

<P>Johann Sebastian Bach was a prolific composer.

</BODY>

</HTML>

The style sheet now contains four rules: the first two set the color and background of the BODY element
(it's a good idea to set the text color and background color together), while the last two set the color and
the background of the H1 element. Since no color has been specified for the P element, it will inherit the
color from its parent element, namely BODY. The H1 element is also a child element of BODY but the
second rule overrides the inherited value. In CSS there are often such conflicts between different values,
and this specification describes how to resolve them.

CSS 2.2 has more than 90 properties, including 'color'p.255. Let's look at some of the others:
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Bach's home page</TITLE>

<STYLE type="text/css">

body {

font-family: "Gill Sans", sans-serif;

font-size: 12pt;

margin: 3em;

}

</STYLE>

</HEAD>

<BODY>

<H1>Bach's home page</H1>

<P>Johann Sebastian Bach was a prolific composer.

</BODY>

</HTML>

The first thing to notice is that several declarations are grouped within a block enclosed by curly braces
({...}), and separated by semicolons, though the last declaration may also be followed by a semicolon.

The first declaration on the BODY element sets the font family to "Gill Sans". If that font is not avail-
able, the user agent (often referred to as a "browser") will use the 'sans-serif' font family which is one of
five generic font families which all users agents know. Child elements of BODY will inherit the value of
the 'font-family'p.267 property.

The second declaration sets the font size of the BODY element to 12 points. The "point" unit is com-
monly used in print-based typography to indicate font sizes and other length values. It's an example of an
absolute unit which does not scale relative to the environment.

The third declaration uses a relative unit which scales with regard to its surroundings. The "em" unit
refers to the font size of the element. In this case the result is that the margins around the BODY element
are three times wider than the font size.

2.2 A brief CSS 2.2 tutorial for XML

This section is non-normative.
CSS can be used with any structured document format, for example with applications of the eXtensible

Markup Language [XML11]p.363. In fact, XML depends more on style sheets than HTML, since authors
can make up their own elements that user agents do not know how to display.

Here is a simple XML fragment:
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<ARTICLE>

<HEADLINE>Fredrick the Great meets Bach</HEADLINE>

<AUTHOR>Johann Nikolaus Forkel</AUTHOR>

<PARA>

One evening, just as he was getting his

<INSTRUMENT>flute</INSTRUMENT> ready and his

musicians were assembled, an officer brought him a list of

the strangers who had arrived.

</PARA>

</ARTICLE>

To display this fragment in a document-like fashion, we must first declare which elements are inline-level
(i.e., do not cause line breaks) and which are block-level (i.e., cause line breaks).

INSTRUMENT { display: inline }

ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

The first rule declares INSTRUMENT to be inline and the second rule, with its comma-separated list of
selectors, declares all the other elements to be block-level. Element names in XML are case-sensitive, so a
selector written in lowercase (e.g., 'instrument') is different from uppercase (e.g., 'INSTRUMENT').

One way of linking a style sheet to an XML document is to use a processing instruction:

<?xml-stylesheet type="text/css" href="#bach.css"?>

<ARTICLE>

<HEADLINE>Fredrick the Great meets Bach</HEADLINE>

<AUTHOR>Johann Nikolaus Forkel</AUTHOR>

<PARA>

One evening, just as he was getting his

<INSTRUMENT>flute</INSTRUMENT> ready and his

musicians were assembled, an officer brought him a list of

the strangers who had arrived.

</PARA>

</ARTICLE>

A visual user agent could format the above example as:
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Notice that the word "flute" remains within the paragraph since it is the content of the inline element IN-
STRUMENT.

Still, the text is not formatted the way you would expect. For example, the headline font size should be
larger than then the rest of the text, and you may want to display the author's name in italic:

INSTRUMENT { display: inline }

ARTICLE, HEADLINE, AUTHOR, PARA { display: block }

HEADLINE { font-size: 1.3em }

AUTHOR { font-style: italic }

ARTICLE, HEADLINE, AUTHOR, PARA { margin: 0.5em }

A visual user agent could format the above example as:

Adding more rules to the style sheet will allow you to further describe the presentation of the document.

2.3 The CSS 2.2 processing model

This section up to but not including its subsections is non-normative.
This section presents one possible model of how user agents that support CSS work. This is only a con-

ceptual model; real implementations may vary.
In this model, a user agent processes a source by going through the following steps:

1. Parse the source document and create a document treep.37.

2. Identify the target media typep.107.

3. Retrieve all style sheets associated with the document that are specified for the target media
typep.107.

4. Annotate every element of the document tree by assigning a single value to every propertyp.53 that is
applicable to the target media typep.107. Properties are assigned values according to the mechanisms
described in the section on cascading and inheritancep.97.
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Part of the calculation of values depends on the formatting algorithm appropriate for the target media
typep.107. For example, if the target medium is the screen, user agents apply the visual formatting
modelp.133.

5. From the annotated document tree, generate a formatting structure. Often, the formatting structure
closely resembles the document tree, but it may also differ significantly, notably when authors make
use of pseudo-elements and generated content. First, the formatting structure need not be "tree-
shaped" at all -- the nature of the structure depends on the implementation. Second, the formatting
structure may contain more or less information than the document tree. For instance, if an element in
the document tree has a value of 'none' for the 'display'p.139 property, that element will generate noth-
ing in the formatting structure. A list element, on the other hand, may generate more information in
the formatting structure: the list element's content and list style information (e.g., a bullet image).
Note that the CSS user agent does not alter the document tree during this phase. In particular, content
generated due to style sheets is not fed back to the document language processor (e.g., for reparsing).

6. Transfer the formatting structure to the target medium (e.g., print the results, display them on the
screen, render them as speech, etc.).

2.3.1 The canvas

For all media, the term canvas describes "the space where the formatting structure is rendered." The can-
vas is infinite for each dimension of the space, but rendering generally occurs within a finite region of the
canvas, established by the user agent according to the target medium. For instance, user agents rendering
to a screen generally impose a minimum width and choose an initial width based on the dimensions of the
viewportp.135. User agents rendering to a page generally impose width and height constraints. Aural user
agents may impose limits in audio space, but not in time.

2.3.2 CSS 2.2 addressing model

CSS 2.2 selectorsp.71 and properties allow style sheets to refer to the following parts of a document or
user agent:

• Elements in the document tree and certain relationships between them (see the section on selec-
torsp.71).

• Attributes of elements in the document tree, and values of those attributes (see the section on at-
tribute selectorsp.77).

• Some parts of element content (see the :first-linep.91 and :first-letterp.91 pseudo-elements).

• Elements of the document tree when they are in a certain state (see the section on pseudo-
classesp.84).
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• Some aspects of the canvasp.31 where the document will be rendered.

• Some system information (see the section on user interfacep.327).

2.4 CSS design principles

This section is non-normative.
CSS 2.2, as CSS2 and CSS1 before it, is based on a set of design principles:

• Forward and backward compatibility. CSS 2.2 user agents will be able to understand CSS1 style
sheets. CSS1 user agents will be able to read CSS 2.2 style sheets and discard parts they do not un-
derstand. Also, user agents with no CSS support will be able to display style-enhanced documents.
Of course, the stylistic enhancements made possible by CSS will not be rendered, but all content will
be presented.

• Complementary to structured documents. Style sheets complement structured documents (e.g.,
HTML and XML applications), providing stylistic information for the marked-up text. It should be
easy to change the style sheet with little or no impact on the markup.

• Vendor, platform, and device independence. Style sheets enable documents to remain vendor,
platform, and device independent. Style sheets themselves are also vendor and platform independent,
but CSS 2.2 allows you to target a style sheet for a group of devices (e.g., printers).

• Maintainability. By pointing to style sheets from documents, webmasters can simplify site mainte-
nance and retain consistent look and feel throughout the site. For example, if the organization's back-
ground color changes, only one file needs to be changed.

• Simplicity. CSS is a simple style language which is human readable and writable. The CSS proper-
ties are kept independent of each other to the largest extent possible and there is generally only one
way to achieve a certain effect.

• Network performance. CSS provides for compact encodings of how to present content. Compared
to images or audio files, which are often used by authors to achieve certain rendering effects, style
sheets most often decrease the content size. Also, fewer network connections have to be opened
which further increases network performance.

• Flexibility. CSS can be applied to content in several ways. The key feature is the ability to cascade
style information specified in the default (user agent) style sheet, user style sheets, linked style
sheets, the document head, and in attributes for the elements forming the document body.

• Richness. Providing authors with a rich set of rendering effects increases the richness of the Web as
a medium of expression. Designers have been longing for functionality commonly found in desktop
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publishing and slide-show applications. Some of the requested rendering effects conflict with device
independence, but CSS 2.2 goes a long way toward granting designers their requests.

• Alternative language bindings. The set of CSS properties described in this specification form a
consistent formatting model for visual and aural presentations. This formatting model can be ac-
cessed through the CSS language, but bindings to other languages are also possible. For example, a
JavaScript program may dynamically change the value of a certain element's 'color'p.255 property.

• Accessibility. Several CSS features will make the Web more accessible to users with disabilities:

◦ Properties to control font appearance allow authors to eliminate inaccessible bit-mapped text
images.

◦ Positioning properties allow authors to eliminate mark-up tricks (e.g., invisible images) to force
layout.

◦ The semantics of !important rules mean that users with particular presentation requirements
can override the author's style sheets.

◦ The 'inherit' value for all properties improves cascading generality and allows for easier and
more consistent style tuning.

◦ Improved media support, including media groups and the braille, embossed, and tty media
types, will allow users and authors to tailor pages to those devices.

Note. For more information about designing accessible documents using CSS and HTML, see
[WCAG20]p.364.
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3.1 Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpret-
ed as described in RFC 2119 (see [RFC2119]p.362). However, for readability, these words do not appear
in all uppercase letters in this specification.

At times, this specification recommends good practice for authors and user agents. These recommenda-
tions are not normative and conformance with this specification does not depend on their realization.
These recommendations contain the expression "We recommend ...", "This specification recommends ...",
or some similar wording.

The fact that a feature is marked as deprecated (namely the 'aural'p.336 keyword) or going to be depre-
cated in CSS3 (namely the system colorsp.329) also has no influence on conformance. (For example, 'aur-
al' is marked as non-normative, so UAs do not need to support it; the system colors are normative, so UAs
must support them.)

All sections of this specification, including appendices, are normative unless otherwise noted.
Examples and notesp.23 are not normative.

Examples usually have the word "example" near their start ("Example:", "The following example…,"
"For example," etc.) and are shown on a colored background, like this paragraph.

Notes start with the word "Note," are indented and shown in green, like this paragraph.

Figures are for illustration only. They are not reference renderings, unless explicitly stated.
Style sheet

A set of statements that specify presentation of a document.

– 3 Conformance: Requirements and Recommendations –

– 35 –



Style sheets may have three different origins: authorp.38, userp.38, and user agentp.38. The interaction
of these sources is described in the section on cascading and inheritancep.97.

Valid style sheet
The validity of a style sheet depends on the level of CSS used for the style sheet. All valid CSS1
style sheets are valid CSS 2.2 style sheets, but some changes from CSS1 mean that a few CSS1 style
sheets will have slightly different semantics in CSS 2.2. Some features in CSS2 are not part of
CSS 2.2, so not all CSS2 style sheets are valid CSS 2.2 style sheets.
A valid CSS 2.2 style sheet must be written according to the grammar of CSS 2.2p.407. Furthermore,
it must contain only at-rules, property names, and property values defined in this specification. An il-
legal (invalid) at-rule, property name, or property value is one that is not valid.

Source document
The document to which one or more style sheets apply. This is encoded in some language that repre-
sents the document as a tree of elementsp.36. Each element consists of a name that identifies the type
of element, optionally a number of attributesp.37, and a (possibly empty) contentp.37. For example,
the source document could be an XML or SGML instance.

Document language
The encoding language of the source document (e.g., HTML, XHTML, or SVG). CSS is used to de-
scribe the presentation of document languages and CSS does not change the underlying semantics of
the document languages.

Element
(An SGML term, see [ISO8879]p.361.) The primary syntactic constructs of the document language.
Most CSS style sheet rules use the names of these elements (such as P, TABLE, and OL in HTML)
to specify how the elements should be rendered.

Replaced element
An element whose content is outside the scope of the CSS formatting model, such as an image, em-
bedded document, or applet. For example, the content of the HTML IMG element is often replaced
by the image that its "src" attribute designates. Replaced elements often have intrinsic dimensions: an
intrinsic width, an intrinsic height, and an intrinsic ratio. For example, a bitmap image has an intrin-
sic width and an intrinsic height specified in absolute units (from which the intrinsic ratio can obvi-
ously be determined). On the other hand, other documents may not have any intrinsic dimensions
(for example, a blank HTML document).

User agents may consider a replaced element to not have any intrinsic dimensions if it is believed
that those dimensions could leak sensitive information to a third party. For example, if an HTML
document changed intrinsic size depending on the user's bank balance, then the UA might want to act
as if that resource had no intrinsic dimensions.

The content of replaced elements is not considered in the CSS rendering model.
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Intrinsic dimensions
The width and height as defined by the element itself, not imposed by the surroundings. CSS does
not define how the intrinsic dimensions are found. In CSS 2.2 only replaced elements can come with
intrinsic dimensions. For raster images without reliable resolution information, a size of 1 px unit per
image source pixel must be assumed.

Attribute
A value associated with an element, consisting of a name, and an associated (textual) value.

Content
The content associated with an element in the source document. Some elements have no content, in
which case they are called empty. The content of an element may include text, and it may include a
number of sub-elements, in which case the element is called the parent of those sub-elements.

Ignore
This term has two slightly different meanings in this specification. First, a CSS parser must follow
certain rules when it discovers unknown or illegal syntax in a style sheet. The parser must then ig-
nore certain parts of the style sheets. The exact rules for which parts must be ignored are described in
these sections (Declarations and properties,p.53 Rules for handling parsing errors,p.54 Unsupported
Valuesp.66) or may be explained in the text where the term "ignore" appears. Second, a user agent
may (and, in some cases must) disregard certain properties or values in the style sheet, even if the
syntax is legal. For example, table-column elements cannot affect the font of the column, so the font
properties must be ignored.

Rendered content
The content of an element after the rendering that applies to it according to the relevant style sheets
has been applied. How a replaced element's content is rendered is not defined by this specification.
Rendered content may also be alternate text for an element (e.g., the value of the XHTML "alt" at-
tribute), and may include items inserted implicitly or explicitly by the style sheet, such as bullets,
numbering, etc.

Document tree
The tree of elements encoded in the source document. Each element in this tree has exactly one par-
ent, with the exception of the root element, which has none.

Child
An element A is called the child of element B if and only if B is the parent of A.

Descendant
An element A is called a descendant of an element B, if either (1) A is a child of B, or (2) A is the
child of some element C that is a descendant of B.

Ancestor
An element A is called an ancestor of an element B, if and only if B is a descendant of A.
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Sibling
An element A is called a sibling of an element B, if and only if B and A share the same parent ele-
ment. Element A is a preceding sibling if it comes before B in the document tree. Element B is a fol-
lowing sibling if it comes after A in the document tree.

Preceding element
An element A is called a preceding element of an element B, if and only if (1) A is an ancestor of B
or (2) A is a preceding sibling of B.

Following element
An element A is called a following element of an element B, if and only if B is a preceding element
of A.

Author
An author is a person who writes documents and associated style sheets. An authoring tool is a User
Agentp.38 that generates style sheets.

User
A user is a person who interacts with a user agent to view, hear, or otherwise use a document and its
associated style sheet. The user may provide a personal style sheet that encodes personal preferences.

User agent (UA)
A user agent is any program that interprets a document written in the document language and applies
associated style sheets according to the terms of this specification. A user agent may display a docu-
ment, read it aloud, cause it to be printed, convert it to another format, etc.

An HTML user agent is one that supports one or more of the HTML specifications. A user agent that
supports XHTML [XHTML]p.364, but not HTML is not considered an HTML user agent for the pur-
pose of conformance with this specification.

Property
CSS defines a finite set of parameters, called properties, that direct the rendering of a document.
Each property has a name (e.g., 'color', 'font', or border') and a value (e.g., 'red', '12pt Times', or 'dot-
ted'). Properties are attached to various parts of the document and to the page on which the document
is to be displayed by the mechanisms of specificity, cascading, and inheritance (see the chapter on
Assigning property values, Cascading, and Inheritance p.97).
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Here is an example of a source document written in HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<TITLE>My home page</TITLE>

<BODY>

<H1>My home page</H1>

<P>Welcome to my home page! Let me tell you about my favorite

composers:

<UL>

<LI> Elvis Costello

<LI> Johannes Brahms

<LI> Georges Brassens

</UL>

</BODY>

</HTML>

This results in the following tree:

According to the definition of HTML 4, HEAD elements will be inferred during parsing and become
part of the document tree even if the "head" tags are not in the document source. Similarly, the parser
knows where the P and LI elements end, even though there are no </p> and </li> tags in the source.

Documents written in XHTML (and other XML-based languages) behave differently: there are no
inferred elements and all elements must have end tags.

3.2 UA Conformance

This section defines conformance with the CSS 2.2 specification only. There may be other levels of CSS
in the future that may require a user agent to implement a different set of features in order to conform.

In general, the following points must be observed by a user agent claiming conformance to this specifi-
cation:

1. It must recognize one or more of the CSS 2.2 media typesp.107.
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2. For each source document, it must attempt to retrieve all associated style sheets that are appropriate
for the recognized media types. If it cannot retrieve all associated style sheets (for instance, because
of network errors), it must display the document using those it can retrieve.

3. It must parse the style sheets according to this specification. In particular, it must recognize all at-
rules, blocks, declarations, and selectors (see the grammar of CSS 2.2p.407). If a user agent encoun-
ters a property that applies for a supported media type, the user agent must parse the value according
to the property definition. This means that the user agent must accept all valid values and must ignore
declarations with invalid values. User agents must ignore rules that apply to unsupported media
typesp.107.

4. For each element in a document treep.37, it must assign a value for every property according to the
property's definition and the rules of cascading and inheritancep.97.

5. If the source document comes with alternate style sheet sets (such as with the "alternate" keyword in
HTML 4 [HTML4]p.361), the UA must allow the user to select which style sheet set the UA should
apply.

6. The UA must allow the user to turn off the influence of author style sheets.

Not every user agent must observe every point, however:

• An application that reads style sheets without rendering any content (e.g., a CSS 2.2 validator) must
respect points 1-3.

• An authoring tool is only required to output valid style sheetsp.36

• A user agent that renders a document with associated style sheets must respect points 1-6 and render
the document according to the media-specific requirements set forth in this specification. Valuesp.98

may be approximated when required by the user agent.

The inability of a user agent to implement part of this specification due to the limitations of a particular
device (e.g., a user agent cannot render colors on a monochrome monitor or page) does not imply non-
conformance.

UAs must allow users to specify a file that contains the user style sheet. UAs that run on devices with-
out any means of writing or specifying files are exempted from this requirement. Additionally, UAs may
offer other means to specify user preferences, for example, through a GUI.

CSS 2.2 does not define which properties apply to form controls and frames, or how CSS can be used
to style them. User agents may apply CSS properties to these elements. Authors are recommended to treat
such support as experimental. A future level of CSS may specify this further.
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3.3 Error conditions

In general, this document specifies error handling behavior throughout the specification. For example, see
the rules for handling parsing errorsp.54.

3.4 The text/css content type

CSS style sheets that exist in separate files are sent over the Internet as a sequence of bytes accompanied
by encoding information. The structure of the transmission, termed a message entity, is defined by RFC
2045 and RFC 2616 (see [RFC2045]p.362 and [RFC2616]p.362). A message entity with a content type of
"text/css" represents an independent CSS document. The "text/css" content type has been registered by
RFC 2318 ([RFC2318]p.362).
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4.1 Syntax

This section describes a grammar (and forward-compatible parsing rules) common to any level of CSS
(including CSS 2.2). Future updates of CSS will adhere to this core syntax, although they may add addi-
tional syntactic constraints.

These descriptions are normative. They are also complemented by the normative grammar rules pre-
sented in Appendix Gp.407.

In this specification, the expressions "immediately before" or "immediately after" mean with no inter-
vening white space or comments.

4.1.1 Tokenization

All levels of CSS — level 1, level 2, and any future levels — use the same core syntax. This allows UAs
to parse (though not completely understand) style sheets written in levels of CSS that did not exist at the
time the UAs were created. Designers can use this feature to create style sheets that work with older user
agents, while also exercising the possibilities of the latest levels of CSS.

At the lexical level, CSS style sheets consist of a sequence of tokens. The list of tokens for CSS is as
follows. The definitions use Lex-style regular expressions. Octal codes refer to ISO 10646
([ISO10646]p.361). As in Lex, in case of multiple matches, the longest match determines the token.
Token Definition
IDENT {ident}

ATKEYWORD @{ident}

STRING {string}

BAD_STRING {badstring}

BAD_URI {baduri}

BAD_COMMENT{badcomment}

HASH #{name}

NUMBER {num}

PERCENTAGE {num}%

DIMENSION {num}{ident}
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Token Definition

URI
{U}{R}{L}\({w}{string}{w}\)|

{U}{R}{L}\({w}([!#$%&*-\[\]-~]|{nonascii}|{escape})*{w}\)

UNICODE-
RANGE

u\+[?]{1,6}|

u\+[0-9a-f]{1}[?]{0,5}|

u\+[0-9a-f]{2}[?]{0,4}|

u\+[0-9a-f]{3}[?]{0,3}|

u\+[0-9a-f]{4}[?]{0,2}|

u\+[0-9a-f]{5}[?]{0,1}|

u\+[0-9a-f]{6}|

u\+[0-9a-f]{1,6}-[0-9a-f]{1,6}

CDO <!--

CDC -->

: :

; ;

{ \{

} \}

( \(

) \)

[ \[

] \]

S [ \t\r\n\f]+

COMMENT \/\*[^*]*\*+([^/*][^*]*\*+)*\/

FUNCTION {ident}\(

INCLUDES ~=

DASHMATCH |=

DELIM
any other character not matched by the above rules, and neither a single nor a double
quote

The macros in curly braces ({}) above are defined as follows:
Macro Definition
ident [-]?{nmstart}{nmchar}*

name {nmchar}+

nmstart [_a-z]|{nonascii}|{escape}

nonascii [^\0-\177]

unicode \\[0-9a-f]{1,6}(\r\n|[ \n\r\t\f])?

escape {unicode}|\\[^\n\r\f0-9a-f]
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Macro Definition
nmchar [_a-z0-9-]|{nonascii}|{escape}

num [+-]?([0-9]+|[0-9]*\.[0-9]+)(e[+-]?[0-9]+)?

string {string1}|{string2}

string1 \"([^\n\r\f\\"]|\\{nl}|{escape})*\"

string2 \'([^\n\r\f\\']|\\{nl}|{escape})*\'

badstring {badstring1}|{badstring2}

badstring1 \"([^\n\r\f\\"]|\\{nl}|{escape})*\\?

badstring2 \'([^\n\r\f\\']|\\{nl}|{escape})*\\?

badcomment {badcomment1}|{badcomment2}

badcomment1\/\*[^*]*\*+([^/*][^*]*\*+)*
badcomment2\/\*[^*]*(\*+[^/*][^*]*)*
baduri {baduri1}|{baduri2}|{baduri3}

baduri1 {U}{R}{L}\({w}([!#$%&*-~]|{nonascii}|{escape})*{w}

baduri2 {U}{R}{L}\({w}{string}{w}

baduri3 {U}{R}{L}\({w}{badstring}

nl \n|\r\n|\r|\f

w [ \t\r\n\f]*

L l|\\0{0,4}(4c|6c)(\r\n|[ \t\r\n\f])?|\\l

R r|\\0{0,4}(52|72)(\r\n|[ \t\r\n\f])?|\\r

U u|\\0{0,4}(55|75)(\r\n|[ \t\r\n\f])?|\\u

For example, the rule of the longest match means that "red-->" is tokenized as the IDENT "red--"
followed by the DELIM ">", rather than as an IDENT followed by a CDC.

Below is the core syntax for CSS. The sections that follow describe how to use it. Appendix Gp.407 de-
scribes a more restrictive grammar that is closer to the CSS level 2 language. Parts of style sheets that can
be parsed according to this grammar but not according to the grammar in Appendix G are among the parts
that will be ignored according to the rules for handling parsing errorsp.54.
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stylesheet  : [ CDO | CDC | S | statement ]*;

statement   : ruleset | at-rule;

at-rule     : ATKEYWORD S* any* [ block | ';' S* ];

block       : '{' S* [ any | block | ATKEYWORD S* | ';' S* ]* '}' S*;

ruleset     : selector? '{' S* declaration-list '}' S*;

declaration-list: declaration [ ';' S* declaration-list ]?

| at-rule declaration-list

| /* empty */;

selector    : any+;

declaration : property S* ':' S* value;

property    : IDENT;

value       : [ any | block | ATKEYWORD S* ]+;

any         : [ IDENT | NUMBER | PERCENTAGE | DIMENSION | STRING

| DELIM | URI | HASH | UNICODE-RANGE | INCLUDES

| DASHMATCH | ':' | FUNCTION S* [any|unused]* ')'

| '(' S* [any|unused]* ')' | '[' S* [any|unused]* ']'

] S*;

unused      : block | ATKEYWORD S* | ';' S* | CDO S* | CDC S*;

The "unused" production is not used in CSS and will not be used by any future extension. It is included
here only to help with error handling. (See 4.2 "Rules for handling parsing errors."p.54)

COMMENT tokens do not occur in the grammar (to keep it readable), but any number of these tokens
may appear anywhere outside other tokens. (Note, however, that a comment before or within the @charset
rule disables the @charset.)

The token S in the grammar above stands for white space. Only the characters "space" (U+0020), "tab"
(U+0009), "line feed" (U+000A), "carriage return" (U+000D), and "form feed" (U+000C) can occur in
white space. Other space-like characters, such as "em-space" (U+2003) and "ideographic space"
(U+3000), are never part of white space.

The meaning of input that cannot be tokenized or parsed is undefined in CSS 2.2.

4.1.2 Keywords

Keywords have the form of identifiers.p.49 Keywords must not be placed between quotes ("..." or '...').
Thus,

red

is a keyword, but

"red"

is not. (It is a stringp.65.) Other illegal examples:
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width: "auto";

border: "none";

background: "red";

4.1.2.1 Vendor-specific extensions

In CSS, identifiers may begin with '-' (dash) or '_' (underscore). Keywords and property namesp.53 begin-
ning with -' or '_' are reserved for vendor-specific extensions. Such vendor-specific extensions should
have one of the following formats:

'-' + vendor identifier + '-' + meaningful name

'_' + vendor identifier + '-' + meaningful name

For example, if XYZ organization added a property to describe the color of the border on the East side
of the display, they might call it -xyz-border-east-color.

Other known examples:

-moz-box-sizing

-moz-border-radius

-wap-accesskey

An initial dash or underscore is guaranteed never to be used in a property or keyword by any current or fu-
ture level of CSS. Thus typical CSS implementations may not recognize such properties and may ignore
them according to the rules for handling parsing errorsp.54. However, because the initial dash or under-
score is part of the grammar, CSS 2.2 implementers should always be able to use a CSS-conforming pars-
er, whether or not they support any vendor-specific extensions.

Authors should avoid vendor-specific extensions

4.1.2.2 Informative Historical Notes

This section is informative.
At the time of writing, the following prefixes are known to exist:

prefix organization

-ms-, mso- Microsoft

-moz- Mozilla

-o-, -xv- Opera Software

-atsc- Advanced Television Standards Committee

-wap- The WAP Forum
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prefix organization

-khtml- KDE

-webkit- Apple

prince- YesLogic

-ah- Antenna House

-hp- Hewlett Packard

-ro- Real Objects

-rim- Research In Motion

-tc- TallComponents

4.1.3 Characters and case

The following rules always hold:

• All CSS syntax is case-insensitive within the ASCII range (i.e., [a-z] and [A-Z] are equivalent), ex-
cept for parts that are not under the control of CSS. For example, the case-sensitivity of values of the
HTML attributes "id" and "class", of font names, and of URIs lies outside the scope of this specifica-
tion. Note in particular that element names are case-insensitive in HTML, but case-sensitive in XML.

• In CSS, identifiers (including element names, classes, and IDs in selectorsp.71) can contain only the
characters [a-zA-Z0-9] and ISO 10646 characters U+0080 and higher, plus the hyphen (-) and the un-
derscore (_); they cannot start with a digit, two hyphens, or a hyphen followed by a digit. Identifiers
can also contain escaped characters and any ISO 10646 character as a numeric code (see next item).

For instance, the identifier "B&W?" may be written as "B\&W\?" or "B\26 W\3F".
Note that Unicode is code-by-code equivalent to ISO 10646 (see [UNICODE]p.362 and
[ISO10646]p.361).

• In CSS 2.2, a backslash (\) character can indicate one of three types of character escape. Inside a CSS
comment, a backslash stands for itself, and if a backslash is immediately followed by the end of the
style sheet, it also stands for itself (i.e., a DELIM token).
First, inside a stringp.65, a backslash followed by a newline is ignored (i.e., the string is deemed not
to contain either the backslash or the newline). Outside a string, a backslash followed by a newline
stands for itself (i.e., a DELIM followed by a newline).

Second, it cancels the meaning of special CSS characters. Any character (except a hexadecimal
digit, linefeed, carriage return, or form feed) can be escaped with a backslash to remove its special
meaning. For example, "\"" is a string consisting of one double quote. Style sheet preprocessors
must not remove these backslashes from a style sheet since that would change the style sheet's mean-
ing.
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Third, backslash escapes allow authors to refer to characters they cannot easily put in a document.
In this case, the backslash is followed by at most six hexadecimal digits (0..9A..F), which stand for
the ISO 10646 ([ISO10646]p.361) character with that number, which must not be zero. (It is unde-
fined in CSS 2.2 what happens if a style sheet does contain a character with Unicode codepoint zero.)
If a character in the range [0-9a-fA-F] follows the hexadecimal number, the end of the number needs
to be made clear. There are two ways to do that:

1. with a space (or other white space character): "\26 B" ("&B"). In this case, user agents should
treat a "CR/LF" pair (U+000D/U+000A) as a single white space character.

2. by providing exactly 6 hexadecimal digits: "\000026B" ("&B")

In fact, these two methods may be combined. Only one white space character is ignored after a hexa-
decimal escape. Note that this means that a "real" space after the escape sequence must be doubled.

If the number is outside the range allowed by Unicode (e.g., "\110000" is above the maximum
10FFFF allowed in current Unicode), the UA may replace the escape with the "replacement charac-
ter" (U+FFFD). If the character is to be displayed, the UA should show a visible symbol, such as a
"missing character" glyph (cf. 15.2,p.266 point 5).

• Note: Backslash escapes are always considered to be part of an identifierp.49 or a string (i.e.,
"\7B" is not punctuation, even though "{" is, and "\32" is allowed at the start of a class name,
even though "2" is not).
The identifier "te\st" is exactly the same identifier as "test".

4.1.4 Statements

A CSS style sheet, for any level of CSS, consists of a list of statements (see the grammarp.44 above).
There are two kinds of statements: at-rules and rule sets. There may be white spacep.47 around the state-
ments.

4.1.5 At-rules

At-rules start with an at-keyword, an '@' character followed immediately by an identifierp.49 (for exam-
ple, '@import', '@page').

An at-rule consists of everything up to and including the next semicolon (;) or the next block,p.51

whichever comes first.
CSS 2.2 user agents must ignorep.54 any '@import'p.100 rule that occurs inside a blockp.51 or after any

non-ignored statement other than an @charset or an @import rule.
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Assume, for example, that a CSS 2.2 parser encounters this style sheet:

@import "subs.css";

h1 { color: blue }

@import "list.css";

The second '@import' is illegal according to CSS 2.2. The CSS 2.2 parser ignoresp.54 the whole at-
rule, effectively reducing the style sheet to:

@import "subs.css";

h1 { color: blue }

In the following example, the second '@import' rule is invalid, since it occurs inside a '@media'
blockp.51.

@import "subs.css";

@media print {

@import "print-main.css";

body { font-size: 10pt }

}

h1 {color: blue }

Instead, to achieve the effect of only importing a style sheet for 'print' media, use the @import rule
with media syntax, e.g.:

@import "subs.css";

@import "print-main.css" print;

@media print {

body { font-size: 10pt }

}

h1 {color: blue }

4.1.6 Blocks

A block starts with a left curly brace ({) and ends with the matching right curly brace (}). In between there
may be any tokens, except that parentheses (( )), brackets ([ ]), and braces ({ }) must always occur in
matching pairs and may be nested. Single (') and double quotes (") must also occur in matching pairs, and
characters between them are parsed as a string. See Tokenizationp.44 above for the definition of a string.
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Here is an example of a block. Note that the right brace between the double quotes does not match the
opening brace of the block, and that the second single quote is an escaped characterp.49, and thus does
not match the first single quote:

{ causta: "}" + ({7} * '\'') }

Note that the above rule is not valid CSS 2.2, but it is still a block as defined above.

4.1.7 Rule sets, declaration blocks, and selectors

A rule set (also called "rule") consists of a selector followed by a declaration block.
A declaration block starts with a left curly brace ({) and ends with the matching right curly brace (}).

In between there must be a list of zero or more declarations and at-rules. Declarations must end with a
semicolon (;) unless they are last in the list.

Note: CSS level 2 has no at-rules that may appear inside rule sets, but such at-rules may be defined in
future levels.

The selector (see also the section on selectorsp.71) consists of everything up to (but not including) the first
left curly brace ({). A selector always goes together with a declaration block. When a user agent cannot
parse the selector (i.e., it is not valid CSS 2.2), it must ignorep.54 the selector and the following declara-
tion block (if any) as well.

CSS 2.2 gives a special meaning to the comma (,) in selectors. However, since it is not known if the
comma may acquire other meanings in future updates of CSS, the whole statement should be ignoredp.54

if there is an error anywhere in the selector, even though the rest of the selector may look reasonable in
CSS 2.2.
For example, since the "&" is not a valid token in a CSS 2.2 selector, a CSS 2.2 user agent must ignorep.54

the whole second line, and not set the color of H3 to red:

h1, h2 {color: green }

h3, h4 & h5 {color: red }

h6 {color: black }
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Here is a more complex example. The first two pairs of curly braces are inside a string, and do not
mark the end of the selector. This is a valid CSS 2.2 rule.

p[example="public class foo\

{\

private int x;\

\

foo(int x) {\

this.x = x;\

}\

\

}"] { color: red }

4.1.8 Declarations and properties

A declaration is either empty or consists of a property name, followed by a colon (:), followed by a prop-
erty value. Around each of these there may be white spacep.47.

Because of the way selectors work, multiple declarations for the same selector may be organized into
semicolon (;) separated groups.

Thus, the following rules:

h1 { font-weight: bold }

h1 { font-size: 12px }

h1 { line-height: 14px }

h1 { font-family: Helvetica }

h1 { font-variant: normal }

h1 { font-style: normal }

are equivalent to:

h1 {

font-weight: bold;

font-size: 12px;

line-height: 14px;

font-family: Helvetica;

font-variant: normal;

font-style: normal

}
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A property name is an identifierp.49. Any token may occur in the property value. Parentheses ("( )"),
brackets ("[ ]"), braces ("{ }"), single quotes ('), and double quotes (") must come in matching pairs, and
semicolons not in strings must be escapedp.49. Parentheses, brackets, and braces may be nested. Inside the
quotes, characters are parsed as a string.

The syntax of values is specified separately for each property, but in any case, values are built from
identifiers, strings, numbers, lengths, percentages, URIs, colors, etc.

A user agent must ignorep.54 a declaration with an invalid property name or an invalid value. Every
CSS property has its own syntactic and semantic restrictions on the values it accepts.

For example, assume a CSS 2.2 parser encounters this style sheet:

h1 { color: red; font-style: 12pt }  /* Invalid value: 12pt */

p { color: blue;  font-vendor: any;  /* Invalid prop.: font-vendor */

font-variant: small-caps }

em em { font-style: normal }

The second declaration on the first line has an invalid value '12pt'. The second declaration on the sec-
ond line contains an undefined property 'font-vendor'. The CSS 2.2 parser will ignorep.54 these decla-
rations, effectively reducing the style sheet to:

h1 { color: red; }

p { color: blue;  font-variant: small-caps }

em em { font-style: normal }

4.1.9 Comments

Comments begin with the characters "/*" and end with the characters "*/". They may occur anywhere out-
side other tokens, and their contents have no influence on the rendering. Comments may not be nested.

CSS also allows the SGML comment delimiters ("<!--" and "-->") in certain places defined by the
grammar, but they do not delimit CSS comments. They are permitted so that style rules appearing in an
HTML source document (in the STYLE element) may be hidden from pre-HTML 3.2 user agents. See the
HTML 4 specification ([HTML4]p.361) for more information.

4.2 Rules for handling parsing errors

In some cases, user agents must ignore part of an illegal style sheet. This specification defines ignore to
mean that the user agent parses the illegal part (in order to find its beginning and end), but otherwise acts
as if it had not been there. CSS 2.2 reserves for future updates of CSS all property:value combinations and
@-keywords that do not contain an identifier beginning with dash or underscore. Implementations must
ignore such combinations (other than those introduced by future updates of CSS).
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To ensure that new properties and new values for existing properties can be added in the future, user
agents are required to obey the following rules when they encounter the following scenarios:

• Unknown properties. User agents must ignorep.54 a declarationp.53 with an unknown property. For
example, if the style sheet is:

h1 { color: red; rotation: 70minutes }

the user agent will treat this as if the style sheet had been

h1 { color: red }

• Illegal values. User agents must ignore a declaration with an illegal value. For example:

img { float: left }       /* correct CSS 2.2 */

img { float: left here }  /* "here" is not a value of 'float' */

img { background: "red" } /* keywords cannot be quoted */

img { border-width: 3 }   /* a unit must be specified for length values */

A CSS 2.2 parser would honor the first rule and ignorep.54 the rest, as if the style sheet had been:

img { float: left }

img { }

img { }

img { }

A user agent conforming to a future CSS specification may accept one or more of the other rules as
well.

• Malformed declarations. User agents must handle unexpected tokens encountered while parsing a
declaration by reading until the end of the declaration, while observing the rules for matching pairs
of (), [], {}, "", and '', and correctly handling escapes. For example, a malformed declaration may be
missing a property name, colon (:), or property value.
When the UA expects the start of a declaration or at-rule (i.e., an IDENT token or an ATKEYWORD
token) but finds an unexpected token instead, that token is considered to be the first token of a mal-
formed declaration. I.e., the rule for malformed declarations, rather than malformed statements is
used to determine which tokens to ignore in that case.

The following are all equivalent:
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p { color:green }

p { @foo { bar: baz } color:green }  /* unknown at-rule */

p { color:green; color }  /* malformed declaration missing ':', value */

p { color:red;   color; color:green }  /* same with expected recovery */

p { color:green; color: } /* malformed declaration missing value */

p { color:red;   color:; color:green } /* same with expected recovery */

p { color:green; color{;color:maroon} } /* unexpected tokens { } */

p { color:red;   color{;color:maroon}; color:green } /* same with recovery */

• Malformed statements. User agents must handle unexpected tokens encountered while parsing a
statement by reading until the end of the statement, while observing the rules for matching pairs of (),
[], {}, "", and '', and correctly handling escapes. For example, a malformed statement may contain an
unexpected closing brace or at-keyword. E.g., the following lines are all ignored:

p @here {color: red}     /* ruleset with unexpected at-keyword "@here" */

@foo @bar;               /* at-rule with unexpected at-keyword "@bar" */

}} {{ - }}               /* ruleset with unexpected right brace */

) ( {} ) p {color: red } /* ruleset with unexpected right parenthesis */

• At-rules with unknown at-keywords. User agents must ignorep.54 an invalid at-keyword together
with everything following it, up to the end of the block that contains the invalid at-keyword, or up to
and including the next semicolon (;), or up to and including the next block ({...}), whichever comes
first. For example, consider the following:

@three-dee {

@background-lighting {

azimuth: 30deg;

elevation: 190deg;

}

h1 { color: red }

}

h1 { color: blue }

The '@three-dee' at-rule is not part of CSS 2.2. Therefore, the whole at-rule (up to, and including, the
third right curly brace) is ignored.p.54 A CSS 2.2 user agent ignoresp.54 it, effectively reducing the
style sheet to:

h1 { color: blue }

Something inside an at-rule that is ignored because it is invalid, such as an invalid declaration within
an @media-rule, does not make the entire at-rule invalid.
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• Unexpected end of style sheet.
User agents must close all open constructs (for example: blocks, parentheses, brackets, rules, strings,
and comments) at the end of the style sheet. For example:

@media screen {

p:before { content: 'Hello

would be treated the same as:

@media screen {

p:before { content: 'Hello'; }

}

in a conformant UA.

• Unexpected end of string.
User agents must close strings upon reaching the end of a line (i.e., before an unescaped line feed,
carriage return or form feed character), but then drop the construct (declaration or rule) in which the
string was found. For example:

p {

color: green;

font-family: 'Courier New Times

color: red;

color: green;

}

...would be treated the same as:

p { color: green; color: green; }

...because the second declaration (from 'font-family' to the semicolon after 'color: red') is invalid and
is dropped.

• See also Rule sets, declaration blocks, and selectors p.52 for parsing rules for declaration blocks.

4.3 Values

4.3.1 Integers and real numbers

Some value types may have integer values (denoted by <integer>) or real number values (denoted by
<number>). Real numbers and integers are specified in decimal notation only. An <integer> consists of
one or more digits "0" to "9". A <number> can either be an <integer>, or it can be zero or more digits fol-
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lowed by a dot (.) followed by one or more digits. Both integers and real numbers may immediately be
preceded by a "-" or "+" to indicate the sign. -0 is equivalent to 0 and is not a negative number.

Note that many properties that allow an integer or real number as a value actually restrict the value to
some range, often to a non-negative value.

4.3.2 Lengths

Lengths refer to distance measurements.
The format of a length value (denoted by <length> in this specification) is a <number>p.57 (with or

without a decimal point) immediately followed by a unit identifier (e.g., px, em, etc.). After a zero length,
the unit identifier is optional.

Some properties allow negative length values, but this may complicate the formatting model and there
may be implementation-specific limits. If a negative length value cannot be supported, it should be con-
verted to the nearest value that can be supported.

If a negative length value is set on a property that does not allow negative length values, the declaration
is ignored.

In cases where the usedp.98 length cannot be supported, user agents must approximate it in the actual
value.p.98

There are two types of length units: relative and absolute. Relative length units specify a length relative
to another length property. Style sheets that use relative units can more easily scale from one output envi-
ronment to another.

Relative units are:

• em: the 'font-size'p.276 of the relevant font

• ex: the 'x-height' of the relevant font

h1 { margin: 0.5em }      /* em */

h1 { margin: 1ex }        /* ex */

The 'em' unit is equal to the computed value of the 'font-size'p.276 property of the element on which it is
used. The exception is when 'em' occurs in the value of the 'font-size' property itself, in which case it
refers to the font size of the parent element. It may be used for vertical or horizontal measurement. (This
unit is also sometimes called the quad-width in typographic texts.)

The 'ex' unit is defined by the element's first available font. The exception is when 'ex' occurs in the val-
ue of the 'font-size'p.276 property, in which case it refers to the 'ex' of the parent element.

The 'x-height' is so called because it is often equal to the height of the lowercase "x". However, an 'ex'
is defined even for fonts that do not contain an "x".
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The x-height of a font can be found in different ways. Some fonts contain reliable metrics for the x-
height. If reliable font metrics are not available, UAs may determine the x-height from the height of a
lowercase glyph. One possible heuristic is to look at how far the glyph for the lowercase "o" extends be-
low the baseline, and subtract that value from the top of its bounding box. In the cases where it is impossi-
ble or impractical to determine the x-height, a value of 0.5em should be used.

The rule:

h1 { line-height: 1.2em }

means that the line height of "h1" elements will be 20% greater than the font size of the "h1" elements.
On the other hand:

h1 { font-size: 1.2em }

means that the font-size of "h1" elements will be 20% greater than the font size inherited by "h1" ele-
ments.

When specified for the root of the document treep.37 (e.g., "HTML" in HTML), 'em' and 'ex' refer to the
property's initial valuep.22.

Child elements do not inherit the relative values specified for their parent; they inherit the computed
valuesp.98.

In the following rules, the computed 'text-indent'p.281 value of "h1" elements will be 36px, not 45px, if
"h1" is a child of the "body" element.

body {

font-size: 12px;

text-indent: 3em;  /* i.e., 36px */

}

h1 { font-size: 15px }

Absolute length units are fixed in relation to each other. They are mainly useful when the output environ-
ment is known. The absolute units consist of the physical units (in, cm, mm, pt, pc) and the px unit:

• in: inches — 1in is equal to 2.54cm.

• cm: centimeters

• mm: millimeters

• pt: points — the points used by CSS are equal to 1/72nd of 1in.
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• pc: picas — 1pc is equal to 12pt.

• px: pixel units — 1px is equal to 0.75pt.

For a CSS device, these dimensions are either anchored (i) by relating the physical units to their physical
measurements, or (ii) by relating the pixel unit to the reference pixel. For print media and similar high-
resolution devices, the anchor unit should be one of the standard physical units (inches, centimeters, etc).
For lower-resolution devices, and devices with unusual viewing distances, it is recommended instead that
the anchor unit be the pixel unit. For such devices it is recommended that the pixel unit refer to the whole
number of device pixels that best approximates the reference pixel.

Note that if the anchor unit is the pixel unit, the physical units might not match their physical measure-
ments. Alternatively if the anchor unit is a physical unit, the pixel unit might not map to a whole num-
ber of device pixels.

Note that this definition of the pixel unit and the physical units differs from previous versions of CSS.
In particular, in previous versions of CSS the pixel unit and the physical units were not related by a
fixed ratio: the physical units were always tied to their physical measurements while the pixel unit
would vary to most closely match the reference pixel. (This change was made because too much exist-
ing content relies on the assumption of 96dpi, and breaking that assumption breaks the content.)

The reference pixel is the visual angle of one pixel on a device with a pixel density of 96dpi and a dis-
tance from the reader of an arm's length. For a nominal arm's length of 28 inches, the visual angle is there-
fore about 0.0213 degrees. For reading at arm's length, 1px thus corresponds to about 0.26 mm (1/
96 inch).

The image below illustrates the effect of viewing distance on the size of a reference pixel: a reading dis-
tance of 71 cm (28 inches) results in a reference pixel of 0.26 mm, while a reading distance of 3.5 m
(12 feet) results in a reference pixel of 1.3 mm.
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This second image illustrates the effect of a device's resolution on the pixel unit: an area of 1px by 1px is
covered by a single dot in a low-resolution device (e.g. a typical computer display), while the same area is
covered by 16 dots in a higher resolution device (such as a printer).

h1 { margin: 0.5in }      /* inches  */

h2 { line-height: 3cm }   /* centimeters */

h3 { word-spacing: 4mm }  /* millimeters */

h4 { font-size: 12pt }    /* points */

h4 { font-size: 1pc }     /* picas */

p  { font-size: 12px }    /* px */

4.3.3 Percentages

The format of a percentage value (denoted by <percentage> in this specification) is a <number>p.57 im-
mediately followed by '%'.

Percentage values are always relative to another value, for example a length. Each property that allows
percentages also defines the value to which the percentage refers. The value may be that of another prop-
erty for the same element, a property for an ancestor element, or a value of the formatting context (e.g.,
the width of a containing blockp.135). When a percentage value is set for a property of the rootp.37 element
and the percentage is defined as referring to the inherited value of some property, the resultant value is the
percentage times the initial valuep.22 of that property.
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Since child elements (generally) inherit the computed valuesp.98 of their parent, in the following ex-
ample, the children of the P element will inherit a value of 12px for 'line-height'p.204, not the percent-
age value (120%):

p { font-size: 10px }

p { line-height: 120% }  /* 120% of 'font-size' */

4.3.4 URLs and URIs

URI values (Uniform Resource Identifiers, see [RFC3986]p.362, which includes URLs, URNs, etc) in this
specification are denoted by <uri>. The functional notation used to designate URIs in property values is
"url()", as in:

body { background: url("http://www.example.com/pinkish.png") }

The format of a URI value is 'url(' followed by optional white spacep.47 followed by an optional single
quote (') or double quote (") character followed by the URI itself, followed by an optional single quote (')
or double quote (") character followed by optional white space followed by ')'. The two quote characters
must be the same.

An example without quotes:

li { list-style: url(http://www.example.com/redball.png) disc }

Some characters appearing in an unquoted URI, such as parentheses, white space characters, single quotes
(') and double quotes ("), must be escaped with a backslash so that the resulting URI value is a URI token:
'\(', '\)'.

Depending on the type of URI, it might also be possible to write the above characters as URI-escapes
(where "(" = %28, ")" = %29, etc.) as described in [RFC3986]p.362.

Note that COMMENT tokens cannot occur within other tokens: thus, "url(/*x*/pic.png)" denotes the
URI "/*x*/pic.png", not "pic.png".

In order to create modular style sheets that are not dependent on the absolute location of a resource, au-
thors may use relative URIs. Relative URIs (as defined in [RFC3986]p.362) are resolved to full URIs using
a base URI. RFC 3986, section 5, defines the normative algorithm for this process. For CSS style sheets,
the base URI is that of the style sheet, not that of the source document.
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For example, suppose the following rule:

body { background: url("yellow") }

is located in a style sheet designated by the URI:

http://www.example.org/style/basic.css

The background of the source document's BODY will be tiled with whatever image is described by the
resource designated by the URI

http://www.example.org/style/yellow

User agents may vary in how they handle invalid URIs or URIs that designate unavailable or inapplicable
resources.

4.3.5 Counters

Counters are denoted by case-sensitive identifiers (see the 'counter-increment'p.230 and 'counter-reset'p.229

properties). To refer to the value of a counter, the notation 'counter(<identifier>)' or 'counter(<identifier>,
<'list-style-type'>)', with optional white space separating the tokens, is used. The default style is 'decimal'.

To refer to a sequence of nested counters of the same name, the notation is 'counters(<identifier>,
<string>)' or 'counters(<identifier>, <string>, <'list-style-type'>)' with optional white space separating the
tokens.

See "Nested counters and scope"p.232 in the chapter on generated contentp.221 for how user agents must
determine the value or values of the counter. See the definition of counter values of the 'content'p.223 prop-
erty for how it must convert these values to a string.

In CSS 2.2, the values of counters can only be referred to from the 'content'p.223 property. Note that
'none' is a possible <'list-style-type'>: 'counter(x, none)' yields an empty string.

Here is a style sheet that numbers paragraphs (p) for each chapter (h1). The paragraphs are numbered
with roman numerals, followed by a period and a space:

p {counter-increment: par-num}

h1 {counter-reset: par-num}

p:before {content: counter(par-num, upper-roman) ". "}

4.3.6 Colors

A <color> is either a keyword or a numerical RGB specification.
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The list of color keywords is: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive, orange,
purple, red, silver, teal, white, and yellow. These 17 colors have the following values:
maroon #800000 red #ff0000 orange #ffA500 yellow #ffff00 olive #808000
purple #800080 fuchsia #ff00ff white #ffffff lime #00ff00 green #008000

navy #000080 blue #0000ff aqua #00ffff teal #008080
black #000000 silver #c0c0c0 gray #808080

In addition to these color keywords, users may specify keywords that correspond to the colors used by
certain objects in the user's environment. Please consult the section on system colors for more informa-
tion.

body {color: black; background: white }

h1 { color: maroon }

h2 { color: olive }

The RGB color model is used in numerical color specifications. These examples all specify the same col-
or:

em { color: #f00 }              /* #rgb */

em { color: #ff0000 }           /* #rrggbb */

em { color: rgb(255,0,0) }

em { color: rgb(100%, 0%, 0%) }

The format of an RGB value in hexadecimal notation is a '#' immediately followed by either three or six
hexadecimal characters. The three-digit RGB notation (#rgb) is converted into six-digit form (#rrggbb) by
replicating digits, not by adding zeros. For example, #fb0 expands to #ffbb00. This ensures that white
(#ffffff) can be specified with the short notation (#fff) and removes any dependencies on the color depth
of the display.

The format of an RGB value in the functional notation is 'rgb(' followed by a comma-separated list of
three numerical values (either three integer values or three percentage values) followed by ')'. The integer
value 255 corresponds to 100%, and to F or FF in the hexadecimal notation: rgb(255,255,255) =
rgb(100%,100%,100%) = #FFF. White spacep.47 characters are allowed around the numerical values.

All RGB colors are specified in the sRGB color space (see [SRGB]p.362). User agents may vary in the
fidelity with which they represent these colors, but using sRGB provides an unambiguous and objectively
measurable definition of what the color should be, which can be related to international standards (see
[COLORIMETRY]p.361).

Conforming user agentsp.39 may limit their color-displaying efforts to performing a gamma-correction
on them. sRGB specifies a display gamma of 2.2 under specified viewing conditions. User agents should
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adjust the colors given in CSS such that, in combination with an output device's "natural" display gamma,
an effective display gamma of 2.2 is produced. Note that only colors specified in CSS are affected; e.g.,
images are expected to carry their own color information.

Values outside the device gamut should be clipped or mapped into the gamut when the gamut is known:
the red, green, and blue values must be changed to fall within the range supported by the device. Users
agents may perform higher quality mapping of colors from one gamut to another. For a typical CRT moni-
tor, whose device gamut is the same as sRGB, the four rules below are equivalent:

em { color: rgb(255,0,0) }       /* integer range 0 - 255 */

em { color: rgb(300,0,0) }       /* clipped to rgb(255,0,0) */

em { color: rgb(255,-10,0) }     /* clipped to rgb(255,0,0) */

em { color: rgb(110%, 0%, 0%) }  /* clipped to rgb(100%,0%,0%) */

Other devices, such as printers, have different gamuts than sRGB; some colors outside the 0..255 sRGB
range will be representable (inside the device gamut), while other colors inside the 0..255 sRGB range
will be outside the device gamut and will thus be mapped.

Note. Mapping or clipping of color values should be done to the actual device gamut if known (which
may be larger or smaller than 0..255).

4.3.7 Strings

Strings can either be written with double quotes or with single quotes. Double quotes cannot occur inside
double quotes, unless escaped (e.g., as '\"' or as '\22'). Analogously for single quotes (e.g., "\'" or "\27").

"this is a 'string'"

"this is a \"string\""

'this is a "string"'

'this is a \'string\''

A string cannot directly contain a newline. To include a newline in a string, use an escape representing the
line feed character in ISO-10646 (U+000A), such as "\A" or "\00000a". This character represents the
generic notion of "newline" in CSS. See the 'content'p.223 property for an example.

It is possible to break strings over several lines, for aesthetic or other reasons, but in such a case the
newline itself has to be escaped with a backslash (\). For instance, the following two selectors are exactly
the same:
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a[title="a not s\

o very long title"] {/*...*/}

a[title="a not so very long title"] {/*...*/}

4.3.8 Unsupported Values

If a UA does not support a particular value, it should ignore that value when parsing style sheets, as if that
value was an illegal valuep.55. For example:

h3 {

display: inline;

display: run-in;

}

A UA that supports the 'run-in' value for the 'display' property will accept the first display declaration and
then "write over" that value with the second display declaration. A UA that does not support the 'run-in'
value will process the first display declaration and ignore the second display declaration.

4.4 CSS style sheet representation

A CSS style sheet is a sequence of characters from the Universal Character Set (see [ISO10646]p.361). For
transmission and storage, these characters must be encoded by a character encoding that supports the set
of characters available in US-ASCII (e.g., UTF-8, ISO 8859-x, SHIFT JIS, etc.). For a good introduction
to character sets and character encodings, please consult the HTML 4 specification ([HTML4]p.361, chap-
ter 5). See also the XML 1.1 specification ([XML11]p.363, sections 2.2 and 4.3.3, and Appendix E).

When a style sheet is embedded in another document, such as in the STYLE element or "style" attribute
of HTML, the style sheet shares the character encoding of the whole document.

When a style sheet resides in a separate file, user agents must observe the following priorities when de-
termining a style sheet's character encoding (from highest priority to lowest):

1. An HTTP "charset" parameter in a "Content-Type" field (or similar parameters in other protocols)

2. BOM and/or @charset (see below)

3. <link charset=""> or other metadata from the linking mechanism (if any)

4. charset of referring style sheet or document (if any)

5. Assume UTF-8

– 4 Syntax and basic data types –

– 66 –



Authors using an @charset rule must place the rule at the very beginning of the style sheet, preceded by
no characters. (If a byte order mark is appropriate for the encoding used, it may precede the @charset
rule.)

After "@charset", authors specify the name of a character encoding (in quotes). For example:

@charset "ISO-8859-1";

@charset must be written literally, i.e., the 10 characters '@charset "' (lowercase, no backslash escapes),
followed by the encoding name, followed by '";'.

The name must be a charset name as described in the IANA registry. See [CHARSETS]p.363 for a com-
plete list of charsets. Authors should use the charset names marked as "preferred MIME name" in the
IANA registry.

User agents must support at least the UTF-8 encoding.
If rule 1 above (an HTTP "charset" parameter or similar) yields a character encoding and it is one of

UTF-8, UTF-16 or UTF-32, then a BOM, if any, at the start of the file overrides that character encoding,
as follows:
First bytes (hexadecimal) Resulting encoding
00 00 FE FF UTF-32, big-endian
FF FE 00 00 UTF-32, little-endian
FE FF UTF-16, big-endian
FF FE UTF-16, little-endian
EF BB BF UTF-8
If rule 1 yields a character encoding of UTF-16BE, UTF-16LE, UTF-32BE or UTF-32LE, then it is an er-
ror if the file starts with a BOM. A CSS UA must recover by ignoring the specified encoding and using
the table above.

Note that the fact that a BOM at the start of a file is en error in UTF-16BE, UTF-16LE, UTF-32BE or
UTF-32LE is specified by [UNICODE]p.362.

User agents must ignore any @charset rule not at the beginning of the style sheet. When user agents detect
the character encoding using the BOM and/or the @charset rule, they should follow the following rules:

• Except as specified in these rules, all @charset rules are ignored.

• The encoding is detected based on the stream of bytes that begins the style sheet. The following table
gives a set of possibilities for initial byte sequences (written in hexadecimal). The first row that
matches the beginning of the style sheet gives the result of encoding detection based on the BOM
and/or @charset rule. If no rows match, the encoding cannot be detected based on the BOM and/or
@charset rule. The notation (...)* refers to repetition for which the best match is the one that repeats
as few times as possible. The bytes marked "XX" are those used to determine the name of the encod-
ing, by treating them, in the order given, as a sequence of ASCII characters. Bytes marked "YY" are
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similar, but need to be transcoded into ASCII as noted. User agents may ignore entries in the table if
they do not support any encodings relevant to the entry.

Initial Bytes Result

EF BB BF 40 63 68 61 72 73 65 74 20 22 (XX)* 22 3B as specified

EF BB BF UTF-8

40 63 68 61 72 73 65 74 20 22 (XX)* 22 3B as specified

FE FF 00 40 00 63 00 68 00 61 00 72 00 73 00 65 00 74
00 20 00 22 (00 XX)* 00 22 00 3B

as specified (with BE endianness if not
specified)

00 40 00 63 00 68 00 61 00 72 00 73 00 65 00 74 00 20 00
22 (00 XX)* 00 22 00 3B

as specified (with BE endianness if not
specified)

FF FE 40 00 63 00 68 00 61 00 72 00 73 00 65 00 74 00
20 00 22 00 (XX 00)* 22 00 3B 00

as specified (with LE endianness if not
specified)

40 00 63 00 68 00 61 00 72 00 73 00 65 00 74 00 20 00 22
00 (XX 00)* 22 00 3B 00

as specified (with LE endianness if not
specified)

00 00 FE FF 00 00 00 40 00 00 00 63 00 00 00 68 00 00
00 61 00 00 00 72 00 00 00 73 00 00 00 65 00 00 00 74 00
00 00 20 00 00 00 22 (00 00 00 XX)* 00 00 00 22 00 00
00 3B

as specified (with BE endianness if not
specified)

00 00 00 40 00 00 00 63 00 00 00 68 00 00 00 61 00 00 00
72 00 00 00 73 00 00 00 65 00 00 00 74 00 00 00 20 00 00
00 22 (00 00 00 XX)* 00 00 00 22 00 00 00 3B

as specified (with BE endianness if not
specified)

00 00 FF FE 00 00 40 00 00 00 63 00 00 00 68 00 00 00
61 00 00 00 72 00 00 00 73 00 00 00 65 00 00 00 74 00 00
00 20 00 00 00 22 00 (00 00 XX 00)* 00 00 22 00 00 00
3B 00

as specified (with 2143 endianness if
not specified)

00 00 40 00 00 00 63 00 00 00 68 00 00 00 61 00 00 00 72
00 00 00 73 00 00 00 65 00 00 00 74 00 00 00 20 00 00 00
22 00 (00 00 XX 00)* 00 00 22 00 00 00 3B 00

as specified (with 2143 endianness if
not specified)

FE FF 00 00 00 40 00 00 00 63 00 00 00 68 00 00 00 61
00 00 00 72 00 00 00 73 00 00 00 65 00 00 00 74 00 00 00
20 00 00 00 22 00 00 (00 XX 00 00)* 00 22 00 00 00 3B
00 00

as specified (with 3412 endianness if
not specified)

00 40 00 00 00 63 00 00 00 68 00 00 00 61 00 00 00 72 00
00 00 73 00 00 00 65 00 00 00 74 00 00 00 20 00 00 00 22
00 00 (00 XX 00 00)* 00 22 00 00 00 3B 00 00

as specified (with 3412 endianness if
not specified)
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FF FE 00 00 40 00 00 00 63 00 00 00 68 00 00 00 61 00
00 00 72 00 00 00 73 00 00 00 65 00 00 00 74 00 00 00 20
00 00 00 22 00 00 00 (XX 00 00 00)* 22 00 00 00 3B 00
00 00

as specified (with LE endianness if not
specified)

40 00 00 00 63 00 00 00 68 00 00 00 61 00 00 00 72 00 00
00 73 00 00 00 65 00 00 00 74 00 00 00 20 00 00 00 22 00
00 00 (XX 00 00 00)* 22 00 00 00 3B 00 00 00

as specified (with LE endianness if not
specified)

00 00 FE FF UTF-32-BE

FF FE 00 00 UTF-32-LE

00 00 FF FE UTF-32-2143

FE FF 00 00 UTF-32-3412

FE FF UTF-16-BE

FF FE UTF-16-LE

7C 83 88 81 99 A2 85 A3 40 7F (YY)* 7F 5E
as specified, transcoded from EBCDIC
to ASCII

AE 83 88 81 99 A2 85 A3 40 FC (YY)* FC 5E
as specified, transcoded from IBM1026
to ASCII

00 63 68 61 72 73 65 74 20 22 (YY)* 22 3B
as specified, transcoded from GSM
03.38 to ASCII

analogous patterns

User agents may support additional,
analogous, patterns if they support
encodings that are not handled by the
patterns here

• If the encoding is detected based on one of the entries in the table above marked "as specified", the
user agent ignores the style sheet if it does not parse an appropriate @charset rule at the beginning of
the stream of characters resulting from decoding in the chosen @charset. This ensures that:

◦ @charset rules should only function if they are in the encoding of the style sheet,

◦ byte order marks are ignored only in encodings that support a byte order mark, and

◦ encoding names cannot contain newlines.

User agents must ignore style sheets in unknown encodings.
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4.4.1 Referring to characters not represented in a character encoding

A style sheet may have to refer to characters that cannot be represented in the current character encoding.
These characters must be written as escapedp.49 references to ISO 10646 characters. These escapes serve
the same purpose as numeric character references in HTML or XML documents (see [HTML4]p.361,
chapters 5 and 25).

The character escape mechanism should be used when only a few characters must be represented this
way. If most of a style sheet requires escaping, authors should encode it with a more appropriate encoding
(e.g., if the style sheet contains a lot of Greek characters, authors might use "ISO-8859-7" or "UTF-8").

Intermediate processors using a different character encoding may translate these escaped sequences into
byte sequences of that encoding. Intermediate processors must not, on the other hand, alter escape se-
quences that cancel the special meaning of an ASCII character.

Conforming user agentsp.39 must correctly map to ISO-10646 all characters in any character encodings
that they recognize (or they must behave as if they did).

For example, a style sheet transmitted as ISO-8859-1 (Latin-1) cannot contain Greek letters directly:
"κουρος" (Greek: "kouros") has to be written as "\3BA\3BF\3C5\3C1\3BF\3C2".

Note. In HTML 4, numeric character references are interpreted in "style" attribute values but not in
the content of the STYLE element. Because of this asymmetry, we recommend that authors use the CSS
character escape mechanism rather than numeric character references for both the "style" attribute
and the STYLE element. For example, we recommend:

<SPAN style="font-family: L\FC beck">...</SPAN>

rather than:

<SPAN style="font-family: L&#252;beck">...</SPAN>
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5.1 Pattern matching

In CSS, pattern matching rules determine which style rules apply to elements in the document treep.37.
These patterns, called selectors, may range from simple element names to rich contextual patterns. If all
conditions in the pattern are true for a certain element, the selector matches the element.

The case-sensitivity of document language element names in selectors depends on the document lan-
guage. For example, in HTML, element names are case-insensitive, but in XML they are case-sensitive.

The following table summarizes CSS 2.2 selector syntax:

Pattern Meaning
Described
in section

* Matches any element.
Universal
selectorp.74

E Matches any E element (i.e., an element of type E).
Type
selectorsp.75

E F
Matches any F element that is a descendant of an E
element.

Descendant
selectorsp.75

E > F Matches any F element that is a child of an element E.
Child
selectorsp.76

E:first-child Matches element E when E is the first child of its parent.

The :first-
child
pseudo-
classp.84

E:link
E:visited

Matches element E if E is the source anchor of a hyperlink
of which the target is not yet visited (:link) or already
visited (:visited).

The link
pseudo-
classesp.86
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E:active
E:hover
E:focus

Matches E during certain user actions.

The
dynamic
pseudo-
classesp.86

E:lang(c)
Matches element of type E if it is in (human) language c
(the document language specifies how language is
determined).

The :lang()
pseudo-
classp.88

E + F
Matches any F element immediately preceded by a sibling
element E.

Adjacent
selectorsp.76

E[foo]
Matches any E element with the "foo" attribute set
(whatever the value).

Attribute
selectorsp.77

E[foo="warning"]
Matches any E element whose "foo" attribute value is
exactly equal to "warning".

Attribute
selectorsp.77

E[foo~="warning"]
Matches any E element whose "foo" attribute value is a list
of space-separated values, one of which is exactly equal to
"warning".

Attribute
selectorsp.77

E[lang|="en"]
Matches any E element whose "lang" attribute has a
hyphen-separated list of values beginning (from the left)
with "en".

Attribute
selectorsp.77

DIV.warning
Language specific. (In HTML, the same as
DIV[class~="warning"].)

Class
selectorsp.80

E#myid Matches any E element with ID equal to "myid".
ID
selectorsp.82

5.2 Selector syntax

A simple selector is either a type selectorp.75 or universal selectorp.74 followed immediately by zero or
more attribute selectorsp.77, ID selectorsp.82, or pseudo-classesp.84, in any order. The simple selector
matches if all of its components match.

Note: the terminology used here in CSS 2.2 is different from what is used in CSS3. For example, a
"simple selector" refers to a smaller part of a selector in CSS3 than in CSS 2.2. See the CSS3 Selectors
module [CSS3SEL]p.363.
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A selector is a chain of one or more simple selectors separated by combinators. Combinators are: white
space, ">", and "+". White space may appear between a combinator and the simple selectors around it.

The elements of the document tree that match a selector are called subjects of the selector. A selector
consisting of a single simple selector matches any element satisfying its requirements. Prepending a sim-
ple selector and combinator to a chain imposes additional matching constraints, so the subjects of a selec-
tor are always a subset of the elements matching the last simple selector.

One pseudo-elementp.84 may be appended to the last simple selector in a chain, in which case the style
information applies to a subpart of each subject.

5.2.1 Grouping

When several selectors share the same declarations, they may be grouped into a comma-separated list.

In this example, we condense three rules with identical declarations into one. Thus,

h1 { font-family: sans-serif }

h2 { font-family: sans-serif }

h3 { font-family: sans-serif }

is equivalent to:

h1, h2, h3 { font-family: sans-serif }

CSS offers other "shorthand" mechanisms as well, including multiple declarationsp.53 and shorthand prop-
ertiesp.22.

5.3 Universal selector

The universal selector, written "*", matches the name of any element type. It matches any single element
in the document tree.p.37

If the universal selector is not the only component of a simple selectorp.73, the "*" may be omitted. For
example:

• *[lang=fr] and [lang=fr] are equivalent.

• *.warning and .warning are equivalent.

• *#myid and #myid are equivalent.
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5.4 Type selectors

A type selector matches the name of a document language element type. A type selector matches every in-
stance of the element type in the document tree.

The following rule matches all H1 elements in the document tree:

h1 { font-family: sans-serif }

5.5 Descendant selectors

At times, authors may want selectors to match an element that is the descendant of another element in the
document tree (e.g., "Match those EM elements that are contained by an H1 element"). Descendant selec-
tors express such a relationship in a pattern. A descendant selector is made up of two or more selectors
separated by white spacep.47. A descendant selector of the form "A B" matches when an element B is an
arbitrary descendant of some ancestorp.37 element A.

For example, consider the following rules:

h1 { color: red }

em { color: red }

Although the intention of these rules is to add emphasis to text by changing its color, the effect will be
lost in a case such as:

<H1>This headline is <EM>very</EM> important</H1>

We address this case by supplementing the previous rules with a rule that sets the text color to blue
whenever an EM occurs anywhere within an H1:

h1 { color: red }

em { color: red }

h1 em { color: blue }

The third rule will match the EM in the following fragment:

<H1>This <SPAN class="myclass">headline

is <EM>very</EM> important</SPAN></H1>
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The following selector:

div * p

matches a P element that is a grandchild or later descendant of a DIV element. Note the white space
on either side of the "*" is not part of the universal selector; the white space is a combinator indicating
that the DIV must be the ancestor of some element, and that that element must be an ancestor of the P.

The selector in the following rule, which combines descendant and attribute selectorsp.77, matches any
element that (1) has the "href" attribute set and (2) is inside a P that is itself inside a DIV:

div p *[href]

5.6 Child selectors

A child selector matches when an element is the childp.37 of some element. A child selector is made up of
two or more selectors separated by ">".

The following rule sets the style of all P elements that are children of BODY:

body > P { line-height: 1.3 }

The following example combines descendant selectors and child selectors:

div ol>li p

It matches a P element that is a descendant of an LI; the LI element must be the child of an OL ele-
ment; the OL element must be a descendant of a DIV. Notice that the optional white space around the
">" combinator has been left out.

For information on selecting the first child of an element, please see the section on the :first-childp.84

pseudo-class below.

5.7 Adjacent sibling selectors

Adjacent sibling selectors have the following syntax: E1 + E2, where E2 is the subject of the selector. The
selector matches if E1 and E2 share the same parent in the document tree and E1 immediately precedes
E2, ignoring non-element nodes (such as text nodes and comments).
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Thus, the following rule states that when a P element immediately follows a MATH element, it should
not be indented:

math + p { text-indent: 0 }

The next example reduces the vertical space separating an H1 and an H2 that immediately follows it:

h1 + h2 { margin-top: -5mm }

The following rule is similar to the one in the previous example, except that it adds a class selector.
Thus, special formatting only occurs when H1 has class="opener":

h1.opener + h2 { margin-top: -5mm }

5.8 Attribute selectors

CSS 2.2 allows authors to specify rules that match elements which have certain attributes defined in the
source document.

5.8.1 Matching attributes and attribute values

Attribute selectors may match in four ways:
[att]

Match when the element sets the "att" attribute, whatever the value of the attribute.

[att=val]

Match when the element's "att" attribute value is exactly "val".

[att~=val]

Represents an element with the att attribute whose value is a white space-separated list of words,
one of which is exactly "val". If "val" contains white space, it will never represent anything (since the
words are separated by spaces). If "val" is the empty string, it will never represent anything either.

[att|=val]

Represents an element with the att attribute, its value either being exactly "val" or beginning with
"val" immediately followed by "-" (U+002D). This is primarily intended to allow language subcode
matches (e.g., the hreflang attribute on the a element in HTML) as described in BCP 47
([BCP47]p.364) or its successor. For lang (or xml:lang) language subcode matching, please see the
:lang pseudo-classp.88.

Attribute values must be identifiers or strings. The case-sensitivity of attribute names and values in selec-
tors depends on the document language.
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For example, the following attribute selector matches all H1 elements that specify the "title" attribute,
whatever its value:

h1[title] { color: blue; }

In the following example, the selector matches all SPAN elements whose "class" attribute has exactly
the value "example":

span[class=example] { color: blue; }

Multiple attribute selectors can be used to refer to several attributes of an element, or even several times to
the same attribute.

Here, the selector matches all SPAN elements whose "hello" attribute has exactly the value "Cleve-
land" and whose "goodbye" attribute has exactly the value "Columbus":

span[hello="Cleveland"][goodbye="Columbus"] { color: blue; }

The following selectors illustrate the differences between "=" and "~=". The first selector will match,
for example, the value "copyright copyleft copyeditor" for the "rel" attribute. The second selector will
only match when the "href" attribute has the value "http://www.w3.org/".

a[rel~="copyright"]

a[href="http://www.w3.org/"]

The following rule hides all elements for which the value of the "lang" attribute is "fr" (i.e., the lan-
guage is French).

*[lang=fr] { display : none }

The following rule will match for values of the "lang" attribute that begin with "en", including "en",
"en-US", and "en-cockney":

*[lang|="en"] { color : red }
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Similarly, the following aural style sheet rules allow a script to be read aloud in different voices for
each role:

DIALOGUE[character=romeo]

{ voice-family: "Laurence Olivier", charles, male }

DIALOGUE[character=juliet]

{ voice-family: "Vivien Leigh", victoria, female }

5.8.2 Default attribute values in DTDs

Matching takes place on attribute values in the document tree. Default attribute values may be defined in a
DTD or elsewhere, but cannot always be selected by attribute selectors. Style sheets should be designed so
that they work even if the default values are not included in the document tree.

More precisely, a UA may, but is not required to, read an "external subset" of the DTD but is required
to look for default attribute values in the document's "internal subset." (See [XML11]p.363 for definitions
of these subsets.) Depending on the UA, a default attribute value defined in the external subset of the
DTD might or might not appear in the document tree.

A UA that recognizes an XML namespace [XMLNAMESPACES]p.365 may, but is not required to, use
its knowledge of that namespace to treat default attribute values as if they were present in the document.
(E.g., an XHTML UA is not required to use its built-in knowledge of the XHTML DTD.)

Note that, typically, implementations choose to ignore external subsets.
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For example, consider an element EXAMPLE with an attribute "notation" that has a default value of
"decimal". The DTD fragment might be

<!ATTLIST EXAMPLE notation (decimal,octal) "decimal">

If the style sheet contains the rules

EXAMPLE[notation=decimal] { /*... default property settings ...*/ }

EXAMPLE[notation=octal]   { /*... other settings...*/ }

the first rule might not match elements whose "notation" attribute is set by default, i.e., not set explic-
itly. To catch all cases, the attribute selector for the default value must be dropped:

EXAMPLE                   { /*... default property settings ...*/ }

EXAMPLE[notation=octal]   { /*... other settings...*/ }

Here, because the selector EXAMPLE[notation=octal] is more specificp.103 than the type selector
alone, the style declarations in the second rule will override those in the first for elements that have a
"notation" attribute value of "octal". Care has to be taken that all property declarations that are to ap-
ply only to the default case are overridden in the non-default cases' style rules.

5.8.3 Class selectors

Working with HTML, authors may use the period (.) notation as an alternative to the ~= notation when
representing the class attribute. Thus, for HTML, div.value and div[class~=value] have the same
meaning. The attribute value must immediately follow the "period" (.). UAs may apply selectors using
the period (.) notation in XML documents if the UA has namespace specific knowledge that allows it to
determine which attribute is the "class" attribute for the respective namespace. One such example of
namespace specific knowledge is the prose in the specification for a particular namespace (e.g., SVG 1.1
[SVG11]p.364 describes the SVG "class" attribute and how a UA should interpret it, and similarly
MathML 3.0 [MATH30]p.364 describes the MathML "class" attribute.)
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For example, we can assign style information to all elements with class~="pastoral" as follows:

*.pastoral { color: green }  /* all elements with class~=pastoral */

or just

.pastoral { color: green }  /* all elements with class~=pastoral */

The following assigns style only to H1 elements with class~="pastoral":

H1.pastoral { color: green }  /* H1 elements with class~=pastoral */

Given these rules, the first H1 instance below would not have green text, while the second would:

<H1>Not green</H1>

<H1 class="pastoral">Very green</H1>

To match a subset of "class" values, each value must be preceded by a ".".

For example, the following rule matches any P element whose "class" attribute has been assigned a list
of space-separated values that includes "pastoral" and "marine":

p.marine.pastoral { color: green }

This rule matches when class="pastoral blue aqua marine" but does not match for
class="pastoral blue".

Note. CSS gives so much power to the "class" attribute, that authors could conceivably design their
own "document language" based on elements with almost no associated presentation (such as DIV
and SPAN in HTML) and assigning style information through the "class" attribute. Authors should
avoid this practice since the structural elements of a document language often have recognized and
accepted meanings and author-defined classes may not.

Note: If an element has multiple class attributes, their values must be concatenated with spaces be-
tween the values before searching for the class. As of this time the working group is not aware of any
manner in which this situation can be reached, however, so this behavior is explicitly non-normative
in this specification.
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5.9 ID selectors

Document languages may contain attributes that are declared to be of type ID. What makes attributes of
type ID special is that no two such attributes can have the same value; whatever the document language,
an ID attribute can be used to uniquely identify its element. In HTML all ID attributes are named "id";
XML applications may name ID attributes differently, but the same restriction applies.

The ID attribute of a document language allows authors to assign an identifier to one element instance
in the document tree. CSS ID selectors match an element instance based on its identifier. A CSS ID selec-
tor contains a "#" immediately followed by the ID value, which must be an identifier.

Note that CSS does not specify how a UA knows the ID attribute of an element. The UA may, e.g.,
read a document's DTD, have the information hard-coded or ask the user.

The following ID selector matches the H1 element whose ID attribute has the value "chapter1":

h1#chapter1 { text-align: center }
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In the following example, the style rule matches the element that has the ID value "z98y". The rule
will thus match for the P element:

<HEAD>

<TITLE>Match P</TITLE>

<STYLE type="text/css">

*#z98y { letter-spacing: 0.3em }

</STYLE>

</HEAD>

<BODY>

<P id=selector.html.z98y>Wide text</P>

</BODY>

In the next example, however, the style rule will only match an H1 element that has an ID value of
"z98y". The rule will not match the P element in this example:

<HEAD>

<TITLE>Match H1 only</TITLE>

<STYLE type="text/css">

H1#z98y { letter-spacing: 0.5em }

</STYLE>

</HEAD>

<BODY>

<P id=selector.html.z98y>Wide text</P>

</BODY>

ID selectors have a higher specificity than attribute selectors. For example, in HTML, the selector #p123
is more specific than [id=selector.html.p123] in terms of the cascadep.97.

Note. In XML 1.1 [XML11]p.363, the information about which attribute contains an element's IDs is
contained in a DTD. When parsing XML, UAs do not always read the DTD, and thus may not know
what the ID of an element is. If a style sheet designer knows or suspects that this will be the case, he
should use normal attribute selectors instead: [name=selector.html.p371] instead of #p371.
However, the cascading order of normal attribute selectors is different from ID selectors. It may be
necessary to add an "!important" priority to the declarations: [name=selector.html.p371]
{color: red ! important}.

If an element has multiple ID attributes, all of them must be treated as IDs for that element for the purpos-
es of the ID selector. Such a situation could be reached using mixtures of xml:id [XMLID]p.364, DOM3
Core [DOM-LEVEL-3-CORE]p.364, XML DTDs [XML11]p.363 and namespace-specific knowledge.
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5.10 Pseudo-elements and pseudo-classes

In CSS 2.2, style is normally attached to an element based on its position in the document treep.37. This
simple model is sufficient for many cases, but some common publishing scenarios may not be possible
due to the structure of the document treep.37. For instance, in HTML 4 (see [HTML4]p.361), no element
refers to the first line of a paragraph, and therefore no simple CSS selector may refer to it.

CSS introduces the concepts of pseudo-elements and pseudo-classes to permit formatting based on in-
formation that lies outside the document tree.

• Pseudo-elements create abstractions about the document tree beyond those specified by the document
language. For instance, document languages do not offer mechanisms to access the first letter or first
line of an element's content. CSS pseudo-elements allow style sheet designers to refer to this other-
wise inaccessible information. Pseudo-elements may also provide style sheet designers a way to as-
sign style to content that does not exist in the source document (e.g., the :before and :afterp.221

pseudo-elements give access to generated content).

• Pseudo-classes classify elements on characteristics other than their name, attributes or content; in
principle characteristics that cannot be deduced from the document tree. Pseudo-classes may be dy-
namic, in the sense that an element may acquire or lose a pseudo-class while a user interacts with the
document. The exceptions are ':first-child'p.84, which can be deduced from the document tree, and
':lang()'p.88, which can be deduced from the document tree in some cases.

Neither pseudo-elements nor pseudo-classes appear in the document source or document tree.
Pseudo-classes are allowed anywhere in selectors while pseudo-elements may only be appended after

the last simple selector of the selector.
Pseudo-element and pseudo-class names are case-insensitive.
Some pseudo-classes are mutually exclusive, while others can be applied simultaneously to the same el-

ement. In case of conflicting rules, the normal cascading orderp.101 determines the outcome.

5.11 Pseudo-classes

5.11.1 :first-child pseudo-class

The :first-child pseudo-class matches an element that is the first child element of some other element.

– 5 Selectors –

– 84 –



In the following example, the selector matches any P element that is the first child of a DIV element.
The rule suppresses indentation for the first paragraph of a DIV:

div > p:first-child { text-indent: 0 }

This selector would match the P inside the DIV of the following fragment:

<P> The last P before the note.

<DIV class="note">

<P> The first P inside the note.

</DIV>

but would not match the second P in the following fragment:

<P> The last P before the note.

<DIV class="note">

<H2>Note</H2>

<P> The first P inside the note.

</DIV>

The following rule sets the font weight to 'bold' for any EM element that is some descendant of a P el-
ement that is a first child:

p:first-child em { font-weight : bold }

Note that since anonymousp.138 boxes are not part of the document tree, they are not counted when calcu-
lating the first child.

For example, the EM in:

<P>abc <EM>default</EM>

is the first child of the P.

The following two selectors are equivalent:

* > a:first-child   /* A is first child of any element */

a:first-child       /* Same */
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5.11.2 The link pseudo-classes: :link and :visited

User agents commonly display unvisited links differently from previously visited ones. CSS provides the
pseudo-classes ':link' and ':visited' to distinguish them:

• The :link pseudo-class applies for links that have not yet been visited.

• The :visited pseudo-class applies once the link has been visited by the user.

UAs may return a visited link to the (unvisited) ':link' state at some point.
The two states are mutually exclusive.
The document language determines which elements are hyperlink source anchors. For example, in

HTML4, the link pseudo-classes apply to A elements with an "href" attribute. Thus, the following two
CSS 2.2 declarations have similar effect:

a:link { color: red }

:link  { color: red }

If the following link:

<A class="external" href="http://out.side/">external link</A>

has been visited, this rule:

a.external:visited { color: blue }

will cause it to be blue.

Note. It is possible for style sheet authors to abuse the :link and :visited pseudo-classes to determine
which sites a user has visited without the user's consent.

UAs may therefore treat all links as unvisited links, or implement other measures to preserve the user's
privacy while rendering visited and unvisited links differently. See [P3P]p.364 for more information about
handling privacy.

5.11.3 The dynamic pseudo-classes: :hover, :active, and :focus

Interactive user agents sometimes change the rendering in response to user actions. CSS provides three
pseudo-classes for common cases:

• The :hover pseudo-class applies while the user designates an element (with some pointing device),
but does not activate it. For example, a visual user agent could apply this pseudo-class when the cur-
sor (mouse pointer) hovers over a box generated by the element. User agents not supporting interac-
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tive mediap.110 do not have to support this pseudo-class. Some conforming user agents supporting in-
teractive mediap.110 may not be able to support this pseudo-class (e.g., a pen device).

• The :active pseudo-class applies while an element is being activated by the user. For example, be-
tween the times the user presses the mouse button and releases it.

• The :focus pseudo-class applies while an element has the focus (accepts keyboard events or other
forms of text input).

An element may match several pseudo-classes at the same time.
CSS does not define which elements may be in the above states, or how the states are entered and left.

Scripting may change whether elements react to user events or not, and different devices and UAs may
have different ways of pointing to, or activating elements.

CSS 2.2 does not define if the parent of an element that is ':active' or ':hover' is also in that state.
User agents are not required to reflow a currently displayed document due to pseudo-class transitions.

For instance, a style sheet may specify that the 'font-size'p.276 of an :active link should be larger than that
of an inactive link, but since this may cause letters to change position when the reader selects the link, a
UA may ignore the corresponding style rule.

a:link    { color: red }    /* unvisited links */

a:visited { color: blue }   /* visited links   */

a:hover   { color: yellow } /* user hovers     */

a:active  { color: lime }   /* active links    */

Note that the A:hover must be placed after the A:link and A:visited rules, since otherwise the cascad-
ing rules will hide the 'color'p.255 property of the A:hover rule. Similarly, because A:active is placed
after A:hover, the active color (lime) will apply when the user both activates and hovers over the A el-
ement.

An example of combining dynamic pseudo-classes:

a:focus { background: yellow }

a:focus:hover { background: white }

The last selector matches A elements that are in pseudo-class :focus and in pseudo-class :hover.

For information about the presentation of focus outlines, please consult the section on dynamic focus out-
linesp.331.
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Note. In CSS1, the ':active' pseudo-class was mutually exclusive with ':link' and ':visited'. That is no
longer the case. An element can be both ':visited' and ':active' (or ':link' and ':active') and the normal
cascading rules determine which style declarations apply.

Note. Also note that in CSS1, the ':active' pseudo-class only applied to links.

5.11.4 The language pseudo-class: :lang

If the document language specifies how the human language of an element is determined, it is possible to
write selectors in CSS that match an element based on its language. For example, in HTML [HTM-
L4]p.361, the language is determined by a combination of the "lang" attribute, the META element, and
possibly by information from the protocol (such as HTTP headers). XML uses an attribute called
xml:lang, and there may be other document language-specific methods for determining the language.

The pseudo-class ':lang(C)' matches if the element is in language C. Whether there is a match is based
solely on the identifier C being either equal to, or a hyphen-separated substring of, the element's language
value, in the same way as if performed by the '|='p.77 operator. The matching of C against the element's
language value is performed case-insensitively for characters within the ASCII range. The identifier C
does not have to be a valid language name.

C must not be empty.

Note: It is recommended that documents and protocols indicate language using codes from BCP 47
[BCP47]p. 364 or its successor, and by means of "xml:lang" attributes in the case of XML-based docu-
ments [XML11]p.363. See "FAQ: Two-letter or three-letter language codes."

The following rules set the quotation marks for an HTML document that is either in Canadian French
or German:

html:lang(fr-ca) { quotes: '« ' ' »' }

html:lang(de) { quotes: '»' '«' '\2039' '\203A' }

:lang(fr) > Q { quotes: '« ' ' »' }

:lang(de) > Q { quotes: '»' '«' '\2039' '\203A' }

The second pair of rules actually set the 'quotes'p.225 property on Q elements according to the lan-
guage of its parent. This is done because the choice of quote marks is typically based on the language
of the element around the quote, not the quote itself: like this piece of French “à l'improviste” in the
middle of an English text uses the English quotation marks.
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Note the difference between [lang|=xx] and :lang(xx). In this HTML example, only the BODY match-
es [lang|=fr] (because it has a LANG attribute) but both the BODY and the P match :lang(fr) (because
both are in French).

<body lang=fr>

<p>Je suis Français.</p>

</body>

5.12 Pseudo-elements

Pseudo-elements behave just like real elements in CSS with the exceptions described below and else-
where.p.221

Note that the sections below do not define the exact rendering of ':first-line' and ':first-letter' in all
cases. A future level of CSS may define them more precisely.

5.12.1 The :first-line pseudo-element

The :first-line pseudo-element applies special styles to the contents of the first formatted line of a para-
graph. For instance:

p:first-line { text-transform: uppercase }

The above rule means "change the letters of the first line of every paragraph to uppercase". However, the
selector "P:first-line" does not match any real HTML element. It does match a pseudo-element that con-
forming user agentsp.39 will insert at the beginning of every paragraph.

Note that the length of the first line depends on a number of factors, including the width of the page, the
font size, etc. Thus, an ordinary HTML paragraph such as:

<P>This is a somewhat long HTML

paragraph that will be broken into several

lines. The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

the lines of which happen to be broken as follows:
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THIS IS A SOMEWHAT LONG HTML PARAGRAPH THAT

will be broken into several lines. The first

line will be identified by a fictional tag

sequence. The other lines will be treated as

ordinary lines in the paragraph.

might be "rewritten" by user agents to include the fictional tag sequence for :first-line. This fictional tag
sequence helps to show how properties are inherited.

<P><P:first-line> This is a somewhat long HTML

paragraph that </P:first-line> will be broken into several

lines. The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

If a pseudo-element breaks up a real element, the desired effect can often be described by a fictional tag
sequence that closes and then re-opens the element. Thus, if we mark up the previous paragraph with a
SPAN element:

<P><SPAN class="test"> This is a somewhat long HTML

paragraph that will be broken into several

lines.</SPAN> The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

the user agent could simulate start and end tags for SPAN when inserting the fictional tag sequence for
:first-line.

<P><P:first-line><SPAN class="test"> This is a

somewhat long HTML

paragraph that will </SPAN></P:first-line><SPAN class="test"> be

broken into several

lines.</SPAN> The first line will be identified

by a fictional tag sequence. The other lines

will be treated as ordinary lines in the

paragraph.</P>

The :first-line pseudo-element can only be attached to a block container element.p.135

The "first formatted line" of an element may occur inside a block-level descendant in the same flow
(i.e., a block-level descendant that is not positioned and not a float). E.g., the first line of the DIV in
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<DIV><P>This line...</P></DIV> is the first line of the P (assuming that both P and DIV are block-
level).

The first line of a table-cell or inline-block cannot be the first formatted line of an ancestor element.
Thus, in <DIV><P STYLE="display: inline-block">Hello<BR>Goodbye</P>

etcetera</DIV> the first formatted line of the DIV is not the line "Hello".

Note that the first line of the P in this fragment: <p><br>First... does not contain any letters (as-
suming the default style for BR in HTML 4). The word "First" is not on the first formatted line.

A UA should act as if the fictional start tags of the first-line pseudo-elements were nested just inside the
innermost enclosing block-level element. (Since CSS1 and CSS2 were silent on this case, authors should
not rely on this behavior.) Here is an example. The fictional tag sequence for

<DIV>

<P>First paragraph</P>

<P>Second paragraph</P>

</DIV>

is

<DIV>

<P><DIV:first-line><P:first-line>First paragraph</P:first-line></DIV:first-line></P>

<P><P:first-line>Second paragraph</P:first-line></P>

</DIV>

The :first-line pseudo-element is similar to an inline-level element, but with certain restrictions. The fol-
lowing properties apply to a :first-line pseudo-element: font properties,p.265 color property,p.255 back-
ground properties,p.257 'word-spacing',p. 288 'letter-spacing',p.287 'text-decoration',p.284 'text-
transform',p.288 and 'line-height'p.204. UAs may apply other properties as well.

5.12.2 The :first-letter pseudo-element

The :first-letter pseudo-element must select the first letter of the first line of a block, if it is not preceded
by any other content (such as images or inline tables) on its line. The :first-letter pseudo-element may be
used for "initial caps" and "drop caps", which are common typographical effects. This type of initial letter
is similar to an inline-level element if its 'float'p.154 property is 'none', otherwise it is similar to a floated
element.

These are the properties that apply to :first-letter pseudo-elements: font properties,p.265 'text-
decoration',p.284 'text-transform',p.288 'letter-spacing',p.287 'word-spacing'p.288 (when appropriate), 'line-
height',p.204 'float',p.154 'vertical-align'p.206 (only if 'float' is 'none'), margin properties,p.117 padding prop-
erties,p.122 border properties,p.124 color property,p.255 background properties.p.257 UAs may apply other
properties as well. To allow UAs to render a typographically correct drop cap or initial cap, the UA may
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choose a line-height, width and height based on the shape of the letter, unlike for normal elements. CSS3
is expected to have specific properties that apply to first-letter.

This example shows a possible rendering of an initial cap. Note that the 'line-height' that is inherited
by the first-letter pseudo-element is 1.1, but the UA in this example has computed the height of the
first letter differently, so that it does not cause any unnecessary space between the first two lines. Also
note that the fictional start tag of the first letter is inside the SPAN, and thus the font weight of the first
letter is normal, not bold as the SPAN:

p { line-height: 1.1 }

p:first-letter { font-size: 3em; font-weight: normal }

span { font-weight: bold }

...

<p><span>Het hemelsche</span> gerecht heeft zich ten lange lesten<br>

Erbarremt over my en mijn benaeuwde vesten<br>

En arme burgery, en op mijn volcx gebed<br>

En dagelix geschrey de bange stad ontzet.
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The following CSS 2.2 will make a drop cap initial letter span about two lines:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Drop cap initial letter</TITLE>

<STYLE type="text/css">

P              { font-size: 12pt; line-height: 1.2 }

P:first-letter { font-size: 200%; font-style: italic;

font-weight: bold; float: left }

SPAN           { text-transform: uppercase }

</STYLE>

</HEAD>

<BODY>

<P><SPAN>The first</SPAN> few words of an article

in The Economist.</P>

</BODY>

</HTML>

This example might be formatted as follows:

The fictional tag sequence is:

<P>

<SPAN>

<P:first-letter>

T

</P:first-letter>he first

</SPAN>

few words of an article in the Economist.

</P>

Note that the :first-letter pseudo-element tags abut the content (i.e., the initial character), while the
:first-line pseudo-element start tag is inserted right after the start tag of the block element.

In order to achieve traditional drop caps formatting, user agents may approximate font sizes, for example
to align baselines. Also, the glyph outline may be taken into account when formatting.
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Punctuation (i.e, characters defined in Unicode [UNICODE]p.362 in the "open" (Ps), "close" (Pe), "ini-
tial" (Pi). "final" (Pf) and "other" (Po) punctuation classes), that precedes or follows the first letter should
be included, as in:

The ':first-letter' also applies if the first letter is in fact a digit, e.g., the "6" in "67 million dollars is a lot of
money."

The :first-letter pseudo-element applies to block container elements.p.135

The :first-letter pseudo-element can be used with all such elements that contain text, or that have a de-
scendant in the same flow that contains text. A UA should act as if the fictional start tag of the first-letter
pseudo-element is just before the first text of the element, even if that first text is in a descendant.

Here is an example. The fictional tag sequence for this HTML fragment:

<div>

<p>The first text.

is:

<div>

<p><div:first-letter><p:first-letter>T</...></...>he first text.

The first letter of a table-cell or inline-block cannot be the first letter of an ancestor element. Thus, in
<DIV><P STYLE="display: inline-block">Hello<BR>Goodbye</P> etcetera</DIV> the
first letter of the DIV is not the letter "H". In fact, the DIV does not have a first letter.

The first letter must occur on the first formatted line.p.90 For example, in this fragment:
<p><br>First... the first line does not contain any letters and ':first-letter' does not match anything
(assuming the default style for BR in HTML 4). In particular, it does not match the "F" of "First."

If an element is a list itemp.235 ('display: list-item'), the ':first-letter' applies to the first letter in the prin-
cipal box after the marker. UAs may ignore ':first-letter' on list items with 'list-style-position: inside'. If an
element has ':before' or ':after' content, the ':first-letter applies to the first letter of the element including
that content.

E.g., after the rule 'p:before {content: "Note: "}', the selector 'p:first-letter' matches the "N" of
"Note".
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Some languages may have specific rules about how to treat certain letter combinations. In Dutch, for
example, if the letter combination "ij" appears at the beginning of a word, both letters should be consid-
ered within the :first-letter pseudo-element.

If the letters that would form the first-letter are not in the same element, such as "'T" in
<p>'<em>T..., the UA may create a first-letter pseudo-element from one of the elements, both elements,
or simply not create a pseudo-element.

Similarly, if the first letter(s) of the block are not at the start of the line (for example due to bidirection-
al reordering), then the UA need not create the pseudo-element(s).

The following example illustrates how overlapping pseudo-elements may interact. The first letter of
each P element will be green with a font size of '24pt'. The rest of the first formatted line will be 'blue'
while the rest of the paragraph will be 'red'.

p { color: red; font-size: 12pt }

p:first-letter { color: green; font-size: 200% }

p:first-line { color: blue }

<P>Some text that ends up on two lines</P>

Assuming that a line break will occur before the word "ends", the fictional tag sequence for this frag-
ment might be:

<P>

<P:first-line>

<P:first-letter>

S

</P:first-letter>ome text that

</P:first-line>

ends up on two lines

</P>

Note that the :first-letter element is inside the :first-line element. Properties set on :first-line are inher-
ited by :first-letter, but are overridden if the same property is set on :first-letter.

5.12.3 The :before and :after pseudo-elements

The ':before' and ':after' pseudo-elements can be used to insert generated content before or after an ele-
ment's content. They are explained in the section on generated text.p.221

h1:before {content: counter(chapno, upper-roman) ". "}
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When the :first-letter and :first-line pseudo-elements are applied to an element having content generated
using :before and :after, they apply to the first letter or line of the element including the generated content.

p.special:before {content: "Special! "}

p.special:first-letter {color: #ffd800}

This will render the "S" of "Special!" in gold.
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6 Assigning property values, Cascading, and Inheritance
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6.1 Specified, computed, and actual values

Once a user agent has parsed a document and constructed a document treep.37, it must assign, for every el-
ement in the tree, a value to every property that applies to the target media typep.107.

The final value of a property is the result of a four-step calculation: the value is determined through
specification (the "specified value"), then resolved into a value that is used for inheritance (the "computed
value"), then converted into an absolute value if necessary (the "used value"), and finally transformed ac-
cording to the limitations of the local environment (the "actual value").
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6.1.1 Specified values

User agents must first assign a specified value to each property based on the following mechanisms (in or-
der of precedence):

1. If the cascadep.101 results in a value, use it. Except that, if the value is 'inherit', the specified value is
defined in “The 'inherit' value”p.99 below.

2. Otherwise, if the property is inheritedp.99 and the element is not the root of the document tree, use
the computed value of the parent element.

3. Otherwise use the property's initial value. The initial value of each property is indicated in the prop-
erty's definition.

6.1.2 Computed values

Specified values are resolved to computed values during the cascade; for example URIs are made absolute
and 'em' and 'ex' units are computed to pixel or absolute lengths. Computing a value never requires the
user agent to render the document.

The computed value of URIs that the UA cannot resolve to absolute URIs is the specified value.
The computed value of a property is determined as specified by the Computed Value line in the defini-

tion of the property. See the section on inheritancep.99 for the definition of computed values when the
specified value is 'inherit'.

The computed value exists even when the property does not apply, as defined by the 'Applies To'p.22

line. However, some properties may define the computed value of a property for an element to depend on
whether the property applies to that element.

6.1.3 Used values

Computed values are processed as far as possible without formatting the document. Some values, howev-
er, can only be determined when the document is being laid out. For example, if the width of an element is
set to be a certain percentage of its containing block, the width cannot be determined until the width of the
containing block has been determined. The used value is the result of taking the computed value and re-
solving any remaining dependencies into an absolute value.

6.1.4 Actual values

A used value is in principle the value used for rendering, but a user agent may not be able to make use of
the value in a given environment. For example, a user agent may only be able to render borders with inte-
ger pixel widths and may therefore have to approximate the computed width, or the user agent may be
forced to use only black and white shades instead of full color. The actual value is the used value after any
approximations have been applied.
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6.2 Inheritance

Some values are inherited by the children of an element in the document treep.37, as described abovep.98.
Each property definesp.19 whether it is inherited or not.

Suppose there is an H1 element with an emphasizing element (EM) inside:

<H1>The headline <EM>is</EM> important!</H1>

If no color has been assigned to the EM element, the emphasized "is" will inherit the color of the par-
ent element, so if H1 has the color blue, the EM element will likewise be in blue.

When inheritance occurs, elements inherit computed values. The computed value from the parent element
becomes both the specified value and the computed value on the child.

For example, given the following style sheet:

body { font-size: 10pt }

h1 { font-size: 130% }

and this document fragment:

<BODY>

<H1>A <EM>large</EM> heading</H1>

</BODY>

the 'font-size' property for the H1 element will have the computed value '13pt' (130% times 10pt, the
parent's value). Since the computed value of 'font-size'p.276 is inherited, the EM element will have the
computed value '13pt' as well. If the user agent does not have the 13pt font available, the actual value
of 'font-size'p.276 for both H1 and EM might be, for example, '12pt'.

Note that inheritance follows the document tree and is not intercepted by anonymous boxes.p.135

6.2.1 The 'inherit' value

Each property may also have a cascaded value of 'inherit', which means that, for a given element, the
property takes as specified value the computed value of the element's parent. The 'inherit' value can be
used to enforce inheritance of values, and it can also be used on properties that are not normally inherited.

If the 'inherit' value is set on the root element, the property is assigned its initial value.
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In the example below, the 'color'p.255 and 'background'p.263 properties are set on the BODY element.
On all other elements, the 'color' value will be inherited and the background will be transparent. If
these rules are part of the user's style sheet, black text on a white background will be enforced
throughout the document.

body {

color: black !important;

background: white !important;

}

* {

color: inherit !important;

background: transparent !important;

}

6.3 The @import rule

The '@import' rule allows users to import style rules from other style sheets. In CSS 2.2, any @import
rules must precede all other rules (except the @charset rule, if present). See the section on parsingp.50 for
when user agents must ignore @import rules. The '@import' keyword must be followed by the URI of the
style sheet to include. A string is also allowed; it will be interpreted as if it had url(...) around it.

The following lines are equivalent in meaning and illustrate both '@import' syntaxes (one with "url()"
and one with a bare string):

@import "mystyle.css";

@import url("mystyle.css");

So that user agents can avoid retrieving resources for unsupported media typesp.107, authors may specify
media-dependent @import rules. These conditional imports specify comma-separated media types after
the URI.

The following rules illustrate how @import rules can be made media-dependent:

@import url("fineprint.css") print;

@import url("bluish.css") projection, tv;

In the absence of any media types, the import is unconditional. Specifying 'all' for the medium has the
same effect. The import only takes effect if the target medium matches the media list.
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A target medium matches a media list if one of the items in the media list is the target medium or 'all'.

Note that Media Queries [MEDIAQ]p.364 extends the syntax of media lists and the definition of
matching.

When the same style sheet is imported or linked to a document in multiple places, user agents must
process (or act as though they do) each link as though the link were to a separate style sheet.

6.4 The cascade

Style sheets may have three different origins: author, user, and user agent.

• Author. The author specifies style sheets for a source document according to the conventions of the
document language. For instance, in HTML, style sheets may be included in the document or linked
externally.

• User: The user may be able to specify style information for a particular document. For example, the
user may specify a file that contains a style sheet or the user agent may provide an interface that gen-
erates a user style sheet (or behaves as if it did).

• User agent: Conforming user agentsp.39 must apply a default style sheet (or behave as if they did). A
user agent's default style sheet should present the elements of the document language in ways that
satisfy general presentation expectations for the document language (e.g., for visual browsers, the
EM element in HTML is presented using an italic font). See A sample style sheet for HTML p.381 for
a recommended default style sheet for HTML documents.

Note that the user may modify system settings (e.g., system colors) that affect the default style
sheet. However, some user agent implementations make it impossible to change the values in the
default style sheet.

Style sheets from these three origins will overlap in scope, and they interact according to the cascade.
The CSS cascade assigns a weight to each style rule. When several rules apply, the one with the great-

est weight takes precedence.
By default, rules in author style sheets have more weight than rules in user style sheets. Precedence is

reversed, however, for "!important" rules. All user and author rules have more weight than rules in the
UA's default style sheet.

6.4.1 Cascading order

To find the value for an element/property combination, user agents must apply the following sorting or-
der:
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1. Find all declarations that apply to the element and property in question, for the target media
typep.107. Declarations apply if the associated selector matchesp.71 the element in question and the
target medium matches the media list on all @media rules containing the declaration and on all links
on the path through which the style sheet was reached.

2. Sort according to importance (normal or important) and origin (author, user, or user agent). In as-
cending order of precedence:

1. user agent declarations

2. user normal declarations

3. author normal declarations

4. author important declarations

5. user important declarations

3. Sort rules with the same importance and origin by specificityp.103 of selector: more specific selectors
will override more general ones. Pseudo-elements and pseudo-classes are counted as normal ele-
ments and classes, respectively.

4. Finally, sort by order specified: if two declarations have the same weight, origin and specificity, the
latter specified wins. Declarations in imported style sheets are considered to be before any declara-
tions in the style sheet itself.

Apart from the "!important" setting on individual declarations, this strategy gives author's style sheets
higher weight than those of the reader. User agents must give the user the ability to turn off the influence
of specific author style sheets, e.g., through a pull-down menu. Conformance to UAAG 1.0 checkpoint
4.14 satisfies this condition [UAAG10]p.362.

6.4.2 !important rules

CSS attempts to create a balance of power between author and user style sheets. By default, rules in an au-
thor's style sheet override those in a user's style sheet (see cascade rule 3).

However, for balance, an "!important" declaration (the delimiter token "!" and keyword "important"
follow the declaration) takes precedence over a normal declaration. Both author and user style sheets may
contain "!important" declarations, and user "!important" rules override author "!important" rules. This
CSS feature improves accessibility of documents by giving users with special requirements (large fonts,
color combinations, etc.) control over presentation.

Declaring a shorthand property (e.g., 'background'p.263) to be "!important" is equivalent to declaring all
of its sub-properties to be "!important".
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The first rule in the user's style sheet in the following example contains an "!important" declaration,
which overrides the corresponding declaration in the author's style sheet. The second declaration will
also win due to being marked "!important". However, the third rule in the user's style sheet is not "!im-
portant" and will therefore lose to the second rule in the author's style sheet (which happens to set
style on a shorthand property). Also, the third author rule will lose to the second author rule since the
second rule is "!important". This shows that "!important" declarations have a function also within au-
thor style sheets.

/* From the user's style sheet */

p { text-indent: 1em ! important }

p { font-style: italic ! important }

p { font-size: 18pt }

/* From the author's style sheet */

p { text-indent: 1.5em !important }

p { font: normal 12pt sans-serif !important }

p { font-size: 24pt }

6.4.3 Calculating a selector's specificity

A selector's specificity is calculated as follows:

• count 1 if the declaration is from is a 'style' attribute rather than a rule with a selector, 0 otherwise (=
a) (In HTML, values of an element's "style" attribute are style sheet rules. These rules have no selec-
tors, so a=1, b=0, c=0, and d=0.)

• count the number of ID attributes in the selector (= b)

• count the number of other attributes and pseudo-classes in the selector (= c)

• count the number of element names and pseudo-elements in the selector (= d)

The specificity is based only on the form of the selector. In particular, a selector of the form "[id=cas-
cade.html.p33]" is counted as an attribute selector (a=0, b=0, c=1, d=0), even if the id attribute is defined
as an "ID" in the source document's DTD.

Concatenating the four numbers a-b-c-d (in a number system with a large base) gives the specificity.
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Some examples:

*             {}  /* a=0 b=0 c=0 d=0 -> specificity = 0,0,0,0 */

li            {}  /* a=0 b=0 c=0 d=1 -> specificity = 0,0,0,1 */

li:first-line {}  /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */

ul li         {}  /* a=0 b=0 c=0 d=2 -> specificity = 0,0,0,2 */

ul ol+li      {}  /* a=0 b=0 c=0 d=3 -> specificity = 0,0,0,3 */

h1 + *[rel=up]{}  /* a=0 b=0 c=1 d=1 -> specificity = 0,0,1,1 */

ul ol li.red  {}  /* a=0 b=0 c=1 d=3 -> specificity = 0,0,1,3 */

li.red.level  {}  /* a=0 b=0 c=2 d=1 -> specificity = 0,0,2,1 */

#x34y         {}  /* a=0 b=1 c=0 d=0 -> specificity = 0,1,0,0 */

style=""          /* a=1 b=0 c=0 d=0 -> specificity = 1,0,0,0 */

<HEAD>

<STYLE type="text/css">

#x97z { color: red }

</STYLE>

</HEAD>

<BODY>

<P ID=cascade.html.x97z style="color: green">

</BODY>

In the above example, the color of the P element would be green. The declaration in the "style" at-
tribute will override the one in the STYLE element because of cascading rule 3, since it has a higher
specificity.

6.4.4 Precedence of non-CSS presentational hints

The UA may choose to honor presentational attributes in an HTML source document. If so, these attribut-
es are translated to the corresponding CSS rules with specificity equal to 0, and are treated as if they were
inserted at the start of the author style sheet. They may therefore be overridden by subsequent style sheet
rules. In a transition phase, this policy will make it easier for stylistic attributes to coexist with style
sheets.

For HTML, any attribute that is not in the following list should be considered presentational: abbr,
accept-charset, accept, accesskey, action, alt, archive, axis, charset, checked, cite, class, classid, code,
codebase, codetype, colspan, coords, data, datetime, declare, defer, dir, disabled, enctype, for, headers,
href, hreflang, http-equiv, id, ismap, label, lang, language, longdesc, maxlength, media, method, multiple,
name, nohref, object, onblur, onchange, onclick, ondblclick, onfocus, onkeydown, onkeypress, onkeyup,
onload, onload, onmousedown, onmousemove, onmouseout, onmouseover, onmouseup, onreset, onselect,
onsubmit, onunload, onunload, profile, prompt, readonly, rel, rev, rowspan, scheme, scope, selected,
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shape, span, src, standby, start, style, summary, title, type (except on LI, OL and UL elements), usemap,
value, valuetype, version.

For other languages, all document language-based styling must be translated to the corresponding CSS
and either enter the cascade at the user agent level or, as with HTML presentational hints, be treated as au-
thor level rules with a specificity of zero placed at the start of the author style sheet.

The following user style sheet would override the font weight of 'b' elements in all documents, and the
color of 'font' elements with color attributes in XML documents. It would not affect the color of any
'font' elements with color attributes in HTML documents:

b { font-weight: normal; }

font[color] { color: orange; }

The following, however, would override the color of font elements in all documents:

font[color] { color: orange ! important; }
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7 Media types
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7.1 Introduction to media types

One of the most important features of style sheets is that they specify how a document is to be presented
on different media: on the screen, on paper, with a speech synthesizer, with a braille device, etc.

Certain CSS properties are only designed for certain media (e.g., the 'page-break-before'p.249 property
only applies to paged media). On occasion, however, style sheets for different media types may share a
property, but require different values for that property. For example, the 'font-size'p.276 property is useful
both for screen and print media. The two media types are different enough to require different values for
the common property; a document will typically need a larger font on a computer screen than on paper.
Therefore, it is necessary to express that a style sheet, or a section of a style sheet, applies to certain media
types.

7.2 Specifying media-dependent style sheets

There are currently two ways to specify media dependencies for style sheets:

• Specify the target medium from a style sheet with the @media or @import at-rules.

@import url("fancyfonts.css") screen;

@media print {

/* style sheet for print goes here */

}
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• Specify the target medium within the document language. For example, in HTML 4 ([HTML4]p.361),
the "media" attribute on the LINK element specifies the target media of an external style sheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Link to a target medium</TITLE>

<LINK REL="stylesheet" TYPE="text/css"

MEDIA="print, handheld" HREF="#foo.css">

</HEAD>

<BODY>

<P>The body...

</BODY>

</HTML>

The @importp.100 rule is defined in the chapter on the cascadep.97.

7.2.1 The @media rule

An @media rule specifies the target media typesp.109 (separated by commas) of a set of statementsp.44

(delimited by curly braces). Invalid statements must be ignored per 4.1.7 "Rule sets, declaration blocks,
and selectors"p.52 and 4.2 "Rules for handling parsing errors."p.54 The @media construct allows style
sheet rules for various media in the same style sheet:

@media print {

body { font-size: 10pt }

}

@media screen {

body { font-size: 13px }

}

@media screen, print {

body { line-height: 1.2 }

}

Style rules outside of @media rules apply to all media types that the style sheet applies to. At-rules inside
@media are invalid in CSS 2.2.
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7.3 Recognized media types

The names chosen for CSS media types reflect target devices for which the relevant properties make
sense. In the following list of CSS media types the names of media types are normative, but the descrip-
tions are informative. Likewise, the "Media" field in the description of each property is informative.
all

Suitable for all devices.

braille
Intended for braille tactile feedback devices.

embossed
Intended for paged braille printers.

handheld
Intended for handheld devices (typically small screen, limited bandwidth).

print
Intended for paged material and for documents viewed on screen in print preview mode. Please con-
sult the section on paged mediap.245 for information about formatting issues that are specific to paged
media.

projection
Intended for projected presentations, for example projectors. Please consult the section on paged me-
diap.245 for information about formatting issues that are specific to paged media.

screen
Intended primarily for color computer screens.

speech
Intended for speech synthesizers. Note: CSS2 had a similar media type called 'aural' for this purpose.
See the appendix on aural style sheets for details.

tty
Intended for media using a fixed-pitch character grid (such as teletypes, terminals, or portable de-
vices with limited display capabilities). Authors should not use pixel unitsp.58 with the "tty" media
type.

tv
Intended for television-type devices (low resolution, color, limited-scrollability screens, sound avail-
able).

Media type names are case-insensitive.
Media types are mutually exclusive in the sense that a user agent can only support one media type when

rendering a document. However, user agents may use different media types on different canvases. For ex-
ample, a document may (simultaneously) be shown in 'screen' mode on one canvas and 'print' mode on an-
other canvas.
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Note that a multimodal media type is still only one media type. The 'tv' media type, for example, is a
multimodal media type that renders both visually and aurally to a single canvas.

@media and @import rules with unknown media types (that are nonetheless valid identifiers) are treat-
ed as if the unknown media types are not present. If an @media/@import rule contains a malformed me-
dia type (not an identifier) then the statement is invalid.

Note: Media Queries supercedes this error handling.

For example, in the following snippet, the rule on the P element applies in 'screen' mode (even though
the '3D' media type is not known).

@media screen, 3D {

P { color: green; }

}

Note. Future updates of CSS may extend the list of media types. Authors should not rely on media type
names that are not yet defined by a CSS specification.

7.3.1 Media groups

This section is informative, not normative.
Each CSS property definition specifies which media types the property applies to. Since properties gen-

erally apply to several media types, the "Applies to media" section of each property definition lists media
groups rather than individual media types. Each property applies to all media types in the media groups
listed in its definition.

CSS 2.2 defines the following media groups:

• continuous or paged.

• visual, audio, speech, or tactile.

• grid (for character grid devices), or bitmap.

• interactive (for devices that allow user interaction), or static (for those that do not).

• all (includes all media types)

The following table shows the relationships between media groups and media types:
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Relationship between media groups and media types

Media
Types

Media Groups

continuous/
paged

visual/audio/speech/
tactile

grid/
bitmap

interactive/
static

braille continuous tactile grid both

embossed paged tactile grid static

handheld both visual, audio, speech both both

print paged visual bitmap static

projection paged visual bitmap interactive

screen continuous visual, audio bitmap both

speech continuous speech N/A both

tty continuous visual grid both

tv both visual, audio bitmap both
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The CSS box model describes the rectangular boxes that are generated for elements in the document
treep.37 and laid out according to the visual formatting modelp.133.

8.1 Box dimensions

Each box has a content area (e.g., text, an image, etc.) and optional surrounding padding, border, and
margin areas; the size of each area is specified by properties defined below. The following diagram shows
how these areas relate and the terminology used to refer to pieces of margin, border, and padding:
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The margin, border, and padding can be broken down into top, right, bottom, and left segments (e.g., in
the diagram, "LM" for left margin, "RP" for right padding, "TB" for top border, etc.).

The perimeter of each of the four areas (content, padding, border, and margin) is called an "edge", so
each box has four edges:
content edge or inner edge

The content edge surrounds the rectangle given by the widthp.188 and heightp.197 of the box, which
often depend on the element's rendered contentp.37. The four content edges define the box's content
box.

padding edge
The padding edge surrounds the box padding. If the padding has 0 width, the padding edge is the
same as the content edge. The four padding edges define the box's padding box.

border edge
The border edge surrounds the box's border. If the border has 0 width, the border edge is the same as
the padding edge. The four border edges define the box's border box.

margin edge or outer edge
The margin edge surrounds the box margin. If the margin has 0 width, the margin edge is the same as
the border edge. The four margin edges define the box's margin box.

Each edge may be broken down into a top, right, bottom, and left edge.
The dimensions of the content area of a box — the content width and content height — depend on sev-

eral factors: whether the element generating the box has the 'width'p.187 or 'height'p.195 property set,
whether the box contains text or other boxes, whether the box is a table, etc. Box widths and heights are
discussed in the chapter on visual formatting model detailsp.183.
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The background style of the content, padding, and border areas of a box is specified by the 'back-
ground'p.263 property of the generating element. Margin backgrounds are always transparent.

8.2 Example of margins, padding, and borders

This example illustrates how margins, padding, and borders interact. The example HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Examples of margins, padding, and borders</TITLE>

<STYLE type="text/css">

UL {

background: yellow;

margin: 12px 12px 12px 12px;

padding: 3px 3px 3px 3px;

/* No borders set */

}

LI {

color: white;                /* text color is white */

background: blue;            /* Content, padding will be blue */

margin: 12px 12px 12px 12px;

padding: 12px 0px 12px 12px; /* Note 0px padding right */

list-style: none             /* no glyphs before a list item */

/* No borders set */

}

LI.withborder {

border-style: dashed;

border-width: medium;        /* sets border width on all sides */

border-color: lime;

}

</STYLE>

</HEAD>

<BODY>

<UL>

<LI>First element of list

<LI class="withborder">Second element of list is

a bit longer to illustrate wrapping.

</UL>

</BODY>

</HTML>

results in a document treep.37 with (among other relationships) a UL element that has two LI children.
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The first of the following diagrams illustrates what this example would produce. The second illustrates
the relationship between the margins, padding, and borders of the UL elements and those of its children LI
elements. (Image is not to scale.)

Note that:

• The content widthp.114 for each LI box is calculated top-down; the containing blockp.135 for each LI
box is established by the UL element.

• The margin box height of each LI box depends on its content heightp.114, plus top and bottom
padding, borders, and margins. Note that vertical margins between the LI boxes collapse.p.119
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• The right padding of the LI boxes has been set to zero width (the 'padding'p.123 property). The effect
is apparent in the second illustration.

• The margins of the LI boxes are transparent — margins are always transparent — so the background
color (yellow) of the UL padding and content areas shines through them.

• The second LI element specifies a dashed border (the 'border-style'p.128 property).

8.3 Margin properties: 'margin-top'p.117, 'margin-right'p.118, 'margin-
bottom'p.117, 'margin-left'p.118, and 'margin'p.118

Margin properties specify the width of the margin areap.113 of a box. The 'margin'p.118 shorthand property
sets the margin for all four sides while the other margin properties only set their respective side. These
properties apply to all elements, but vertical margins will not have any effect on non-replaced inline ele-
ments.

The properties defined in this section refer to the <margin-width> value type, which may take one of
the following values:
<length>p. 58

Specifies a fixed width.

<percentage>p. 61

The percentage is calculated with respect to the width of the generated box's containing blockp.135.
Note that this is true for 'margin-top'p.117 and 'margin-bottom'p.117 as well. If the containing

block's width depends on this element, then the resulting layout is undefined in CSS 2.2.

auto
See the section on calculating widths and marginsp.188 for behavior.

Negative values for margin properties are allowed, but there may be implementation-specific limits.

Name: margin-top, margin-bottom

Value: <margin-width>p.117 | inheritp.99

Initial: 0

Applies to: all elements except elements with table display types other than table-
caption, table and inline-table

Inherited: no

Percentages: refer to width of containing block
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Media: visualp.110

Computed value: the percentage as specified or the absolute length

These properties have no effect on non-replaced inline elements.

Name: margin-right, margin-left

Value: <margin-width>p.117 | inheritp.99

Initial: 0

Applies to: all elements except elements with table display types other than table-
caption, table and inline-table

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110

Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left margin of a box.

h1 { margin-top: 2em }

Name: margin

Value: <margin-width>p.117{1,4} | inheritp.99

Initial: see individual properties

Applies to: all elements except elements with table display types other than table-
caption, table and inline-table

Inherited: no
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Percentages: refer to width of containing block

Media: visualp.110

Computed value: see individual properties

The 'margin'p.118 property is a shorthand property for setting 'margin-top'p.117, 'margin-right'p.118,
'margin-bottom'p.117, and 'margin-left'p.118 at the same place in the style sheet.

If there is only one component value, it applies to all sides. If there are two values, the top and bottom
margins are set to the first value and the right and left margins are set to the second. If there are three val-
ues, the top is set to the first value, the left and right are set to the second, and the bottom is set to the
third. If there are four values, they apply to the top, right, bottom, and left, respectively.

body { margin: 2em }         /* all margins set to 2em */

body { margin: 1em 2em }     /* top & bottom = 1em, right & left = 2em */

body { margin: 1em 2em 3em } /* top=1em, right=2em, bottom=3em, left=2em */

The last rule of the example above is equivalent to the example below:

body {

margin-top: 1em;

margin-right: 2em;

margin-bottom: 3em;

margin-left: 2em;        /* copied from opposite side (right) */

}

8.3.1 Collapsing margins

In CSS, the adjoining margins of two or more boxes (which might or might not be siblings) can combine
to form a single margin. Margins that combine this way are said to collapse, and the resulting combined
margin is called a collapsed margin.

Adjoining vertical margins collapse, except:

• Margins of the root element's box do not collapse.

• If the top and bottom margins of an element with clearancep.157 are adjoining, its margins collapse
with the adjoining margins of following siblings but that resulting margin does not collapse with the
bottom margin of the parent block.
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• If the top margin of a box with non-zero computed 'min-height' and 'auto' computed 'height' collapses
with the bottom margin of its last in-flow child, then the child's bottom margin does not collapse with
the parent's bottom margin.

Horizontal margins never collapse.
Two margins are adjoining if and only if:

• both belong to in-flow block-level boxesp.135 that participate in the same block formatting con-
textp.145

• no line boxes, no clearance, no padding and no border separate them (Note that certain zero-height
line boxesp.146 (see 9.4.2p.145) are ignored for this purpose.)

• both belong to vertically-adjacent box edges, i.e. form one of the following pairs:

◦ top margin of a box and top margin of its first in-flow child

◦ bottom margin of box and top margin of its next in-flow following sibling

◦ bottom margin of a last in-flow child and bottom margin of its parent if the parent has 'auto'
computed height

◦ top and bottom margins of a box that does not establish a new block formatting context and that
has zero computed 'min-height'p.201, zero or 'auto' computed 'height'p.195, and no in-flow chil-
dren

A collapsed margin is considered adjoining to another margin if any of its component margins is adjoining
to that margin.

Note. Adjoining margins can be generated by elements that are not related as siblings or ancestors.

– 8 Box model –

– 120 –



Note the above rules imply that:

• Margins between a floatedp.150 box and any other box do not collapse (not even between a float
and its in-flow children).

• Margins of elements that establish new block formatting contexts (such as floats and elements
with 'overflow'p.210 other than 'visible') do not collapse with their in-flow children.

• Margins of absolutely positionedp.161 boxes do not collapse (not even with their in-flow chil-
dren).

• Margins of inline-block boxes do not collapse (not even with their in-flow children).

• The bottom margin of an in-flow block-level element always collapses with the top margin of its
next in-flow block-level sibling, unless that sibling has clearance.

• The top margin of an in-flow block element collapses with its first in-flow block-level child's top
margin if the element has no top border, no top padding, and the child has no clearance.

• The bottom margin of an in-flow block box with a 'height' of 'auto' collapses with its last in-flow
block-level child's bottom margin, if:

◦ the box has no bottom padding, and

◦ the box has no bottom border, and

◦ the child's bottom margin neither collapses with a top margin that has clearance, nor (if the
box's min-height is non-zero) with the box's top margin.

• A box's own margins collapse if the 'min-height'p.201 property is zero, and it has neither top or
bottom borders nor top or bottom padding, and it has a 'height'p.195 of either 0 or 'auto', and it
does not contain a line box, and all of its in-flow children's margins (if any) collapse.

When two or more margins collapse, the resulting margin width is the maximum of the collapsing mar-
gins' widths. In the case of negative margins, the maximum of the absolute values of the negative adjoin-
ing margins is deducted from the maximum of the positive adjoining margins. If there are no positive mar-
gins, the maximum of the absolute values of the adjoining margins is deducted from zero.

If the top and bottom margins of a box are adjoining, then it is possible for margins to collapse through
it. In this case, the position of the element depends on its relationship with the other elements whose mar-
gins are being collapsed.

• If the element's margins are collapsed with its parent's top margin, the top border edge of the box is
defined to be the same as the parent's.
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• Otherwise, either the element's parent is not taking part in the margin collapsing, or only the parent's
bottom margin is involved. The position of the element's top border edge is the same as it would have
been if the element had a non-zero bottom border.

Note that the positions of elements that have been collapsed through have no effect on the positions of the
other elements with whose margins they are being collapsed; the top border edge position is only required
for laying out descendants of these elements.

8.4 Padding properties: 'padding-top'p.122, 'padding-right'p.122, 'padding-
bottom'p.122, 'padding-left'p.122, and 'padding'p.123

The padding properties specify the width of the padding areap.113 of a box. The 'padding'p.123 shorthand
property sets the padding for all four sides while the other padding properties only set their respective
side.

The properties defined in this section refer to the <padding-width> value type, which may take one of
the following values:
<length>p. 58

Specifies a fixed width.

<percentage>p. 61

The percentage is calculated with respect to the width of the generated box's containing blockp.135,
even for 'padding-top'p.122 and 'padding-bottom'p.122. If the containing block's width depends on this
element, then the resulting layout is undefined in CSS 2.2.

Unlike margin properties, values for padding values cannot be negative. Like margin properties, percent-
age values for padding properties refer to the width of the generated box's containing block.

Name: padding-top, padding-right, padding-bottom, padding-left

Value: <padding-width>p.122 | inheritp.99

Initial: 0

Applies to: all elements except table-row-group, table-header-group, table-footer-group,
table-row, table-column-group and table-column

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110
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Computed value: the percentage as specified or the absolute length

These properties set the top, right, bottom, and left padding of a box.

blockquote { padding-top: 0.3em }

Name: padding

Value: <padding-width>p.122{1,4} | inheritp.99

Initial: see individual properties

Applies to: all elements except table-row-group, table-header-group, table-footer-group,
table-row, table-column-group and table-column

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110

Computed value: see individual properties

The 'padding'p.123 property is a shorthand property for setting 'padding-top'p.122, 'padding-right'p.122,
'padding-bottom'p.122, and 'padding-left'p.122 at the same place in the style sheet.

If there is only one component value, it applies to all sides. If there are two values, the top and bottom
paddings are set to the first value and the right and left paddings are set to the second. If there are three
values, the top is set to the first value, the left and right are set to the second, and the bottom is set to the
third. If there are four values, they apply to the top, right, bottom, and left, respectively.

The surface color or image of the padding area is specified via the 'background'p.263 property:
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h1 {

background: white;

padding: 1em 2em;

}

The example above specifies a '1em' vertical padding ('padding-top'p.122 and 'padding-bottom'p.122)
and a '2em' horizontal padding ('padding-right'p.122 and 'padding-left'p.122). The 'em' unit is rela-
tivep.58 to the element's font size: '1em' is equal to the size of the font in use.

8.5 Border properties

The border properties specify the width, color, and style of the border areap.113 of a box. These properties
apply to all elements.

Note. Notably for HTML, user agents may render borders for certain user interface elements (e.g.,
buttons, menus, etc.) differently than for "ordinary" elements.

8.5.1 Border width: 'border-top-width'p.124, 'border-right-width'p.124, 'border-bottom-
width'p. 124, 'border-left-width'p.124, and 'border-width'p.125

The border width properties specify the width of the border areap.113. The properties defined in this sec-
tion refer to the <border-width> value type, which may take one of the following values:
thin

A thin border.

medium
A medium border.

thick
A thick border.

<length>p. 58

The border's thickness has an explicit value. Explicit border widths cannot be negative.

The interpretation of the first three values depends on the user agent. The following relationships must
hold, however:

'thin' <='medium' <= 'thick'.
Furthermore, these widths must be constant throughout a document.

Name: border-top-width, border-right-width, border-bottom-width, border-left-
width
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Value: <border-width>p.124 | inheritp.99

Initial: medium

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: absolute length; '0' if the border style is 'none' or 'hidden'

These properties set the width of the top, right, bottom, and left border of a box.

Name: border-width

Value: <border-width>p.124{1,4} | inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: see individual properties

This property is a shorthand property for setting 'border-top-width'p.124, 'border-right-width'p.124, 'border-
bottom-width'p.124, and 'border-left-width'p.124 at the same place in the style sheet.

If there is only one component value, it applies to all sides. If there are two values, the top and bottom
borders are set to the first value and the right and left are set to the second. If there are three values, the
top is set to the first value, the left and right are set to the second, and the bottom is set to the third. If there
are four values, they apply to the top, right, bottom, and left, respectively.

– 8 Box model –

– 125 –



In the examples below, the comments indicate the resulting widths of the top, right, bottom, and left
borders:

h1 { border-width: thin }                   /* thin thin thin thin */

h1 { border-width: thin thick }             /* thin thick thin thick */

h1 { border-width: thin thick medium }      /* thin thick medium thick */

8.5.2 Border color: 'border-top-color'p.126, 'border-right-color'p.126, 'border-bottom-
color'p. 126, 'border-left-color'p.126, and 'border-color'p.126

The border color properties specify the color of a box's border.

Name: border-top-color, border-right-color, border-bottom-color, border-left-
color

Value: <color>p.63 | transparent | inheritp.99

Initial: the value of the 'color' property

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: when taken from the 'color' property, the computed value of 'color';
otherwise, as specified

Name: border-color

Value: [ <color>p.63 | transparent ]{1,4} | inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no
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Percentages: N/A

Media: visualp.110

Computed value: see individual properties

The 'border-color'p.126 property sets the color of the four borders. Values have the following meanings:
<color>p. 63

Specifies a color value.

transparent
The border is transparent (though it may have width).

The 'border-color'p.126 property can have from one to four component values, and the values are set on the
different sides as for 'border-width'p.125.

If an element's border color is not specified with a border property, user agents must use the value of
the element's 'color'p.255 property as the computed valuep.98 for the border color.

In this example, the border will be a solid black line.

p {

color: black;

background: white;

border: solid;

}

8.5.3 Border style: 'border-top-style'p.128, 'border-right-style'p.128, 'border-bottom-
style'p.128, 'border-left-style'p. 128, and 'border-style'p.128

The border style properties specify the line style of a box's border (solid, double, dashed, etc.). The prop-
erties defined in this section refer to the <border-style> value type, which may take one of the following
values:
none

No border; the computed border width is zero.

hidden
Same as 'none', except in terms of border conflict resolutionp.322 for table elementsp.295.

dotted
The border is a series of dots.

dashed
The border is a series of short line segments.
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solid
The border is a single line segment.

double
The border is two solid lines. The sum of the two lines and the space between them equals the value
of 'border-width'p.125.

groove
The border looks as though it were carved into the canvas.

ridge
The opposite of 'groove': the border looks as though it were coming out of the canvas.

inset
The border makes the box look as though it were embedded in the canvas.

outset
The opposite of 'inset': the border makes the box look as though it were coming out of the canvas.

All borders are drawn on top of the box's background. The color of borders drawn for values of 'groove',
'ridge', 'inset', and 'outset' depends on the element's border color propertiesp.126, but UAs may choose their
own algorithm to calculate the actual colors used. For instance, if the 'border-color' has the value 'silver',
then a UA could use a gradient of colors from white to dark gray to indicate a sloping border.

Name: border-top-style, border-right-style, border-bottom-style, border-left-style

Value: <border-style>p.127 | inheritp.99

Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: as specified

Name: border-style

Value: <border-style>p.127{1,4} | inheritp.99

– 8 Box model –

– 128 –



Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: see individual properties

The 'border-style'p.128 property sets the style of the four borders. It can have from one to four component
values, and the values are set on the different sides as for 'border-width'p.125 above.

#xy34 { border-style: solid dotted }

In the above example, the horizontal borders will be 'solid' and the vertical borders will be 'dotted'.

Since the initial value of the border styles is 'none', no borders will be visible unless the border style is set.

8.5.4 Border shorthand properties: 'border-top'p.129, 'border-right'p.129, 'border-
bottom'p.129, 'border-left'p.129, and 'border'p.130

Name: border-top, border-right, border-bottom, border-left

Value: [ <border-width>p.124 || <border-style>p.127 || <'border-top-color'>p.126 ] |
inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: see individual properties
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This is a shorthand property for setting the width, style, and color of the top, right, bottom, and left border
of a box.

h1 { border-bottom: thick solid red }

The above rule will set the width, style, and color of the border below the H1 element. Omitted values
are set to their initial valuesp.22. Since the following rule does not specify a border color, the border
will have the color specified by the 'color'p.255 property:

H1 { border-bottom: thick solid }

Name: border

Value: [ <border-width>p.124 || <border-style>p.127 || <'border-top-color'>p.126 ] |
inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: see individual properties

The 'border'p. 130 property is a shorthand property for setting the same width, color, and style for all four
borders of a box. Unlike the shorthand 'margin'p.118 and 'padding'p.123 properties, the 'border'p.130 proper-
ty cannot set different values on the four borders. To do so, one or more of the other border properties
must be used.
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For example, the first rule below is equivalent to the set of four rules shown after it:

p { border: solid red }

p {

border-top: solid red;

border-right: solid red;

border-bottom: solid red;

border-left: solid red

}

Since, to some extent, the properties have overlapping functionality, the order in which the rules are speci-
fied is important.

Consider this example:

blockquote {

border: solid red;

border-left: double;

color: black;

}

In the above example, the color of the left border is black, while the other borders are red. This is due
to 'border-left'p.129 setting the width, style, and color. Since the color value is not given by the 'border-
left'p.129 property, it will be taken from the 'color'p.255 property. The fact that the 'color'p.255 property
is set after the 'border-left'p.129 property is not relevant.

8.6 The box model for inline elements in bidirectional context

For each line box, UAs must take the inline boxes generated for each element and render the margins, bor-
ders and padding in visual order (not logical order).

When the element's 'direction'p.177 property is 'ltr', the left-most generated box of the first line box in
which the element appears has the left margin, left border and left padding, and the right-most generated
box of the last line box in which the element appears has the right padding, right border and right margin.

When the element's 'direction'p.177 property is 'rtl', the right-most generated box of the first line box in
which the element appears has the right padding, right border and right margin, and the left-most generat-
ed box of the last line box in which the element appears has the left margin, left border and left padding.
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9.1 Introduction to the visual formatting model

This chapter and the next describe the visual formatting model: how user agents process the document
treep.37 for visual mediap.107.

In the visual formatting model, each element in the document tree generates zero or more boxes accord-
ing to the box modelp.113. The layout of these boxes is governed by:

• box dimensionsp.113 and typep.135.

• positioning schemep.140 (normal flow, float, and absolute positioning).

• relationships between elements in the document tree.p.37

• external information (e.g., viewport size, intrinsicp.37 dimensions of images, etc.).

The properties defined in this chapter and the next apply to both continuous mediap.110 and paged me-
diap.110. However, the meanings of the margin propertiesp.117 vary when applied to paged media (see the
page modelp.246 for details).

The visual formatting model does not specify all aspects of formatting (e.g., it does not specify a letter-
spacing algorithm). Conforming user agentsp.39 may behave differently for those formatting issues not
covered by this specification.
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9.1.1 The viewport

User agents for continuous mediap.110 generally offer users a viewport (a window or other viewing area
on the screen) through which users consult a document. User agents may change the document's layout
when the viewport is resized (see the initial containing blockp.184).

When the viewport is smaller than the area of the canvas on which the document is rendered, the user
agent should offer a scrolling mechanism. There is at most one viewport per canvasp.31, but user agents
may render to more than one canvas (i.e., provide different views of the same document).

9.1.2 Containing blocks

In CSS 2.2, many box positions and sizes are calculated with respect to the edges of a rectangular box
called a containing block. In general, generated boxes act as containing blocks for descendant boxes; we
say that a box "establishes" the containing block for its descendants. The phrase "a box's containing
block" means "the containing block in which the box lives," not the one it generates.

Each box is given a position with respect to its containing block, but it is not confined by this contain-
ing block; it may overflowp.210.

The detailsp.184 of how a containing block's dimensions are calculated are described in the next chap-
terp.183.

9.2 Controlling box generation

The following sections describe the types of boxes that may be generated in CSS 2.2. A box's type affects,
in part, its behavior in the visual formatting model. The 'display'p.139 property, described below, specifies
a box's type.

Certain values of the 'display'p.139 property cause an element of the source document to generate a prin-
cipal box that contains descendant boxes and generated content and is also the box involved in any posi-
tioning scheme. Some elements may generate additional boxes in addition to the principal box: 'list-item'
elements. These additional boxes are placed with respect to the principal box.

9.2.1 Block-level elements and block boxes

Block-level elements – those elements of the source document that are formatted visually as blocks (e.g.,
paragraphs) – are elements which generate a block-level principal box. Values of the 'display'p.139 proper-
ty that make an element block-level include: 'block', 'list-item', and 'table'. Block-level boxes are boxes
that participate in a block formatting context.p.145

In CSS 2.2, a block-level box is also a block container box unless it is a table box or the principal box
of a replaced element. A block container box either contains only block-level boxes or establishes an in-
line formatting contextp.145 and thus contains only inline-level boxes.p.136 An element whose principal
box is a block container box is a block container element. Values of the 'display' property which make a
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non-replaced element generate a block container include 'block', 'list-item' and 'inline-block'. Not all block
container boxes are block-level boxes: non-replaced inline blocks and non-replaced table cells are block
containers but are not block-level. Block-level boxes that are also block containers are called block boxes.

The three terms "block-level box," "block container box," and "block box" are sometimes abbreviated
as "block" where unambiguous.

9.2.1.1 Anonymous block boxes

In a document like this:

<DIV>

Some text

<P>More text

</DIV>

(and assuming the DIV and the P both have 'display: block'), the DIV appears to have both inline content
and block content. To make it easier to define the formatting, we assume that there is an anonymous block
box around "Some text".

Diagram showing the three boxes, of which one is anonymous, for the example above.

In other words: if a block container box (such as that generated for the DIV above) has a block-level box
inside it (such as the P above), then we force it to have only block-level boxes inside it.

When an inline box contains an in-flow block-level box, the inline box (and its inline ancestors within
the same line box) is broken around the block-level box (and any block-level siblings that are consecutive
or separated only by collapsible whitespace and/or out-of-flow elements), splitting the inline box into two
boxes (even if either side is empty), one on each side of the block-level box(es). The line boxes before the
break and after the break are enclosed in anonymous block boxes, and the block-level box becomes a sib-
ling of those anonymous boxes. When such an inline box is affected by relative positioning, any resulting
translation also affects the block-level box contained in the inline box.
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This model would apply in the following example if the following rules:

p    { display: inline }

span { display: block }

were used with this HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HEAD>

<TITLE>Anonymous text interrupted by a block</TITLE>

</HEAD>

<BODY>

<P>

This is anonymous text before the SPAN.

<SPAN>This is the content of SPAN.</SPAN>

This is anonymous text after the SPAN.

</P>

</BODY>

The P element contains a chunk (C1) of anonymous text followed by a block-level element followed
by another chunk (C2) of anonymous text. The resulting boxes would be a block box representing the
BODY, containing an anonymous block box around C1, the SPAN block box, and another anonymous
block box around C2.

The properties of anonymous boxes are inherited from the enclosing non-anonymous box (e.g., in the ex-
ample just below the subsection heading "Anonymous block boxes", the one for DIV). Non-inherited
properties have their initial value. For example, the font of the anonymous box is inherited from the DIV,
but the margins will be 0.

Properties set on elements that cause anonymous block boxes to be generated still apply to the boxes
and content of that element. For example, if a border had been set on the P element in the above example,
the border would be drawn around C1 (open at the end of the line) and C2 (open at the start of the line).

Some user agents have implemented borders on inlines containing blocks in other ways, e.g., by wrap-
ping such nested blocks inside "anonymous line boxes" and thus drawing inline borders around such box-
es. As CSS1 and CSS2 did not define this behavior, CSS1-only and CSS2-only user agents may imple-
ment this alternative model and still claim conformance to this part of CSS 2.2. This does not apply to
UAs developed after this specification was released.

Anonymous block boxes are ignored when resolving percentage values that would refer to it: the clos-
est non-anonymous ancestor box is used instead. For example, if the child of the anonymous block box in-
side the DIV above needs to know the height of its containing block to resolve a percentage height, then it
will use the height of the containing block formed by the DIV, not of the anonymous block box.
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9.2.2 Inline-level elements and inline boxes

Inline-level elements are those elements of the source document that do not form new blocks of content;
the content is distributed in lines (e.g., emphasized pieces of text within a paragraph, inline images, etc.).
The following values of the 'display'p.139 property make an element inline-level: 'inline', 'inline-table', and
'inline-block'. Inline-level elements generate inline-level boxes, which are boxes that participate in an in-
line formatting context.

An inline box is one that is both inline-level and whose contents participate in its containing inline for-
matting context. A non-replaced element with a 'display' value of 'inline' generates an inline box. Inline-
level boxes that are not inline boxes (such as replaced inline-level elements, inline-block elements, and
inline-table elements) are called atomic inline-level boxes because they participate in their inline format-
ting context as a single opaque box.

9.2.2.1 Anonymous inline boxes

Any text that is directly contained inside a block container element (not inside an inline element) must be
treated as an anonymous inline element.

In a document with HTML markup like this:

<p>Some <em>emphasized</em> text</p>

the <p> generates a block box, with several inline boxes inside it. The box for "emphasized" is an inline
box generated by an inline element (<em>), but the other boxes ("Some" and "text") are inline boxes gen-
erated by a block-level element (<p>). The latter are called anonymous inline boxes, because they do not
have an associated inline-level element.

Such anonymous inline boxes inherit inheritable properties from their block parent box. Non-inherited
properties have their initial value. In the example, the color of the anonymous inline boxes is inherited
from the P, but the background is transparent.

White space content that would subsequently be collapsed away according to the 'white-space'p.289

property does not generate any anonymous inline boxes.
If it is clear from the context which type of anonymous box is meant, both anonymous inline boxes and

anonymous block boxes are simply called anonymous boxes in this specification.
There are more types of anonymous boxes that arise when formatting tablesp.300.

9.2.3 Run-in boxes

[This section exists so that the section numbers are the same as in previous drafts. 'Display: run-in' is now
defined in CSS level 3 (see CSS basic box model).]
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9.2.4 The 'display'p.139 property

Name: display

Value: inline | block | list-item | inline-block | table | inline-table | table-row-group |
table-header-group | table-footer-group | table-row | table-column-group |
table-column | table-cell | table-caption | none | inheritp.99

Initial: inline

Applies to: all elements

Inherited: no

Percentages: N/A

Media: allp.110

Computed value: see text

The values of this property have the following meanings:
block

This value causes an element to generate a principal block box.

inline-block
This value causes an element to generate a principal inline-level block container. (The inside of an
inline-block is formatted as a block box, and the element itself is formatted as an atomic inline-level
box.)

inline
This value causes an element to generate one or more inline boxes.

list-item
This value causes an element (e.g., LI in HTML) to generate a principal block box and a marker box.
For information about lists and examples of list formatting, please consult the section on listsp.235.

none
This value causes an element to not appear in the formatting structurep.31 (i.e., in visual media the el-
ement generates no boxes and has no effect on layout). Descendant elements do not generate any
boxes either; the element and its content are removed from the formatting structure entirely. This be-
havior cannot be overridden by setting the 'display'p.139 property on the descendants.
Please note that a display of 'none' does not create an invisible box; it creates no box at all. CSS in-
cludes mechanisms that enable an element to generate boxes in the formatting structure that affect
formatting but are not visible themselves. Please consult the section on visibilityp.216 for details.
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tablep. 298, inline-tablep. 298, table-row-groupp. 298, table-columnp. 299, table-column-groupp. 299, table-
header-groupp. 299, table-footer-groupp. 299, table-rowp. 298, table-cellp. 299, and table-captionp. 299

These values cause an element to behave like a table element (subject to restrictions described in the
chapter on tablesp.295).

The computed value is the same as the specified value, except for positioned and floating elements (see
Relationships between 'display', 'position', and 'float' p.164) and for the root element. For the root element,
the computed value is changed as described in the section on the relationships between 'display', 'position',
and 'float'p.164.

Note that although the initial valuep.22 of 'display'p.139 is 'inline', rules in the user agent's default style
sheetp.101 may overridep.97 this value. See the sample style sheetp.381 for HTML 4 in the appendix.

Here are some examples of the 'display'p.139 property:

p   { display: block }

em  { display: inline }

li  { display: list-item }

img { display: none }      /* Do not display images */

9.3 Positioning schemes

In CSS 2.2, a box may be laid out according to three positioning schemes:

1. Normal flowp.145. In CSS 2.2, normal flow includes block formattingp.145 of block-level boxes, in-
line formattingp.145 of inline-level boxes, and relative positioningp.148 of block-level and inline-level
boxes.

2. Floatsp.150. In the float model, a box is first laid out according to the normal flow, then taken out of
the flow and shifted to the left or right as far as possible. Content may flow along the side of a float.

3. Absolute positioningp.161. In the absolute positioning model, a box is removed from the normal flow
entirely (it has no impact on later siblings) and assigned a position with respect to a containing block.

An element is called out of flow if it is floated, absolutely positioned, or is the root element. An element is
called in-flow if it is not out-of-flow. The flow of an element A is the set consisting of A and all in-flow
elements whose nearest out-of-flow ancestor is A.

Note. CSS 2.2's positioning schemes help authors make their documents more accessible by allowing
them to avoid mark-up tricks (e.g., invisible images) used for layout effects.
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9.3.1 Choosing a positioning scheme: 'position'p.141 property

The 'position'p.141 and 'float'p.154 properties determine which of the CSS 2.2 positioning algorithms is
used to calculate the position of a box.

Name: position

Value: static | relative | absolute | fixed | inheritp.99

Initial: static

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: as specified

The values of this property have the following meanings:
static

The box is a normal box, laid out according to the normal flowp.145. The 'top'p.142, 'right'p.143, 'bot-
tom'p.143, and 'left'p.144 properties do not apply.

relative
The box's position is calculated according to the normal flowp.145 (this is called the position in nor-
mal flow). Then the box is offset relativep.148 to its normal position. When a box B is relatively posi-
tioned, the position of the following box is calculated as though B were not offset. The effect of 'po-
sition:relative' on table-row-group, table-header-group, table-footer-group, table-row, table-column-
group, table-column, table-cell, and table-caption elements is undefined.

absolute
The box's position (and possibly size) is specified with the 'top'p.142, 'right'p.143, 'bottom'p.143, and
'left'p.144 properties. These properties specify offsets with respect to the box's containing blockp.135.
Absolutely positioned boxes are taken out of the normal flow. This means they have no impact on the
layout of later siblings. Also, though absolutely positionedp.161 boxes have margins, they do not col-
lapsep.119 with any other margins.

fixed
The box's position is calculated according to the 'absolute' model, but in addition, the box is
fixedp.161 with respect to some reference. As with the 'absolute' model, the box's margins do not col-
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lapse with any other margins. In the case of handheld, projection, screen, tty, and tv media types, the
box is fixed with respect to the viewportp.135 and does not move when scrolled. In the case of the
print media type, the box is rendered on every page, and is fixed with respect to the page box, even if
the page is seen through a viewportp.135 (in the case of a print-preview, for example). For other me-
dia types, the presentation is undefined. Authors may wish to specify 'fixed' in a media-dependent
way. For instance, an author may want a box to remain at the top of the viewportp.135 on the screen,
but not at the top of each printed page. The two specifications may be separated by using an @media
rulep.108, as in:

@media screen {

h1#first { position: fixed }

}

@media print {

h1#first { position: static }

}

UAs must not paginate the content of fixed boxes. Note that UAs may print invisible content in
other ways. See "Content outside the page box"p.248 in chapter 13.

User agents may treat position as 'static' on the root element.

9.3.2 Box offsets: 'top'p.142, 'right'p.143, 'bottom'p.143, 'left'p.144

An element is said to be positioned if its 'position'p.141 property has a value other than 'static'. Positioned
elements generate positioned boxes, laid out according to four properties:

Name: top

Value: <length>p.58 | <percentage>p.61 | auto | inheritp.99

Initial: auto

Applies to: positioned elements

Inherited: no

Percentages: refer to height of containing block

Media: visualp.110

– 9 Visual formatting model –

– 142 –



Computed value: if specified as a length, the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, 'auto'.

This property specifies how far an absolutely positionedp.161 box's top margin edge is offset below the top
edge of the box's containing blockp.135. For relatively positioned boxes, the offset is with respect to the
top edges of the box itself (i.e., the box is given a position in the normal flow, then offset from that posi-
tion according to these properties).

Name: right

Value: <length>p.58 | <percentage>p.61 | auto | inheritp.99

Initial: auto

Applies to: positioned elements

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110

Computed value: if specified as a length, the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, 'auto'.

Like 'top', but specifies how far a box's right margin edge is offset to the left of the right edge of the box's
containing blockp.135. For relatively positioned boxes, the offset is with respect to the right edge of the
box itself.

Name: bottom

Value: <length>p.58 | <percentage>p.61 | auto | inheritp.99

Initial: auto

Applies to: positioned elements

Inherited: no
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Percentages: refer to height of containing block

Media: visualp.110

Computed value: if specified as a length, the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, 'auto'.

Like 'top', but specifies how far a box's bottom margin edge is offset above the bottom of the box's con-
taining blockp.135. For relatively positioned boxes, the offset is with respect to the bottom edge of the box
itself.

Name: left

Value: <length>p.58 | <percentage>p.61 | auto | inheritp.99

Initial: auto

Applies to: positioned elements

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110

Computed value: if specified as a length, the corresponding absolute length; if specified as a
percentage, the specified value; otherwise, 'auto'.

Like 'top', but specifies how far a box's left margin edge is offset to the right of the left edge of the box's
containing blockp.135. For relatively positioned boxes, the offset is with respect to the left edge of the box
itself.

The values for the four properties have the following meanings:
<length>p. 58

The offset is a fixed distance from the reference edge. Negative values are allowed.

<percentage>p. 61

The offset is a percentage of the containing block's width (for 'left'p.144 or 'right'p.143) or height (for
'top'p.142 and 'bottom'p.143). Negative values are allowed.
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auto
For non-replaced elements, the effect of this value depends on which of related properties have the
value 'auto' as well. See the sections on the widthp.191 and heightp.199 of absolutely positionedp.161,
non-replaced elements for details. For replaced elements, the effect of this value depends only on the
intrinsic dimensions of the replaced content. See the sections on the widthp.192 and heightp.200 of ab-
solutely positioned, replaced elements for details.

9.4 Normal flow

Boxes in the normal flow belong to a formatting context, which in CSS 2.2 may be table, block or inline.
In future levels of CSS, other types of formatting context will be introduced. Block-levelp.135 boxes par-
ticipate in a block formattingp.145 context. Inline-level boxesp.138 participate in an inline formattingp.145

context. Table formatting contexts are described in the chapter on tables.p.295

9.4.1 Block formatting contexts

Floats, absolutely positioned elements, block containers (such as inline-blocks, table-cells, and table-
captions) that are not block boxes, and block boxes with 'overflow' other than 'visible' (except when that
value has been propagated to the viewport) establish new block formatting contexts for their contents.

In a block formatting context, boxes are laid out one after the other, vertically, beginning at the top of a
containing block. The vertical distance between two sibling boxes is determined by the 'margin'p.118 prop-
erties. Vertical margins between adjacent block-level boxes in a block formatting context collapsep.119.

In a block formatting context, each box's left outer edge touches the left edge of the containing block
(for right-to-left formatting, right edges touch). This is true even in the presence of floats (although a box's
line boxes may shrink due to the floats), unless the box establishes a new block formatting context (in
which case the box itself may become narrowerp.150 due to the floats).

For information about page breaks in paged media, please consult the section on allowed page
breaksp.252.

9.4.2 Inline formatting contexts

An inline formatting context is established by a block container box that contains no block-level boxes. In
an inline formatting context, boxes are laid out horizontally, one after the other, beginning at the top of a
containing block. Horizontal margins, borders, and padding are respected between these boxes. The boxes
may be aligned vertically in different ways: their bottoms or tops may be aligned, or the baselines of text
within them may be aligned. The rectangular area that contains the boxes that form a line is called a line
box.

The width of a line box is determined by a containing blockp.135 and the presence of floats. The height
of a line box is determined by the rules given in the section on line height calculationsp.203.
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A line box is always tall enough for all of the boxes it contains. However, it may be taller than the
tallest box it contains (if, for example, boxes are aligned so that baselines line up). When the height of a
box B is less than the height of the line box containing it, the vertical alignment of B within the line box is
determined by the 'vertical-align'p.206 property. When several inline-level boxes cannot fit horizontally
within a single line box, they are distributed among two or more vertically-stacked line boxes. Thus, a
paragraph is a vertical stack of line boxes. Line boxes are stacked with no vertical separation (except as
specified elsewhere) and they never overlap.

In general, the left edge of a line box touches the left edge of its containing block and the right edge
touches the right edge of its containing block. However, floating boxes may come between the containing
block edge and the line box edge. Thus, although line boxes in the same inline formatting context general-
ly have the same width (that of the containing block), they may vary in width if available horizontal space
is reduced due to floatsp.150. Line boxes in the same inline formatting context generally vary in height
(e.g., one line might contain a tall image while the others contain only text).

When the total width of the inline-level boxes on a line is less than the width of the line box containing
them, their horizontal distribution within the line box is determined by the 'text-align'p.282 property. If that
property has the value 'justify', the user agent may stretch spaces and words in inline boxes (but not inline-
table and inline-block boxes) as well.

When an inline box exceeds the width of a line box, it is split into several boxes and these boxes are
distributed across several line boxes. If an inline box cannot be split (e.g., if the inline box contains a sin-
gle character, or language specific word breaking rules disallow a break within the inline box, or if the in-
line box is affected by a white-space value of nowrap or pre), then the inline box overflows the line box.

When an inline box is split, margins, borders, and padding have no visual effect where the split occurs
(or at any split, when there are several).

Inline boxes may also be split into several boxes within the same line box due to bidirectional text pro-
cessingp.177.

Line boxes are created as needed to hold inline-level content within an inline formatting context. Line
boxes that contain no text, no preserved white space,p.289 no inline elements with non-zero margins,
padding, or borders, and no other in-flowp.140 content (such as images, inline blocks or inline tables), and
do not end with a preserved newline must be treated as zero-height line boxes for the purposes of deter-
mining the positions of any elements inside of them, and must be treated as not existing for any other pur-
pose.
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Here is an example of inline box construction. The following paragraph (created by the HTML block-
level element P) contains anonymous text interspersed with the elements EM and STRONG:

<P>Several <EM>emphasized words</EM> appear

<STRONG>in this</STRONG> sentence, dear.</P>

The P element generates a block box that contains five inline boxes, three of which are anonymous:

• Anonymous: "Several"

• EM: "emphasized words"

• Anonymous: "appear"

• STRONG: "in this"

• Anonymous: "sentence, dear."

To format the paragraph, the user agent flows the five boxes into line boxes. In this example, the box
generated for the P element establishes the containing block for the line boxes. If the containing block
is sufficiently wide, all the inline boxes will fit into a single line box:

Several emphasized words appear in this sentence, dear.

If not, the inline boxes will be split up and distributed across several line boxes. The previous para-
graph might be split as follows:

Several emphasized words appear

in this sentence, dear.

or like this:

Several emphasized

words appear in this

sentence, dear.

In the previous example, the EM box was split into two EM boxes (call them "split1" and "split2"). Mar-
gins, borders, padding, or text decorations have no visible effect after split1 or before split2.
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Consider the following example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Example of inline flow on several lines</TITLE>

<STYLE type="text/css">

EM {

padding: 2px;

margin: 1em;

border-width: medium;

border-style: dashed;

line-height: 2.4em;

}

</STYLE>

</HEAD>

<BODY>

<P>Several <EM>emphasized words</EM> appear here.</P>

</BODY>

</HTML>

Depending on the width of the P, the boxes may be distributed as follows:

• The margin is inserted before "emphasized" and after "words".

• The padding is inserted before, above, and below "emphasized" and after, above, and below
"words". A dashed border is rendered on three sides in each case.

9.4.3 Relative positioning

Once a box has been laid out according to the normal flowp.145 or floated, it may be shifted relative to this
position. This is called relative positioning. Offsetting a box (B1) in this way has no effect on the box
(B2) that follows: B2 is given a position as if B1 were not offset and B2 is not re-positioned after B1's off-
set is applied. This implies that relative positioning may cause boxes to overlap. However, if relative posi-
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tioning causes an 'overflow:auto' or 'overflow:scroll' box to have overflow, the UA must allow the user to
access this content (at its offset position), which, through the creation of scrollbars, may affect layout.

A relatively positioned box keeps its normal flow size, including line breaks and the space originally re-
served for it. The section on containing blocksp.135 explains when a relatively positioned box establishes a
new containing block.

For relatively positioned elements, 'left' and 'right' move the box(es) horizontally, without changing
their size. 'Left' moves the boxes to the right, and 'right' moves them to the left. Since boxes are not split
or stretched as a result of 'left' or 'right', the used values are always: left = -right.

If both 'left' and 'right' are 'auto' (their initial values), the used values are '0' (i.e., the boxes stay in their
original position).

If 'left' is 'auto', its used value is minus the value of 'right' (i.e., the boxes move to the left by the value
of 'right').

If 'right' is specified as 'auto', its used value is minus the value of 'left'.
If neither 'left' nor 'right' is 'auto', the position is over-constrained, and one of them has to be ignored. If

the 'direction' property of the containing block is 'ltr', the value of 'left' wins and 'right' becomes -'left'. If
'direction' of the containing block is 'rtl', 'right' wins and 'left' is ignored.

Example. The following three rules are equivalent:

div.a8 { position: relative; direction: ltr; left: -1em; right: auto }

div.a8 { position: relative; direction: ltr; left: auto; right: 1em }

div.a8 { position: relative; direction: ltr; left: -1em; right: 5em }

The 'top' and 'bottom' properties move relatively positioned element(s) up or down without changing their
size. 'Top' moves the boxes down, and 'bottom' moves them up. Since boxes are not split or stretched as a
result of 'top' or 'bottom', the used values are always: top = -bottom. If both are 'auto', their used values are
both '0'. If one of them is 'auto', it becomes the negative of the other. If neither is 'auto', 'bottom' is ignored
(i.e., the used value of 'bottom' will be minus the value of 'top').

Note. Dynamic movement of relatively positioned boxes can produce animation effects in scripting
environments (see also the 'visibility'p.216 property). Although relative positioning may be used as a
form of superscripting and subscripting, the line height is not automatically adjusted to take the posi-
tioning into consideration. See the description of line height calculationsp.203 for more information.

Examples of relative positioning are provided in the section comparing normal flow, floats, and absolute
positioningp.165.
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9.5 Floats

A float is a box that is shifted to the left or right on the current line. The most interesting characteristic of
a float (or "floated" or "floating" box) is that content may flow along its side (or be prohibited from doing
so by the 'clear'p.156 property). Content flows down the right side of a left-floated box and down the left
side of a right-floated box. The following is an introduction to float positioning and content flow; the ex-
act rulesp.155 governing float behavior are given in the description of the 'float'p.154 property.

A floated box is shifted to the left or right until its outer edge touches the containing block edge or the
outer edge of another float. If there is a line box, the outer top of the floated box is aligned with the top of
the current line box.

If there is not enough horizontal room for the float, it is shifted downward until either it fits or there are
no more floats present.

Since a float is not in the flow, non-positioned block boxes created before and after the float box flow
vertically as if the float did not exist. However, the current and subsequent line boxes created next to the
float are shortened as necessary to make room for the margin box of the float.

A line box is next to a float when there exists a vertical position that satisfies all of these four condi-
tions: (a) at or below the top of the line box, (b) at or above the bottom of the line box, (c) below the top
margin edge of the float, and (d) above the bottom margin edge of the float.

Note: this means that floats with zero outer height or negative outer height do not shorten line boxes.

If a shortened line box is too small to contain any content, then the line box is shifted downward (and its
width recomputed) until either some content fits or there are no more floats present. Any content in the
current line before a floated box is reflowed in the same line on the other side of the float. In other words,
if inline-level boxes are placed on the line before a left float is encountered that fits in the remaining line
box space, the left float is placed on that line, aligned with the top of the line box, and then the inline-level
boxes already on the line are moved accordingly to the right of the float (the right being the other side of
the left float) and vice versa for rtl and right floats.

The border box of a table, a block-level replaced element, or an element in the normal flow that estab-
lishes a new block formatting contextp.145 (such as an element with 'overflow' other than 'visible') must
not overlap the margin box of any floats in the same block formatting context as the element itself. If nec-
essary, implementations should clear the said element by placing it below any preceding floats, but may
place it adjacent to such floats if there is sufficient space. They may even make the border box of said ele-
ment narrower than defined by section 10.3.3.p.189 CSS2 does not define when a UA may put said ele-
ment next to the float or by how much said element may become narrower.
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Example. In the following document fragment, the containing block is too narrow to contain the con-
tent next to the float, so the content gets moved to below the floats where it is aligned in the line box
according to the text-align property.

p { width: 10em; border: solid aqua; }

span { float: left; width: 5em; height: 5em; border: solid blue; }

...

<p>

<span> </span>

Supercalifragilisticexpialidocious

</p>

This fragment might look like this:

Several floats may be adjacent, and this model also applies to adjacent floats in the same line.

The following rule floats all IMG boxes with class="icon" to the left (and sets the left margin to
'0'):

img.icon {

float: left;

margin-left: 0;

}
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Consider the following HTML source and style sheet:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Float example</TITLE>

<STYLE type="text/css">

IMG { float: left }

BODY, P, IMG { margin: 2em }

</STYLE>

</HEAD>

<BODY>

<P><IMG src=img.png alt="This image will illustrate floats">

Some sample text that has no other...

</BODY>

</HTML>

The IMG box is floated to the left. The content that follows is formatted to the right of the float, start-
ing on the same line as the float. The line boxes to the right of the float are shortened due to the float's
presence, but resume their "normal" width (that of the containing block established by the P element)
after the float. This document might be formatted as:

Formatting would have been exactly the same if the document had been:
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<BODY>

<P>Some sample text

<IMG src=img.png alt="This image will illustrate floats">

that has no other...

</BODY>

because the content to the left of the float is displaced by the float and reflowed down its right side.

As stated in section 8.3.1p.119, the margins of floating boxes never collapsep.119 with margins of adjacent
boxes. Thus, in the previous example, vertical margins do not collapsep.119 between the P box and the
floated IMG box.

The contents of floats are stacked as if floats generated new stacking contexts, except that any posi-
tioned elements and elements that actually create new stacking contexts take part in the float's parent
stacking context. A float can overlap other boxes in the normal flow (e.g., when a normal flow box next to
a float has negative margins). When this happens, floats are rendered in front of non-positioned in-flow
blocks, but behind in-flow inlines.

Here is another illustration, showing what happens when a float overlaps borders of elements in the
normal flow.

A floating image obscures borders of block boxes it overlaps.
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The following example illustrates the use of the 'clear'p.156 property to prevent content from flowing next
to a float.

Assuming a rule such as this:

p { clear: left }

formatting might look like this:

Both paragraphs have set 'clear: left', which causes the second paragraph to be "pushed down" to a position
below the float — "clearance" is added above its top margin to accomplish this (see the 'clear'p.156 property).

9.5.1 Positioning the float: the 'float'p.154 property

Name: float

Value: left | right | none | inheritp.99

Initial: none

Applies to: all, but see 9.7p.164

Inherited: no

Percentages: N/A

– 9 Visual formatting model –

– 154 –



Media: visualp.110

Computed value: as specified

This property specifies whether a box should float to the left, right, or not at all. It may be set for any ele-
ment, but only applies to elements that generate boxes that are not absolutely positionedp.161. The values
of this property have the following meanings:
left

The element generates a blockp.135 box that is floated to the left. Content flows on the right side of
the box, starting at the top (subject to the 'clear'p.156 property).

right
Similar to 'left', except the box is floated to the right, and content flows on the left side of the box,
starting at the top.

none
The box is not floated.

User agents may treat float as 'none' on the root element.
Here are the precise rules that govern the behavior of floats:

1. The left outer edgep.114 of a left-floating box may not be to the left of the left edge of its containing
blockp.135. An analogous rule holds for right-floating elements.

2. If the current box is left-floating, and there are any left-floating boxes generated by elements earlier
in the source document, then for each such earlier box, either the left outer edgep.114 of the current
box must be to the right of the right outer edgep.114 of the earlier box, or its top must be lower than
the bottom of the earlier box. Analogous rules hold for right-floating boxes.

3. The right outer edgep.114 of a left-floating box may not be to the right of the left outer edgep.114 of
any right-floating box that is next to it. Analogous rules hold for right-floating elements.

4. A floating box's outer topp.114 may not be higher than the top of its containing blockp.135. When the
float occurs between two collapsing margins, the float is positioned as if it had an otherwise empty
anonymous block parentp.136 taking part in the flow. The position of such a parent is defined by the
rulesp.121 in the section on margin collapsing.

5. The outer topp.114 of a floating box may not be higher than the outer top of any blockp.135 or float-
edp.150 box generated by an element earlier in the source document.

6. The outer topp.114 of an element's floating box may not be higher than the top of any line-boxp.145

containing a box generated by an element earlier in the source document.
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7. A left-floating box that has another left-floating box to its left may not have its right outer edge to the
right of its containing block's right edge. (Loosely: a left float may not stick out at the right edge, un-
less it is already as far to the left as possible.) An analogous rule holds for right-floating elements.

8. A floating box must be placed as high as possible.

9. A left-floating box must be put as far to the left as possible, a right-floating box as far to the right as
possible. A higher position is preferred over one that is further to the left/right.

But in CSS 2.2, if, within the block formatting context, there is an in-flow negative vertical margin such
that the float's position is above the position it would be at were all such negative margins set to zero, the
position of the float is undefined.

References to other elements in these rules refer only to other elements in the same block formatting
contextp.145 as the float.

This HTML fragment results in the b floating to the right.

<P>a<SPAN style="float: right">b</SPAN></P>

If the P element's width is enough, the a and the b will be side by side. It might look like this:

9.5.2 Controlling flow next to floats: the 'clear'p.156 property

Name: clear

Value: none | left | right | both | inheritp.99

Initial: none

Applies to: block-level elements

Inherited: no

Percentages: N/A
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Media: visualp.110

Computed value: as specified

This property indicates which sides of an element's box(es) may not be adjacent to an earlier floating box.
The 'clear' property does not consider floats inside the element itself or in other block formatting con-
texts.p.145

Values have the following meanings when applied to non-floating block-level boxes:
left

Requires that the top border edge of the box be below the bottom outer edge of any left-floating box-
es that resulted from elements earlier in the source document.

right
Requires that the top border edge of the box be below the bottom outer edge of any right-floating
boxes that resulted from elements earlier in the source document.

both
Requires that the top border edge of the box be below the bottom outer edge of any right-floating and
left-floating boxes that resulted from elements earlier in the source document.

none
No constraint on the box's position with respect to floats.

Values other than 'none' potentially introduce clearance. Clearance inhibits margin collapsing and acts as
spacing above the margin-top of an element. It is used to push the element vertically past the float.

Computing the clearance of an element on which 'clear' is set is done by first determining the hypotheti-
cal position of the element's top border edge. This position is where the actual top border edge would have
been if the element's 'clear' property had been 'none'.

If this hypothetical position of the element's top border edge is not past the relevant floats, then clear-
ance is introduced, and margins collapse according to the rules in 8.3.1.

Then the amount of clearance is set to the greater of:

1. The amount necessary to place the border edge of the block even with the bottom outer edge of the
lowest float that is to be cleared.

2. The amount necessary to place the top border edge of the block at its hypothetical position.

Alternatively, clearance is set exactly to the amount necessary to place the border edge of the block even
with the bottom outer edge of the lowest float that is to be cleared.

Note: Both behaviors are allowed pending evaluation of their compatibility with existing Web content.
A future CSS specification will require either one or the other.
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Note: The clearance can be negative or zero.
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Example 1. Assume (for the sake of simplicity), that we have just three boxes, in this order: block B1
with a bottom margin of M1 (B1 has no children and no padding or border), floating block F with a
height H, and block B2 with a top margin of M2 (no padding or border, no children). B2 has 'clear' set
to 'both'. We also assume B2 is not empty.

Without considering the 'clear' property on B2, we have the situation in the diagram below. The
margins of B1 and B2 collapse. Let's say the bottom border edge of B1 is at y = 0, then the top of F is
at y = M1, the top border edge of B2 is at y = max(M1,M2), and the bottom of F is at y = M1 + H.

We also assume that B2 is not below F, i.e., we are in the situation described in the spec where we
need to add clearance. That means:

max(M1,M2) < M1 + H

We need to compute clearance C twice, C1 and C2, and keep the greater of the two: C = max(C1,C2).
The first way is to put the top of B2 flush with the bottom of F, i.e., at y = M1 + H. That means, be-
cause the margins no longer collapse with a clearance between them:

bottom of F = top border edge of B2 ⇔

M1 + H = M1 + C1 + M2 ⇔

C1 = M1 + H - M1 - M2
= H - M2

The second computation is to keep the top of B2 where it is, i.e., at y = max(M1,M2). That means:
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max(M1,M2) = M1 + C2 + M2 ⇔

C2 = max(M1,M2) - M1 - M2

We assumed that max(M1,M2) < M1 + H, which implies

C2 = max(M1,M2) - M1 - M2 < M1 + H - M1 - M2 = H - M2 ⇒

C2 < H - M2

And, as C1 = H - M2, it follows that

C2 < C1

and hence

C = max(C1,C2) = C1

Example 2. An example of negative clearance is this situation, in which the clearance is -1em. (As-
sume none of the elements have borders or padding):

<p style="margin-bottom: 4em">

First paragraph.

<p style="float: left; height: 2em; margin: 0">

Floating paragraph.

<p style="clear: left; margin-top: 3em">

Last paragraph.

Explanation: Without the 'clear', the first and last paragraphs' margins would collapse and the last
paragraph's top border edge would be flush with the top of the floating paragraph. But the 'clear' re-
quires the top border edge to be below the float, i.e., 2em lower. This means that clearance must be in-
troduced. Accordingly, the margins no longer collapse and the amount of clearance is set so that clear-
ance + margin-top = 2em, i.e., clearance = 2em - margin-top = 2em - 3em = -1em.

When the property is set on floating elements, it results in a modification of the rulesp.155 for positioning
the float. An extra constraint (#10) is added:
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• The top outer edgep.114 of the float must be below the bottom outer edge of all earlier left-floating
boxes (in the case of 'clear: left'), or all earlier right-floating boxes (in the case of 'clear: right'), or
both ('clear: both').

Note. This property applied to all elements in CSS1. Implementations may therefore have supported
this property on all elements. In CSS2 and CSS 2.2 the 'clear' property only applies to block-level ele-
ments. Therefore authors should only use this property on block-level elements. If an implementation
does support clear on inline elements, rather than setting a clearance as explained above, the imple-
mentation should force a break and effectively insert one or more empty line boxes (or shifting the
new line box downward as described in section 9.5p.150) to move the top of the cleared inline's line
box to below the respective floating box(es).

9.6 Absolute positioning

In the absolute positioning model, a box is explicitly offset with respect to its containing block. It is re-
moved from the normal flow entirely (it has no impact on later siblings). An absolutely positioned box es-
tablishes a new containing block for normal flow children and absolutely (but not fixed) positioned de-
scendants. However, the contents of an absolutely positioned element do not flow around any other boxes.
They may obscure the contents of another box (or be obscured themselves), depending on the stack lev-
elsp.174 of the overlapping boxes.

References in this specification to an absolutely positioned element (or its box) imply that the element's
'position'p.141 property has the value 'absolute' or 'fixed'.

9.6.1 Fixed positioning

Fixed positioning is a subcategory of absolute positioning. The only difference is that for a fixed posi-
tioned box, the containing block is established by the viewportp.135. For continuous mediap.110, fixed box-
es do not move when the document is scrolled. In this respect, they are similar to fixed background im-
agesp.257. For paged mediap.245, boxes with fixed positions are repeated on every page. This is useful for
placing, for instance, a signature at the bottom of each page. Boxes with fixed position that are larger than
the page area are clipped. Parts of the fixed position box that are not visible in the initial containing block
will not print.
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Authors may use fixed positioning to create frame-like presentations. Consider the following frame
layout:

This might be achieved with the following HTML document and style rules:
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>A frame document with CSS</TITLE>

<STYLE type="text/css" media="screen">

BODY { height: 8.5in } /* Required for percentage heights below */

#header {

position: fixed;

width: 100%;

height: 15%;

top: 0;

right: 0;

bottom: auto;

left: 0;

}

#sidebar {

position: fixed;

width: 10em;

height: auto;

top: 15%;

right: auto;

bottom: 100px;

left: 0;

}

#main {

position: fixed;

width: auto;

height: auto;

top: 15%;

right: 0;

bottom: 100px;

left: 10em;

}

#footer {

position: fixed;

width: 100%;

height: 100px;

top: auto;

right: 0;

bottom: 0;

left: 0;
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}

</STYLE>

</HEAD>

<BODY>

<DIV id="visuren.html.header"> ...  </DIV>

<DIV id="visuren.html.sidebar"> ...  </DIV>

<DIV id="visuren.html.main"> ...  </DIV>

<DIV id="visuren.html.footer"> ...  </DIV>

</BODY>

</HTML>

9.7 Relationships between 'display', 'position', and 'float'

The three properties that affect box generation and layout — 'display'p.139, 'position'p.141, and 'float'p.154

— interact as follows:

1. If 'display'p.139 has the value 'none', then 'position'p.141 and 'float'p.154 do not apply. In this case, the
element generates no box.

2. Otherwise, if 'position'p.141 has the value 'absolute' or 'fixed', the box is absolutely positioned, the
computed value of 'float'p.154 is 'none', and display is set according to the table below. The position
of the box will be determined by the 'top'p.142, 'right'p.143, 'bottom'p.143 and 'left'p.144 properties and
the box's containing block.

3. Otherwise, if 'float' has a value other than 'none', the box is floated and 'display' is set according to
the table below.

4. Otherwise, if the element is the root element, 'display' is set according to the table below, except that
it is undefined in CSS 2.2 whether a specified value of 'list-item' becomes a computed value of
'block' or 'list-item'.

5. Otherwise, the remaining 'display'p.139 property values apply as specified.

Specified value Computed value

inline-table table

inline, table-row-group, table-column, table-column-group, table-header-
group, table-footer-group, table-row, table-cell, table-caption, inline-
block

block

others same as specified
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9.8 Comparison of normal flow, floats, and absolute positioning

To illustrate the differences between normal flow, relative positioning, floats, and absolute positioning,
we provide a series of examples based on the following HTML:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Comparison of positioning schemes</TITLE>

</HEAD>

<BODY>

<P>Beginning of body contents.

<SPAN id="visuren.html.outer"> Start of outer contents.

<SPAN id="visuren.html.inner"> Inner contents.</SPAN>

End of outer contents.</SPAN>

End of body contents.

</P>

</BODY>

</HTML>

In this document, we assume the following rules:

body { display: block; font-size:12px; line-height: 200%;

width: 400px; height: 400px }

p    { display: block }

span { display: inline }

The final positions of boxes generated by the outer and inner elements vary in each example. In each il-
lustration, the numbers to the left of the illustration indicate the normal flowp.145 position of the double-
spaced (for clarity) lines.

Note. The diagrams in this section are illustrative and not to scale. They are meant to highlight the dif-
ferences between the various positioning schemes in CSS 2.2, and are not intended to be reference
renderings of the examples given.

9.8.1 Normal flow

Consider the following CSS declarations for outer and inner that do not alter the normal flowp.145 of box-
es:

#outer { color: red }

#inner { color: blue }
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The P element contains all inline content: anonymous inline textp.138 and two SPAN elements. Therefore,
all of the content will be laid out in an inline formatting context, within a containing block established by
the P element, producing something like:

9.8.2 Relative positioning

To see the effect of relative positioningp.148, we specify:

#outer { position: relative; top: -12px; color: red }

#inner { position: relative; top: 12px; color: blue }

Text flows normally up to the outer element. The outer text is then flowed into its normal flow position
and dimensions at the end of line 1. Then, the inline boxes containing the text (distributed over three lines)
are shifted as a unit by '-12px' (upwards).

The contents of inner, as a child of outer, would normally flow immediately after the words "of outer
contents" (on line 1.5). However, the inner contents are themselves offset relative to the outer contents by
'12px' (downwards), back to their original position on line 2.

Note that the content following outer is not affected by the relative positioning of outer.
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Note also that had the offset of outer been '-24px', the text of outer and the body text would have over-
lapped.

9.8.3 Floating a box

Now consider the effect of floatingp.150 the inner element's text to the right by means of the following
rules:

#outer { color: red }

#inner { float: right; width: 130px; color: blue }

Text flows normally up to the inner box, which is pulled out of the flow and floated to the right margin
(its 'width'p.187 has been assigned explicitly). Line boxes to the left of the float are shortened, and the doc-
ument's remaining text flows into them.
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To show the effect of the 'clear'p.156 property, we add a sibling element to the example:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Comparison of positioning schemes II</TITLE>

</HEAD>

<BODY>

<P>Beginning of body contents.

<SPAN id=visuren.html.outer> Start of outer contents.

<SPAN id=visuren.html.inner> Inner contents.</SPAN>

<SPAN id=visuren.html.sibling> Sibling contents.</SPAN>

End of outer contents.</SPAN>

End of body contents.

</P>

</BODY>

</HTML>

The following rules:

#inner { float: right; width: 130px; color: blue }

#sibling { color: red }

cause the inner box to float to the right as before and the document's remaining text to flow into the vacat-
ed space:
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However, if the 'clear'p.156 property on the sibling element is set to 'right' (i.e., the generated sibling box
will not accept a position next to floating boxes to its right), the sibling content begins to flow below the
float:

#inner { float: right; width: 130px; color: blue }

#sibling { clear: right; color: red }
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9.8.4 Absolute positioning

Finally, we consider the effect of absolute positioningp.161. Consider the following CSS declarations for
outer and inner:

#outer {

position: absolute;

top: 200px; left: 200px;

width: 200px;

color: red;

}

#inner { color: blue }

which cause the top of the outer box to be positioned with respect to its containing block. The containing
block for a positioned box is established by the nearest positioned ancestor (or, if none exists, the initial
containing blockp.184, as in our example). The top side of the outer box is '200px' below the top of the
containing block and the left side is '200px' from the left side. The child box of outer is flowed normally
with respect to its parent.

The following example shows an absolutely positioned box that is a child of a relatively positioned box.
Although the parent outer box is not actually offset, setting its 'position'p.141 property to 'relative' means
that its box may serve as the containing block for positioned descendants. Since the outer box is an inline
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box that is split across several lines, the first inline box's top and left edges (depicted by thick dashed lines
in the illustration below) serve as references for 'top'p.142 and 'left'p.144 offsets.

#outer {

position: relative;

color: red

}

#inner {

position: absolute;

top: 200px; left: -100px;

height: 130px; width: 130px;

color: blue;

}

This results in something like the following:

If we do not position the outer box:
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#outer { color: red }

#inner {

position: absolute;

top: 200px; left: -100px;

height: 130px; width: 130px;

color: blue;

}

the containing block for inner becomes the initial containing blockp.184 (in our example). The following
illustration shows where the inner box would end up in this case.
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Relative and absolute positioning may be used to implement change bars, as shown in the following
example. The following fragment:

<P style="position: relative; margin-right: 10px; left: 10px;">

I used two red hyphens to serve as a change bar. They

will "float" to the left of the line containing THIS

<SPAN style="position: absolute; top: auto; left: -1em; color: red;">--</SPAN>

word.</P>

might result in something like:

First, the paragraph (whose containing block sides are shown in the illustration) is flowed normally.
Then it is offset '10px' from the left edge of the containing block (thus, a right margin of '10px' has
been reserved in anticipation of the offset). The two hyphens acting as change bars are taken out of the
flow and positioned at the current line (due to 'top: auto'), '-1em' from the left edge of its containing
block (established by the P in its final position). The result is that the change bars seem to "float" to
the left of the current line.

9.9 Layered presentation

9.9.1 Specifying the stack level: the 'z-index'p.173 property

Name: z-index

Value: auto | <integer>p.57 | inheritp.99

Initial: auto

Applies to: positioned elements

Inherited: no
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Percentages: N/A

Media: visualp.110

Computed value: as specified

For a positioned box, the 'z-index'p.173 property specifies:

1. The stack level of the box in the current stacking context.

2. Whether the box establishes a stacking context.

Values have the following meanings:
<integer>p. 57

This integer is the stack level of the generated box in the current stacking context. The box also es-
tablishes a new stacking context.

auto
The stack level of the generated box in the current stacking context is 0. If the box has 'position:
fixed' or if it is the root, it also establishes a new stacking context.

In this section, the expression "in front of" means closer to the user as the user faces the screen.
In CSS 2.2, each box has a position in three dimensions. In addition to their horizontal and vertical po-

sitions, boxes lie along a "z-axis" and are formatted one on top of the other. Z-axis positions are particu-
larly relevant when boxes overlap visually. This section discusses how boxes may be positioned along the
z-axis.

The order in which the rendering tree is painted onto the canvas is described in terms of stacking con-
texts. Stacking contexts can contain further stacking contexts. A stacking context is atomic from the point
of view of its parent stacking context; boxes in other stacking contexts may not come between any of its
boxes.

Each box belongs to one stacking context. Each positioned box in a given stacking context has an inte-
ger stack level, which is its position on the z-axis relative other stack levels within the same stacking con-
text. Boxes with greater stack levels are always formatted in front of boxes with lower stack levels. Boxes
may have negative stack levels. Boxes with the same stack level in a stacking context are stacked back-to-
front according to document tree order.

The root element forms the root stacking context. Other stacking contexts are generated by any posi-
tioned element (including relatively positioned elements) having a computed value of 'z-index' other than
'auto'. Stacking contexts are not necessarily related to containing blocks. In future levels of CSS, other
properties may introduce stacking contexts, for example 'opacity' [CSS3COLOR]p.363.

Within each stacking context, the following layers are painted in back-to-front order:
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1. the background and borders of the element forming the stacking context.

2. the child stacking contexts with negative stack levels (most negative first).

3. the in-flow, non-inline-level, non-positioned descendants.

4. the non-positioned floats.

5. the in-flow, inline-level, non-positioned descendants, including inline tables and inline blocks.

6. the child stacking contexts with stack level 0 and the positioned descendants with stack level 0.

7. the child stacking contexts with positive stack levels (least positive first).

Within each stacking context, positioned elements with stack level 0 (in layer 6), non-positioned floats
(layer 4), inline blocks (layer 5), and inline tables (layer 5), are painted as if those elements themselves
generated new stacking contexts, except that their positioned descendants and any would-be child stacking
contexts take part in the current stacking context.

This painting order is applied recursively to each stacking context. This description of stacking context
painting order constitutes an overview of the detailed normative definition in Appendix E.p.385
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In the following example, the stack levels of the boxes (named with their "id" attributes) are: "tex-
t2"=0, "image"=1, "text3"=2, and "text1"=3. The "text2" stack level is inherited from the root box.
The others are specified with the 'z-index'p.173 property.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Z-order positioning</TITLE>

<STYLE type="text/css">

.pile {

position: absolute;

left: 2in;

top: 2in;

width: 3in;

height: 3in;

}

</STYLE>

</HEAD>

<BODY>

<P>

<IMG id="visuren.html.image" class="pile"

src="butterfly.png" alt="A butterfly image"

style="z-index: 1">

<DIV id="visuren.html.text1" class="pile"

style="z-index: 3">

This text will overlay the butterfly image.

</DIV>

<DIV id="visuren.html.text2">

This text will be beneath everything.

</DIV>

<DIV id="visuren.html.text3" class="pile"

style="z-index: 2">

This text will underlay text1, but overlay the butterfly image

</DIV>

</BODY>

</HTML>
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This example demonstrates the notion of transparency. The default behavior of the background is to allow
boxes behind it to be visible. In the example, each box transparently overlays the boxes below it. This be-
havior can be overridden by using one of the existing background propertiesp.257.

9.10 Text direction: the 'direction'p.177 and 'unicode-bidi'p.178 properties

Conformingp.39 user agents that do not support bidirectional text may ignore the 'direction'p.177 and
'unicode-bidi'p.178 properties described in this section. This exception includes UAs that render right-to-
left characters simply because a font on the system contains them but do not support the concept of right-
to-left text direction.

The characters in certain scripts are written from right to left. In some documents, in particular those
written with the Arabic or Hebrew script, and in some mixed-language contexts, text in a single (visually
displayed) block may appear with mixed directionality. This phenomenon is called bidirectionality, or
"bidi" for short.

The Unicode standard ([UNICODE]p.362, [UAX9]p.362) defines a complex algorithm for determining
the proper directionality of text. The algorithm consists of an implicit part based on character properties,
as well as explicit controls for embeddings and overrides. CSS 2.2 relies on this algorithm to achieve
proper bidirectional rendering. The 'direction'p.177 and 'unicode-bidi'p.178 properties allow authors to spec-
ify how the elements and attributes of a document language map to this algorithm.

User agents that support bidirectional text must apply the Unicode bidirectional algorithm to every se-
quence of inline-level boxes uninterrupted by a forced (bidi class B) break or block boundary. This se-
quence forms the "paragraph" unit in the bidirectional algorithm. The paragraph embedding level is set ac-
cording to the value of the 'direction'p.177 property of the containing block rather than by the heuristic giv-
en in steps P2 and P3 of the Unicode algorithm.

Because the directionality of a text depends on the structure and semantics of the document language,
these properties should in most cases be used only by designers of document type descriptions (DTDs), or
authors of special documents. If a default style sheet specifies these properties, authors and users should
not specify rules to override them.

The HTML 4 specification ([HTML4], section 8.2) defines bidirectionality behavior for HTML ele-
ments. The style sheet rules that would achieve the bidi behavior specified in [HTML4]p.361 are given in
the sample style sheetp.383. The HTML 4 specification also contains more information on bidirectionality
issues.

Name: direction

Value: ltr | rtl | inheritp.99

Initial: ltr
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Applies to: all elements, but see prose

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property specifies the base writing direction of blocks and the direction of embeddings and overrides
(see 'unicode-bidi'p.178) for the Unicode bidirectional algorithm. In addition, it specifies such things as the
direction of tablep.295 column layout, the direction of horizontal overflowp.210, the position of an incom-
plete last line in a block in case of 'text-align: justify'.

Values for this property have the following meanings:
ltr

Left-to-right direction.

rtl
Right-to-left direction.

For the 'direction'p.177 property to affect reordering in inline elements, the 'unicode-bidi'p.178 property's
value must be 'embed' or 'override'.

Note. The 'direction'p.177 property, when specified for table column elements, is not inherited by cells
in the column since columns are not the ancestors of the cells in the document tree. Thus, CSS cannot
easily capture the "dir" attribute inheritance rules described in [HTML4]p.361, section 11.3.2.1.

Name: unicode-bidi

Value: normal | embed | bidi-override | inheritp.99

Initial: normal

Applies to: all elements, but see prose

Inherited: no

Percentages: N/A

Media: visualp.110
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Computed value: as specified

Values for this property have the following meanings:
normal

The element does not open an additional level of embedding with respect to the bidirectional algo-
rithm. For inline elements, implicit reordering works across element boundaries.

embed
If the element is inline, this value opens an additional level of embedding with respect to the bidirec-
tional algorithm. The direction of this embedding level is given by the 'direction'p.177 property. Inside
the element, reordering is done implicitly. This corresponds to adding a LRE (U+202A; for 'direc-
tion: ltr') or RLE (U+202B; for 'direction: rtl') at the start of the element and a PDF (U+202C) at the
end of the element.

bidi-override
For inline elements this creates an override. For block container elements this creates an override for
inline-level descendants not within another block container element. This means that inside the ele-
ment, reordering is strictly in sequence according to the 'direction'p.177 property; the implicit part of
the bidirectional algorithm is ignored. This corresponds to adding a LRO (U+202D; for 'direction:
ltr') or RLO (U+202E; for 'direction: rtl') at the start of the element or at the start of each anonymous
child block box, if any, and a PDF (U+202C) at the end of the element.

The final order of characters in each block container is the same as if the bidi control codes had been
added as described above, markup had been stripped, and the resulting character sequence had been
passed to an implementation of the Unicode bidirectional algorithm for plain text that produced the same
line-breaks as the styled text. In this process, replaced elements with 'display: inline' are treated as neutral
characters, unless their 'unicode-bidi'p.178 property has a value other than 'normal', in which case they are
treated as strong characters in the 'direction'p.177 specified for the element. All other atomic inline-level
boxes are treated as neutral characters always.

Please note that in order to be able to flow inline boxes in a uniform direction (either entirely left-to-
right or entirely right-to-left), more inline boxes (including anonymous inline boxes) may have to be cre-
ated, and some inline boxes may have to be split up and reordered before flowing.

Because the Unicode algorithm has a limit of 61 levels of embedding, care should be taken not to use
'unicode-bidi'p.178 with a value other than 'normal' unless appropriate. In particular, a value of 'inherit'
should be used with extreme caution. However, for elements that are, in general, intended to be displayed
as blocks, a setting of 'unicode-bidi: embed' is preferred to keep the element together in case display is
changed to inline (see example below).

The following example shows an XML document with bidirectional text. It illustrates an important de-
sign principle: DTD designers should take bidi into account both in the language proper (elements and at-
tributes) and in any accompanying style sheets. The style sheets should be designed so that bidi rules are
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separate from other style rules. The bidi rules should not be overridden by other style sheets so that the
document language's or DTD's bidi behavior is preserved.
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In this example, lowercase letters stand for inherently left-to-right characters and uppercase letters rep-
resent inherently right-to-left characters:

<HEBREW>

<PAR>HEBREW1 HEBREW2 english3 HEBREW4 HEBREW5</PAR>

<PAR>HEBREW6 <EMPH>HEBREW7</EMPH> HEBREW8</PAR>

</HEBREW>

<ENGLISH>

<PAR>english9 english10 english11 HEBREW12 HEBREW13</PAR>

<PAR>english14 english15 english16</PAR>

<PAR>english17 <HE-QUO>HEBREW18 english19 HEBREW20</HE-QUO></PAR>

</ENGLISH>

Since this is XML, the style sheet is responsible for setting the writing direction. This is the style
sheet:

/* Rules for bidi */

HEBREW, HE-QUO  {direction: rtl; unicode-bidi: embed}

ENGLISH         {direction: ltr; unicode-bidi: embed}

/* Rules for presentation */

HEBREW, ENGLISH, PAR  {display: block}

EMPH                  {font-weight: bold}

The HEBREW element is a block with a right-to-left base direction, the ENGLISH element is a block
with a left-to-right base direction. The PARs are blocks that inherit the base direction from their par-
ents. Thus, the first two PARs are read starting at the top right, the final three are read starting at the
top left. Please note that HEBREW and ENGLISH are chosen as element names for explicitness only;
in general, element names should convey structure without reference to language.

The EMPH element is inline-level, and since its value for 'unicode-bidi'p.178 is 'normal' (the initial
value), it has no effect on the ordering of the text. The HE-QUO element, on the other hand, creates an
embedding.

The formatting of this text might look like this if the line length is long:
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5WERBEH 4WERBEH english3 2WERBEH 1WERBEH

8WERBEH 7WERBEH 6WERBEH

english9 english10 english11 13WERBEH 12WERBEH

english14 english15 english16

english17 20WERBEH english19 18WERBEH

Note that the HE-QUO embedding causes HEBREW18 to be to the right of english19.
If lines have to be broken, it might be more like this:

2WERBEH 1WERBEH

-EH 4WERBEH english3

5WERB

-EH 7WERBEH 6WERBEH

8WERB

english9 english10 en-

glish11 12WERBEH

13WERBEH

english14 english15

english16

english17 18WERBEH

20WERBEH english19

Because HEBREW18 must be read before english19, it is on the line above english19. Just breaking
the long line from the earlier formatting would not have worked. Note also that the first syllable from
english19 might have fit on the previous line, but hyphenation of left-to-right words in a right-to-left
context, and vice versa, is usually suppressed to avoid having to display a hyphen in the middle of a
line.
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10 Visual formatting model details
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10.1 Definition of "containing block"

The position and size of an element's box(es) are sometimes calculated relative to a certain rectangle,
called the containing block of the element. The containing block of an element is defined as follows:

1. The containing block in which the root elementp.37 lives is a rectangle called the initial containing
block. For continuous media, it has the dimensions of the viewportp.135 and is anchored at the canvas
origin; it is the page areap.246 for paged media. The 'direction' property of the initial containing block
is the same as for the root element.

2. For other elements, if the element's position is 'relative' or 'static', the containing block is formed by
the content edge of the nearest ancestor box that is a block containerp.135 or which establishes a for-
matting context.

3. If the element has 'position: fixed', the containing block is established by the viewportp.135 in the
case of continuous media or the page area in the case of paged media.

4. If the element has 'position: absolute', the containing block is established by the nearest ancestor with
a 'position'p.141 of 'absolute', 'relative' or 'fixed', in the following way:

1. In the case that the ancestor is an inline element, the containing block is the bounding box
around the padding boxes of the first and the last inline boxes generated for that element. In
CSS 2.2, if the inline element is split across multiple lines, the containing block is undefined.

2. Otherwise, the containing block is formed by the padding edgep.114 of the ancestor.

If there is no such ancestor, the containing block is the initial containing block.

– 10 Visual formatting model details –

– 184 –



In paged media, an absolutely positioned element is positioned relative to its containing block ignoring
any page breaks (as if the document were continuous). The element may subsequently be broken over sev-
eral pages.

For absolutely positioned content that resolves to a position on a page other than the page being laid out
(the current page), or resolves to a position on the current page which has already been rendered for print-
ing, printers may place the content

• on another location on the current page,

• on a subsequent page, or

• may omit it.

Note that a block-level element that is split over several pages may have a different width on each
page and that there may be device-specific limits.
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With no positioning, the containing blocks (C.B.) in the following document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Illustration of containing blocks</TITLE>

</HEAD>

<BODY id="visudet.html.body">

<DIV id="visudet.html.div1">

<P id="visudet.html.p1">This is text in the first paragraph...</P>

<P id="visudet.html.p2">This is text <EM id="visudet.html.em1"> in the

<STRONG id="visudet.html.strong1">second</STRONG> paragraph.</EM></P>

</DIV>

</BODY>

</HTML>

are established as follows:

For box generated by C.B. is established by

html initial C.B. (UA-dependent)

body html

div1 body

p1 div1

p2 div1

em1 p2

strong1 p2

If we position "div1":

#div1 { position: absolute; left: 50px; top: 50px }

its containing block is no longer "body"; it becomes the initial containing block (since there are no
other positioned ancestor boxes).

If we position "em1" as well:

#div1 { position: absolute; left: 50px; top: 50px }

#em1  { position: absolute; left: 100px; top: 100px }

the table of containing blocks becomes:

For box generated by C.B. is established by
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html initial C.B. (UA-dependent)

body html

div1 initial C.B.

p1 div1

p2 div1

em1 div1

strong1 em1

By positioning "em1", its containing block becomes the nearest positioned ancestor box (i.e., that gen-
erated by "div1").

10.2 Content width: the 'width'p.187 property

Name: width

Value: <length>p.58 | <percentage>p.61 | auto | inheritp.99

Initial: auto

Applies to: all elements but non-replaced inline elements, table rows, and row groups

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110

Computed value: the percentage or 'auto' as specified or the absolute length

This property specifies the content widthp.114 of boxes.
This property does not apply to non-replaced inlinep.138 elements. The content width of a non-replaced

inline element's boxes is that of the rendered content within them (before any relative offset of children).
Recall that inline boxes flow into line boxesp.145. The width of line boxes is given by the their containing
blockp.135, but may be shorted by the presence of floatsp.150.

Values have the following meanings:
<length>p. 58

Specifies the width of the content area using a length unit.
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<percentage>p. 61

Specifies a percentage width. The percentage is calculated with respect to the width of the generated
box's containing blockp.135. If the containing block's width depends on this element's width, then the
resulting layout is undefined in CSS 2.2. Note: For absolutely positioned elements whose contain-
ing block is based on a block container element, the percentage is calculated with respect to the width
of the padding box of that element. This is a change from CSS1, where the percentage width was al-
ways calculated with respect to the content box of the parent element.

auto
The width depends on the values of other properties. See the sections below.

Negative values for 'width'p.187 are illegal.

For example, the following rule fixes the content width of paragraphs at 100 pixels:

p { width: 100px }

10.3 Calculating widths and margins

The values of an element's 'width'p.187, 'margin-left'p.118, 'margin-right'p.118, 'left'p.144 and 'right'p.143

properties as used for layout depend on the type of box generated and on each other. (The value used for
layout is sometimes referred to as the used valuep.98.) In principle, the values used are the same as the
computed values, with 'auto' replaced by some suitable value, and percentages calculated based on the
containing block, but there are exceptions. The following situations need to be distinguished:

1. inline, non-replaced elements

2. inline, replaced elements

3. block-level, non-replaced elements in normal flow

4. block-level, replaced elements in normal flow

5. floating, non-replaced elements

6. floating, replaced elements

7. absolutely positioned, non-replaced elements

8. absolutely positioned, replaced elements

9. 'inline-block', non-replaced elements in normal flow

10. 'inline-block', replaced elements in normal flow
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For Points 1-6 and 9-10, the values of 'left' and 'right' in the case of relatively positioned elements are de-
termined by the rules in section 9.4.3.p.148

Note. The used value of 'width' calculated below is a tentative value, and may have to be calculated
multiple times, depending on 'min-width'p.193 and 'max-width'p.193, see the section Minimum and max-
imum widthsp.193 below.

10.3.1 Inline, non-replaced elements

The 'width'p.187 property does not apply. A computed value of 'auto' for 'margin-left'p.118 or 'margin-
right'p.118 becomes a used value of '0'.

10.3.2 Inline, replaced elements

A computed value of 'auto' for 'margin-left'p.118 or 'margin-right'p.118 becomes a used value of '0'.
If 'height'p.195 and 'width'p.187 both have computed values of 'auto' and the element also has an intrinsic

width, then that intrinsic width is the used value of 'width'p.187.
If 'height'p.195 and 'width'p.187 both have computed values of 'auto' and the element has no intrinsic

width, but does have an intrinsic height and intrinsic ratio; or if 'width'p.187 has a computed value of 'auto',
'height'p.195 has some other computed value, and the element does have an intrinsic ratio; then the used
value of 'width'p.187 is:

(used height) * (intrinsic ratio)

If 'height' and 'width'p.187 both have computed values of 'auto' and the element has an intrinsic ratio but no
intrinsic height or width, then the used value of 'width' is undefined in CSS 2.2. However, it is suggested
that, if the containing block's width does not itself depend on the replaced element's width, then the used
value of 'width' is calculated from the constraint equation used for block-level, non-replaced elements in
normal flow.

Otherwise, if 'width'p.187 has a computed value of 'auto', and the element has an intrinsic width, then
that intrinsic width is the used value of 'width'p.187.

Otherwise, if 'width'p.187 has a computed value of 'auto', but none of the conditions above are met, then
the used value of 'width'p.187 becomes 300px. If 300px is too wide to fit the device, UAs should use the
width of the largest rectangle that has a 2:1 ratio and fits the device instead.

10.3.3 Block-level, non-replaced elements in normal flow

The following constraints must hold among the used values of the other properties:
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'margin-left'p.118 + 'border-left-width'p.124 + 'padding-left'p.122 + 'width'p.187 + 'padding-right'p.122 +
'border-right-width'p.124 + 'margin-right'p.118 = width of containing blockp.184

If 'width' is not 'auto' and 'border-left-width' + 'padding-left' + 'width' + 'padding-right' + 'border-right-
width' (plus any of 'margin-left' or 'margin-right' that are not 'auto') is larger than the width of the contain-
ing block, then any 'auto' values for 'margin-left' or 'margin-right' are, for the following rules, treated as
zero.

If all of the above have a computed value other than 'auto', the values are said to be "over-constrained"
and one of the used values will have to be different from its computed value. If the 'direction'p.177 proper-
ty of the containing block has the value 'ltr', the specified value of 'margin-right'p.118 is ignored and the
value is calculated so as to make the equality true. If the value of 'direction'p.177 is 'rtl', this happens to
'margin-left'p.118 instead.

If there is exactly one value specified as 'auto', its used value follows from the equality.
If 'width'p.187 is set to 'auto', any other 'auto' values become '0' and 'width'p.187 follows from the result-

ing equality.
If both 'margin-left'p.118 and 'margin-right'p.118 are 'auto', their used values are equal. This horizontally

centers the element with respect to the edges of the containing block.

10.3.4 Block-level, replaced elements in normal flow

The used value of 'width'p.187 is determined as for inline replaced elementsp.189. Then the rules for non-
replaced block-level elementsp.189 are applied to determine the margins.

10.3.5 Floating, non-replaced elements

If 'margin-left'p.118, or 'margin-right'p.118 are computed as 'auto', their used value is '0'.
If 'width'p.187 is computed as 'auto', the used value is the "shrink-to-fit" width.
Calculation of the shrink-to-fit width is similar to calculating the width of a table cell using the auto-

matic table layout algorithm. Roughly: calculate the preferred width by formatting the content without
breaking lines other than where explicit line breaks occur, and also calculate the preferred minimum
width, e.g., by trying all possible line breaks. CSS 2.2 does not define the exact algorithm. Thirdly, find
the available width: in this case, this is the width of the containing block minus the used values of
'margin-left', 'border-left-width', 'padding-left', 'padding-right', 'border-right-width', 'margin-right', and the
widths of any relevant scroll bars.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width), preferred width).

10.3.6 Floating, replaced elements

If 'margin-left'p.118 or 'margin-right'p.118 are computed as 'auto', their used value is '0'. The used value of
'width'p.187 is determined as for inline replaced elementsp.189.
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10.3.7 Absolutely positioned, non-replaced elements

For the purposes of this section and the next, the term "static position" (of an element) refers, roughly, to
the position an element would have had in the normal flow. More precisely:

• The static-position containing block is the containing block of a hypothetical box that would have
been the first box of the element if its specified 'position'p.141 value had been 'static' and its specified
'float' had been 'none'. (Note that due to the rules in section 9.7p.164 this hypothetical calculation
might require also assuming a different computed value for 'display'.)

• The static position for 'left' is the distance from the left edge of the containing block to the left mar-
gin edge of a hypothetical box that would have been the first box of the element if its 'position'p.141

property had been 'static' and 'float'p.154 had been 'none'. The value is negative if the hypothetical box
is to the left of the containing block.

• The static position for 'right' is the distance from the right edge of the containing block to the right
margin edge of the same hypothetical box as above. The value is positive if the hypothetical box is to
the left of the containing block's edge.

But rather than actually calculating the dimensions of that hypothetical box, user agents are free to make a
guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed positioned elements is
the initial containing block instead of the viewport, and all scrollable boxes should be assumed to be
scrolled to their origin.

The constraint that determines the used values for these elements is:

'left' + 'margin-left' + 'border-left-width' + 'padding-left' + 'width' + 'padding-right' + 'border-right-
width' + 'margin-right' + 'right' = width of containing block

If all three of 'left', 'width', and 'right' are 'auto': First set any 'auto' values for 'margin-left' and 'margin-
right' to 0. Then, if the 'direction' property of the element establishing the static-position containing block
is 'ltr' set 'left' to the static positionp.191 and apply rule number three below; otherwise, set 'right' to the sta-
tic positionp.191 and apply rule number one below.

If none of the three is 'auto': If both 'margin-left' and 'margin-right' are 'auto', solve the equation under
the extra constraint that the two margins get equal values, unless this would make them negative, in which
case when direction of the containing block is 'ltr' ('rtl'), set 'margin-left' ('margin-right') to zero and solve
for 'margin-right' ('margin-left'). If one of 'margin-left' or 'margin-right' is 'auto', solve the equation for that
value. If the values are over-constrained, ignore the value for 'left' (in case the 'direction' property of the
containing block is 'rtl') or 'right' (in case 'direction' is 'ltr') and solve for that value.

Otherwise, set 'auto' values for 'margin-left' and 'margin-right' to 0, and pick the one of the following
six rules that applies.
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1. 'left' and 'width' are 'auto' and 'right' is not 'auto', then the width is shrink-to-fit. Then solve for 'left'

2. 'left' and 'right' are 'auto' and 'width' is not 'auto', then if the 'direction' property of the element estab-
lishing the static-position containing block is 'ltr' set 'left' to the static positionp.191, otherwise set
'right' to the static positionp.191. Then solve for 'left' (if 'direction is 'rtl') or 'right' (if 'direction' is 'ltr').

3. 'width' and 'right' are 'auto' and 'left' is not 'auto', then the width is shrink-to-fit . Then solve for 'right'

4. 'left' is 'auto', 'width' and 'right' are not 'auto', then solve for 'left'

5. 'width' is 'auto', 'left' and 'right' are not 'auto', then solve for 'width'

6. 'right' is 'auto', 'left' and 'width' are not 'auto', then solve for 'right'

Calculation of the shrink-to-fit width is similar to calculating the width of a table cell using the automatic
table layout algorithm. Roughly: calculate the preferred width by formatting the content without breaking
lines other than where explicit line breaks occur, and also calculate the preferred minimum width, e.g., by
trying all possible line breaks. CSS 2.2 does not define the exact algorithm. Thirdly, calculate the avail-
able width: this is found by solving for 'width' after setting 'left' (in case 1) or 'right' (in case 3) to 0.

Then the shrink-to-fit width is: min(max(preferred minimum width, available width), preferred width).

10.3.8 Absolutely positioned, replaced elements

In this case, section 10.3.7p.191 applies up through and including the constraint equation, but the rest of
section 10.3.7p.191 is replaced by the following rules:

1. The used value of 'width'p.187 is determined as for inline replaced elementsp.189. If 'margin-left'p.118

or 'margin-right'p.118 is specified as 'auto' its used value is determined by the rules below.

2. If both 'left'p.144 and 'right'p.143 have the value 'auto', then if the 'direction' property of the element
establishing the static-position containing block is 'ltr', set 'left'p.144 to the static position; else if 'di-
rection' is 'rtl', set 'right'p.143 to the static position.

3. If 'left'p.144 or 'right'p.143 are 'auto', replace any 'auto' on 'margin-left'p.118 or 'margin-right'p.118 with
'0'.

4. If at this point both 'margin-left'p.118 and 'margin-right'p.118 are still 'auto', solve the equation under
the extra constraint that the two margins must get equal values, unless this would make them nega-
tive, in which case when the direction of the containing block is 'ltr' ('rtl'), set 'margin-left'p.118

('margin-right'p.118) to zero and solve for 'margin-right'p.118 ('margin-left'p.118).

5. If at this point there is an 'auto' left, solve the equation for that value.
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6. If at this point the values are over-constrained, ignore the value for either 'left'p.144 (in case the 'direc-
tion'p.177 property of the containing block is 'rtl') or 'right'p.143 (in case 'direction'p.177 is 'ltr') and
solve for that value.

10.3.9 'Inline-block', non-replaced elements in normal flow

If 'width'p.187 is 'auto', the used value is the shrink-to-fitp.190 width as for floating elements.
A computed value of 'auto' for 'margin-left'p.118 or 'margin-right'p.118 becomes a used value of '0'.

10.3.10 'Inline-block', replaced elements in normal flow

Exactly as inline replaced elements.p.189

10.4 Minimum and maximum widths: 'min-width'p.193 and 'max-width'p.193

Name: min-width

Value: <length>p.58 | <percentage>p.61 | inheritp.99

Initial: 0

Applies to: all elements but non-replaced inline elements, table rows, and row groups

Inherited: no

Percentages: refer to width of containing block

Media: visualp.110

Computed value: the percentage as specified or the absolute length

Name: max-width

Value: <length>p.58 | <percentage>p.61 | none | inheritp.99

Initial: none

Applies to: all elements but non-replaced inline elements, table rows, and row groups

Inherited: no
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Percentages: refer to width of containing block

Media: visualp.110

Computed value: the percentage as specified or the absolute length or 'none'

These two properties allow authors to constrain content widths to a certain range. Values have the follow-
ing meanings:
<length>p. 58

Specifies a fixed minimum or maximum used width.

<percentage>p. 61

Specifies a percentage for determining the used value. The percentage is calculated with respect to
the width of the generated box's containing blockp.135. If the containing block's width is negative, the
used value is zero. If the containing block's width depends on this element's width, then the resulting
layout is undefined in CSS 2.2.

none
(Only on 'max-width'p.193) No limit on the width of the box.

Negative values for 'min-width'p.193 and 'max-width'p.193 are illegal.
In CSS 2.2, the effect of 'min-width' and 'max-width' on tables, inline tables, table cells, table columns,

and column groups is undefined.
The following algorithm describes how the two properties influence the used valuep.98 of the

'width'p.187 property:

1. The tentative used width is calculated (without 'min-width'p.193 and 'max-width'p.193) following the
rules under "Calculating widths and margins"p.188 above.

2. If the tentative used width is greater than 'max-width'p.193, the rules abovep.188 are applied again, but
this time using the computed value of 'max-width'p.193 as the computed value for 'width'p.187.

3. If the resulting width is smaller than 'min-width'p.193, the rules abovep.188 are applied again, but this
time using the value of 'min-width'p.193 as the computed value for 'width'p.187.

These steps do not affect the real computed values of the above properties.

However, for replaced elements with an intrinsic ratio and both 'width'p.187 and 'height'p.195 specified as
'auto', the algorithm is as follows:

Select from the table the resolved height and width values for the appropriate constraint violation. Take
the max-width and max-height as max(min, max) so that min ≤ max holds true. In this table w and h stand
for the results of the width and height computations ignoring the 'min-width'p.193, 'min-height'p.201, 'max-
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width'p.193 and 'max-height'p.202 properties. Normally these are the intrinsic width and height, but they
may not be in the case of replaced elements with intrinsic ratios.

Note: In cases where an explicit width or height is set and the other dimension is auto, applying a min-
imum or maximum constraint on the auto side can cause an over-constrained situation. The spec is
clear in the behavior but it might not be what the author expects. The CSS3 object-fit property can be
used to obtain different results in this situation.

Constraint Violation Resolved Width Resolved Height
none w h

w > max-width max-width
max(max-width * h/w,
min-height)

w < min-width min-width
min(min-width * h/w,
max-height)

h > max-height
max(max-height * w/h,
min-width)

max-height

h < min-height
min(min-height * w/h,
max-width)

min-height

(w > max-width) and (h > max-height), where (max-
width/w ≤ max-height/h)

max-width
max(min-height, max-
width * h/w)

(w > max-width) and (h > max-height), where (max-
width/w > max-height/h)

max(min-width, max-
height * w/h)

max-height

(w < min-width) and (h < min-height), where (min-
width/w ≤ min-height/h)

min(max-width, min-
height * w/h)

min-height

(w < min-width) and (h < min-height), where (min-
width/w > min-height/h)

min-width
min(max-height, min-
width * h/w)

(w < min-width) and (h > max-height) min-width max-height
(w > max-width) and (h < min-height) max-width min-height
Then apply the rules under "Calculating widths and margins"p.188 above, as if 'width'p.187 were computed
as this value.

10.5 Content height: the 'height'p. 195 property

Name: height

Value: <length>p.58 | <percentage>p.61 | auto | inheritp.99

Initial: auto
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Applies to: all elements but non-replaced inline elements, table columns, and column
groups

Inherited: no

Percentages: see prose

Media: visualp.110

Computed value: the percentage or 'auto' (as specified) or the absolute length

This property specifies the content heightp.114 of boxes.
This property does not apply to non-replaced inlinep.138 elements. See the section on computing heights

and margins for non-replaced inline elements p.197 for the rules used instead.
Values have the following meanings:

<length>p. 58

Specifies the height of the content area using a length value.

<percentage>p. 61

Specifies a percentage height. The percentage is calculated with respect to the height of the generated
box's containing blockp.135. If the height of the containing block is not specified explicitly (i.e., it de-
pends on content height), and this element is not absolutely positioned, the used height is calculated
as if 'auto' was specified. A percentage height on the root elementp.37 is relative to the initial contain-
ing blockp.184. Note: For absolutely positioned elements whose containing block is based on a
block-level element, the percentage is calculated with respect to the height of the padding box of that
element. This is a change from CSS1, where the percentage was always calculated with respect to the
content box of the parent element.

auto
The height depends on the values of other properties. See the prose below.

Note that the height of the containing block of an absolutely positioned element is independent of the
size of the element itself, and thus a percentage height on such an element can always be resolved.
However, it may be that the height is not known until elements that come later in the document have
been processed.

Negative values for 'height'p.195 are illegal.
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For example, the following rule sets the content height of paragraphs to 100 pixels:

p { height: 100px }

Paragraphs of which the height of the contents exceeds 100 pixels will overflowp.210 according to the
'overflow'p.210 property.

10.6 Calculating heights and margins

For calculating the values of 'top'p.142, 'margin-top'p.117, 'height'p.195, 'margin-bottom'p.117, and 'bot-
tom'p.143 a distinction must be made between various kinds of boxes:

1. inline, non-replaced elements

2. inline, replaced elements

3. block-level, non-replaced elements in normal flow

4. block-level, replaced elements in normal flow

5. floating, non-replaced elements

6. floating, replaced elements

7. absolutely positioned, non-replaced elements

8. absolutely positioned, replaced elements

9. 'inline-block', non-replaced elements in normal flow

10. 'inline-block', replaced elements in normal flow

For Points 1-6 and 9-10, the used values of 'top' and 'bottom' are determined by the rules in section 9.4.3.

Note: these rules apply to the root element just as to any other element.

Note. The used value of 'height' calculated below is a tentative value, and may have to be calculated
multiple times, depending on 'min-height'p.201 and 'max-height'p.202, see the section Minimum and
maximum heightsp.201 below.

10.6.1 Inline, non-replaced elements

The 'height'p.195 property does not apply. The height of the content area should be based on the font, but
this specification does not specify how. A UA may, e.g., use the em-box or the maximum ascender and
descender of the font. (The latter would ensure that glyphs with parts above or below the em-box still fall
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within the content area, but leads to differently sized boxes for different fonts; the former would ensure
authors can control background styling relative to the 'line-height', but leads to glyphs painting outside
their content area.)

Note: level 3 of CSS will probably include a property to select which measure of the font is used for
the content height.

The vertical padding, border and margin of an inline, non-replaced box start at the top and bottom of the
content area, and has nothing to do with the 'line-height'p.204. But only the 'line-height'p.204 is used when
calculating the height of the line box.

If more than one font is used (this could happen when glyphs are found in different fonts), the height of
the content area is not defined by this specification. However, we suggest that the height is chosen such
that the content area is just high enough for either (1) the em-boxes, or (2) the maximum ascenders and
descenders, of all the fonts in the element. Note that this may be larger than any of the font sizes involved,
depending on the baseline alignment of the fonts.

10.6.2 Inline replaced elements, block-level replaced elements in normal flow, 'inline-
block' replaced elements in normal flow and floating replaced elements

If 'margin-top'p.117, or 'margin-bottom'p.117 are 'auto', their used value is 0.
If 'height'p.195 and 'width'p.187 both have computed values of 'auto' and the element also has an intrinsic

height, then that intrinsic height is the used value of 'height'p.195.
Otherwise, if 'height'p.195 has a computed value of 'auto', and the element has an intrinsic ratio then the

used value of 'height'p.195 is:

(used width) / (intrinsic ratio)

Otherwise, if 'height'p.195 has a computed value of 'auto', and the element has an intrinsic height, then that
intrinsic height is the used value of 'height'p.195.

Otherwise, if 'height'p.195 has a computed value of 'auto', but none of the conditions above are met, then
the used value of 'height'p.195 must be set to the height of the largest rectangle that has a 2:1 ratio, has a
height not greater than 150px, and has a width not greater than the device width.

10.6.3 Block-level non-replaced elements in normal flow when 'overflow' computes to
'visible'

This section also applies to block-level non-replaced elements in normal flow when 'overflow' does not
compute to 'visible' but has been propagated to the viewport.

If 'margin-top'p.117, or 'margin-bottom'p.117 are 'auto', their used value is 0. If 'height'p.195 is 'auto', the
height depends on whether the element has any block-level children and whether it has padding or bor-
ders:
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The element's height is the distance from its top content edge to the first applicable of the following:

1. the bottom edge of the last line box, if the box establishes a inline formatting context with one or
more lines

2. the bottom edge of the bottom (possibly collapsed) margin of its last in-flow child, if the child's bot-
tom margin does not collapse with the element's bottom margin

3. the bottom border edge of the last in-flow child whose top margin doesn't collapse with the element's
bottom margin

4. zero, otherwise

Only children in the normal flow are taken into account (i.e., floating boxes and absolutely positioned
boxes are ignored, and relatively positioned boxes are considered without their offset). Note that the child
box may be an anonymous block box.p.136

10.6.4 Absolutely positioned, non-replaced elements

For the purposes of this section and the next, the term "static position" (of an element) refers, roughly, to
the position an element would have had in the normal flow. More precisely, the static position for 'top' is
the distance from the top edge of the containing block to the top margin edge of a hypothetical box that
would have been the first box of the element if its specified 'position'p.141 value had been 'static' and its
specified 'float'p.154 had been 'none' and its specified 'clear'p.156 had been 'none'. (Note that due to the
rules in section 9.7p.164 this might require also assuming a different computed value for 'display'.) The
value is negative if the hypothetical box is above the containing block.

But rather than actually calculating the dimensions of that hypothetical box, user agents are free to
make a guess at its probable position.

For the purposes of calculating the static position, the containing block of fixed positioned elements is
the initial containing block instead of the viewport.

For absolutely positioned elements, the used values of the vertical dimensions must satisfy this con-
straint:

'top' + 'margin-top' + 'border-top-width' + 'padding-top' + 'height' + 'padding-bottom' + 'border-bottom-
width' + 'margin-bottom' + 'bottom' = height of containing block

If all three of 'top', 'height', and 'bottom' are auto, set 'top' to the static position and apply rule number
three below.

If none of the three are 'auto': If both 'margin-top' and 'margin-bottom' are 'auto', solve the equation un-
der the extra constraint that the two margins get equal values. If one of 'margin-top' or 'margin-bottom' is
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'auto', solve the equation for that value. If the values are over-constrained, ignore the value for 'bottom'
and solve for that value.

Otherwise, pick the one of the following six rules that applies.

1. 'top' and 'height' are 'auto' and 'bottom' is not 'auto', then the height is based on the content per
10.6.7p. 201, set 'auto' values for 'margin-top' and 'margin-bottom' to 0, and solve for 'top'

2. 'top' and 'bottom' are 'auto' and 'height' is not 'auto', then set 'top' to the static position, set 'auto' val-
ues for 'margin-top' and 'margin-bottom' to 0, and solve for 'bottom'

3. 'height' and 'bottom' are 'auto' and 'top' is not 'auto', then the height is based on the content per
10.6.7p. 201, set 'auto' values for 'margin-top' and 'margin-bottom' to 0, and solve for 'bottom'

4. 'top' is 'auto', 'height' and 'bottom' are not 'auto', then set 'auto' values for 'margin-top' and 'margin-
bottom' to 0, and solve for 'top'

5. 'height' is 'auto', 'top' and 'bottom' are not 'auto', then 'auto' values for 'margin-top' and 'margin-
bottom' are set to 0 and solve for 'height'

6. 'bottom' is 'auto', 'top' and 'height' are not 'auto', then set 'auto' values for 'margin-top' and 'margin-
bottom' to 0 and solve for 'bottom'

10.6.5 Absolutely positioned, replaced elements

This situation is similar to the previous one, except that the element has an intrinsicp.37 height. The se-
quence of substitutions is now:

1. The used value of 'height'p.195 is determined as for inline replaced elementsp.198. If 'margin-top' or
'margin-bottom' is specified as 'auto' its used value is determined by the rules below.

2. If both 'top'p.142 and 'bottom'p.143 have the value 'auto', replace 'top'p.142 with the element's static po-
sitionp.191.

3. If 'bottom'p.143 is 'auto', replace any 'auto' on 'margin-top'p.117 or 'margin-bottom'p.117 with '0'.

4. If at this point both 'margin-top'p.117 and 'margin-bottom'p.117 are still 'auto', solve the equation under
the extra constraint that the two margins must get equal values.

5. If at this point there is only one 'auto' left, solve the equation for that value.

6. If at this point the values are over-constrained, ignore the value for 'bottom'p.143 and solve for that
value.
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10.6.6 Complicated cases

This section applies to:

• Block-level, non-replaced elements in normal flow when 'overflow' does not compute to 'visible' (ex-
cept if the 'overflow' property's value has been propagated to the viewport).

• 'Inline-block', non-replaced elements.

• Floating, non-replaced elements.

If 'margin-top'p.117, or 'margin-bottom'p.117 are 'auto', their used value is 0. If 'height'p.195 is 'auto', the
height depends on the element's descendants per 10.6.7 p.201.

For 'inline-block' elements, the margin box is used when calculating the height of the line box.

10.6.7 'Auto' heights for block formatting context roots

In certain cases (see, e.g., sections 10.6.4p.199 and 10.6.6p.201 above), the height of an element that estab-
lishes a block formatting context is computed as follows:

If it only has inline-level children, the height is the distance between the top of the topmost line box and
the bottom of the bottommost line box.

If it has block-level children, the height is the distance between the top margin-edge of the topmost
block-level child box and the bottom margin-edge of the bottommost block-level child box.

Absolutely positioned children are ignored, and relatively positioned boxes are considered without their
offset. Note that the child box may be an anonymous block box.p.136

In addition, if the element has any floating descendants whose bottom margin edge is below the ele-
ment's bottom content edge, then the height is increased to include those edges. Only floats that participate
in this block formatting context are taken into account, e.g., floats inside absolutely positioned descen-
dants or other floats are not.

10.7 Minimum and maximum heights: 'min-height'p.201 and 'max-
height'p.202

It is sometimes useful to constrain the height of elements to a certain range. Two properties offer this
functionality:

Name: min-height

Value: <length>p.58 | <percentage>p.61 | inheritp.99

Initial: 0
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Applies to: all elements but non-replaced inline elements, table columns, and column
groups

Inherited: no

Percentages: see prose

Media: visualp.110

Computed value: the percentage as specified or the absolute length

Name: max-height

Value: <length>p.58 | <percentage>p.61 | none | inheritp.99

Initial: none

Applies to: all elements but non-replaced inline elements, table columns, and column
groups

Inherited: no

Percentages: see prose

Media: visualp.110

Computed value: the percentage as specified or the absolute length or 'none'

These two properties allow authors to constrain box heights to a certain range. Values have the following
meanings:
<length>p. 58

Specifies a fixed minimum or maximum computed height.

<percentage>p. 61

Specifies a percentage for determining the used value. The percentage is calculated with respect to
the height of the generated box's containing blockp.135. If the height of the containing block is not
specified explicitly (i.e., it depends on content height), and this element is not absolutely positioned,
the percentage value is treated as '0' (for 'min-height'p.201) or 'none' (for 'max-height'p.202).

none
(Only on 'max-height'p.202) No limit on the height of the box.
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Negative values for 'min-height'p.201 and 'max-height'p.202 are illegal.
In CSS 2.2, the effect of 'min-height' and 'max-height' on tables, inline tables, table cells, table rows,

and row groups is undefined.
The following algorithm describes how the two properties influence the used valuep.98 of the

'height'p.195 property:

1. The tentative used height is calculated (without 'min-height'p.201 and 'max-height'p.202) following the
rules under "Calculating heights and margins"p.197 above.

2. If this tentative height is greater than 'max-height'p.202, the rules abovep.197 are applied again, but
this time using the value of 'max-height'p.202 as the computed value for 'height'p.195.

3. If the resulting height is smaller than 'min-height'p.201, the rules abovep.197 are applied again, but this
time using the value of 'min-height'p.201 as the computed value for 'height'p.195.

These steps do not affect the real computed value of 'height'p.195. Consequently, for example, they do
not affect margin collapsing, which depends on the computed value.

However, for replaced elements with both 'width'p.187 and 'height'p.195 computed as 'auto', use the algo-
rithm under Minimum and maximum widthsp.193 above to find the used width and height. Then apply the
rules under "Computing heights and margins"p.197 above, using the resulting width and height as if they
were the computed values.

10.8 Line height calculations: the 'line-height'p.204 and 'vertical-align'p.206

properties

As described in the section on inline formatting contextsp.145, user agents flow inline-level boxes into a
vertical stack of line boxesp.145. The height of a line box is determined as follows:

1. The height of each inline-level box in the line box is calculated. For replaced elements, inline-block
elements, and inline-table elements, this is the height of their margin box; for inline boxes, this is
their 'line-height'. (See "Calculating heights and margins"p.197 and the height of inline boxesp.204 in
"Leading and half-leading"p.204.)

2. The inline-level boxes are aligned vertically according to their 'vertical-align'p.206 property. In case
they are aligned 'top' or 'bottom', they must be aligned so as to minimize the line box height. If such
boxes are tall enough, there are multiple solutions and CSS 2.2 does not define the position of the
line box's baseline (i.e., the position of the strut, see belowp.205).

3. The line box height is the distance between the uppermost box top and the lowermost box bottom.
(This includes the strut,p.205 as explained under 'line-height'p.204 below.)
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Empty inline elements generate empty inline boxes, but these boxes still have margins, padding, borders
and a line height, and thus influence these calculations just like elements with content.

10.8.1 Leading and half-leading

CSS assumes that every font has font metrics that specify a characteristic height above the baseline and a
depth below it. In this section we use A to mean that height (for a given font at a given size) and D the
depth. We also define AD = A + D, the distance from the top to the bottom. (See the note below for how to
find A and D for TrueType and OpenType fonts.p.204) Note that these are metrics of the font as a whole
and need not correspond to the ascender and descender of any individual glyph.

User agent must align the glyphs in a non-replaced inline box to each other by their relevant baselines.
Then, for each glyph, determine the A and D. Note that glyphs in a single element may come from differ-
ent fonts and thus need not all have the same A and D. If the inline box contains no glyphs at all, it is con-
sidered to contain a strutp.205 (an invisible glyph of zero width) with the A and D of the element's first
available font.

Still for each glyph, determine the leading L to add, where L = 'line-height'p.204 - AD. Half the leading
is added above A and the other half below D, giving the glyph and its leading a total height above the
baseline of A' = A + L/2 and a total depth of D' = D + L/2.

Note. L may be negative.

The height of the inline box encloses all glyphs and their half-leading on each side and is thus exactly
'line-height'. Boxes of child elements do not influence this height.

Although margins, borders, and padding of non-replaced elements do not enter into the line box calcu-
lation, they are still rendered around inline boxes. This means that if the height specified by 'line-
height'p.204 is less than the content height of contained boxes, backgrounds and colors of padding and bor-
ders may "bleed" into adjoining line boxes. User agents should render the boxes in document order. This
will cause the borders on subsequent lines to paint over the borders and text of previous lines.

Note. CSS 2.2 does not define what the content area of an inline box is (see 10.6.1p.197 above) and
thus different UAs may draw the backgrounds and borders in different places.

Note. It is recommended that implementations that use OpenType or TrueType fonts use the metrics
"sTypoAscender" and "sTypoDescender" from the font's OS/2 table for A and D (after scaling to the
current element's font size). In the absence of these metrics, the "Ascent" and "Descent" metrics from
the HHEA table should be used.

Name: line-height

Value: normal | <number>p.57 | <length>p.58 | <percentage>p.61 | inheritp. 99
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Initial: normal

Applies to: all elements

Inherited: yes

Percentages: refer to the font size of the element itself

Media: visualp.110

Computed value: for <length>p.58 and <percentage>p.61 the absolute value; otherwise as
specified

On a block container elementp.135 whose content is composed of inline-levelp.138 elements, 'line-height'
specifies the minimal height of line boxes within the element. The minimum height consists of a minimum
height above the baseline and a minimum depth below it, exactly as if each line box starts with a zero-
width inline box with the element's font and line height properties. We call that imaginary box a "strut."
(The name is inspired by TeX.).

The height and depth of the font above and below the baseline are assumed to be metrics that are con-
tained in the font. (For more details, see CSS level 3.)

On a non-replaced inlinep.138 element, 'line-height' specifies the height that is used in the calculation of
the line box height.

Values for this property have the following meanings:
normal

Tells user agents to set the used value to a "reasonable" value based on the font of the element. The
value has the same meaning as <number>p.57. We recommend a used value for 'normal' between 1.0
to 1.2. The computed valuep.98 is 'normal'.

<length>p. 58

The specified length is used in the calculation of the line box height. Negative values are illegal.

<number>p. 57

The used value of the property is this number multiplied by the element's font size. Negative values
are illegal. The computed valuep.98 is the same as the specified value.

<percentage>p. 61

The computed valuep.98 of the property is this percentage multiplied by the element's computed font
size. Negative values are illegal.
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The three rules in the example below have the same resultant line height:

div { line-height: 1.2; font-size: 10pt }     /* number */

div { line-height: 1.2em; font-size: 10pt }   /* length */

div { line-height: 120%; font-size: 10pt }    /* percentage */

When an element contains text that is rendered in more than one font, user agents may determine the 'nor-
mal' 'line-height'p.204 value according to the largest font size.

Note. When there is only one value of 'line-height'p.204 for all inline boxes in a block container box
and they are all in the same font (and there are no replaced elements, inline-block elements, etc.), the
above will ensure that baselines of successive lines are exactly 'line-height'p.204 apart. This is impor-
tant when columns of text in different fonts have to be aligned, for example in a table.

Name: vertical-align

Value: baseline | sub | super | top | text-top | middle | bottom | text-bottom |
<percentage>p.61 | <length>p.58 | inheritp.99

Initial: baseline

Applies to: inline-level and 'table-cell' elements

Inherited: no

Percentages: refer to the 'line-height' of the element itself

Media: visualp.110

Computed value: for <percentage>p.61 and <length>p.58 the absolute length, otherwise as
specified

This property affects the vertical positioning inside a line box of the boxes generated by an inline-level el-
ement.

Note. Values of this property have different meanings in the context of tables. Please consult the sec-
tion on table height algorithmsp.314 for details.

The following values only have meaning with respect to a parent inline element, or to the strutp.205 of a
parent block container element.
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In the following definitions, for inline non-replaced elements, the box used for alignment is the box
whose height is the 'line-height' (containing the box's glyphs and the half-leading on each side, see
abovep.204). For all other elements, the box used for alignment is the margin box.
baseline

Align the baseline of the box with the baseline of the parent box. If the box does not have a baseline,
align the bottom margin edge with the parent's baseline.

middle
Align the vertical midpoint of the box with the baseline of the parent box plus half the x-height of the
parent.

sub
Lower the baseline of the box to the proper position for subscripts of the parent's box. (This value has
no effect on the font size of the element's text.)

super
Raise the baseline of the box to the proper position for superscripts of the parent's box. (This value
has no effect on the font size of the element's text.)

text-top
Align the top of the box with the top of the parent's content area (see 10.6.1p.197).

text-bottom
Align the bottom of the box with the bottom of the parent's content area (see 10.6.1p.197).

<percentage> p. 61

Raise (positive value) or lower (negative value) the box by this distance (a percentage of the 'line-
height'p.204 value). The value '0%' means the same as 'baseline'.

<length> p. 58

Raise (positive value) or lower (negative value) the box by this distance. The value '0cm' means the
same as 'baseline'.

The following values align the element relative to the line box. Since the element may have children
aligned relative to it (which in turn may have descendants aligned relative to them), these values use the
bounds of the aligned subtree. The aligned subtree of an inline element contains that element and the
aligned subtrees of all children inline elements whose computed 'vertical-align' value is not 'top' or 'bot-
tom'. The top of the aligned subtree is the highest of the tops of the boxes in the subtree, and the bottom is
analogous.
top

Align the top of the aligned subtree with the top of the line box.

bottom
Align the bottom of the aligned subtree with the bottom of the line box.

The baseline of an 'inline-table' is the baseline of the first row of the table.
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The baseline of an 'inline-block' is the baseline of its last line box in the normal flow, unless it has ei-
ther no in-flow line boxes or if its 'overflow' property has a computed value other than 'visible', in which
case the baseline is the bottom margin edge.
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11 Visual effects

Contents
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11.2 Visibility: the 'visibility' property. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

11.1 Overflow and clipping

Generally, the content of a block box is confined to the content edges of the box. In certain cases, a box
may overflow, meaning its content lies partly or entirely outside of the box, e.g.:

• A line cannot be broken, causing the line box to be wider than the block box.

• A block-level box is too wide for the containing block. This may happen when an element's
'width'p.187 property has a value that causes the generated block box to spill over sides of the contain-
ing block.

• An element's height exceeds an explicit height assigned to the containing block (i.e., the containing
block's height is determined by the 'height'p.195 property, not by content height).

• A descendant box is positioned absolutelyp.161, partly outside the box. Such boxes are not always
clipped by the overflow property on their ancestors; specifically, they are not clipped by the overflow
of any ancestor between themselves and their containing block

• A descendant box has negative marginsp.117, causing it to be positioned partly outside the box.

• The 'text-indent' property causes an inline box to hang off either the left or right edge of the block
box.

Whenever overflow occurs, the 'overflow'p.210 property specifies whether a box is clipped to its padding
edge, and if so, whether a scrolling mechanism is provided to access any clipped out content.

– 11 Visual effects –

– 209 –



11.1.1 Overflow: the 'overflow'p.210 property

Name: overflow

Value: visible | hidden | scroll | auto | inheritp.99

Initial: visible

Applies to: block containers and boxes that establish a formatting context

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property specifies whether content of a block container element is clipped when it overflows the ele-
ment's box. It affects the clipping of all of the element's content except any descendant elements (and their
respective content and descendants) whose containing block is the viewport or an ancestor of the element.
Values have the following meanings:
visible

This value indicates that content is not clipped, i.e., it may be rendered outside the block box.

hidden
This value indicates that the content is clipped and that no scrolling user interface should be provided
to view the content outside the clipping region.

scroll
This value indicates that the content is clipped and that if the user agent uses a scrolling mechanism
that is visible on the screen (such as a scroll bar or a panner), that mechanism should be displayed for
a box whether or not any of its content is clipped. This avoids any problem with scrollbars appearing
and disappearing in a dynamic environment. When this value is specified and the target medium is
'print', overflowing content may be printed. When used on table boxes,p.303 this value has the same
meaning as 'visible'.

auto
The behavior of the 'auto' value is user agent-dependent, but should cause a scrolling mechanism to
be provided for overflowing boxes. When used on table boxes,p.303 this value has the same meaning
as 'visible'.
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Even if 'overflow'p.210 is set to 'visible', content may be clipped to a UA's document window by the native
operating environment.

On a table element ('display: table'), 'overflow' applies to the table boxp.303 (i.e., not the table wrapper
boxp.303) and all values other than 'hidden' are treated as 'visible'.

UAs must apply the 'overflow' property set on the root element to the viewport. When the root element
is an HTML "HTML" element or an XHTML "html" element, and that element has an HTML "BODY"
element or an XHTML "body" element as a child, user agents must instead apply the 'overflow' property
from the first such child element to the viewport, if the value on the root element is 'visible'. The 'visible'
value when used for the viewport must be interpreted as 'auto'. The element from which the value is prop-
agated must have a used value for 'overflow' of 'visible'.

In the case of a scrollbar being placed on an edge of the element's box, it should be inserted between the
inner border edge and the outer padding edge. Any space taken up by the scrollbars should be taken out of
(subtracted from the dimensions of) the containing block formed by the element with the scrollbars.
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Consider the following example of a block quotation (<blockquote>) that is too big for its contain-
ing block (established by a <div>). Here is the source:

<div>

<blockquote>

<p>I didn't like the play, but then I saw

it under adverse conditions - the curtain was up.</p>

<cite>- Groucho Marx</cite>

</blockquote>

</div>

Here is the style sheet controlling the sizes and style of the generated boxes:

div { width : 100px; height: 100px;

border: thin solid red;

}

blockquote   { width : 125px; height : 100px;

margin-top: 50px; margin-left: 50px;

border: thin dashed black

}

cite { display: block;

text-align : right;

border: none

}

The initial value of 'overflow'p.210 is 'visible', so the <blockquote> would be formatted without clip-
ping, something like this:

– 11 Visual effects –

– 212 –



Setting 'overflow'p.210 to 'hidden' for the <div>, on the other hand, causes the <blockquote> to be
clipped by the containing <div>:

A value of 'scroll' would tell UAs that support a visible scrolling mechanism to display one so that
users could access the clipped content.

Finally, consider this case where an absolutely positioned element is mixed with an overflow parent.
Style sheet:

container { position: relative; border: solid; }

scroller { overflow: scroll; height: 5em; margin: 5em; }

satellite { position: absolute; top: 0; }

body { height: 10em; }

Document fragment:

<container>

<scroller>

<satellite/>

<body/>

</scroller>

</container>

In this example, the "scroller" element will not scroll the "satellite" element, because the latter's contain-
ing block is outside the element whose overflow is being clipped and scrolled.

11.1.2 Clipping: the 'clip'p.213 property

A clipping region defines what portion of an element's border box is visible. By default, the element is not
clipped. However, the clipping region may be explicitly set with the 'clip'p.213 property.

Name: clip
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Value: <shape>p.214 | auto | inheritp.99

Initial: auto

Applies to: absolutely positioned elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: 'auto' if specified as 'auto', otherwise a rectangle with four values, each of
which is 'auto' if specified as 'auto' and the computed length otherwise

The 'clip' property applies only to absolutely positioned elements. Values have the following meanings:
auto

The element does not clip.

<shape>
In CSS 2.2, the only valid <shape> value is: rect(<top>p.214, <right>p.214, <bottom>p.214,
<left>p.214) where <top>p.214 and <bottom>p.214 specify offsets from the top border edge of the box,
and <right>p.214, and <left>p.214 specify offsets from the left border edge of the box. Authors should
separate offset values with commas. User agents must support separation with commas, but may also
support separation without commas (but not a combination), because a previous revision of this spec-
ification was ambiguous in this respect.
<top>, <right>, <bottom>, and <left> may either have a <length>p.58 value or 'auto'. Negative
lengths are permitted. The value 'auto' means that a given edge of the clipping region will be the
same as the edge of the element's generated border box (i.e., 'auto' means the same as '0' for
<top>p.214 and <left>p.214, the same as the used value of the height plus the sum of vertical padding
and border widths for <bottom>p.214, and the same as the used value of the width plus the sum of the
horizontal padding and border widths for <right>p.214, such that four 'auto' values result in the clip-
ping region being the same as the element's border box).

When coordinates are rounded to pixel coordinates, care should be taken that no pixels remain vis-
ible when <left> and <right> have the same value (or <top> and <bottom> have the same value), and
conversely that no pixels within the element's border box remain hidden when these values are 'auto'.

An element's clipping region clips out any aspect of the element (e.g., content, children, background, bor-
ders, text decoration, outline and visible scrolling mechanism — if any) that is outside the clipping region.
Content that has been clipped does not cause overflow.
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The element's ancestors may also clip portions of their content (e.g., via their own 'clip'p.213 property
and/or if their 'overflow'p.210 property is not 'visible'); what is rendered is the cumulative intersection.

If the clipping region exceeds the bounds of the UA's document window, content may be clipped to that
window by the native operating environment.

Example: The following two rules:

p#one { clip: rect(5px, 40px, 45px, 5px); }

p#two { clip: rect(5px, 55px, 45px, 5px); }

and assuming both Ps are 50 by 55 px, will create, respectively, the rectangular clipping regions de-
limited by the dashed lines in the following illustrations:
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Note. In CSS 2.2, all clipping regions are rectangular. We anticipate future extensions to permit non-
rectangular clipping. Future updates may also reintroduce a syntax for offsetting shapes from each
edge instead of offsetting from a point.

11.2 Visibility: the 'visibility'p. 216 property

Name: visibility

Value: visible | hidden | collapse | inheritp.99

Initial: visible

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

The 'visibility'p.216 property specifies whether the boxes generated by an element are rendered. Invisible
boxes still affect layout (set the 'display'p.139 property to 'none' to suppress box generation altogether).
Values have the following meanings:
visible

The generated box is visible.

hidden
The generated box is invisible (fully transparent, nothing is drawn), but still affects layout. Further-
more, descendants of the element will be visible if they have 'visibility: visible'.

collapse
Please consult the section on dynamic row and column effectsp.316 in tables. If used on elements oth-
er than rows, row groups, columns, or column groups, 'collapse' has the same meaning as 'hidden'.

This property may be used in conjunction with scripts to create dynamic effects.
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In the following example, pressing either form button invokes an author-defined script function that
causes the corresponding box to become visible and the other to be hidden. Since these boxes have the
same size and position, the effect is that one replaces the other. (The script code is in a hypothetical
script language. It may or may not have any effect in a CSS-capable UA.)
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<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD><TITLE>Dynamic visibility example</TITLE>

<META

http-equiv="Content-Script-Type"

content="application/x-hypothetical-scripting-language">

<STYLE type="text/css">

<!--

#container1 { position: absolute;

top: 2in; left: 2in; width: 2in }

#container2 { position: absolute;

top: 2in; left: 2in; width: 2in;

visibility: hidden; }

-->

</STYLE>

</HEAD>

<BODY>

<P>Choose a suspect:</P>

<DIV id="visufx.html.container1">

<IMG alt="Al Capone"

width="100" height="100"

src="suspect1.png">

<P>Name: Al Capone</P>

<P>Residence: Chicago</P>

</DIV>

<DIV id="visufx.html.container2">

<IMG alt="Lucky Luciano"

width="100" height="100"

src="suspect2.png">

<P>Name: Lucky Luciano</P>

<P>Residence: New York</P>

</DIV>

<FORM method="post"

action="http://www.suspect.org/process-bums">

<P>

<INPUT name="visufx.html.Capone" type="button"

value="Capone"

onclick='show("container1");hide("container2")'>

<INPUT name="visufx.html.Luciano" type="button"
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value="Luciano"

onclick='show("container2");hide("container1")'>

</FORM>

</BODY>

</HTML>
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12 Generated content, automatic numbering, and lists
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In some cases, authors may want user agents to render content that does not come from the document
treep.37. One familiar example of this is a numbered list; the author does not want to list the numbers ex-
plicitly, he or she wants the user agent to generate them automatically. Similarly, authors may want the
user agent to insert the word "Figure" before the caption of a figure, or "Chapter 7" before the seventh
chapter title. For audio or braille in particular, user agents should be able to insert these strings.

In CSS 2.2, content may be generated by two mechanisms:

• The 'content'p.223 property, in conjunction with the :before and :after pseudo-elements.

• Elements with a value of 'list-item' for the 'display'p.139 property.

12.1 The :before and :after pseudo-elements

Authors specify the style and location of generated content with the :before and :after pseudo-elements.
As their names indicate, the :before and :after pseudo-elements specify the location of content before and
after an element's document treep.37 content. The 'content'p.223 property, in conjunction with these
pseudo-elements, specifies what is inserted.
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For example, the following rule inserts the string "Note: " before the content of every P element whose
"class" attribute has the value "note":

p.note:before { content: "Note: " }

The formatting objects (e.g., boxes) generated by an element include generated content. So, for example,
changing the above style sheet to:

p.note:before { content: "Note: " }

p.note        { border: solid green }

would cause a solid green border to be rendered around the entire paragraph, including the initial string.
The :before and :after pseudo-elements inheritp.99 any inheritable properties from the element in the

document tree to which they are attached.

For example, the following rules insert an open quote mark before every Q element. The color of the
quote mark will be red, but the font will be the same as the font of the rest of the Q element:

q:before {

content: open-quote;

color: red

}

In a :before or :after pseudo-element declaration, non-inherited properties take their initial valuesp.22.

So, for example, because the initial value of the 'display'p.139 property is 'inline', the quote in the pre-
vious example is inserted as an inline box (i.e., on the same line as the element's initial text content).
The next example explicitly sets the 'display'p.139 property to 'block', so that the inserted text becomes
a block:

body:after {

content: "The End";

display: block;

margin-top: 2em;

text-align: center;

}

The :before and :after pseudo-elements interact with other boxes as if they were real elements inserted just
inside their associated element.
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For example, the following document fragment and style sheet:

<p> Text </p>                   p:before { display: block; content: 'Some'; }

...would render in exactly the same way as the following document fragment and style sheet:

<p><span>Some</span> Text </p>  span { display: block }

Similarly, the following document fragment and style sheet:

<h2> Header </h2>     h2:after { display: block; content: 'Thing'; }

...would render in exactly the same way as the following document fragment and style sheet:

<h2> Header <span>Thing</span></h2>   h2 { display: block; }

span { display: block; }

Note. This specification does not fully define the interaction of :before and :after with replaced ele-
ments (such as IMG in HTML). This will be defined in more detail in a future specification.

12.2 The 'content'p.223 property

Name: content

Value: normal | none | [ <string>p.65 | <uri>p.62 | <counter>p.63 |
attr(<identifier>p.49) | open-quote | close-quote | no-open-quote | no-close-
quote ]+ | inheritp.99

Initial: normal

Applies to: :before and :after pseudo-elements

Inherited: no

Percentages: N/A

Media: allp.110

Computed value: On elements, always computes to 'normal'. On :before and :after, if 'normal'
is specified, computes to 'none'. Otherwise, for URI values, the absolute
URI; for attr() values, the resulting string; for other keywords, as specified.
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This property is used with the :before and :after pseudo-elements to generate content in a document. Val-
ues have the following meanings:
none

The pseudo-element is not generated.

normal
Computes to 'none' for the :before and :after pseudo-elements.

<string>p. 65

Text content (see the section on stringsp.65).

<uri>p. 62

The value is a URI that designates an external resource (such as an image). If the user agent cannot
display the resource it must either leave it out as if it were not specified or display some indication
that the resource cannot be displayed.

<counter>p. 63

Countersp.63 may be specified with two different functions: 'counter()' or 'counters()'. The former has
two forms: 'counter(name)' or 'counter(name, style)'. The generated text is the value of the innermost
counter of the given name in scope at this pseudo-element; it is formatted in the indicated stylep.234

('decimal' by default). The latter function also has two forms: 'counters(name, string)' or 'coun-
ters(name, string, style)'. The generated text is the value of all counters with the given name in scope
at this pseudo-element, from outermost to innermost separated by the specified string. The counters
are rendered in the indicated stylep.234 ('decimal' by default). See the section on automatic counters
and numberingp.229 for more information. The name must not be 'none', 'inherit' or 'initial'. Such a
name causes the declaration to be ignored.

open-quotep. 228 and close-quotep. 228

These values are replaced by the appropriate string from the 'quotes'p.225 property.

no-open-quotep. 229 and no-close-quotep. 229

Introduces no content, but increments (decrements) the level of nesting for quotes.

attr(X)
This function returns as a string the value of attribute X for the subject of the selector. The string is
not parsed by the CSS processor. If the subject of the selector does not have an attribute X, an empty
string is returned. The case-sensitivity of attribute names depends on the document language.

Note. In CSS 2.2, it is not possible to refer to attribute values for other elements than the subject of the
selector.

The 'display'p.139 property controls whether the content is placed in a block or inline box.
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The following rule causes the string "Chapter: " to be generated before each H1 element:

H1:before {

content: "Chapter: ";

display: inline;

}

Authors may include newlines in the generated content by writing the "\A" escape sequence in one of the
strings after the 'content'p.223 property. This inserted line break is still subject to the 'white-space'p.289

property. See "Strings"p.65 and "Characters and case"p.49 for more information on the "\A" escape se-
quence.

h1:before {

display: block;

text-align: center;

white-space: pre;

content: "chapter\A hoofdstuk\A chapitre"

}

Generated content does not alter the document tree. In particular, it is not fed back to the document lan-
guage processor (e.g., for reparsing).

12.3 Quotation marks

In CSS 2.2, authors may specify, in a style-sensitive and context-dependent manner, how user agents
should render quotation marks. The 'quotes'p.225 property specifies pairs of quotation marks for each level
of embedded quotation. The 'content'p.223 property gives access to those quotation marks and causes them
to be inserted before and after a quotation.

12.3.1 Specifying quotes with the 'quotes'p.225 property

Name: quotes

Value: [<string>p.65 <string>p.65]+ | none | inheritp.99

Initial: depends on user agent

Applies to: all elements
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Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property specifies quotation marks for any number of embedded quotations. Values have the follow-
ing meanings:
none

The 'open-quote' and 'close-quote' values of the 'content'p.223 property produce no quotation marks.

[<string>p. 65 <string>p. 65]+
Values for the 'open-quote' and 'close-quote' values of the 'content'p.223 property are taken from this
list of pairs of quotation marks (opening and closing). The first (leftmost) pair represents the outer-
most level of quotation, the second pair the first level of embedding, etc. The user agent must apply
the appropriate pair of quotation marks according to the level of embedding.
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For example, applying the following style sheet:

/* Specify pairs of quotes for two levels in two languages */

q:lang(en) { quotes: '"' '"' "'" "'" }

q:lang(no) { quotes: "«" "»" '"' '"' }

/* Insert quotes before and after Q element content */

q:before { content: open-quote }

q:after  { content: close-quote }

to the following HTML fragment:

<HTML lang="en">

<HEAD>

<TITLE>Quotes</TITLE>

</HEAD>

<BODY>

<P><Q>Quote me!</Q>

</BODY>

</HTML>

would allow a user agent to produce:

"Quote me!"

while this HTML fragment:

<HTML lang="no">

<HEAD>

<TITLE>Quotes</TITLE>

</HEAD>

<BODY>

<P><Q>Trøndere gråter når <Q>Vinsjan på kaia</Q> blir deklamert.</Q>

</BODY>

</HTML>

would produce:

«Trøndere gråter når "Vinsjan på kaia" blir deklamert.»
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Note. While the quotation marks specified by 'quotes'p.225 in the previous examples are conveniently
located on computer keyboards, high quality typesetting would require different ISO 10646 charac-
ters. The following informative table lists some of the ISO 10646 quotation mark characters:

Character
Approximate
rendering

ISO 10646 code
(hex)

Description

" " 0022
QUOTATION MARK [the ASCII double
quotation mark]

' ' 0027
APOSTROPHE [the ASCII single quotation
mark]

‹ < 2039
SINGLE LEFT-POINTING ANGLE
QUOTATION MARK

› > 203A
SINGLE RIGHT-POINTING ANGLE
QUOTATION MARK

« « 00AB
LEFT-POINTING DOUBLE ANGLE
QUOTATION MARK

» » 00BB
RIGHT-POINTING DOUBLE ANGLE
QUOTATION MARK

‘ ` 2018
LEFT SINGLE QUOTATION MARK [single
high-6]

’ ' 2019
RIGHT SINGLE QUOTATION MARK [single
high-9]

“ `` 201C
LEFT DOUBLE QUOTATION MARK [double
high-6]

” '' 201D
RIGHT DOUBLE QUOTATION MARK [double
high-9]

„ ,, 201E
DOUBLE LOW-9 QUOTATION MARK [double
low-9]

12.3.2 Inserting quotes with the 'content'p.223 property

Quotation marks are inserted in appropriate places in a document with the 'open-quote' and 'close-quote'
values of the 'content'p.223 property. Each occurrence of 'open-quote' or 'close-quote' is replaced by one of
the strings from the value of 'quotes'p.225, based on the depth of nesting.

'Open-quote' refers to the first of a pair of quotes, 'close-quote' refers to the second. Which pair of
quotes is used depends on the nesting level of quotes: the number of occurrences of 'open-quote' in all
generated text before the current occurrence, minus the number of occurrences of 'close-quote'. If the
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depth is 0, the first pair is used, if the depth is 1, the second pair is used, etc. If the depth is greater than
the number of pairs, the last pair is repeated. A 'close-quote' or 'no-close-quote' that would make the depth
negative is in error and is ignored (at rendering time): the depth stays at 0 and no quote mark is rendered
(although the rest of the 'content' property's value is still inserted).

Note. The quoting depth is independent of the nesting of the source document or the formatting struc-
ture.

Some typographic styles require open quotation marks to be repeated before every paragraph of a quote
spanning several paragraphs, but only the last paragraph ends with a closing quotation mark. In CSS, this
can be achieved by inserting "phantom" closing quotes. The keyword 'no-close-quote' decrements the
quoting level, but does not insert a quotation mark.

The following style sheet puts opening quotation marks on every paragraph in a BLOCKQUOTE, and
inserts a single closing quote at the end:

blockquote p:before     { content: open-quote }

blockquote p:after      { content: no-close-quote }

blockquote p.last:after { content: close-quote }

This relies on the last paragraph being marked with a class "last".

For symmetry, there is also a 'no-open-quote' keyword, which inserts nothing, but increments the quota-
tion depth by one.

12.4 Automatic counters and numbering

Automatic numbering in CSS 2.2 is controlled with two properties, 'counter-increment'p.230 and 'counter-
reset'p.229. The counters defined by these properties are used with the counter() and counters() functions
of the the 'content'p.223 property.

Name: counter-reset

Value: [ <identifier>p.49 <integer>p.57? ]+ | none | inheritp.99

Initial: none

Applies to: all elements

Inherited: no
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Percentages: N/A

Media: allp.110

Computed value: as specified

Name: counter-increment

Value: [ <identifier>p.49 <integer>p.57? ]+ | none | inheritp.99

Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media: allp.110

Computed value: as specified

The 'counter-increment'p.230 property accepts one or more names of counters (identifiers), each one op-
tionally followed by an integer. The integer indicates by how much the counter is incremented for every
occurrence of the element. The default increment is 1. Zero and negative integers are allowed.

The 'counter-reset'p.229 property also contains a list of one or more names of counters, each one option-
ally followed by an integer. The integer gives the value that the counter is set to on each occurrence of the
element. The default is 0.

The keywords 'none', 'inherit' and 'initial' must not be used as counter names. A value of 'none' on its
own means no counters are reset, resp. incremented. 'Inherit' on its own has its usual meaning (see
6.2.1p.99). 'Initial' is reserved for future use.
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This example shows a way to number chapters and sections with "Chapter 1", "1.1", "1.2", etc.

BODY {

counter-reset: chapter;      /* Create a chapter counter scope */

}

H1:before {

content: "Chapter " counter(chapter) ". ";

counter-increment: chapter;  /* Add 1 to chapter */

}

H1 {

counter-reset: section;      /* Set section to 0 */

}

H2:before {

content: counter(chapter) "." counter(section) " ";

counter-increment: section;

}

If an element increments/resets a counter and also uses it (in the 'content'p.223 property of its :before or
:after pseudo-element), the counter is used after being incremented/reset.

If an element both resets and increments a counter, the counter is reset first and then incremented.
If the same counter is specified more than once in the value of the 'counter-reset'p.229 and 'counter-

increment'p.230 properties, each reset/increment of the counter is processed in the order specified.

The following example will reset the 'section' counter to 0:

H1 { counter-reset: section 2 section }

The following example will increment the 'chapter' counter by 3:

H1 { counter-increment: chapter chapter 2 }

The 'counter-reset'p.229 property follows the cascading rules. Thus, due to cascading, the following style
sheet:

H1 { counter-reset: section -1 }

H1 { counter-reset: imagenum 99 }

will only reset 'imagenum'. To reset both counters, they have to be specified together:

H1 { counter-reset: section -1 imagenum 99 }
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12.4.1 Nested counters and scope

Counters are "self-nesting", in the sense that resetting a counter in a descendant element or pseudo-
element automatically creates a new instance of the counter. This is important for situations like lists in
HTML, where elements can be nested inside themselves to arbitrary depth. It would be impossible to de-
fine uniquely named counters for each level.

Thus, the following suffices to number nested list items. The result is very similar to that of setting
'display:list-item' and 'list-style: inside' on the LI element:

OL { counter-reset: item }

LI { display: block }

LI:before { content: counter(item) ". "; counter-increment: item }

The scope of a counter starts at the first element in the document that has a 'counter-reset'p.229 for that
counter and includes the element's descendants and its following siblings with their descendants. Howev-
er, it does not include any elements in the scope of a counter with the same name created by a 'counter-
reset' on a later sibling of the element or by a later 'counter-reset' on the same element.

If 'counter-increment'p.230 or 'content'p.223 on an element or pseudo-element refers to a counter that is
not in the scope of any 'counter-reset'p.229, implementations should behave as though a 'counter-reset'p.229

had reset the counter to 0 on that element or pseudo-element.
In the example above, an OL will create a counter, and all children of the OL will refer to that counter.
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If we denote by item[n] the nth instance of the "item" counter, and by "{" and "}" the beginning and
end of a scope, then the following HTML fragment will use the indicated counters. (We assume the
style sheet as given in the example above).

<OL>                    <!-- {item[0]=0        -->

<LI>item</LI>         <!--  item[0]++ (=1)   -->

<LI>item              <!--  item[0]++ (=2)   -->

<OL>                <!--  {item[1]=0       -->

<LI>item</LI>     <!--   item[1]++ (=1)  -->

<LI>item</LI>     <!--   item[1]++ (=2)  -->

<LI>item          <!--   item[1]++ (=3)  -->

<OL>            <!--   {item[2]=0      -->

<LI>item</LI> <!--    item[2]++ (=1) -->

</OL>           <!--                   -->

<OL>            <!--   }{item[2]=0     -->

<LI>item</LI> <!--    item[2]++ (=1) -->

</OL>           <!--                   -->

</LI>             <!--   }               -->

<LI>item</LI>     <!--   item[1]++ (=4)  -->

</OL>               <!--                   -->

</LI>                 <!--  }                -->

<LI>item</LI>         <!--  item[0]++ (=3)   -->

<LI>item</LI>         <!--  item[0]++ (=4)   -->

</OL>                   <!--                   -->

<OL>                    <!-- }{item[0]=0       -->

<LI>item</LI>         <!--  item[0]++ (=1)   -->

<LI>item</LI>         <!--  item[0]++ (=2)   -->

</OL>                   <!--                   -->

Another example, showing how scope works when counters are used on elements that are not nested,
is the following. This shows how the style rules given above to number chapters and sections would
apply to the markup given.

<!--"chapter" counter|"section" counter -->

<body>               <!-- {chapter=0      |                  -->

<h1>About CSS</h1> <!--  chapter++ (=1) | {section=0       -->

<h2>CSS 2</h2>     <!--                 |  section++ (=1)  -->

<h2>CSS 2.2</h2>   <!--                 |  section++ (=2)  -->

<h1>Style</h1>     <!--  chapter++ (=2) |}{ section=0      -->

</body>              <!--                 | }                -->
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The 'counters()' function generates a string composed of all of the counters with the same name that are in
scope, separated by a given string.

The following style sheet numbers nested list items as "1", "1.1", "1.1.1", etc.

OL { counter-reset: item }

LI { display: block }

LI:before { content: counters(item, ".") " "; counter-increment: item }

12.4.2 Counter styles

By default, counters are formatted with decimal numbers, but all the styles available for the 'list-style-
type'p.235 property are also available for counters. The notation is:

counter(name)

for the default style, or:

counter(name, <'list-style-type' p. 235>)

All the styles are allowed, including 'disc', 'circle', 'square', and 'none'.

H1:before        { content: counter(chno, upper-latin) ". " }

H2:before        { content: counter(section, upper-roman) " - " }

BLOCKQUOTE:after { content: " [" counter(bq, lower-greek) "]" }

DIV.note:before  { content: counter(notecntr, disc) " " }

P:before         { content: counter(p, none) }

12.4.3 Counters in elements with 'display: none'

An element that is not displayed ('display'p.139 set to 'none') cannot increment or reset a counter.

For example, with the following style sheet, H2s with class "secret" do not increment 'count2'.

H2.secret {counter-increment: count2; display: none}

Pseudo-elements that are not generated also cannot increment or reset a counter.
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For example, the following does not increment 'heading':

h1::before {

content: normal;

counter-increment: heading;

}

Elements with 'visibility'p.216 set to 'hidden', on the other hand, do increment counters.

12.5 Lists

CSS 2.2 offers basic visual formatting of lists. An element with 'display: list-item' generates a principal
block boxp.135 for the element's content and, depending on the values of 'list-style-type' and 'list-style-
image', possibly also a marker box as a visual indication that the element is a list item.

The list properties describe basic visual formatting of lists: they allow style sheets to specify the marker
type (image, glyph, or number), and the marker position with respect to the principal box (outside it or
within it before content). They do not allow authors to specify distinct style (colors, fonts, alignment, etc.)
for the list marker or adjust its position with respect to the principal box; these may be derived from the
principal box.

The background propertiesp.257 apply to the principal box only; an 'outside' marker box is transparent.

12.5.1 Lists: the 'list-style-type'p.235, 'list-style-image'p.237, 'list-style-position'p.238, and
'list-style'p.240 properties

Name: list-style-type

Value: disc | circle | square | decimal | decimal-leading-zero | lower-roman | upper-
roman | lower-greek | lower-latin | upper-latin | armenian | georgian | lower-
alpha | upper-alpha | none | inheritp.99

Initial: disc

Applies to: elements with 'display: list-item'

Inherited: yes

Percentages: N/A

Media: visualp.110
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Computed value: as specified

This property specifies appearance of the list item marker if 'list-style-image'p.237 has the value 'none' or if
the image pointed to by the URI cannot be displayed. The value 'none' specifies no marker, otherwise
there are three types of marker: glyphs, numbering systems, and alphabetic systems.

Glyphs are specified with disc, circle, and square. Their exact rendering depends on the user agent.
Numbering systems are specified with:

decimal
Decimal numbers, beginning with 1.

decimal-leading-zero
Decimal numbers padded by initial zeros (e.g., 01, 02, 03, ..., 98, 99).

lower-roman
Lowercase roman numerals (i, ii, iii, iv, v, etc.).

upper-roman
Uppercase roman numerals (I, II, III, IV, V, etc.).

georgian
Traditional Georgian numbering (an, ban, gan, ..., he, tan, in, in-an, ...).

armenian
Traditional uppercase Armenian numbering.

Alphabetic systems are specified with:
lower-latin or lower-alpha

Lowercase ascii letters (a, b, c, ... z).

upper-latin or upper-alpha
Uppercase ascii letters (A, B, C, ... Z).

lower-greek
Lowercase classical Greek alpha, beta, gamma, ... (α, β, γ, ...)

This specification does not define how alphabetic systems wrap at the end of the alphabet. For instance,
after 26 list items, 'lower-latin' rendering is undefined. Therefore, for long lists, we recommend that au-
thors specify true numbers.

CSS 2.2 does not define how the list numbering is reset and incremented. This is expected to be defined
in the CSS List Module [CSS3LIST]p.363.
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For example, the following HTML document:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Lowercase latin numbering</TITLE>

<STYLE type="text/css">

ol { list-style-type: lower-roman }

</STYLE>

</HEAD>

<BODY>

<OL>

<LI> This is the first item.

<LI> This is the second item.

<LI> This is the third item.

</OL>

</BODY>

</HTML>

might produce something like this:

i This is the first item.

ii This is the second item.

iii This is the third item.

The list marker alignment (here, right justified) depends on the user agent.

Name: list-style-image

Value: <uri>p.62 | none | inheritp.99

Initial: none

Applies to: elements with 'display: list-item'

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: absolute URI or 'none'
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This property sets the image that will be used as the list item marker. When the image is available, it will
replace the marker set with the 'list-style-type'p.235 marker.

The size of the image is calculated from the following rules:

1. If the image has an intrinsic width and height, the used width and height are the intrinsic width and
height.

2. Otherwise, if the image has an intrinsic ratio and either an intrinsic width or an intrinsic height, the
used width/height is the same as the provided intrinsic width/height, and the used value of the miss-
ing dimension is calculated from the provided dimension and the ratio.

3. Otherwise, if the image has an intrinsic ratio, the used width is 1em and the used height is calculated
from this width and the intrinsic ratio. If this would produce a height larger than 1em, then the used
height is instead set to 1em and the used width is calculated from this height and the intrinsic ratio.

4. Otherwise, the image's used width is its intrinsic width if it has one, or else 1em. The image's used
height is its intrinsic height if it has one, or else 1em.

The following example sets the marker at the beginning of each list item to be the image "ellipse.png".

ul { list-style-image: url("http://png.com/ellipse.png") }

Name: list-style-position

Value: inside | outside | inheritp.99

Initial: outside

Applies to: elements with 'display: list-item'

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property specifies the position of the marker box with respect to the principal block box. Values have
the following meanings:

– 12 Generated content, automatic numbering, and lists –

– 238 –



outside
The marker box is outside the principal block box. The position of the list-item marker adjacent to
floats is undefined in CSS 2.2. CSS 2.2 does not specify the precise location of the marker box or its
position in the painting order, but does require that for list items whose 'direction' property is 'ltr' the
marker box be on the left side of the content and for elements whose 'direction' property is 'rtl' the
marker box be on the right side of the content. The marker box is fixed with respect to the principal
block box's border and does not scroll with the principal block box's content. In CSS 2.2, a UA may
hide the marker if the element's 'overflow'p.210 is other than 'visible'. (This is expected to change in
the future.) The size or contents of the marker box may affect the height of the principal block box
and/or the height of its first line box, and in some cases may cause the creation of a new line box.

Note: This interaction may be more precisely defined in a future level of CSS.

inside
The marker box is placed as the first inline box in the principal block box, before the element's con-
tent and before any :before pseudo-elements. CSS 2.2 does not specify the precise location of the
marker box.
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For example:

<HTML>

<HEAD>

<TITLE>Comparison of inside/outside position</TITLE>

<STYLE type="text/css">

ul         { list-style: outside }

ul.compact { list-style: inside }

</STYLE>

</HEAD>

<BODY>

<UL>

<LI>first list item comes first

<LI>second list item comes second

</UL>

<UL class="compact">

<LI>first list item comes first

<LI>second list item comes second

</UL>

</BODY>

</HTML>

The above example may be formatted as:

In right-to-left text, the markers would have been on the right side of the box.

Name: list-style
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Value: [ <'list-style-type'>p.235 || <'list-style-position'>p.238 || <'list-style-
image'>p.237 ] | inheritp.99

Initial: see individual properties

Applies to: elements with 'display: list-item'

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: see individual properties

The 'list-style'p.240 property is a shorthand notation for setting the three properties 'list-style-type'p.235,
'list-style-image'p.237, and 'list-style-position'p.238 at the same place in the style sheet.

ul { list-style: upper-roman inside }  /* Any "ul" element */

ul > li > ul { list-style: circle outside } /* Any "ul" child

of an "li" child

of a "ul" element */

Although authors may specify 'list-style'p.240 information directly on list item elements (e.g., "li" in
HTML), they should do so with care. The following rules look similar, but the first declares a descendant
selector and the second a (more specific) child selector.

ol.alpha li   { list-style: lower-alpha } /* Any "li" descendant of an "ol" */

ol.alpha > li { list-style: lower-alpha } /* Any "li" child of an "ol" */

Authors who use only the descendant selectorp.75 may not achieve the results they expect. Consider the
following rules:

– 12 Generated content, automatic numbering, and lists –

– 241 –

selector.html#descendant-selectors
selector.html#descendant-selectors
selector.html#child-selectors


<HTML>

<HEAD>

<TITLE>WARNING: Unexpected results due to cascade</TITLE>

<STYLE type="text/css">

ol.alpha li  { list-style: lower-alpha }

ul li        { list-style: disc }

</STYLE>

</HEAD>

<BODY>

<OL class="alpha">

<LI>level 1

<UL>

<LI>level 2

</UL>

</OL>

</BODY>

</HTML>

The desired rendering would have level 1 list items with 'lower-alpha' labels and level 2 items with 'disc'
labels. However, the cascading order will cause the first style rule (which includes specific class informa-
tion) to mask the second. The following rules solve the problem by employing a child selector instead:

ol.alpha > li  { list-style: lower-alpha }

ul li   { list-style: disc }

Another solution would be to specify 'list-style'p.240 information only on the list type elements:

ol.alpha  { list-style: lower-alpha }

ul        { list-style: disc }

Inheritance will transfer the 'list-style'p.240 values from OL and UL elements to LI elements. This is the
recommended way to specify list style information.

A URI value may be combined with any other value, as in:

ul { list-style: url("http://png.com/ellipse.png") disc }

In the example above, the 'disc' will be used when the image is unavailable.

A value of 'none' within the 'list-style'p.240 property sets whichever of 'list-style-type'p.235 and 'list-style-
image'p.237 are not otherwise specified to 'none'. However, if both are otherwise specified, the declaration
is in error (and thus ignored).
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For example, a value of 'none' for the 'list-style'p.240 property sets both 'list-style-type'p.235 and 'list-
style-image'p.237 to 'none':

ul { list-style: none }

The result is that no list-item marker is displayed.
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13 Paged media
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13.1 Introduction to paged media

Paged media (e.g., paper, transparencies, pages that are displayed on computer screens, etc.) differ from
continuous media in that the content of the document is split into one or more discrete pages. To handle
pages, CSS 2.2 describes how page margins are set on page boxesp.246, and how page breaksp.249 are de-
clared.

The user agent is responsible for transferring the page boxes of a document onto the real sheets where
the document will ultimately be rendered (paper, transparency, screen, etc.). There is often a 1-to-1 rela-
tionship between a page box and a sheet, but this is not always the case. Transfer possibilities include:

• Transferring one page box to one sheet (e.g., single-sided printing).

• Transferring two page boxes to both sides of the same sheet (e.g., double-sided printing).

• Transferring N (small) page boxes to one sheet (called "n-up").
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• Transferring one (large) page box to N x M sheets (called "tiling").

• Creating signatures. A signature is a group of pages printed on a sheet, which, when folded and
trimmed like a book, appear in their proper sequence.

• Printing one document to several output trays.

• Outputting to a file.

13.2 Page boxes: the @page rule

The page box is a rectangular region that contains two areas:

• The page area. The page area includes the boxes laid out on that page. The edges of the first page
area establish the rectangle that is the initial containing blockp.184 of the document. The canvas back-
ground is painted within and covers the page area.

• The margin area, which surrounds the page area. The page margin area is transparent.

The size of a page box cannot be specified in CSS 2.2.
Authors can specify the margins of a page box inside an @page rule. An @page rule consists of the

keyword "@page", followed by an optional page selector, followed by a block containing declarations and
at-rules. Comments and white space are allowed, but optional, between the @page token and the page se-
lector and between the page selector and the block. The declarations in an @page rule are said to be in the
page context.

Note: CSS level 2 has no at-rules that may appear inside @page, but such at-rules are expected to be
defined in level 3.

The page selector specifies for which pages the declarations apply. In CSS 2.2, page selectors may desig-
nate the first page, all left pages, or all right pages

13.2.1 Page margins

In CSS 2.2, only the margin propertiesp.117 ('margin-top'p.117, 'margin-right'p.118, 'margin-bottom'p.117,
'margin-left'p.118, and 'margin'p.118) apply within the page contextp.246. The following diagram shows the
relationships between the sheet, page box, and page margins:
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Here is a simple example which sets all page margins on all pages:

@page {

margin: 3cm;

}

The page contextp.246 has no notion of fonts, so 'em' and 'ex' units are not allowed. Percentage values on
the margin properties are relative to the dimensions of the page boxp.246; for left and right margins, they
refer to the width of the page box while for top and bottom margins, they refer to the height of the page
box. All other units associated with the respective CSS 2.2 properties are allowed.

Due to negative margin values (either on the page box or on elements) or absolute positioningp.161 con-
tent may end up outside the page box, but this content may be "cut" — by the user agent, the printer, or ul-
timately, the paper cutter.

13.2.2 Page selectors: selecting left, right, and first pages

When printing double-sided documents, the page boxesp.246 on left and right pages may be different. This
can be expressed through two CSS pseudo-classes that may be used in page selectors.

All pages are automatically classified by user agents into either the :left or :right pseudo-class. Whether
the first page of a document is :left or :right depends on the major writing direction of the root element.
For example, the first page of a document with a left-to-right major writing direction would be a :right
page, and the first page of a document with a right-to-left major writing direction would be a :left page.
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To explicitly force a document to begin printing on a left or right page, authors can insert a page
breakp.249 before the first generated box.

@page :left {

margin-left: 4cm;

margin-right: 3cm;

}

@page :right {

margin-left: 3cm;

margin-right: 4cm;

}

If different declarations have been given for left and right pages, the user agent must honor these declara-
tions even if the user agent does not transfer the page boxes to left and right sheets (e.g., a printer that only
prints single-sided).

Authors may also specify style for the first page of a document with the :first pseudo-class:

@page { margin: 2cm } /* All margins set to 2cm */

@page :first {

margin-top: 10cm    /* Top margin on first page 10cm */

}

Properties specified in a :left or :right @page rule override those specified in an @page rule that has no
pseudo-class specified. Properties specified in a :first @page rule override those specified in :left or :right
@page rules.

If a forced breakp.253 occurs before the first generated box, it is undefined in CSS 2.2 whether ':first' ap-
plies to the blank page before the break or to the page after it.

Margin declarations on left, right, and first pages may result in different page areap.246 widths. To sim-
plify implementations, user agents may use a single page area width on left, right, and first pages. In this
case, the page area width of the first page should be used.

13.2.3 Content outside the page box

When formatting content in the page model, some content may end up outside the current page box. For
example, an element whose 'white-space'p.289 property has the value 'pre' may generate a box that is wider
than the page box. As another example, when boxes are positioned absolutely or relatively, they may end
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up in "inconvenient" locations. For example, images may be placed on the edge of the page box or
100,000 meters below the page box.

The exact formatting of such elements lies outside the scope of this specification. However, we recom-
mend that authors and user agents observe the following general principles concerning content outside the
page box:

• Content should be allowed slightly beyond the page box to allow pages to "bleed".

• User agents should avoid generating a large number of empty page boxes to honor the positioning of
elements (e.g., you do not want to print 100 blank pages).

• Authors should not position elements in inconvenient locations just to avoid rendering them.

• User agents may handle boxes positioned outside the page box in several ways, including discarding
them or creating page boxes for them at the end of the document.

13.3 Page breaks

This section describes page breaks in CSS 2.2. Five properties indicate where the user agent may or
should break pages, and on what page (left or right) the subsequent content should resume. Each page
break ends layout in the current page boxp.246 and causes remaining pieces of the document treep.37 to be
laid out in a new page box.

13.3.1 Page break properties: 'page-break-before'p.249, 'page-break-after'p.250, 'page-
break-inside'p.250

Name: page-break-before

Value: auto | always | avoid | left | right | inheritp.99

Initial: auto

Applies to: block-level elements (but see text)

Inherited: no

Percentages: N/A

Media: visualp.110, pagedp.110

Computed value: as specified
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Name: page-break-after

Value: auto | always | avoid | left | right | inheritp.99

Initial: auto

Applies to: block-level elements (but see text)

Inherited: no

Percentages: N/A

Media: visualp.110, pagedp.110

Computed value: as specified

Name: page-break-inside

Value: avoid | auto | inheritp.99

Initial: auto

Applies to: block-level elements (but see text)

Inherited: no

Percentages: N/A

Media: visualp.110, pagedp.110

Computed value: as specified

Values for these properties have the following meanings:
auto

Neither force nor forbid a page break before (after, inside) the generated box.

always
Always force a page break before (after) the generated box.

avoid
Avoid a page break before (after, inside) the generated box.
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left
Force one or two page breaks before (after) the generated box so that the next page is formatted as a
left page.

right
Force one or two page breaks before (after) the generated box so that the next page is formatted as a
right page.

A conforming user agent may interpret the values 'left' and 'right' as 'always'.
A potential page break location is typically under the influence of the parent element's 'page-break-

inside'p.250 property, the 'page-break-after'p.250 property of the preceding element, and the 'page-break-
before'p.249 property of the following element. When these properties have values other than 'auto', the
values 'always', 'left', and 'right' take precedence over 'avoid'.

User Agents must apply these properties to block-level elements in the normal flow of the root element.
User agents may also apply these properties to other elements, e.g., 'table-row' elements.

When a page break splits a box, the box's margins, borders, and padding have no visual effect where the
split occurs.

13.3.2 Breaks inside elements: 'orphans'p.251, 'widows'p.251

Name: orphans

Value: <integer>p.57 | inheritp.99

Initial: 2

Applies to: block container elements

Inherited: yes

Percentages: N/A

Media: visualp.110, pagedp.110

Computed value: as specified

Name: widows

Value: <integer>p.57 | inheritp.99

Initial: 2
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Applies to: block container elements

Inherited: yes

Percentages: N/A

Media: visualp.110, pagedp.110

Computed value: as specified

The 'orphans'p.251 property specifies the minimum number of lines in a block container that must be left at
the bottom of a page. The 'widows'p.251 property specifies the minimum number of lines in a block con-
tainer that must be left at the top of a page. Examples of how they are used to control page breaks are giv-
en below.

Only positive values are allowed.
For information about paragraph formatting, please consult the section on line boxesp.145.

13.3.3 Allowed page breaks

In the normal flow, page breaks can occur at the following places:

1. In the vertical margin between block-level boxes. When an unforced page break occurs here, the used
valuesp.98 of the relevant 'margin-top'p.117 and 'margin-bottom'p.117 properties are set to '0'. When a
forced page break occurs here, the used value of the relevant 'margin-bottom'p.117 property is set to
'0'; the relevant 'margin-top'p.117 used value may either be set to '0' or retained.

2. Between line boxesp.145 inside a block containerp.135 box.

3. Between the content edge of a block container box and the outer edges of its child content (margin
edges of block-level children or line box edges for inline-level children) if there is a (non-zero) gap
between them.

Note: It is expected that CSS3 will specify that the relevant 'margin-top' applies (i.e., is not set to '0')
after a forced page break.

These breaks are subject to the following rules:

• Rule A: Breaking at (1) is allowed only if the 'page-break-after'p.250 and 'page-break-before'p.249

properties of all the elements generating boxes that meet at this margin allow it, which is when at
least one of them has the value 'always', 'left', or 'right', or when all of them are 'auto'.
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• Rule B: However, if all of them are 'auto' and a common ancestor of all the elements has a 'page-
break-inside'p.250 value of 'avoid', then breaking here is not allowed.

• Rule C: Breaking at (2) is allowed only if the number of line boxesp.145 between the break and the
start of the enclosing block box is the value of 'orphans'p.251 or more, and the number of line boxes
between the break and the end of the box is the value of 'widows'p.251 or more.

• Rule D: In addition, breaking at (2) or (3) is allowed only if the 'page-break-inside'p.250 property of
the element and all its ancestors is 'auto'.

If the above does not provide enough break points to keep content from overflowing the page boxes, then
rules A, B and D are dropped in order to find additional breakpoints.

If that still does not lead to sufficient break points, rule C is dropped as well, to find still more break
points.

13.3.4 Forced page breaks

A page break must occur at (1) if, among the 'page-break-after'p.250 and 'page-break-before'p.249 proper-
ties of all the elements generating boxes that meet at this margin, there is at least one with the value 'al-
ways', 'left', or 'right'.

13.3.5 "Best" page breaks

CSS 2.2 does not define which of a set of allowed page breaks must be used; CSS 2.2 does not forbid a
user agent from breaking at every possible break point, or not to break at all. But CSS 2.2 does recom-
mend that user agents observe the following heuristics (while recognizing that they are sometimes contra-
dictory):

• Break as few times as possible.

• Make all pages that do not end with a forced break appear to have about the same height.

• Avoid breaking inside a replaced element.
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Suppose, for example, that the style sheet contains 'orphans: 4', 'widows: 2', and there are 20 lines (line
boxesp.145) available at the bottom of the current page:

• If a paragraph at the end of the current page contains 20 lines or fewer, it should be placed on the
current page.

• If the paragraph contains 21 or 22 lines, the second part of the paragraph must not violate the
'widows'p.251 constraint, and so the second part must contain exactly two lines

• If the paragraph contains 23 lines or more, the first part should contain 20 lines and the second
part the remaining lines.

Now suppose that 'orphans'p.251 is '10', 'widows'p.251 is '20', and there are 8 lines available at the bot-
tom of the current page:

• If a paragraph at the end of the current page contains 8 lines or fewer, it should be placed on the
current page.

• If the paragraph contains 9 lines or more, it cannot be split (that would violate the orphan con-
straint), so it should move as a block to the next page.

13.4 Cascading in the page context

Declarations in the page contextp.246 obey the cascadep.97 just like normal CSS declarations.

Consider the following example:

@page {

margin-left: 3cm;

}

@page :left {

margin-left: 4cm;

}

Due to the higher specificityp.101 of the pseudo-class selector, the left margin on left pages will be
'4cm' and all other pages (i.e., the right pages) will have a left margin of '3cm'.
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CSS properties allow authors to specify the foreground color and background of an element. Backgrounds
may be colors or images. Background properties allow authors to position a background image, repeat it,
and declare whether it should be fixed with respect to the viewportp.135 or scrolled along with the docu-
ment.

See the section on color units for the syntax of valid color values.

14.1 Foreground color: the 'color'p. 255 property

Name: color

Value: <color>p.63 | inheritp.99

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property describes the foreground color of an element's text content. There are different ways to
specify red:

– 14 Colors and Backgrounds –

– 255 –

syndata.html#color-units


em { color: red }              /* predefined color name */

em { color: rgb(255,0,0) }     /* RGB range 0-255   */

14.2 The background

Authors may specify the background of an element (i.e., its rendering surface) as either a color or an im-
age. In terms of the box modelp.113, "background" refers to the background of the contentp.113,
paddingp.113 and borderp.113 areas. Border colors and styles are set with the border propertiesp.124. Mar-
gins are always transparent.

Background properties are not inherited, but the parent box's background will shine through by default
because of the initial 'transparent' value on 'background-color'p.257.

The background of the root element becomes the background of the canvas and covers the entire can-
vasp.31, anchored (for 'background-position'p.261) at the same point as it would be if it was painted only
for the root element itself. The root element does not paint this background again.

For HTML documents, however, we recommend that authors specify the background for the BODY el-
ement rather than the HTML element. For documents whose root element is an HTML "HTML" element
or an XHTML "html" element that has computed values of 'transparent' for 'background-color'p.257 and
'none' for 'background-image'p.258, user agents must instead use the computed value of the background
properties from that element's first HTML "BODY" element or XHTML "body" element child when
painting backgrounds for the canvas, and must not paint a background for that child element. Such back-
grounds must also be anchored at the same point as they would be if they were painted only for the root
element.

However, if no boxes are generated for the element whose background would be used for the back-
ground of the canvas, then the canvas background is transparent. (in CSS 2.2, that is the case when the el-
ement or an ancestor has 'display: none'.)

Note that, if the element has 'visibility: hidden' but not 'display: none', boxes are generated for it and its
background is used for the canvas.
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According to these rules, the canvas underlying the following HTML document will have a "marble"
background:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<TITLE>Setting the canvas background</TITLE>

<STYLE type="text/css">

BODY { background: url("http://example.com/marble.png") }

</STYLE>

<P>My background is marble.

Note that the rule for the BODY element will work even though the BODY tag has been omitted in
the HTML source since the HTML parser will infer the missing tag.

Backgrounds of elements that form a stacking context (see the 'z-index'p.173 property) are painted at the
bottom of the element's stacking context, below anything in that stacking context.

14.2.1 Background properties: 'background-color'p.257, 'background-image'p.258,
'background-repeat'p. 259, 'background-attachment'p.260, 'background-position'p.261, and
'background'p.263

Name: background-color

Value: <color>p.63 | transparent | inheritp.99

Initial: transparent

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property sets the background color of an element, either a <color>p.63 value or the keyword 'trans-
parent', to make the underlying colors shine through.

h1 { background-color: #F00 }
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Name: background-image

Value: <uri>p.62 | none | inheritp.99

Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: absolute URI or none

This property sets the background image of an element. When setting a background image, authors should
also specify a background color that will be used when the image is unavailable. When the image is avail-
able, it is rendered on top of the background color. (Thus, the color is visible in the transparent parts of the
image).

Values for this property are either <uri>p.62, to specify the image, or 'none', when no image is used.

body { background-image: url("marble.png") }

p { background-image: none }

Intrinsic dimensions expressed as percentages must be resolved relative to the dimensions of the rectangle
that establishes the coordinate system for the 'background-position'p.261 property.

If the image has one of either an intrinsic width or an intrinsic height and an intrinsic aspect ratio, then
the missing dimension is calculated from the given dimension and the ratio.

If the image has one of either an intrinsic width or an intrinsic height and no intrinsic aspect ratio, then
the missing dimension is assumed to be the size of the rectangle that establishes the coordinate system for
the 'background-position' property.

If the image has no intrinsic dimensions and has an intrinsic ratio the dimensions must be assumed to be
the largest dimensions at that ratio such that neither dimension exceeds the dimensions of the rectangle
that establishes the coordinate system for the 'background-position'p.261 property.

If the image has no intrinsic ratio either, then the dimensions must be assumed to be the rectangle that
establishes the coordinate system for the 'background-position'p.261 property.
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Name: background-repeat

Value: repeat | repeat-x | repeat-y | no-repeat | inheritp.99

Initial: repeat

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: as specified

If a background image is specified, this property specifies whether the image is repeated (tiled), and how.
All tiling covers the contentp.113, paddingp.113 and borderp.113 areas of a box.

The tiling and positioning of the background-image on inline elements is undefined in this specifica-
tion. A future level of CSS may define the tiling and positioning of the background-image on inline ele-
ments.

Values have the following meanings:
repeat

The image is repeated both horizontally and vertically.

repeat-x
The image is repeated horizontally only.

repeat-y
The image is repeated vertically only.

no-repeat
The image is not repeated: only one copy of the image is drawn.
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body {

background: white url("pendant.png");

background-repeat: repeat-y;

background-position: center;

}

One copy of the background image is centered, and other copies are put above and below it to make a vertical
band behind the element.

Name: background-attachment

Value: scroll | fixed | inheritp.99

Initial: scroll

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110
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Computed value: as specified

If a background image is specified, this property specifies whether it is fixed with regard to the view-
portp.135 ('fixed') or scrolls along with the containing block ('scroll').

Note that there is only one viewport per view. If an element has a scrolling mechanism (see 'overflow'),
a 'fixed' background does not move with the element, and a 'scroll' background does not move with the
scrolling mechanism.

Even if the image is fixed, it is still only visible when it is in the content, padding or border area of the
element. Thus, unless the image is tiled ('background-repeat: repeat'), it may be invisible.

In paged media, where there is no viewport, a 'fixed' background is fixed with respect to the page box
and is therefore replicated on every page.

This example creates an infinite vertical band that remains "glued" to the viewport when the element
is scrolled.

body {

background: red url("pendant.png");

background-repeat: repeat-y;

background-attachment: fixed;

}

User agents that do not support 'fixed' backgrounds (for example due to limitations of the hardware plat-
form) should ignore declarations with the keyword 'fixed'. For example:

body {

background: white url(paper.png) scroll; /* for all UAs */

background: white url(ledger.png) fixed; /* for UAs that do fixed backgrounds */

}

See the section on conformancep.39 for details.

Name: background-position

Value: [ [ <percentage>p.61 | <length>p.58 | left | center | right ] [ <percentage>p.61 |
<length>p.58 | top | center | bottom ]? ] | [ [ left | center | right ] || [ top | center
| bottom ] ] | inheritp.99

Initial: 0% 0%

– 14 Colors and Backgrounds –

– 261 –



Applies to: all elements

Inherited: no

Percentages: refer to the size of the box itself

Media: visualp.110

Computed value: for <length>p.58 the absolute value, otherwise a percentage

If a background image has been specified, this property specifies its initial position. If only one value is
specified, the second value is assumed to be 'center'. If at least one value is not a keyword, then the first
value represents the horizontal position and the second represents the vertical position. Negative <percent-
age> and <length> values are allowed.
<percentage>p. 61

A percentage X aligns the point X% across (for horizontal) or down (for vertical) the image with the
point X% across (for horizontal) or down (for vertical) the element's padding box. For example, with
a value pair of '0% 0%',the upper left corner of the image is aligned with the upper left corner of the
padding box. A value pair of '100% 100%' places the lower right corner of the image in the lower
right corner of the padding box. With a value pair of '14% 84%', the point 14% across and 84% down
the image is to be placed at the point 14% across and 84% down the padding box.

<length>p. 58

A length L aligns the top left corner of the image a distance L to the right of (for horizontal) or below
(for vertical) the top left corner of the element's padding box. For example, with a value pair of '2cm
1cm', the upper left corner of the image is placed 2cm to the right and 1cm below the upper left cor-
ner of the padding box.

top
Equivalent to '0%' for the vertical position.

right
Equivalent to '100%' for the horizontal position.

bottom
Equivalent to '100%' for the vertical position.

left
Equivalent to '0%' for the horizontal position.

center
Equivalent to '50%' for the horizontal position if it is not otherwise given, or '50%' for the vertical
position if it is.

However, the position is undefined in CSS 2.2 if the image has an intrinsic ratio, but no intrinsic size.
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body { background: url("banner.jpeg") right top }    /* 100%   0% */

body { background: url("banner.jpeg") top center }   /*  50%   0% */

body { background: url("banner.jpeg") center }       /*  50%  50% */

body { background: url("banner.jpeg") bottom }       /*  50% 100% */

The tiling and positioning of the background-image on inline elements is undefined in this specification.
A future level of CSS may define the tiling and positioning of the background-image on inline elements.

If the background image is fixed within the viewport (see the 'background-attachment'p.260 property),
the image is placed relative to the viewport instead of the element's padding box. For example,

body {

background-image: url("logo.png");

background-attachment: fixed;

background-position: 100% 100%;

background-repeat: no-repeat;

}

In the example above, the (single) image is placed in the lower-right corner of the viewport.

Name: background

Value: [<'background-color'>p.257 || <'background-image'>p.258 || <'background-
repeat'>p.259 || <'background-attachment'>p.260 || <'background-
position'>p.261] | inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: allowed on 'background-position'

Media: visualp.110

Computed value: see individual properties
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The 'background'p.263 property is a shorthand property for setting the individual background properties
(i.e., 'background-color'p.257, 'background-image'p.258, 'background-repeat'p.259, 'background-
attachment'p.260 and 'background-position'p.261) at the same place in the style sheet.

Given a valid declaration, the 'background'p.263 property first sets all the individual background proper-
ties to their initial values, then assigns explicit values given in the declaration.

In the first rule of the following example, only a value for 'background-color'p.257 has been given and
the other individual properties are set to their initial value. In the second rule, all individual properties
have been specified.

BODY { background: red }

P { background: url("chess.png") gray 50% repeat fixed }

– 14 Colors and Backgrounds –

– 264 –



15 Fonts
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15.1 Introduction

Setting font properties will be among the most common uses of style sheets. Unfortunately, there exists no
well-defined and universally accepted taxonomy for classifying fonts, and terms that apply to one font
family may not be appropriate for others. E.g., 'italic' is commonly used to label slanted text, but slanted
text may also be labeled as being Oblique, Slanted, Incline, Cursive or Kursiv. Therefore it is not a simple
problem to map typical font selection properties to a specific font.
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15.2 Font matching algorithm

Because there is no accepted, universal taxonomy of font properties, matching of properties to font faces
must be done carefully. The properties are matched in a well-defined order to insure that the results of this
matching process are as consistent as possible across UAs (assuming that the same library of font faces is
presented to each of them).

1. The User Agent makes (or accesses) a database of relevant CSS 2.2 properties of all the fonts of
which the UA is aware. If there are two fonts with exactly the same properties, the user agent selects
one of them.

2. At a given element and for each character in that element, the UA assembles the font properties ap-
plicable to that element. Using the complete set of properties, the UA uses the 'font-family' property
to choose a tentative font family. The remaining properties are tested against the family according to
the matching criteria described with each property. If there are matches for all the remaining proper-
ties, then that is the matching font face for the given element or character.

3. If there is no matching font face within the 'font-family' being processed by step 2, and if there is a
next alternative 'font-family' in the font set, then repeat step 2 with the next alternative 'font-family'.

4. If there is a matching font face, but it does not contain a glyph for the current character, and if there
is a next alternative 'font-family' in the font sets, then repeat step 2 with the next alternative 'font-
family'.

5. If there is no font within the family selected in 2, then use a UA-dependent default 'font-family' and
repeat step 2, using the best match that can be obtained within the default font. If a particular charac-
ter cannot be displayed using this font, then the UA may use other means to determine a suitable font
for that character. The UA should map each character for which it has no suitable font to a visible
symbol chosen by the UA, preferably a "missing character" glyph from one of the font faces avail-
able to the UA.

(The above algorithm can be optimized to avoid having to revisit the CSS 2.2 properties for each charac-
ter.)

The per-property matching rules from (2) above are as follows:

1. 'font-style'p.271 is tried first. 'Italic' will be satisfied if there is either a face in the UA's font database
labeled with the CSS keyword 'italic' (preferred) or 'oblique'. Otherwise the values must be matched
exactly or font-style will fail.

2. 'font-variant'p.272 is tried next. 'Small-caps' matches (1) a font labeled as 'small-caps', (2) a font in
which the small caps are synthesized, or (3) a font where all lowercase letters are replaced by upper
case letters. A small-caps font may be synthesized by electronically scaling uppercase letters from a

– 15 Fonts –

– 266 –



normal font. 'normal' matches a font's normal (non-small-caps) variant. A font cannot fail to have a
normal variant. A font that is only available as small-caps shall be selectable as either a 'normal' face
or a 'small-caps' face.

3. 'font-weight'p.273 is matched next, it will never fail. (See 'font-weight' below.)

4. 'font-size'p.276 must be matched within a UA-dependent margin of tolerance. (Typically, sizes for
scalable fonts are rounded to the nearest whole pixel, while the tolerance for bitmapped fonts could
be as large as 20%.) Further computations, e.g., by 'em' values in other properties, are based on the
computed value of 'font-size'.

15.3 Font family: the 'font-family'p.267 property

Name: font-family

Value: [[ <family-name>p.267 | <generic-family>p.268 ] [, [ <family-name>p.267|
<generic-family>p.268] ]* ] | inheritp.99

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

The property value is a prioritized list of font family names and/or generic family names.p.269 Unlike most
other CSS properties, component values are separated by a comma to indicate that they are alternatives:

body { font-family: Gill, Helvetica, sans-serif }

Although many fonts provide the "missing character" glyph, typically an open box, as its name implies
this should not be considered a match for characters that cannot be found in the font. (It should, however,
be considered a match for U+FFFD, the "missing character" character's code point).

There are two types of font family names:
<family-name>

The name of a font family of choice. In the last example, "Gill" and "Helvetica" are font families.
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<generic-family>
In the example above, the last value is a generic family name. The following generic families are de-
fined:

• 'serif' (e.g., Times)

• 'sans-serif' (e.g., Helvetica)

• 'cursive' (e.g., Zapf-Chancery)

• 'fantasy' (e.g., Western)

• 'monospace' (e.g., Courier)

Style sheet designers are encouraged to offer a generic font family as a last alternative. Generic font
family names are keywords and must NOT be quoted.

Font family names must either be given quoted as strings,p.65 or unquoted as a sequence of one or more
identifiers.p.49 This means most punctuation characters and digits at the start of each token must be es-
caped in unquoted font family names.

For example, the following declarations are invalid:

font-family: Red/Black, sans-serif;

font-family: "Lucida" Grande, sans-serif;

font-family: Ahem!, sans-serif;

font-family: test@foo, sans-serif;

font-family: #POUND, sans-serif;

font-family: Hawaii 5-0, sans-serif;

If a sequence of identifiers is given as a font family name, the computed value is the name converted to a
string by joining all the identifiers in the sequence by single spaces.

To avoid mistakes in escaping, it is recommended to quote font family names that contain white space,
digits, or punctuation characters other than hyphens:

body { font-family: "New Century Schoolbook", serif }

<BODY STYLE="font-family: '21st Century', fantasy">

Unquoted font family names that happen to be the same as the keyword values 'inherit', 'default' and 'ini-
tial' or the generic font keywords ('serif', 'sans-serif', 'monospace', 'fantasy', and 'cursive') do not match the
'<family-name>' type. These names must be quoted to prevent confusion with the keywords with the same
names. Note that 'font-family: Times, inherit' is therefore an invalid declaration, because 'inherit' in that
position can neither be a valid keyword nor a valid font family name.
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15.3.1 Generic font families

Generic font families are a fallback mechanism, a means of preserving some of the style sheet author's in-
tent in the worst case when none of the specified fonts can be selected. For optimum typographic control,
particular named fonts should be used in style sheets.

All five generic font families are defined to exist in all CSS implementations (they need not necessarily
map to five distinct actual fonts). User agents should provide reasonable default choices for the generic
font families, which express the characteristics of each family as well as possible within the limits allowed
by the underlying technology.

User agents are encouraged to allow users to select alternative choices for the generic fonts.

15.3.1.1 serif

Glyphs of serif fonts, as the term is used in CSS, tend to have finishing strokes, flared or tapering ends, or
have actual serifed endings (including slab serifs). Serif fonts are typically proportionately-spaced. They
often display a greater variation between thick and thin strokes than fonts from the 'sans-serif' generic font
family. CSS uses the term 'serif' to apply to a font for any script, although other names may be more fa-
miliar for particular scripts, such as Mincho (Japanese), Sung or Song (Chinese), Totum or Kodig (Kore-
an). Any font that is so described may be used to represent the generic 'serif' family.

Examples of fonts that fit this description include:

Latin fonts
Times New Roman, Bodoni, Garamond, Minion Web, ITC Stone Serif, MS Georgia,
Bitstream Cyberbit

Greek fonts Bitstream Cyberbit
Cyrillic
fonts

Adobe Minion Cyrillic, Excelsior Cyrillic Upright, Monotype Albion 70, Bitstream
Cyberbit, ER Bukinist

Hebrew
fonts

New Peninim, Raanana, Bitstream Cyberbit

Japanese
fonts

Ryumin Light-KL, Kyokasho ICA, Futo Min A101

Arabic fonts Bitstream Cyberbit
Cherokee
fonts

Lo Cicero Cherokee

15.3.1.2 sans-serif

Glyphs in sans-serif fonts, as the term is used in CSS, tend to have stroke endings that are plain -- with lit-
tle or no flaring, cross stroke, or other ornamentation. Sans-serif fonts are typically proportionately-
spaced. They often have little variation between thick and thin strokes, compared to fonts from the 'serif'
family. CSS uses the term 'sans-serif' to apply to a font for any script, although other names may be more
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familiar for particular scripts, such as Gothic (Japanese), Kai (Chinese), or Pathang (Korean). Any font
that is so described may be used to represent the generic 'sans-serif' family.

Examples of fonts that fit this description include:
Latin
fonts

MS Trebuchet, ITC Avant Garde Gothic, MS Arial, MS Verdana, Univers, Futura, ITC Stone
Sans, Gill Sans, Akzidenz Grotesk, Helvetica

Greek
fonts

Attika, Typiko New Era, MS Tahoma, Monotype Gill Sans 571, Helvetica Greek

Cyrillic
fonts

Helvetica Cyrillic, ER Univers, Lucida Sans Unicode, Bastion

Hebrew
fonts

Arial Hebrew, MS Tahoma

Japanese
fonts

Shin Go, Heisei Kaku Gothic W5

Arabic
fonts

MS Tahoma

15.3.1.3 cursive

Glyphs in cursive fonts, as the term is used in CSS, generally have either joining strokes or other cursive
characteristics beyond those of italic typefaces. The glyphs are partially or completely connected, and the
result looks more like handwritten pen or brush writing than printed letterwork. Fonts for some scripts,
such as Arabic, are almost always cursive. CSS uses the term 'cursive' to apply to a font for any script, al-
though other names such as Chancery, Brush, Swing and Script are also used in font names.

Examples of fonts that fit this description include:
Latin fonts Caflisch Script, Adobe Poetica, Sanvito, Ex Ponto, Snell Roundhand, Zapf-Chancery
Cyrillic fonts ER Architekt
Hebrew fonts Corsiva
Arabic fonts DecoType Naskh, Monotype Urdu 507

15.3.1.4 fantasy

Fantasy fonts, as used in CSS, are primarily decorative while still containing representations of characters
(as opposed to Pi or Picture fonts, which do not represent characters). Examples include:
Latin fonts Alpha Geometrique, Critter, Cottonwood, FB Reactor, Studz
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15.3.1.5 monospace

The sole criterion of a monospace font is that all glyphs have the same fixed width. (This can make some
scripts, such as Arabic, look most peculiar.) The effect is similar to a manual typewriter, and is often used
to set samples of computer code.

Examples of fonts which fit this description include:
Latin fonts Courier, MS Courier New, Prestige, Everson Mono
Greek Fonts MS Courier New, Everson Mono
Cyrillic fonts ER Kurier, Everson Mono
Japanese fonts Osaka Monospaced
Cherokee fonts Everson Mono

15.4 Font styling: the 'font-style'p.271 property

Name: font-style

Value: normal | italic | oblique | inheritp.99

Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

The 'font-style' property selects between normal (sometimes referred to as "roman" or "upright"), italic
and oblique faces within a font family.

A value of 'normal' selects a font that is classified as 'normal' in the UA's font database, while 'oblique'
selects a font that is labeled 'oblique'. A value of 'italic' selects a font that is labeled 'italic', or, if that is not
available, one labeled 'oblique'.

The font that is labeled 'oblique' in the UA's font database may actually have been generated by elec-
tronically slanting a normal font.

Fonts with Oblique, Slanted or Incline in their names will typically be labeled 'oblique' in the UA's font
database. Fonts with Italic, Cursive or Kursiv in their names will typically be labeled 'italic'.
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h1, h2, h3 { font-style: italic }

h1 em { font-style: normal }

In the example above, emphasized text within 'H1' will appear in a normal face.

15.5 Small-caps: the 'font-variant'p. 272 property

Name: font-variant

Value: normal | small-caps | inheritp.99

Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

Another type of variation within a font family is the small-caps. In a small-caps font the lower case letters
look similar to the uppercase ones, but in a smaller size and with slightly different proportions. The 'font-
variant' property selects that font.

A value of 'normal' selects a font that is not a small-caps font, 'small-caps' selects a small-caps font. It is
acceptable (but not required) in CSS 2.2 if the small-caps font is a created by taking a normal font and re-
placing the lower case letters by scaled uppercase characters. As a last resort, uppercase letters will be
used as replacement for a small-caps font.

The following example results in an 'H3' element in small-caps, with any emphasized words in oblique,
and any emphasized words within an 'H3' oblique small-caps:

h3 { font-variant: small-caps }

em { font-style: oblique }

There may be other variants in the font family as well, such as fonts with old-style numerals, small-caps
numerals, condensed or expanded letters, etc. CSS 2.2 has no properties that select those.

Note: insofar as this property causes text to be transformed to uppercase, the same considerations as for
'text-transform'p.288 apply.
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15.6 Font boldness: the 'font-weight'p.273 property

Name: font-weight

Value: normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 |
900 | inheritp.99

Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: see text

The 'font-weight' property selects the weight of the font. The values '100' to '900' form an ordered se-
quence, where each number indicates a weight that is at least as dark as its predecessor. The keyword 'nor-
mal' is synonymous with '400', and 'bold' is synonymous with '700'. Keywords other than 'normal' and
'bold' have been shown to be often confused with font names and a numerical scale was therefore chosen
for the 9-value list.

p { font-weight: normal }   /* 400 */

h1 { font-weight: 700 }     /* bold */

The 'bolder' and 'lighter' values select font weights that are relative to the weight inherited from the parent:

strong { font-weight: bolder }

Fonts (the font data) typically have one or more properties whose values are names that are descriptive of
the "weight" of a font. There is no accepted, universal meaning to these weight names. Their primary role
is to distinguish faces of differing darkness within a single font family. Usage across font families is quite
variant; for example, a font that one might think of as being bold might be described as being Regular,
Roman, Book, Medium, Semi- or DemiBold, Bold, or Black, depending on how black the "normal" face of
the font is within the design. Because there is no standard usage of names, the weight property values in
CSS 2.2 are given on a numerical scale in which the value '400' (or 'normal') corresponds to the "normal"
text face for that family. The weight name associated with that face will typically be Book, Regular, Ro-
man, Normal or sometimes Medium.
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The association of other weights within a family to the numerical weight values is intended only to pre-
serve the ordering of darkness within that family. However, the following heuristics tell how the assign-
ment is done in this case:

• If the font family already uses a numerical scale with nine values (like e.g., OpenType does), the font
weights should be mapped directly.

• If there is both a face labeled Medium and one labeled Book, Regular, Roman or Normal, then the
Medium is normally assigned to the '500'.

• The font labeled "Bold" will often correspond to the weight value '700'.

Once the font family's weights are mapped onto the CSS scale, missing weights are selected as follows:

• If the desired weight is less than 400, weights below the desired weight are checked in descending
order followed by weights above the desired weight in ascending order until a match is found.

• If the desired weight is greater than 500, weights above desired weight are checked in ascending or-
der followed by weights below the desired weight in descending order until a match is found.

• If the desired weight is 400, 500 is checked first and then the rule for desired weights less than 400 is
used.

• If the desired weight is 500, 400 is checked first and then the rule for desired weights less than 400 is
used.

The following two examples show typical mappings.

Assume four weights in the "Rattlesnake" family, from lightest to darkest: Regular, Medium, Bold,
Heavy.

First example of font-weight mapping

Available faces Assignments Filling the holes

"Rattlesnake Regular" 400 100, 200, 300

"Rattlesnake Medium" 500

"Rattlesnake Bold" 700 600

"Rattlesnake Heavy" 800 900
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Assume six weights in the "Ice Prawn" family: Book, Medium, Bold, Heavy, Black, ExtraBlack. Note
that in this instance the user agent has decided not to assign a numeric value to "Ice Prawn Extra-
Black".

Second example of font-weight mapping

Available faces Assignments Filling the holes

"Ice Prawn Book" 400 100, 200, 300

"Ice Prawn Medium" 500

"Ice Prawn Bold" 700 600

"Ice Prawn Heavy" 800

"Ice Prawn Black" 900

"Ice Prawn ExtraBlack" (none)

Values of 'bolder' and 'lighter' indicate values relative to the weight of the parent element. Based on the in-
herited weight value, the weight used is calculated using the chart below. Child elements inherit the calcu-
lated weight, not a value of 'bolder' or 'lighter'.

The meaning of 'bolder' and
'lighter'

Inherited value bolder lighter
100 400 100
200 400 100
300 400 100
400 700 100
500 700 100
600 900 400
700 900 400
800 900 700
900 900 700
The table above is equivalent to selecting the next relative bolder or lighter face, given a font family con-
taining normal and bold faces along with a thin and a heavy face. Authors who desire finer control over
the exact weight values used for a given element should use numerical values instead of relative weights.

There is no guarantee that there will be a darker face for each of the 'font-weight' values; for example,
some fonts may have only a normal and a bold face, while others may have eight face weights. There is no
guarantee on how a UA will map font faces within a family to weight values. The only guarantee is that a
face of a given value will be no less dark than the faces of lighter values.
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15.7 Font size: the 'font-size'p.276 property

Name: font-size

Value: <absolute-size>p.276 | <relative-size>p.277 | <length>p.58 | <percentage>p.61 |
inheritp.99

Initial: medium

Applies to: all elements

Inherited: yes

Percentages: refer to inherited font size

Media: visualp.110

Computed value: absolute length

The font size corresponds to the em square, a concept used in typography. Note that certain glyphs may
bleed outside their em squares. Values have the following meanings:
<absolute-size>

An <absolute-size> keyword is an index to a table of font sizes computed and kept by the UA. Possi-
ble values are:
[ xx-small | x-small | small | medium | large | x-large | xx-large ]

The following table provides user agent guidelines for the absolute-size mapping to HTML head-
ing and absolute font-sizes. The 'medium' value is the user's preferred font size and is used as the ref-
erence middle value.
CSS
absolute-
size values

xx-
small

x-
small

small mediumlarge x-large
xx-
large

HTML
font sizes

1 2 3 4 5 6 7

Implementors should build a table of scaling factors for absolute-size keywords relative to the 'medi-
um' font size and the particular device and its characteristics (e.g., the resolution of the device).

Different media may need different scaling factors. Also, the UA should take the quality and avail-
ability of fonts into account when computing the table. The table may be different from one font fam-
ily to another.
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Note 1. To preserve readability, a UA applying these guidelines should nevertheless avoid creat-
ing font-size resulting in less than 9 pixels per EM unit on a computer display.

Note 2. In CSS1, the suggested scaling factor between adjacent indexes was 1.5, which user ex-
perience proved to be too large. In CSS2, the suggested scaling factor for a computer screen be-
tween adjacent indexes was 1.2, which still created issues for the small sizes. Implementation ex-
perience has demonstrated that a fixed ratio between adjacent absolute-size keywords is prob-
lematic, and this specification does not recommend such a fixed ratio.

<relative-size>
A <relative-size> keyword is interpreted relative to the table of font sizes and the font size of the par-
ent element. Possible values are: [ larger | smaller ]. For example, if the parent element has a font size
of 'medium', a value of 'larger' will make the font size of the current element be 'large'. If the parent
element's size is not close to a table entry, the UA is free to interpolate between table entries or round
off to the closest one. The UA may have to extrapolate table values if the numerical value goes be-
yond the keywords.

Length and percentage values should not take the font size table into account when calculating the font
size of the element.

Negative values are not allowed.
On all other properties, 'em' and 'ex' length values refer to the computed font size of the current ele-

ment. On the 'font-size' property, these length units refer to the computed font size of the parent element.
Note that an application may reinterpret an explicit size, depending on the context. E.g., inside a VR

scene a font may get a different size because of perspective distortion.
Examples:

p { font-size: 16px; }

@media print {

p { font-size: 12pt; }

}

blockquote { font-size: larger }

em { font-size: 150% }

em { font-size: 1.5em }

15.8 Shorthand font property: the 'font'p.277 property

Name: font
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Value: [ [ <'font-style'>p.271 || <'font-variant'>p.272 || <'font-weight'>p.273 ]? <'font-
size'>p.276 [ / <'line-height'>p.204 ]? <'font-family'>p.267 ] | caption | icon |
menu | message-box | small-caption | status-bar | inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: yes

Percentages: see individual properties

Media: visualp.110

Computed value: see individual properties

The 'font'p.277 property is, except as described belowp.279, a shorthand property for setting 'font-
style'p.271, 'font-variant'p.272, 'font-weight'p.273, 'font-size'p.276, 'line-height'p.204 and 'font-family'p.267 at
the same place in the style sheet. The syntax of this property is based on a traditional typographical short-
hand notation to set multiple properties related to fonts.

All font-related properties are first reset to their initial values, including those listed in the preceding
paragraph. Then, those properties that are given explicit values in the 'font'p.277 shorthand are set to those
values. For a definition of allowed and initial values, see the previously defined properties.

p { font: 12px/14px sans-serif }

p { font: 80% sans-serif }

p { font: x-large/110% "New Century Schoolbook", serif }

p { font: bold italic large Palatino, serif }

p { font: normal small-caps 120%/120% fantasy }

In the second rule, the font size percentage value ('80%') refers to the font size of the parent element. In
the third rule, the line height percentage refers to the font size of the element itself.

In the first three rules above, the 'font-style', 'font-variant' and 'font-weight' are not explicitly men-
tioned, which means they are all three set to their initial value ('normal'). The fourth rule sets the 'font-
weight' to 'bold', the 'font-style' to 'italic' and implicitly sets 'font-variant' to 'normal'.

The fifth rule sets the 'font-variant' ('small-caps'), the 'font-size' (120% of the parent's font), the 'line-
height' (120% times the font size) and the 'font-family' ('fantasy'). It follows that the keyword 'normal' ap-
plies to the two remaining properties: 'font-style' and 'font-weight'.

The following values refer to system fonts:
caption

The font used for captioned controls (e.g., buttons, drop-downs, etc.).
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icon
The font used to label icons.

menu
The font used in menus (e.g., dropdown menus and menu lists).

message-box
The font used in dialog boxes.

small-caption
The font used for labeling small controls.

status-bar
The font used in window status bars.

System fonts may only be set as a whole; that is, the font family, size, weight, style, etc. are all set at the
same time. These values may then be altered individually if desired. If no font with the indicated charac-
teristics exists on a given platform, the user agent should either intelligently substitute (e.g., a smaller ver-
sion of the 'caption' font might be used for the 'small-caption' font), or substitute a user agent default font.
As for regular fonts, if, for a system font, any of the individual properties are not part of the operating sys-
tem's available user preferences, those properties should be set to their initial values.

That is why this property is "almost" a shorthand property: system fonts can only be specified with this
property, not with 'font-family'p.267 itself, so 'font'p.277 allows authors to do more than the sum of its sub-
properties. However, the individual properties such as 'font-weight'p.273 are still given values taken from
the system font, which can be independently varied.
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button { font: 300 italic 1.3em/1.7em "FB Armada", sans-serif }

button p { font: menu }

button p em { font-weight: bolder }

If the font used for dropdown menus on a particular system happened to be, for example, 9-point
Charcoal, with a weight of 600, then P elements that were descendants of BUTTON would be dis-
played as if this rule were in effect:

button p { font: 600 9px Charcoal }

Because the 'font'p.277 shorthand property resets any property not explicitly given a value to its initial
value, this has the same effect as this declaration:

button p {

font-family: Charcoal;

font-style: normal;

font-variant: normal;

font-weight: 600;

font-size: 9px;

line-height: normal;

}
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16 Text
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The properties defined in the following sections affect the visual presentation of characters, spaces, words,
and paragraphs.

16.1 Indentation: the 'text-indent'p.281 property

Name: text-indent

Value: <length>p.58 | <percentage>p.61 | inheritp.99

Initial: 0

Applies to: block containers

Inherited: yes

Percentages: refer to width of containing block

Media: visualp.110
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Computed value: the percentage as specified or the absolute length

This property specifies the indentation of the first line of text in a block container. More precisely, it spec-
ifies the indentation of the first box that flows into the block's first line boxp.145. The box is indented with
respect to the left (or right, for right-to-left layout) edge of the line box. User agents must render this in-
dentation as blank space.

'Text-indent' only affects a line if it is the first formatted linep.89 of an element. For example, the first
line of an anonymous block box is only affected if it is the first child of its parent element.

Values have the following meanings:
<length>p. 58

The indentation is a fixed length.

<percentage> p. 61

The indentation is a percentage of the containing block width.

The value of 'text-indent'p.281 may be negative, but there may be implementation-specific limits. If the
value of 'text-indent'p.281 is either negative or exceeds the width of the block, that first box, described
above, can overflow the block. The value of 'overflow'p.210 will affect whether such text that overflows
the block is visible.

The following example causes a '3em' text indent.

p { text-indent: 3em }

Note: Since the 'text-indent' property inherits, when specified on a block element, it will affect descen-
dant inline-block elements. For this reason, it is often wise to specify 'text-indent: 0' on elements
that are specified 'display:inline-block'.

16.2 Alignment: the 'text-align'p. 282 property

Name: text-align

Value: left | right | center | justify | inheritp.99

Initial: a nameless value that acts as 'left' if 'direction' is 'ltr', 'right' if 'direction' is
'rtl'

Applies to: block containers
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Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: the initial value or as specified

This property describes how inline-level content of a block container is aligned. Values have the follow-
ing meanings:
left, right, center, justify

Left, right, center, and justify text, respectively, as described in the section on inline formattingp.145.

A block of text is a stack of line boxesp.145. In the case of 'left', 'right' and 'center', this property specifies
how the inline-level boxes within each line box align with respect to the line box's left and right sides;
alignment is not with respect to the viewportp.135. In the case of 'justify', this property specifies that the
inline-level boxes are to be made flush with both sides of the line box if possible, by expanding or con-
tracting the contents of inline boxes, else aligned as for the initial value. (See also 'letter-spacing'p.287 and
'word-spacing'p.288.)

If an element has a computed value for 'white-space' of 'pre' or 'pre-wrap', then neither the glyphs of
that element's text content nor its white space may be altered for the purpose of justification.

Note: CSS may add a way to justify text with 'white-space: pre-wrap' in the future.

In this example, note that since 'text-align'p.282 is inherited, all block-level elements inside DIV ele-
ments with a class name of 'important' will have their inline content centered.

div.important { text-align: center }

Note. The actual justification algorithm used depends on the user-agent and the language/script of the
text.

Conforming user agentsp.39 may interpret the value 'justify' as 'left' or 'right', depending on whether the
element's default writing direction is left-to-right or right-to-left, respectively.
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16.3 Decoration

16.3.1 Underlining, overlining, striking, and blinking: the 'text-decoration'p.284 property

Name: text-decoration

Value: none | [ underline || overline || line-through || blink ] | inheritp.99

Initial: none

Applies to: all elements

Inherited: no (see prose)

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property describes decorations that are added to the text of an element using the element's color.
When specified on or propagated to an inline element, it affects all the boxes generated by that element,
and is further propagated to any in-flow block-level boxes that split the inline (see section 9.2.1.1p.136).
But, in CSS 2.2, it is undefined whether the decoration propagates into block-level tables. For block con-
tainers that establish an inline formatting context,p.145 the decorations are propagated to an anonymous in-
line element that wraps all the in-flow inline-level children of the block container. For all other elements it
is propagated to any in-flow children. Note that text decorations are not propagated to floating and ab-
solutely positioned descendants, nor to the contents of atomic inline-level descendants such as inline
blocks and inline tables.

Underlines, overlines, and line-throughs are applied only to text (including white space, letter spacing,
and word spacing): margins, borders, and padding are skipped. User agents must not render these text dec-
orations on content that is not text. For example, images and inline blocks must not be underlined.
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Note. If an element E has both 'visibility: hidden' and 'text-decoration: underline', the underline is in-
visible (although any decoration of E's parent is visible.) However, CSS 2.2 does not specify if the un-
derline is visible or invisible in E's children:

<span style="visibility: hidden; text-decoration: underline">

<span style="visibility: visible">

underlined or not?

</span>

</span>

This is expected to be specified in level 3 of CSS.

The 'text-decoration' property on descendant elements cannot have any effect on the decoration of the an-
cestor. In determining the position of and thickness of text decoration lines, user agents may consider the
font sizes of and dominant baselines of descendants, but must use the same baseline and thickness on each
line. Relatively positioning a descendant moves all text decorations affecting it along with the descen-
dant's text; it does not affect calculation of the decoration's initial position on that line.

Values have the following meanings:
none

Produces no text decoration.

underline
Each line of text is underlined.

overline
Each line of text has a line above it.

line-through
Each line of text has a line through the middle.

blink
Text blinks (alternates between visible and invisible). Conforming user agentsp.39 may simply not
blink the text. Note that not blinking the text is one technique to satisfy checkpoint 3.3 of WAI-
UAAG.

The color(s) required for the text decoration must be derived from the 'color'p.255 property value of the el-
ement on which 'text-decoration' is set. The color of decorations must remain the same even if descendant
elements have different 'color'p.255 values.

Some user agents have implemented text-decoration by propagating the decoration to the descendant el-
ements as opposed to preserving a constant thickness and line position as described above. This was ar-
guably allowed by the looser wording in CSS2. SVG1, CSS1-only, and CSS2-only user agents may im-
plement the older model and still claim conformance to this part of CSS 2.2. (This does not apply to UAs
developed after this specification was released.)
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In the following example for HTML, the text content of all A elements acting as hyperlinks (whether
visited or not) will be underlined:

a:visited,a:link { text-decoration: underline }

In the following style sheet and document fragment:

blockquote { text-decoration: underline; color: blue; }

em { display: block; }

cite { color: fuchsia; }

<blockquote>

<p>

<span>

Help, help!

<em> I am under a hat! </em>

<cite> —GwieF </cite>

</span>

</p>

</blockquote>

...the underlining for the blockquote element is propagated to an anonymous inline element that sur-
rounds the span element, causing the text "Help, help!" to be blue, with the blue underlining from the
anonymous inline underneath it, the color being taken from the blockquote element. The
<em>text</em> in the em block is also underlined, as it is in an in-flow block to which the underline
is propagated. The final line of text is fuchsia, but the underline underneath it is still the blue underline
from the anonymous inline element.

This diagram shows the boxes involved in the example above. The rounded aqua line represents the
anonymous inline element wrapping the inline contents of the paragraph element, the rounded blue
line represents the span element, and the orange lines represent the blocks.
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16.4 Letter and word spacing: the 'letter-spacing'p.287 and 'word-
spacing'p. 288 properties

Name: letter-spacing

Value: normal | <length>p.58 | inheritp.99

Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: 'normal' or absolute length

This property specifies spacing behavior between text characters. Values have the following meanings:
normal

The spacing is the normal spacing for the current font. This value allows the user agent to alter the
space between characters in order to justify text.

<length>p. 58

This value indicates inter-character space in addition to the default space between characters. Values
may be negative, but there may be implementation-specific limits. User agents may not further in-
crease or decrease the inter-character space in order to justify text.

Character spacing algorithms are user agent-dependent.

In this example, the space between characters in BLOCKQUOTE elements is increased by '0.1em'.

blockquote { letter-spacing: 0.1em }

In the following example, the user agent is not permitted to alter inter-character space:

blockquote { letter-spacing: 0cm }   /* Same as '0' */

When the resultant space between two characters is not the same as the default space, user agents should
not use ligatures.
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Name: word-spacing

Value: normal | <length>p.58 | inheritp.99

Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: for 'normal' the value '0'; otherwise the absolute length

This property specifies spacing behavior between words. Values have the following meanings:
normal

The normal inter-word space, as defined by the current font and/or the UA.

<length>p. 58

This value indicates inter-word space in addition to the default space between words. Values may be
negative, but there may be implementation-specific limits.

Word spacing algorithms are user agent-dependent. Word spacing is also influenced by justification (see
the 'text-align'p.282 property). Word spacing affects each space (U+0020) and non-breaking space
(U+00A0), left in the text after the white space processing rules have been applied. The effect of the prop-
erty on other word-separator characters is undefined. However general punctuation, characters with zero
advance width (such as the zero with space U+200B) and fixed-width spaces (such as U+3000 and
U+2000 through U+200A) are not affected.

In this example, the word-spacing between each word in H1 elements is increased by '1em'.

h1 { word-spacing: 1em }

16.5 Capitalization: the 'text-transform'p.288 property

Name: text-transform

Value: capitalize | uppercase | lowercase | none | inheritp.99
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Initial: none

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property controls capitalization effects of an element's text. Values have the following meanings:
capitalize

Puts the first character of each word in uppercase; other characters are unaffected.

uppercase
Puts all characters of each word in uppercase.

lowercase
Puts all characters of each word in lowercase.

none
No capitalization effects.

The actual transformation in each case is written language dependent. See BCP 47 ([BCP47]p.364) for
ways to find the language of an element.

Only characters belonging to "bicameral scripts" [UNICODE]p.362 are affected.

In this example, all text in an H1 element is transformed to uppercase text.

h1 { text-transform: uppercase }

16.6 White space: the 'white-space'p.289 property

Name: white-space

Value: normal | pre | nowrap | pre-wrap | pre-line | inheritp.99

Initial: normal

Applies to: all elements
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Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property declares how white space inside the element is handled. Values have the following mean-
ings:
normal

This value directs user agents to collapse sequences of white space, and break lines as necessary to
fill line boxes.

pre
This value prevents user agents from collapsing sequences of white space. Lines are only broken at
preserved newline characters.

nowrap
This value collapses white space as for 'normal', but suppresses line breaks within text.

pre-wrap
This value prevents user agents from collapsing sequences of white space. Lines are broken at pre-
served newline characters, and as necessary to fill line boxes.

pre-line
This value directs user agents to collapse sequences of white space. Lines are broken at preserved
newline characters, and as necessary to fill line boxes.

Newlines in the source can be represented by a carriage return (U+000D), a linefeed (U+000A) or both
(U+000D U+000A) or by some other mechanism that identifies the beginning and end of document seg-
ments, such as the SGML RECORD-START and RECORD-END tokens. The CSS 'white-space' process-
ing model assumes all newlines have been normalized to line feeds. UAs that recognize other newline rep-
resentations must apply the white space processing rules as if this normalization has taken place. If no
newline rules are specified for the document language, each carriage return (U+000D) and CRLF se-
quence (U+000D U+000A) in the document text is treated as single line feed character. This default nor-
malization rule also applies to generated content.

UAs must recognize line feeds (U+000A) as newline characters. UAs may additionally treat other
forced break characters as newline characters per UAX14.
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The following examples show what white spacep.47 behavior is expected from the PRE and P ele-
ments and the "nowrap" attribute in HTML.

pre        { white-space: pre }

p          { white-space: normal }

td[nowrap] { white-space: nowrap }

In addition, the effect of an HTML PRE element with the non-standard "wrap" attribute is demon-
strated by the following example:

pre[wrap]  { white-space: pre-wrap }

16.6.1 The 'white-space' processing model

For each inline element (including anonymous inline elements), the following steps are performed, treat-
ing bidi formatting characters as if they were not there:

1. Each tab (U+0009), carriage return (U+000D), or space (U+0020) character surrounding a linefeed
(U+000A) character is removed if 'white-space' is set to 'normal', 'nowrap', or 'pre-line'.

2. If 'white-space' is set to 'pre' or 'pre-wrap', any sequence of spaces (U+0020) unbroken by an element
boundary is treated as a sequence of non-breaking spaces. However, for 'pre-wrap', a line breaking
opportunity exists at the end of the sequence.

3. If 'white-space' is set to 'normal' or 'nowrap', linefeed characters are transformed for rendering pur-
pose into one of the following characters: a space character, a zero width space character (U+200B),
or no character (i.e., not rendered), according to UA-specific algorithms based on the content script.

4. If 'white-space' is set to 'normal', 'nowrap', or 'pre-line',

1. every tab (U+0009) is converted to a space (U+0020)

2. any space (U+0020) following another space (U+0020) — even a space before the inline, if that
space also has 'white-space' set to 'normal', 'nowrap' or 'pre-line' — is removed.

Then, the block container's inlines are laid out. Inlines are laid out, taking bidi reordering into account,
and wrapping as specified by the 'white-space' property. When wrapping, line breaking opportunities are
determined based on the text prior to the white space collapsing steps above.

As each line is laid out,

1. If a space (U+0020) at the beginning of a line has 'white-space' set to 'normal', 'nowrap', or 'pre-line',
it is removed.
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2. All tabs (U+0009) are rendered as a horizontal shift that lines up the start edge of the next glyph with
the next tab stop. Tab stops occur at points that are multiples of 8 times the width of a space
(U+0020) rendered in the block's font from the block's starting content edge.

3. If a space (U+0020) at the end of a line has 'white-space' set to 'normal', 'nowrap', or 'pre-line', it is
also removed.

4. If spaces (U+0020) or tabs (U+0009) at the end of a line have 'white-space' set to 'pre-wrap', UAs
may visually collapse them.

Floated and absolutely-positioned elements do not introduce a line breaking opportunity.

Note. CSS 2.2 does not fully define where line breaking opportunities occur.

16.6.2 Example of bidirectionality with white space collapsing

Given the following markup fragment, taking special note of spaces (with varied backgrounds and borders
for emphasis and identification):

<ltr>A <rtl> B </rtl> C</ltr>

...where the <ltr> element represents a left-to-right embedding and the <rtl> element represents a right-
to-left embedding, and assuming that the 'white-space' property is set to 'normal', the above processing
model would result in the following:

• The space before the B ( ) would collapse with the space after the A ( ).

• The space before the C ( ) would collapse with the space after the B ( ).

This would leave two spaces, one after the A in the left-to-right embedding level, and one after the B in
the right-to-left embedding level. This is then rendered according to the Unicode bidirectional algorithm,
with the end result being:

A BC

Note that there are two spaces between A and B, and none between B and C. This can sometimes be
avoided by using the natural bidirectionality of characters instead of explicit embedding levels. Also, it is
good to avoid spaces immediately inside start and end tags, as these tend to do weird things when dealing
with white space collapsing.
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16.6.3 Control and combining characters' details

Control characters other than U+0009 (tab), U+000A (line feed), U+0020 (space), and U+202x (bidi for-
matting characters) are treated as characters to render in the same way as any normal character.

Combining characters should be treated as part of the character with which they are supposed to com-
bine. For example, :first-letter styles the entire glyph if you have content like
"o<span>&#x308;</span>"; it does not just match the base character.
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17.1 Introduction to tables

This chapter defines the processing model for tables in CSS. Part of this processing model is the layout.
For the layout, this chapter introduces two algorithms; the first, the fixed table layout algorithm, is well-
defined, but the second, the automatic table layout algorithm, is not fully defined by this specification.

For the automatic table layout algorithm, some widely deployed implementations have achieved rela-
tively close interoperability.

Table layout can be used to represent tabular relationships between data. Authors specify these relation-
ships in the document languagep.36 and can specify their presentation using CSS 2.2.

In a visual medium, CSS tables can also be used to achieve specific layouts. In this case, authors should
not use table-related elements in the document language, but should apply the CSS to the relevant struc-
tural elements to achieve the desired layout.

Authors may specify the visual formatting of a table as a rectangular grid of cells. Rows and columns of
cells may be organized into row groups and column groups. Rows, columns, row groups, column groups,
and cells may have borders drawn around them (there are two border models in CSS 2.2). Authors may
align data vertically or horizontally within a cell and align data in all cells of a row or column.
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Here is a simple three-row, three-column table described in HTML 4:

<TABLE>

<CAPTION>This is a simple 3x3 table</CAPTION>

<TR id="tables.html.row1">

<TH>Header 1  <TD>Cell 1  <TD>Cell 2

<TR id="tables.html.row2">

<TH>Header 2  <TD>Cell 3  <TD>Cell 4

<TR id="tables.html.row3">

<TH>Header 3  <TD>Cell 5  <TD>Cell 6

</TABLE>

This code creates one table (the TABLE element), three rows (the TR elements), three header cells
(the TH elements), and six data cells (the TD elements). Note that the three columns of this example
are specified implicitly: there are as many columns in the table as required by header and data cells.

The following CSS rule centers the text horizontally in the header cells and presents the text in the
header cells with a bold font weight:

th { text-align: center; font-weight: bold }

The next rules align the text of the header cells on their baseline and vertically center the text in each
data cell:

th { vertical-align: baseline }

td { vertical-align: middle }

The next rules specify that the top row will be surrounded by a 3px solid blue border and each of the
other rows will be surrounded by a 1px solid black border:

table   { border-collapse: collapse }

tr#row1 { border: 3px solid blue }

tr#row2 { border: 1px solid black }

tr#row3 { border: 1px solid black }

Note, however, that the borders around the rows overlap where the rows meet. What color (black or
blue) and thickness (1px or 3px) will the border between row1 and row2 be? We discuss this in the
section on border conflict resolution.p.322

The following rule puts the table caption above the table:

caption { caption-side: top }

The preceding example shows how CSS works with HTML 4 elements; in HTML 4, the semantics of the
various table elements (TABLE, CAPTION, THEAD, TBODY, TFOOT, COL, COLGROUP, TH, and
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TD) are well-defined. In other document languages (such as XML applications), there may not be pre-
defined table elements. Therefore, CSS 2.2 allows authors to "map" document language elements to table
elements via the 'display'p.139 property. For example, the following rule makes the FOO element act like
an HTML TABLE element and the BAR element act like a CAPTION element:

FOO { display : table }

BAR { display : table-caption }

We discuss the various table elements in the following section. In this specification, the term table ele-
ment refers to any element involved in the creation of a table. An internal table element is one that pro-
duces a row, row group, column, column group, or cell.

17.2 The CSS table model

The CSS table model is based on the HTML4 table model, in which the structure of a table closely paral-
lels the visual layout of the table. In this model, a table consists of an optional caption and any number of
rows of cells. The table model is said to be "row primary" since authors specify rows, not columns, explic-
itly in the document language. Columns are derived once all the rows have been specified -- the first cell
of each row belongs to the first column, the second to the second column, etc.). Rows and columns may
be grouped structurally and this grouping reflected in presentation (e.g., a border may be drawn around a
group of rows).

Thus, the table model consists of tables, captions, rows, row groups (including header groups and footer
groups), columns, column groups, and cells.

The CSS model does not require that the document languagep.36 include elements that correspond to
each of these components. For document languages (such as XML applications) that do not have pre-
defined table elements, authors must map document language elements to table elements; this is done with
the 'display'p.139 property. The following 'display'p.139 values assign table formatting rules to an arbitrary
element:
table (In HTML: TABLE)

Specifies that an element defines a block-levelp.135 table: it is a rectangular block that participates in
a block formatting contextp.145.

inline-table (In HTML: TABLE)
Specifies that an element defines an inline-levelp.138 table: it is a rectangular block that participates
in an inline formatting contextp.145).

table-row (In HTML: TR)
Specifies that an element is a row of cells.

table-row-group (In HTML: TBODY)
Specifies that an element groups one or more rows.
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table-header-group (In HTML: THEAD)
Like 'table-row-group', but for visual formatting, the row group is always displayed before all other
rows and row groups and after any top captions. Print user agents may repeat header rows on each
page spanned by a table. If a table contains multiple elements with 'display: table-header-group', only
the first is rendered as a header; the others are treated as if they had 'display: table-row-group'.

table-footer-group (In HTML: TFOOT)
Like 'table-row-group', but for visual formatting, the row group is always displayed after all other
rows and row groups and before any bottom captions. Print user agents may repeat footer rows on
each page spanned by a table. If a table contains multiple elements with 'display: table-footer-group',
only the first is rendered as a footer; the others are treated as if they had 'display: table-row-group'.

table-column (In HTML: COL)
Specifies that an element describes a column of cells.

table-column-group (In HTML: COLGROUP)
Specifies that an element groups one or more columns.

table-cell (In HTML: TD, TH)
Specifies that an element represents a table cell.

table-caption (In HTML: CAPTION)
Specifies a caption for the table. All elements with 'display: table-caption' must be rendered, as de-
scribed in section 17.4.p.303

Replaced elements with these 'display'p.139 values are treated as their given display types during layout.
For example, an image that is set to 'display: table-cell' will fill the available cell space, and its dimensions
might contribute towards the table sizing algorithms, as with an ordinary cell.

Elements with 'display'p.139 set to 'table-column' or 'table-column-group' are not rendered (exactly as if
they had 'display: none'), but they are useful, because they may have attributes which induce a certain
style for the columns they represent.

The default style sheet for HTML4p.381 in the appendix illustrates the use of these values for HTML4:

table    { display: table }

tr       { display: table-row }

thead    { display: table-header-group }

tbody    { display: table-row-group }

tfoot    { display: table-footer-group }

col      { display: table-column }

colgroup { display: table-column-group }

td, th   { display: table-cell }

caption  { display: table-caption }
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User agents may ignorep.54 these 'display'p.139 property values for HTML table elements, since HTML ta-
bles may be rendered using other algorithms intended for backwards compatible rendering. However, this
is not meant to discourage the use of 'display: table' on other, non-table elements in HTML.

17.2.1 Anonymous table objects

Document languages other than HTML may not contain all the elements in the CSS 2.21 table model. In
these cases, the "missing" elements must be assumed in order for the table model to work. Any table ele-
ment will automatically generate necessary anonymous table objects around itself, consisting of at least
three nested objects corresponding to a 'table'/'inline-table' element, a 'table-row' element, and a 'table-cell'
element. Missing elements generate anonymousp.138 objects (e.g., anonymous boxes in visual table lay-
out) according to the following rules:

For the purposes of these rules, the following terms are defined:
row group box

A 'table-row-group', 'table-header-group', or 'table-footer-group'

proper table child
A 'table-row' box, row group box, 'table-column' box, 'table-column-group' box, or 'table-caption'
box.

proper table row parent
A 'table' or 'inline-table' box or row group box

internal table box
A 'table-cell' box, 'table-row' box, row group box, 'table-column' box, or 'table-column-group' box.

tabular container
A 'table-row' box or proper table row parent

consecutive
Two sibling boxes are consecutive if they have no intervening siblings other than, optionally, an
anonymous inline containing only white spaces. A sequence of sibling boxes is consecutive if each
box in the sequence is consecutive to the one before it in the sequence.

For the purposes of these rules, out-of-flow elements are represented as inline elements of zero width and
height. Their containing blocks are chosen accordingly.

The following steps are performed in three stages.

1. Remove irrelevant boxes:

1. All child boxes of a 'table-column' parent are treated as if they had 'display: none'.

2. If a child C of a 'table-column-group' parent is not a 'table-column' box, then it is treated as if it
had 'display: none'.
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3. If a child C of a tabular container P is an anonymous inline box that contains only white space,
and its immediately preceding and following siblings, if any, are proper table descendants of P
and are either 'table-caption' or internal table boxes, then it is treated as if it had 'display: none'.
A box D is a proper table descendant of A if D can be a descendant of A without causing the
generation of any intervening 'table' or 'inline-table' boxes.

4. If a box B is an anonymous inline containing only white space, and is between two immediate
siblings each of which is either an internal table box or a 'table-caption' box then B is treated as
if it had 'display: none'.

2. Generate missing child wrappers:

1. If a child C of a 'table' or 'inline-table' box is not a proper table child, then generate an anony-
mous 'table-row' box around C and all consecutive siblings of C that are not proper table chil-
dren.

2. If a child C of a row group box is not a 'table-row' box, then generate an anonymous 'table-row'
box around C and all consecutive siblings of C that are not 'table-row' boxes.

3. If a child C of a 'table-row' box is not a 'table-cell', then generate an anonymous 'table-cell' box
around C and all consecutive siblings of C that are not 'table-cell' boxes.

3. Generate missing parents:

1. For each 'table-cell' box C in a sequence of consecutive internal table and 'table-caption' sib-
lings, if C's parent is not a 'table-row' then generate an anonymous 'table-row' box around C and
all consecutive siblings of C that are 'table-cell' boxes.

2. For each proper table child C in a sequence of consecutive proper table children, if C is mispar-
ented then generate an anonymous 'table' or 'inline-table' box T around C and all consecutive
siblings of C that are proper table children. (If C's parent is an 'inline' box, then T must be an
'inline-table' box; otherwise it must be a 'table' box.)

▪ A 'table-row' is misparented if its parent is neither a row group box nor a 'table' or 'inline-
table' box.

▪ A 'table-column' box is misparented if its parent is neither a 'table-column-group' box nor a
'table' or 'inline-table' box.

▪ A row group box, 'table-column-group' box, or 'table-caption' box is misparented if its par-
ent is neither a 'table' box nor an 'inline-table' box.
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In this XML example, a 'table' element is assumed to contain the HBOX element:

<HBOX>

<VBOX>George</VBOX>

<VBOX>4287</VBOX>

<VBOX>1998</VBOX>

</HBOX>

because the associated style sheet is:

HBOX { display: table-row }

VBOX { display: table-cell }

In this example, three 'table-cell' elements are assumed to contain the text in the ROWs. Note that the
text is further encapsulated in anonymous inline boxes, as explained in visual formatting modelp.138:

<STACK>

<ROW>This is the <D>top</D> row.</ROW>

<ROW>This is the <D>middle</D> row.</ROW>

<ROW>This is the <D>bottom</D> row.</ROW>

</STACK>

The style sheet is:

STACK { display: inline-table }

ROW   { display: table-row }

D     { display: inline; font-weight: bolder }

17.3 Columns

Table cells may belong to two contexts: rows and columns. However, in the source document cells are de-
scendants of rows, never of columns. Nevertheless, some aspects of cells can be influenced by setting
properties on columns.

The following properties apply to column and column-group elements:
'border'p. 130

The various border properties apply to columns only if 'border-collapse'p.317 is set to 'collapse' on the
table element. In that case, borders set on columns and column groups are input to the conflict reso-
lution algorithmp.322 that selects the border styles at every cell edge.
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'background'p. 263

The background properties set the background for cells in the column, but only if both the cell and
row have transparent backgrounds. See "Table layers and transparency."p.307

'width'p. 187

The 'width'p.187 property gives the minimum width for the column.

'visibility'p. 216

If the 'visibility' of a column is set to 'collapse', none of the cells in the column are rendered, and cells
that span into other columns are clipped. In addition, the width of the table is diminished by the
width the column would have taken up. See "Dynamic effects"p.316 below. Other values for 'visibili-
ty' have no effect.

Here are some examples of style rules that set properties on columns. The first two rules together im-
plement the "rules" attribute of HTML 4 with a value of "cols". The third rule makes the "totals" col-
umn blue, the final two rules shows how to make a column a fixed size, by using the fixed layout algo-
rithmp.312.

col { border-style: none solid }

table { border-style: hidden }

col.totals { background: blue }

table { table-layout: fixed }

col.totals { width: 5em }

17.4 Tables in the visual formatting model

In terms of the visual formatting model, a table can behave like a block-levelp.135 (for 'display: table') or
inline-levelp. 138 (for 'display: inline-table') element.

In both cases, the table generates a principal block container box called the table wrapper box that con-
tains the table box itself and any caption boxes (in document order). The table box is a block-level box
that contains the table's internal table boxes. The caption boxes are principal block-level boxes that retain
their own content, padding, margin, and border areas, and are rendered as normal block boxes inside the
table wrapper box. Whether the caption boxes are placed before or after the table box is decided by the
'caption-side' property, as described below.

The table wrapper box is block-level for 'display: table', and inline-level; for 'display: inline-table'. The
table wrapper box establishes a block formatting context, and the table box establishes a table formatting
context. The table box (not the table wrapper box) is used when doing baseline vertical alignment for an
'inline-table'. The width of the table wrapper box is the border-edge width of the table box inside it, as de-
scribed by section 17.5.2. Percentages on 'width' and 'height' on the table are relative to the table wrapper
box's containing block, not the table wrapper box itself.
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The computed values of properties 'position', 'float', 'margin-*', 'top', 'right', 'bottom', and 'left' on the
table element are used on the table wrapper box and not the table box; all other values of non-inheritable
properties are used on the table box and not the table wrapper box. (Where the table element's values are
not used on the table and table wrapper boxes, the initial values are used instead.)

Diagram of a table with a caption above it.

17.4.1 Caption position and alignment

Name: caption-side

Value: top | bottom | inheritp.99

Initial: top

Applies to: 'table-caption' elements

– 17 Tables –

– 304 –



Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property specifies the position of the caption box with respect to the table box. Values have the fol-
lowing meanings:
top

Positions the caption box above the table box.

bottom
Positions the caption box below the table box.

Note: CSS2 described a different width and horizontal alignment behavior. That behavior will be in-
troduced in CSS3 using the values 'top-outside' and 'bottom-outside' on this property.

To align caption content horizontally within the caption box, use the 'text-align'p.282 property.

In this example, the 'caption-side'p.304 property places captions below tables. The caption will be as
wide as the parent of the table, and caption text will be left-justified.

caption { caption-side: bottom;

width: auto;

text-align: left }

17.5 Visual layout of table contents

Internal table elements generate rectangular boxesp.113 which participate in the table formatting context
established by the table box. These boxes have content and borders and cells have padding as well. Inter-
nal table elements do not have margins.

The visual layout of these boxes is governed by a rectangular, irregular grid of rows and columns. Each
box occupies a whole number of grid cells, determined according to the following rules. These rules do
not apply to HTML 4 or earlier HTML versions; HTML imposes its own limitations on row and column
spans.
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1. Each row box occupies one row of grid cells. Together, the row boxes fill the table from top to bot-
tom in the order they occur in the source document (i.e., the table occupies exactly as many grid rows
as there are row elements).

2. A row group occupies the same grid cells as the rows it contains.

3. A column box occupies one or more columns of grid cells. Column boxes are placed next to each
other in the order they occur. The first column box may be either on the left or on the right, depend-
ing on the value of the 'direction'p.177 property of the table.

4. A column group box occupies the same grid cells as the columns it contains.

5. Cells may span several rows or columns. (Although CSS 2.2 does not define how the number of
spanned rows or columns is determined, a user agent may have special knowledge about the source
document; a future update of CSS may provide a way to express this knowledge in CSS syntax.)
Each cell is thus a rectangular box, one or more grid cells wide and high. The top row of this rectan-
gle is in the row specified by the cell's parent. The rectangle must be as far to the left as possible, but
the part of the cell in the first column it occupies must not overlap with any other cell box (i.e., a
row-spanning cell starting in a prior row), and the cell must be to the right of all cells in the same row
that are earlier in the source document. If this position would cause a column-spanning cell to over-
lap a row-spanning cell from a prior row, CSS does not define the results: implementations may ei-
ther overlap the cells (as is done in many HTML implementations) or may shift the later cell to the
right to avoid such overlap. (This constraint holds if the 'direction' property of the table is 'ltr'; if the
'direction' is 'rtl', interchange "left" and "right" in the previous two sentences.)

6. A cell box cannot extend beyond the last row box of a table or row group; the user agents must short-
en it until it fits.

The edges of the rows, columns, row groups and column groups in the collapsing borders modelp.320 co-
incide with the hypothetical grid lines on which the borders of the cells are centered. (And thus, in this
model, the rows together exactly cover the table, leaving no gaps; ditto for the columns.) In the separated
borders model,p.317 the edges coincide with the border edgesp.114 of cells. (And thus, in this model, there
may be gaps between the rows, columns, row groups or column groups, corresponding to the 'border-
spacing'p.317 property.)

Note. Positioning and floating of table cells can cause them not to be table cells anymore, according
to the rules in section 9.7p.164. When floating is used, the rules on anonymous table objects may cause
an anonymous cell object to be created as well.
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Here is an example illustrating rule 5. The following illegal (X)HTML snippet defines conflicting
cells:

<table>

<tr><td>1 </td><td rowspan="2">2 </td><td>3 </td><td>4 </td></tr>

<tr><td colspan="2">5 </td></tr>

</table>

User agents are free to visually overlap the cells, as in the figure on the left, or to shift the cell to avoid
the visual overlap, as in the figure on the right.

Two possible renderings of an erroneous HTML table.

17.5.1 Table layers and transparency

For the purposes of finding the background of each table cell, the different table elements may be thought
of as being on six superimposed layers. The background set on an element in one of the layers will only
be visible if the layers above it have a transparent background.
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Schema of table layers.

1. The lowest layer is a single plane, representing the table box itself. Like all boxes, it may be transpar-
ent.

2. The next layer contains the column groups. Each column group extends from the top of the cells in
the top row to the bottom of the cells on the bottom row and from the left edge of its leftmost column
to the right edge of its rightmost column. The background covers exactly the full area of all cells that
originate in the column group, even if they span outside the column group, but this difference in area
does not affect background image positioning.

3. On top of the column groups are the areas representing the column boxes. Each column is as tall as
the column groups and as wide as a normal (single-column-spanning) cell in the column. The back-
ground covers exactly the full area of all cells that originate in the column, even if they span outside
the column, but this difference in area does not affect background image positioning.

4. Next is the layer containing the row groups. Each row group extends from the top left corner of its
topmost cell in the first column to the bottom right corner of its bottommost cell in the last column.

5. The next to last layer contains the rows. Each row is as wide as the row groups and as tall as a nor-
mal (single-row-spanning) cell in the row. As with columns, the background covers exactly the full
area of all cells that originate in the row, even if they span outside the row, but this difference in area
does not affect background image positioning.

– 17 Tables –

– 308 –



6. The topmost layer contains the cells themselves. As the figure shows, although all rows contain the
same number of cells, not every cell may have specified content. In the separated borders modelp.317

('border-collapse'p.317 is 'separate'), if the value of their 'empty-cells'p.319 property is 'hide' these
"empty" cells are transparent through the cell, row, row group, column and column group back-
grounds, letting the table background show through.

A "missing cell" is a cell in the row/column grid that is not occupied by an element or pseudo-element.
Missing cells are rendered as if an anonymous table-cell box occupied their position in the grid.
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In the following example, the first row contains four non-empty cells, but the second row contains on-
ly one non-empty cell, and thus the table background shines through, except where a cell from the first
row spans into this row. The following HTML code and style rules

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN">

<HTML>

<HEAD>

<TITLE>Table example</TITLE>

<STYLE type="text/css">

TABLE  { background: #ff0; border: solid black;

empty-cells: hide }

TR.top { background: red }

TD     { border: solid black }

</STYLE>

</HEAD>

<BODY>

<TABLE>

<TR CLASS="top">

<TD> 1

<TD rowspan="2"> 2

<TD> 3

<TD> 4

<TR>

<TD> 5

<TD>

</TABLE>

</BODY>

</HTML>

might be formatted as follows:

Table with empty cells in the bottom row.

Note that if the table has 'border-collapse: separate', the background of the area given by the 'border-
spacing'p.317 property is always the background of the table element. See the separated borders mod-
elp.317.

– 17 Tables –

– 310 –



17.5.2 Table width algorithms: the 'table-layout'p.311 property

CSS does not define an "optimal" layout for tables since, in many cases, what is optimal is a matter of
taste. CSS does define constraints that user agents must respect when laying out a table. User agents may
use any algorithm they wish to do so, and are free to prefer rendering speed over precision, except when
the "fixed layout algorithm" is selected.

Note that this section overrides the rules that apply to calculating widths as described in section
10.3p.188. In particular, if the margins of a table are set to '0' and the width to 'auto', the table will not auto-
matically size to fill its containing block. However, once the calculated value of 'width' for the table is
found (using the algorithms given below or, when appropriate, some other UA dependent algorithm) then
the other parts of section 10.3 do apply. Therefore a table can be centered using left and right 'auto' mar-
gins, for instance.

Future updates of CSS may introduce ways of making tables automatically fit their containing blocks.

Name: table-layout

Value: auto | fixed | inheritp.99

Initial: auto

Applies to: 'table' and 'inline-table' elements

Inherited: no

Percentages: N/A

Media: visualp.110

Computed value: as specified

The 'table-layout'p.311 property controls the algorithm used to lay out the table cells, rows, and columns.
Values have the following meaning:
fixed

Use the fixed table layout algorithm

auto
Use any automatic table layout algorithm

The two algorithms are described below.
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17.5.2.1 Fixed table layout

With this (fast) algorithm, the horizontal layout of the table does not depend on the contents of the cells; it
only depends on the table's width, the width of the columns, and borders or cell spacing.

The table's width may be specified explicitly with the 'width'p.187 property. A value of 'auto' (for both
'display: table' and 'display: inline-table') means use the automatic table layoutp.313 algorithm. However, if
the table is a block-level table ('display: table') in normal flow, a UA may (but does not have to) use the
algorithm of 10.3.3p.189 to compute a width and apply fixed table layout even if the specified width is 'au-
to'.

If a UA supports fixed table layout when 'width' is 'auto', the following will create a table that is 4em
narrower than its containing block:

table { table-layout: fixed;

margin-left: 2em;

margin-right: 2em }

In the fixed table layout algorithm, the width of each column is determined as follows:

1. A column element with a value other than 'auto' for the 'width'p.187 property sets the width for that
column.

2. Otherwise, a cell in the first row with a value other than 'auto' for the 'width'p.187 property determines
the width for that column. If the cell spans more than one column, the width is divided over the
columns.

3. Any remaining columns equally divide the remaining horizontal table space (minus borders or cell
spacing).

The width of the table is then the greater of the value of the 'width'p.187 property for the table element and
the sum of the column widths (plus cell spacing or borders). If the table is wider than the columns, the ex-
tra space should be distributed over the columns.

If a subsequent row has more columns than the greater of the number determined by the table-column
elements and the number determined by the first row, then additional columns may not be rendered.
CSS 2.2 does not define the width of the columns and the table if they are rendered. When using 'table-
layout: fixed', authors should not omit columns from the first row.

In this manner, the user agent can begin to lay out the table once the entire first row has been received.
Cells in subsequent rows do not affect column widths. Any cell that has content that overflows uses the
'overflow'p.210 property to determine whether to clip the overflow content.
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17.5.2.2 Automatic table layout

In this algorithm (which generally requires no more than two passes), the table's width is given by the
width of its columns (and intervening bordersp.317). This algorithm reflects the behavior of several popu-
lar HTML user agents at the writing of this specification. UAs are not required to implement this algo-
rithm to determine the table layout in the case that 'table-layout'p.311 is 'auto'; they can use any other algo-
rithm even if it results in different behavior.

Input to the automatic table layout must only include the width of the containing block and the content
of, and any CSS properties set on, the table and any of its descendants.

Note. This may be defined in more detail in CSS3.

The remainder of this section is non-normative.
This algorithm may be inefficient since it requires the user agent to have access to all the content in the

table before determining the final layout and may demand more than one pass.
Column widths are determined as follows:

1. Calculate the minimum content width (MCW) of each cell: the formatted content may span any num-
ber of lines but may not overflow the cell box. If the specified 'width'p.187 (W) of the cell is greater
than MCW, W is the minimum cell width. A value of 'auto' means that MCW is the minimum cell
width.

Also, calculate the "maximum" cell width of each cell: formatting the content without breaking
lines other than where explicit line breaks occur.

2. For each column, determine a maximum and minimum column width from the cells that span only
that column. The minimum is that required by the cell with the largest minimum cell width (or the
column 'width'p.187, whichever is larger). The maximum is that required by the cell with the largest
maximum cell width (or the column 'width'p.187, whichever is larger).

3. For each cell that spans more than one column, increase the minimum widths of the columns it spans
so that together, they are at least as wide as the cell. Do the same for the maximum widths. If possi-
ble, widen all spanned columns by approximately the same amount.

4. For each column group element with a 'width' other than 'auto', increase the minimum widths of the
columns it spans, so that together they are at least as wide as the column group's 'width'.

This gives a maximum and minimum width for each column.
The caption width minimum (CAPMIN) is determined by calculating for each caption the minimum

caption outer width as the MCW of a hypothetical table cell that contains the caption formatted as "dis-
play: block". The greatest of the minimum caption outer widths is CAPMIN.

Column and caption widths influence the final table width as follows:

– 17 Tables –

– 313 –



1. If the 'table' or 'inline-table' element's 'width'p.187 property has a computed value (W) other than 'au-
to', the used width is the greater of W, CAPMIN, and the minimum width required by all the columns
plus cell spacing or borders (MIN). If the used width is greater than MIN, the extra width should be
distributed over the columns.

2. If the 'table' or 'inline-table' element has 'width: auto', the used width is the greater of the table's con-
taining block width, CAPMIN, and MIN. However, if either CAPMIN or the maximum width re-
quired by the columns plus cell spacing or borders (MAX) is less than that of the containing block,
use max(MAX, CAPMIN).

A percentage value for a column width is relative to the table width. If the table has 'width: auto', a per-
centage represents a constraint on the column's width, which a UA should try to satisfy. (Obviously, this is
not always possible: if the column's width is '110%', the constraint cannot be satisfied.)

Note. In this algorithm, rows (and row groups) and columns (and column groups) both constrain and
are constrained by the dimensions of the cells they contain. Setting the width of a column may indi-
rectly influence the height of a row, and vice versa.

17.5.3 Table height algorithms

The height of a table is given by the 'height'p.195 property for the 'table' or 'inline-table' element. A value
of 'auto' means that the height is the sum of the row heights plus any cell spacing or borders. Any other
value is treated as a minimum height. CSS 2.2 does not define how extra space is distributed when the
'height' property causes the table to be taller than it otherwise would be.

Note. Future updates of CSS may specify this further.

The height of a 'table-row' element's box is calculated once the user agent has all the cells in the row avail-
able: it is the maximum of the row's computed 'height'p.195, the computed 'height'p.195 of each cell in the
row, and the minimum height (MIN) required by the cells. A 'height'p.195 value of 'auto' for a 'table-row'
means the row height used for layout is MIN. MIN depends on cell box heights and cell box alignment
(much like the calculation of a line boxp.203 height). CSS 2.2 does not define how the height of table cells
and table rows is calculated when their height is specified using percentage values. CSS 2.2 does not de-
fine the meaning of 'height'p.195 on row groups.

In CSS 2.2, the height of a cell box is the minimum height required by the content. The table cell's
'height'p.195 property can influence the height of the row (see above), but it does not increase the height of
the cell box.

CSS 2.2 does not specify how cells that span more than one row affect row height calculations except
that the sum of the row heights involved must be great enough to encompass the cell spanning the rows.
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The 'vertical-align'p.206 property of each table cell determines its alignment within the row. Each cell's
content has a baseline, a top, a middle, and a bottom, as does the row itself. In the context of tables, values
for 'vertical-align'p.206 have the following meanings:
baseline

The baseline of the cell is put at the same height as the baseline of the first of the rows it spans (see
below for the definition of baselines of cells and rows).

top
The top of the cell box is aligned with the top of the first row it spans.

bottom
The bottom of the cell box is aligned with the bottom of the last row it spans.

middle
The center of the cell is aligned with the center of the rows it spans.

sub, super, text-top, text-bottom, <length>, <percentage>
These values do not apply to cells; the cell is aligned at the baseline instead.

The baseline of a cell is the baseline of the first in-flow line boxp.145 in the cell, or the first in-flow table-
row in the cell, whichever comes first. If there is no such line box or table-row, the baseline is the bottom
of content edge of the cell box. For the purposes of finding a baseline, in-flow boxes with a scrolling
mechanisms (see the 'overflow'p.210 property) must be considered as if scrolled to their origin position.
Note that the baseline of a cell may end up below its bottom border, see the examplep.316 below.

The maximum distance between the top of the cell box and the baseline over all cells that have 'vertical-
align: baseline' is used to set the baseline of the row. Here is an example:

Diagram showing the effect of various values of 'vertical-align' on table cells.

Cell boxes 1 and 2 are aligned at their baselines. Cell box 2 has the largest height above the baseline, so
that determines the baseline of the row.

– 17 Tables –

– 315 –



If a row has no cell box aligned to its baseline, the baseline of that row is the bottom content edge of the
lowest cell in the row.

To avoid ambiguous situations, the alignment of cells proceeds in the following order:

1. First the cells that are aligned on their baseline are positioned. This will establish the baseline of the
row. Next the cells with 'vertical-align: top' are positioned.

2. The row now has a top, possibly a baseline, and a provisional height, which is the distance from the
top to the lowest bottom of the cells positioned so far. (See conditions on the cell padding below.)

3. If any of the remaining cells, those aligned at the bottom or the middle, have a height that is larger
than the current height of the row, the height of the row will be increased to the maximum of those
cells, by lowering the bottom.

4. Finally the remaining cells are positioned.

Cell boxes that are smaller than the height of the row receive extra top or bottom padding.

The cell in this example has a baseline below its bottom border:

div { height: 0; overflow: hidden; }

<table>

<tr>

<td>

<div> Test </div>

</td>

</tr>

</table>

17.5.4 Horizontal alignment in a column

The horizontal alignment of inline-level content within a cell box can be specified by the value of the
'text-align'p.282 property on the cell.

17.5.5 Dynamic row and column effects

The 'visibility'p.216 property takes the value 'collapse' for row, row group, column, and column group ele-
ments. This value causes the entire row or column to be removed from the display, and the space normally
taken up by the row or column to be made available for other content. Contents of spanned rows and
columns that intersect the collapsed column or row are clipped. The suppression of the row or column,
however, does not otherwise affect the layout of the table. This allows dynamic effects to remove table
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rows or columns without forcing a re-layout of the table in order to account for the potential change in
column constraints.

17.6 Borders

There are two distinct models for setting borders on table cells in CSS. One is most suitable for so-called
separated borders around individual cells, the other is suitable for borders that are continuous from one
end of the table to the other. Many border styles can be achieved with either model, so it is often a matter
of taste which one is used.

Name: border-collapse

Value: collapse | separate | inheritp.99

Initial: separate

Applies to: 'table' and 'inline-table' elements

Inherited: yes

Percentages: N/A

Media: visualp.110

Computed value: as specified

This property selects a table's border model. The value 'separate' selects the separated borders border mod-
el. The value 'collapse' selects the collapsing borders model. The models are described below.

17.6.1 The separated borders model

Name: border-spacing

Value: <length>p.58 <length>p.58? | inheritp.99

Initial: 0

Applies to: 'table' and 'inline-table' elements*

Inherited: yes
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Percentages: N/A

Media: visualp.110

Computed value: two absolute lengths

*) Note: user agents may also apply the 'border-spacing' property to 'frameset' elements. Which ele-
ments are 'frameset' elements is not defined by this specification and is up to the document language.
For example, HTML4 defines a <FRAMESET> element, and XHTML 1.0 defines a <frameset> ele-
ment. The 'border-spacing' property on a 'frameset' element can be thus used as a valid substitute for
the non-standard 'framespacing' attribute.

The lengths specify the distance that separates adjoining cell borders. If one length is specified, it gives
both the horizontal and vertical spacing. If two are specified, the first gives the horizontal spacing and the
second the vertical spacing. Lengths may not be negative.

The distance between the table border and the borders of the cells on the edge of the table is the table's
padding for that side, plus the relevant border spacing distance. For example, on the right hand side, the
distance is padding-right + horizontal border-spacing.

The width of the table is the distance from the left inner padding edge to the right inner padding edge
(including the border spacing but excluding padding and border).

However, in HTML and XHTML1, the width of the <table> element is the distance from the left border
edge to the right border edge.

Note: In CSS3 this peculiar requirement will be defined in terms of UA style sheet rules and the 'box-
sizing' property.

In this model, each cell has an individual border. The 'border-spacing'p.317 property specifies the distance
between the borders of adjoining cells. In this space, the row, column, row group, and column group back-
grounds are invisible, allowing the table background to show through. Rows, columns, row groups, and
column groups cannot have borders (i.e., user agents must ignorep.54 the border properties for those ele-
ments).
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The table in the figure below could be the result of a style sheet like this:

table      { border: outset 10pt;

border-collapse: separate;

border-spacing: 15pt }

td         { border: inset 5pt }

td.special { border: inset 10pt }  /* The top-left cell */

A table with 'border-spacing'p.317 set to a length value. Note that each cell has its own border, and the table
has a separate border as well.

17.6.1.1 Borders and Backgrounds around empty cells: the 'empty-cells'p. 319 property

Name: empty-cells

Value: show | hide | inheritp.99

Initial: show

Applies to: 'table-cell' elements

Inherited: yes

Percentages: N/A
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Media: visualp.110

Computed value: as specified

In the separated borders model, this property controls the rendering of borders and backgrounds around
cells that have no visible content. Empty cells and cells with the 'visibility'p.216 property set to 'hidden' are
considered to have no visible content. Cells are empty unless they contain one or more of the following:

• floating content (including empty elements),

• in-flow content (including empty elements) other than white space that has been collapsed away by
the 'white-space'p.289 property handling.

When this property has the value 'show', borders and backgrounds are drawn around/behind empty cells
(like normal cells).

A value of 'hide' means that no borders or backgrounds are drawn around/behind empty cells (see point
6 in 17.5.1p.307). Furthermore, if all the cells in a row have a value of 'hide' and have no visible content,
then the row has zero height and there is vertical border-spacing on only one side of the row.

The following rule causes borders and backgrounds to be drawn around all cells:

table { empty-cells: show }

17.6.2 The collapsing border model

In the collapsing border model, it is possible to specify borders that surround all or part of a cell, row, row
group, column, and column group. Borders for HTML's "rules" attribute can be specified this way.

Borders are centered on the grid lines between the cells. User agents must find a consistent rule for
rounding off in the case of an odd number of discrete units (screen pixels, printer dots).

The diagram below shows how the width of the table, the widths of the borders, the padding, and the
cell width interact. Their relation is given by the following equation, which holds for every row of the
table:

row-width = (0.5 * border-width0) + padding-left1 + width1 + padding-right1 + border-width1 +
padding-left2 +...+ padding-rightn + (0.5 * border-widthn)

Here n is the number of cells in the row, padding-lefti and padding-righti refer to the left (resp., right)
padding of cell i, and border-widthi refers to the border between cells i and i + 1.
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UAs must compute an initial left and right border width for the table by examining the first and last
cells in the first row of the table. The left border width of the table is half of the first cell's collapsed left
border, and the right border width of the table is half of the last cell's collapsed right border. If subsequent
rows have larger collapsed left and right borders, then any excess spills into the margin area of the table.

The top border width of the table is computed by examining all cells who collapse their top borders
with the top border of the table. The top border width of the table is equal to half of the maximum col-
lapsed top border. The bottom border width is computed by examining all cells whose bottom borders col-
lapse with the bottom of the table. The bottom border width is equal to half of the maximum collapsed
bottom border.

Any borders that spill into the margin are taken into account when determining if the table overflows
some ancestor (see 'overflow'p.210).

Schema showing the widths of cells and borders and the padding of cells.

Note that in this model, the width of the table includes half the table border. Also, in this model, a table
does not have padding (but does have margins).

CSS 2.2 does not define where the edge of a background on a table element lies.
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17.6.2.1 Border conflict resolution

In the collapsing border model, borders at every edge of every cell may be specified by border properties
on a variety of elements that meet at that edge (cells, rows, row groups, columns, column groups, and the
table itself), and these borders may vary in width, style, and color. The rule of thumb is that at each edge
the most "eye catching" border style is chosen, except that any occurrence of the style 'hidden' uncondi-
tionally turns the border off.

The following rules determine which border style "wins" in case of a conflict:

1. Borders with the 'border-style'p.128 of 'hidden' take precedence over all other conflicting borders.
Any border with this value suppresses all borders at this location.

2. Borders with a style of 'none' have the lowest priority. Only if the border properties of all the ele-
ments meeting at this edge are 'none' will the border be omitted (but note that 'none' is the default
value for the border style.)

3. If none of the styles are 'hidden' and at least one of them is not 'none', then narrow borders are dis-
carded in favor of wider ones. If several have the same 'border-width'p.125 then styles are preferred in
this order: 'double', 'solid', 'dashed', 'dotted', 'ridge', 'outset', 'groove', and the lowest: 'inset'.

4. If border styles differ only in color, then a style set on a cell wins over one on a row, which wins over
a row group, column, column group and, lastly, table. When two elements of the same type conflict,
then the one further to the left (if the table's 'direction' is 'ltr'; right, if it is 'rtl') and further to the top
wins.
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The following example illustrates the application of these precedence rules. This style sheet:

table          { border-collapse: collapse;

border: 5px solid yellow; }

*#col1         { border: 3px solid black; }

td             { border: 1px solid red; padding: 1em; }

td.cell5       { border: 5px dashed blue; }

td.cell6       { border: 5px solid green; }

with this HTML source:

<TABLE>

<COL id=tables.html."col1"><COL id=tables.html."col2"><COL id=tables.html."col3">

<TR id=tables.html."row1">

<TD> 1

<TD> 2

<TD> 3

</TR>

<TR id=tables.html."row2">

<TD> 4

<TD class="cell5"> 5

<TD class="cell6"> 6

</TR>

<TR id=tables.html."row3">

<TD> 7

<TD> 8

<TD> 9

</TR>

<TR id=tables.html."row4">

<TD> 10

<TD> 11

<TD> 12

</TR>

<TR id=tables.html."row5">

<TD> 13

<TD> 14

<TD> 15

</TR>

</TABLE>

would produce something like this:
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An example of a table with collapsed borders.

Here is an example of hidden collapsing borders:

Table with two omitted internal borders.

HTML source:

<TABLE style="border-collapse: collapse; border: solid;">

<TR><TD style="border-right: hidden; border-bottom: hidden">foo</TD>

<TD style="border: solid">bar</TD></TR>

<TR><TD style="border: none">foo</TD>

<TD style="border: solid">bar</TD></TR>

</TABLE>

17.6.3 Border styles

Some of the values of the 'border-style'p.128 have different meanings in tables than for other elements. In
the list below they are marked with an asterisk.
nonep. 127

No border.
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*hiddenp. 127

Same as 'none', but in the collapsing border modelp.320, also inhibits any other border (see the section
on border conflictsp.322).

dottedp. 127

The border is a series of dots.

dashedp. 127

The border is a series of short line segments.

solidp. 128

The border is a single line segment.

doublep. 128

The border is two solid lines. The sum of the two lines and the space between them equals the value
of 'border-width'p.125.

groovep. 128

The border looks as though it were carved into the canvas.

ridgep. 128

The opposite of 'groove': the border looks as though it were coming out of the canvas.

*insetp. 128

In the separated borders modelp.317, the border makes the entire box look as though it were embed-
ded in the canvas. In the collapsing border modelp.320, drawn the same as 'ridge'.

*outsetp. 128

In the separated borders modelp.317, the border makes the entire box look as though it were coming
out of the canvas. In the collapsing border modelp.320, drawn the same as 'groove'.
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18 User interface

Contents

18.1 Cursors: the 'cursor' property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

18.2 System Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

18.3 User preferences for fonts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

18.4 Dynamic outlines: the 'outline' property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

18.4.1 Outlines and the focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

18.5 Magnification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

18.1 Cursors: the 'cursor'p.327 property

Name: cursor

Value: [ [<uri>p.62 ,]* [ auto | crosshair | default | pointer | move | e-resize | ne-
resize | nw-resize | n-resize | se-resize | sw-resize | s-resize | w-resize | text |
wait | help | progress ] ] | inheritp.99

Initial: auto

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: visualp.110, interactivep.110

Computed value: as specified, except with any relative URLs converted to absolute

This property specifies the type of cursor to be displayed for the pointing device. Values have the follow-
ing meanings:
auto

The UA determines the cursor to display based on the current context.
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crosshair
A simple crosshair (e.g., short line segments resembling a "+" sign).

default
The platform-dependent default cursor. Often rendered as an arrow.

pointer
The cursor is a pointer that indicates a link.

move
Indicates something is to be moved.

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize
Indicate that some edge is to be moved. For example, the 'se-resize' cursor is used when the move-
ment starts from the south-east corner of the box.

text
Indicates text that may be selected. Often rendered as an I-beam.

wait
Indicates that the program is busy and the user should wait. Often rendered as a watch or hourglass.

progress
A progress indicator. The program is performing some processing, but is different from 'wait' in that
the user may still interact with the program. Often rendered as a spinning beach ball, or an arrow
with a watch or hourglass.

help
Help is available for the object under the cursor. Often rendered as a question mark or a balloon.

<uri>p. 62

The user agent retrieves the cursor from the resource designated by the URI. If the user agent cannot
handle the first cursor of a list of cursors, it should attempt to handle the second, etc. If the user agent
cannot handle any user-defined cursor, it must use the generic cursor at the end of the list. Intrinsic
sizes for cursors are calculated as for background images,p.257 except that a UA-defined rectangle is
used in place of the rectangle that establishes the coordinate system for the 'background-image' prop-
erty. This UA-defined rectangle should be based on the size of a typical cursor on the UA's operating
system. If the resulting cursor size does not fit within this rectangle, the UA may proportionally scale
the resulting cursor down until it fits within the rectangle.

:link,:visited { cursor: url(example.svg#linkcursor), url(hyper.cur), pointer }

This example sets the cursor on all hyperlinks (whether visited or not) to an external SVG cursor. User
agents that do not support SVG cursors would simply skip to the next value and attempt to use the
"hyper.cur" cursor. If that cursor format was also not supported, the UA would skip to the next value
and simply render the 'pointer' cursor.
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18.2 System Colors

Note. The System Colors are deprecated in the CSS3 Color Module [CSS3COLOR]p.363.

In addition to being able to assign pre-defined color valuesp.63 to text, backgrounds, etc., CSS2 introduced
a set of named color values that allows authors to specify colors in a manner that integrates them into the
operating system's graphic environment.

For systems that do not have a corresponding value, the specified value should be mapped to the nearest
system value, or to a default color.

The following lists additional values for color-related CSS properties and their general meaning. Any
color property (e.g., 'color'p.255 or 'background-color'p.257) can take one of the following names. Although
these are case-insensitive, it is recommended that the mixed capitalization shown below be used, to make
the names more legible.
ActiveBorder

Active window border.

ActiveCaption
Active window caption.

AppWorkspace
Background color of multiple document interface.

Background
Desktop background.

ButtonFace
Face color for three-dimensional display elements.

ButtonHighlight
Highlight color for three-dimensional display elements (for edges facing away from the light source).

ButtonShadow
Shadow color for three-dimensional display elements.

ButtonText
Text on push buttons.

CaptionText
Text in caption, size box, and scrollbar arrow box.

GrayText
Grayed (disabled) text. This color is set to #000 if the current display driver does not support a solid
gray color.

Highlight
Item(s) selected in a control.

– 18 User interface –

– 329 –



HighlightText
Text of item(s) selected in a control.

InactiveBorder
Inactive window border.

InactiveCaption
Inactive window caption.

InactiveCaptionText
Color of text in an inactive caption.

InfoBackground
Background color for tooltip controls.

InfoText
Text color for tooltip controls.

Menu
Menu background.

MenuText
Text in menus.

Scrollbar
Scroll bar gray area.

ThreeDDarkShadow
Dark shadow for three-dimensional display elements.

ThreeDFace
Face color for three-dimensional display elements.

ThreeDHighlight
Highlight color for three-dimensional display elements.

ThreeDLightShadow
Light color for three-dimensional display elements (for edges facing the light source).

ThreeDShadow
Dark shadow for three-dimensional display elements.

Window
Window background.

WindowFrame
Window frame.

WindowText
Text in windows.
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For example, to set the foreground and background colors of a paragraph to the same foreground and
background colors of the user's window, write the following:

p { color: WindowText; background-color: Window }

18.3 User preferences for fonts

As for colors, authors may specify fonts in a way that makes use of a user's system resources. Please con-
sult the 'font'p.277 property for details.

18.4 Dynamic outlines: the 'outline' property

At times, style sheet authors may want to create outlines around visual objects such as buttons, active
form fields, image maps, etc., to make them stand out. CSS 2.2 outlines differ from bordersp.124 in the fol-
lowing ways:

1. Outlines do not take up space.

2. Outlines may be non-rectangular.

The outline properties control the style of these dynamic outlines.

Name: outline

Value: [ <'outline-color'>p.332 || <'outline-style'>p.332 || <'outline-width'>p.332 ] |
inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110, interactivep.110

Computed value: see individual properties
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Name: outline-width

Value: <border-width>p.124 | inheritp.99

Initial: medium

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110, interactivep.110

Computed value: absolute length; '0' if the outline style is 'none'

Name: outline-style

Value: <border-style>p.127 | inheritp.99

Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media: visualp.110, interactivep.110

Computed value: as specified

Name: outline-color

Value: <color>p.63 | invert | inheritp.99

Initial: invert

Applies to: all elements
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Inherited: no

Percentages: N/A

Media: visualp.110, interactivep.110

Computed value: as specified

The outline created with the outline properties is drawn "over" a box, i.e., the outline is always on top, and
does not influence the position or size of the box, or of any other boxes. Therefore, displaying or sup-
pressing outlines does not cause reflow or overflow.

The outline may be drawn starting just outside the border edgep.114.
Outlines may be non-rectangular. For example, if the element is broken across several lines, the outline

is the minimum outline that encloses all the element's boxes. In contrast to bordersp.124, the outline is not
open at the line box's end or start, but is always fully connected if possible.

The 'outline-width'p.332 property accepts the same values as 'border-width'p.125.
The 'outline-style'p.332 property accepts the same values as 'border-style'p.128, except that 'hidden' is not

a legal outline style.
The 'outline-color'p.332 accepts all colors, as well as the keyword 'invert'. 'Invert' is expected to perform

a color inversion on the pixels on the screen. This is a common trick to ensure the focus border is visible,
regardless of color background.

Conformant UAs may ignore the 'invert' value on platforms that do not support color inversion of the
pixels on the screen. If the UA does not support the 'invert' value then the initial value of the 'outline-
color' property is the value of the 'color' property, similar to the initial value of the 'border-top-color' prop-
erty.

The 'outline'p.331 property is a shorthand property, and sets all three of 'outline-style'p.332, 'outline-
width'p.332, and 'outline-color'p.332.

Note. The outline is the same on all sides. In contrast to borders, there is no 'outline-top' or 'outline-
left' property.

This specification does not define how multiple overlapping outlines are drawn, or how outlines are drawn
for boxes that are partially obscured behind other elements.

Note. Since the outline does not affect formatting (i.e., no space is left for it in the box model), it may
well overlap other elements on the page.
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Here's an example of drawing a thick outline around a BUTTON element:

button { outline : thick solid}

Scripts may be used to dynamically change the width of the outline, without provoking a reflow.

18.4.1 Outlines and the focus

Graphical user interfaces may use outlines around elements to tell the user which element on the page has
the focus. These outlines are in addition to any borders, and switching outlines on and off should not
cause the document to reflow. The focus is the subject of user interaction in a document (e.g., for entering
text, selecting a button, etc.). User agents supporting the interactive media groupp.110 must keep track of
where the focus lies and must also represent the focus. This may be done by using dynamic outlines in
conjunction with the :focus pseudo-class.

For example, to draw a thick black line around an element when it has the focus, and a thick red line
when it is active, the following rules can be used:

:focus  { outline: thick solid black }

:active { outline: thick solid red }

18.5 Magnification

The CSS working group considers that the magnification of a document or portions of a document should
not be specified through style sheets. User agents may support such magnification in different ways (e.g.,
larger images, louder sounds, etc.)

When magnifying a page, UAs should preserve the relationships between positioned elements. For ex-
ample, a comic strip may be composed of images with overlaid text elements. When magnifying this
page, a user agent should keep the text within the comic strip balloon.
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This chapter is informative. UAs are not required to implement the properties of this chapter in order to
conform to CSS 2.2.
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A.1 The media types 'aural' and 'speech'

We expect that in a future level of CSS there will be new properties and values defined for speech output.
Therefore CSS 2.2 reserves the 'speech' media type (see chapter 7, "Media types"p.107), but does not yet
define which properties do or do not apply to it.

The properties in this appendix apply to a media type 'aural', that was introduced in CSS2. The type 'au-
ral' is now deprecated.

This means that a style sheet such as

@media speech {

body { voice-family: Paul }

}

is valid, but that its meaning is not defined by CSS 2.2, while

@media aural {

body { voice-family: Paul }

}

is deprecated, but defined by this appendix.

A.2 Introduction to aural style sheets

The aural rendering of a document, already commonly used by the blind and print-impaired communities,
combines speech synthesis and "auditory icons." Often such aural presentation occurs by converting the
document to plain text and feeding this to a screen reader -- software or hardware that simply reads all the
characters on the screen. This results in less effective presentation than would be the case if the document
structure were retained. Style sheet properties for aural presentation may be used together with visual
properties (mixed media) or as an aural alternative to visual presentation.

Besides the obvious accessibility advantages, there are other large markets for listening to information,
including in-car use, industrial and medical documentation systems (intranets), home entertainment, and
to help users learning to read or who have difficulty reading.

When using aural properties, the canvas consists of a three-dimensional physical space (sound sur-
rounds) and a temporal space (one may specify sounds before, during, and after other sounds). The CSS
properties also allow authors to vary the quality of synthesized speech (voice type, frequency, inflection,
etc.).
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h1, h2, h3, h4, h5, h6 {

voice-family: paul;

stress: 20;

richness: 90;

cue-before: url("ping.au")

}

p.heidi { azimuth: center-left }

p.peter { azimuth: right }

p.goat  { volume: x-soft }

This will direct the speech synthesizer to speak headers in a voice (a kind of "audio font") called
"paul", on a flat tone, but in a very rich voice. Before speaking the headers, a sound sample will be
played from the given URL. Paragraphs with class "heidi" will appear to come from front left (if the
sound system is capable of spatial audio), and paragraphs of class "peter" from the right. Paragraphs
with class "goat" will be very soft.

A.2.1 Angles

Angle values are denoted by <angle> in the text. Their format is a <number>p.57 immediately followed by
an angle unit identifier.

Angle unit identifiers are:

• deg: degrees

• grad: grads

• rad: radians

Angle values may be negative. They should be normalized to the range 0-360deg by the user agent. For
example, -10deg and 350deg are equivalent.

For example, a right angle is '90deg' or '100grad' or '1.570796326794897rad'.
Like for <length>, the unit may be omitted, if the value is zero: '0deg' may be written as '0'.

A.2.2 Times

Time values are denoted by <time> in the text. Their format is a <number>p.57 immediately followed by a
time unit identifier.

Time unit identifiers are:

• ms: milliseconds

• s: seconds
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Time values may not be negative.
Like for <length>, the unit may be omitted, if the value is zero: '0s' may be written as '0'.

A.2.3 Frequencies

Frequency values are denoted by <frequency> in the text. Their format is a <number>p.57 immediately
followed by a frequency unit identifier.

Frequency unit identifiers are:

• Hz: Hertz

• kHz: kilohertz

Frequency values may not be negative.
For example, 200Hz (or 200hz) is a bass sound, and 6kHz is a treble sound.
Like for <length>, the unit may be omitted, if the value is zero: '0Hz' may be written as '0'.

A.3 Volume properties: 'volume'p.338

Name: volume

Value: <number>p.57 | <percentage>p.61 | silent | x-soft | soft | medium | loud | x-
loud | inheritp. 99

Initial: medium

Applies to: all elements

Inherited: yes

Percentages: refer to inherited value

Media: auralp.336

Computed value: number

Volume refers to the median volume of the waveform. In other words, a highly inflected voice at a vol-
ume of 50 might peak well above that. The overall values are likely to be human adjustable for comfort,
for example with a physical volume control (which would increase both the 0 and 100 values proportion-
ately); what this property does is adjust the dynamic range.

Values have the following meanings:
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<number> p. 57

Any number between '0' and '100'. '0' represents the minimum audible volume level and 100 corre-
sponds to the maximum comfortable level.

<percentage>p. 61

Percentage values are calculated relative to the inherited value, and are then clipped to the range '0' to
'100'.

silent
No sound at all. The value '0' does not mean the same as 'silent'.

x-soft
Same as '0'.

soft
Same as '25'.

medium
Same as '50'.

loud
Same as '75'.

x-loud
Same as '100'.

User agents should allow the values corresponding to '0' and '100' to be set by the listener. No one setting
is universally applicable; suitable values depend on the equipment in use (speakers, headphones), the en-
vironment (in car, home theater, library) and personal preferences. Some examples:

• A browser for in-car use has a setting for when there is lots of background noise. '0' would map to a
fairly high level and '100' to a quite high level. The speech is easily audible over the road noise but
the overall dynamic range is compressed. Cars with better insulation might allow a wider dynamic
range.

• Another speech browser is being used in an apartment, late at night, or in a shared study room. '0' is
set to a very quiet level and '100' to a fairly quiet level, too. As with the first example, there is a low
slope; the dynamic range is reduced. The actual volumes are low here, whereas they were high in the
first example.

• In a quiet and isolated house, an expensive hi-fi home theater setup. '0' is set fairly low and '100' to
quite high; there is wide dynamic range.

The same author style sheet could be used in all cases, simply by mapping the '0' and '100' points suitably
at the client side.
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A.4 Speaking properties: 'speak'p.340

Name: speak

Value: normal | none | spell-out | inheritp.99

Initial: normal

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

This property specifies whether text will be rendered aurally and if so, in what manner. The possible val-
ues are:
none

Suppresses aural rendering so that the element requires no time to render. Note, however, that de-
scendants may override this value and will be spoken. (To be sure to suppress rendering of an ele-
ment and its descendants, use the 'display'p.139 property).

normal
Uses language-dependent pronunciation rules for rendering an element and its children.

spell-out
Spells the text one letter at a time (useful for acronyms and abbreviations).

Note the difference between an element whose 'volume'p.338 property has a value of 'silent' and an ele-
ment whose 'speak'p.340 property has the value 'none'. The former takes up the same time as if it had been
spoken, including any pause before and after the element, but no sound is generated. The latter requires no
time and is not rendered (though its descendants may be).

A.5 Pause properties: 'pause-before'p.340, 'pause-after'p.341, and 'pause'p.342

Name: pause-before

Value: <time>p.337 | <percentage>p.61 | inheritp.99
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Initial: 0

Applies to: all elements

Inherited: no

Percentages: see prose

Media: auralp.336

Computed value: time

Name: pause-after

Value: <time>p.337 | <percentage>p.61 | inheritp.99

Initial: 0

Applies to: all elements

Inherited: no

Percentages: see prose

Media: auralp.336

Computed value: time;;

These properties specify a pause to be observed before (or after) speaking an element's content. Values
have the following meanings:

Note. In CSS3 pauses are inserted around the cues and content rather than between them. See
[CSS3SPEECH]p.364 for details.

<time>p. 337

Expresses the pause in absolute time units (seconds and milliseconds).

<percentage>p. 61

Refers to the inverse of the value of the 'speech-rate'p.348 property. For example, if the speech-rate is
120 words per minute (i.e., a word takes half a second, or 500ms) then a 'pause-before'p.340 of 100%
means a pause of 500 ms and a 'pause-before'p.340 of 20% means 100ms.

The pause is inserted between the element's content and any 'cue-before'p.342 or 'cue-after'p.343 content.
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Authors should use relative units to create more robust style sheets in the face of large changes in
speech-rate.

Name: pause

Value: [ [<time>p.337 | <percentage>p.61]{1,2} ] | inheritp.99

Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: see descriptions of 'pause-before' and 'pause-after'

Media: auralp.336

Computed value: see individual properties

The 'pause'p.342 property is a shorthand for setting 'pause-before'p.340 and 'pause-after'p.341. If two values
are given, the first value is 'pause-before'p.340 and the second is 'pause-after'p.341. If only one value is giv-
en, it applies to both properties.

h1 { pause: 20ms } /* pause-before: 20ms; pause-after: 20ms */

h2 { pause: 30ms 40ms } /* pause-before: 30ms; pause-after: 40ms */

h3 { pause-after: 10ms } /* pause-before unspecified; pause-after: 10ms */

A.6 Cue properties: 'cue-before'p.342, 'cue-after'p. 343, and 'cue'p.343

Name: cue-before

Value: <uri>p.62 | none | inheritp.99

Initial: none

Applies to: all elements

Inherited: no
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Percentages: N/A

Media: auralp.336

Computed value: absolute URI or 'none'

Name: cue-after

Value: <uri>p.62 | none | inheritp.99

Initial: none

Applies to: all elements

Inherited: no

Percentages: N/A

Media: auralp.336

Computed value: absolute URI or 'none'

Auditory icons are another way to distinguish semantic elements. Sounds may be played before and/or af-
ter the element to delimit it. Values have the following meanings:
<uri>p. 62

The URI must designate an auditory icon resource. If the URI resolves to something other than an
audio file, such as an image, the resource should be ignored and the property treated as if it had the
value 'none'.

none
No auditory icon is specified.

a {cue-before: url("bell.aiff"); cue-after: url("dong.wav") }

h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }

Name: cue

Value: [ <'cue-before'>p.342 || <'cue-after'>p.343 ] | inheritp.99
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Initial: see individual properties

Applies to: all elements

Inherited: no

Percentages: N/A

Media: auralp.336

Computed value: see individual properties

The 'cue'p.343 property is a shorthand for setting 'cue-before'p.342 and 'cue-after'p.343. If two values are
given, the first value is 'cue-before'p.342 and the second is 'cue-after'p.343. If only one value is given, it ap-
plies to both properties.

The following two rules are equivalent:

h1 {cue-before: url("pop.au"); cue-after: url("pop.au") }

h1 {cue: url("pop.au") }

If a user agent cannot render an auditory icon (e.g., the user's environment does not permit it), we recom-
mend that it produce an alternative cue.

Please see the sections on the :before and :after pseudo-elementsp.221 for information on other content
generation techniques. 'Cue-before' sounds and 'pause-before' gaps are inserted before content from the
':before' pseudo-element. Similarly, 'pause-after' gaps and 'cue-after' sounds are inserted after content from
the ':after' pseudo-element.

A.7 Mixing properties: 'play-during'p.344

Name: play-during

Value: <uri>p.62 [ mix || repeat ]? | auto | none | inheritp.99

Initial: auto

Applies to: all elements

Inherited: no
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Percentages: N/A

Media: auralp.336

Computed value: absolute URI, rest as specified

Similar to the 'cue-before'p.342 and 'cue-after'p.343 properties, this property specifies a sound to be played
as a background while an element's content is spoken. Values have the following meanings:
<uri>p. 62

The sound designated by this <uri>p.62 is played as a background while the element's content is spo-
ken.

mix
When present, this keyword means that the sound inherited from the parent element's 'play-
during'p.344 property continues to play and the sound designated by the <uri>p.62 is mixed with it. If
'mix' is not specified, the element's background sound replaces the parent's.

repeat
When present, this keyword means that the sound will repeat if it is too short to fill the entire dura-
tion of the element. Otherwise, the sound plays once and then stops. This is similar to the
'background-repeat'p.259 property. If the sound is too long for the element, it is clipped once the ele-
ment has been spoken.

auto
The sound of the parent element continues to play (it is not restarted, which would have been the
case if this property had been inherited).

none
This keyword means that there is silence. The sound of the parent element (if any) is silent during the
current element and continues after the current element.

blockquote.sad { play-during: url("violins.aiff") }

blockquote Q   { play-during: url("harp.wav") mix }

span.quiet     { play-during: none }

A.8 Spatial properties: 'azimuth'p.346 and 'elevation'p.347

Spatial audio is an important stylistic property for aural presentation. It provides a natural way to tell sev-
eral voices apart, as in real life (people rarely all stand in the same spot in a room). Stereo speakers pro-
duce a lateral sound stage. Binaural headphones or the increasingly popular 5-speaker home theater setups
can generate full surround sound, and multi-speaker setups can create a true three-dimensional sound
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stage. VRML 2.0 also includes spatial audio, which implies that in time consumer-priced spatial audio
hardware will become more widely available.

Name: azimuth

Value: <angle>p.337 | [[ left-side | far-left | left | center-left | center | center-right |
right | far-right | right-side ] || behind ] | leftwards | rightwards | inheritp.99

Initial: center

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: normalized angle

Values have the following meanings:
<angle>p. 337

Position is described in terms of an angle within the range '-360deg' to '360deg'. The value '0deg'
means directly ahead in the center of the sound stage. '90deg' is to the right, '180deg' behind, and
'270deg' (or, equivalently and more conveniently, '-90deg') to the left.

left-side
Same as '270deg'. With 'behind', '270deg'.

far-left
Same as '300deg'. With 'behind', '240deg'.

left
Same as '320deg'. With 'behind', '220deg'.

center-left
Same as '340deg'. With 'behind', '200deg'.

center
Same as '0deg'. With 'behind', '180deg'.

center-right
Same as '20deg'. With 'behind', '160deg'.

right
Same as '40deg'. With 'behind', '140deg'.
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far-right
Same as '60deg'. With 'behind', '120deg'.

right-side
Same as '90deg'. With 'behind', '90deg'.

leftwards
Moves the sound to the left, relative to the current angle. More precisely, subtracts 20 degrees. Arith-
metic is carried out modulo 360 degrees. Note that 'leftwards' is more accurately described as "turned
counter-clockwise," since it always subtracts 20 degrees, even if the inherited azimuth is already be-
hind the listener (in which case the sound actually appears to move to the right).

rightwards
Moves the sound to the right, relative to the current angle. More precisely, adds 20 degrees. See 'left-
wards' for arithmetic.

This property is most likely to be implemented by mixing the same signal into different channels at differ-
ing volumes. It might also use phase shifting, digital delay, and other such techniques to provide the illu-
sion of a sound stage. The precise means used to achieve this effect and the number of speakers used to do
so are user agent-dependent; this property merely identifies the desired end result.

h1   { azimuth: 30deg }

td.a { azimuth: far-right }          /*  60deg */

#12  { azimuth: behind far-right }   /* 120deg */

p.comment { azimuth: behind }        /* 180deg */

If spatial-azimuth is specified and the output device cannot produce sounds behind the listening position,
user agents should convert values in the rearwards hemisphere to forwards hemisphere values. One
method is as follows:

• if 90deg < x <= 180deg then x := 180deg - x

• if 180deg < x <= 270deg then x := 540deg - x

Name: elevation

Value: <angle>p.337 | below | level | above | higher | lower | inheritp.99

Initial: level

Applies to: all elements
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Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: normalized angle

Values of this property have the following meanings:
<angle>p. 337

Specifies the elevation as an angle, between '-90deg' and '90deg'. '0deg' means on the forward hori-
zon, which loosely means level with the listener. '90deg' means directly overhead and '-90deg' means
directly below.

below
Same as '-90deg'.

level
Same as '0deg'.

above
Same as '90deg'.

higher
Adds 10 degrees to the current elevation.

lower
Subtracts 10 degrees from the current elevation.

The precise means used to achieve this effect and the number of speakers used to do so are undefined.
This property merely identifies the desired end result.

h1   { elevation: above }

tr.a { elevation: 60deg }

tr.b { elevation: 30deg }

tr.c { elevation: level }

A.9 Voice characteristic properties: 'speech-rate'p.348, 'voice-family'p.349,
'pitch'p.350, 'pitch-range'p.351, 'stress'p.352, and 'richness'p.352

Name: speech-rate
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Value: <number>p.57 | x-slow | slow | medium | fast | x-fast | faster | slower |
inheritp.99

Initial: medium

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: number

This property specifies the speaking rate. Note that both absolute and relative keyword values are allowed
(compare with 'font-size'p.276). Values have the following meanings:
<number>p. 57

Specifies the speaking rate in words per minute, a quantity that varies somewhat by language but is
nevertheless widely supported by speech synthesizers.

x-slow
Same as 80 words per minute.

slow
Same as 120 words per minute

medium
Same as 180 - 200 words per minute.

fast
Same as 300 words per minute.

x-fast
Same as 500 words per minute.

faster
Adds 40 words per minute to the current speech rate.

slower
Subtracts 40 words per minutes from the current speech rate.

Name: voice-family
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Value: [[<specific-voice>p.350 | <generic-voice>p.350 ],]* [<specific-voice>p.350 |
<generic-voice>p.350 ] | inheritp.99

Initial: depends on user agent

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

The value is a comma-separated, prioritized list of voice family names (compare with 'font-family'p.267).
Values have the following meanings:
<generic-voice>

Values are voice families. Possible values are 'male', 'female', and 'child'.

<specific-voice>
Values are specific instances (e.g., comedian, trinoids, carlos, lani).

h1 { voice-family: announcer, male }

p.part.romeo  { voice-family: romeo, male }

p.part.juliet { voice-family: juliet, female }

Names of specific voices may be quoted, and indeed must be quoted if any of the words that make up the
name does not conform to the syntax rules for identifiersp.44. It is also recommended to quote specific
voices with a name consisting of more than one word. If quoting is omitted, any white spacep.47 charac-
ters before and after the voice family name are ignored and any sequence of white space characters inside
the voice family name is converted to a single space.

Name: pitch

Value: <frequency>p.338 | x-low | low | medium | high | x-high | inheritp.99

Initial: medium
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Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: frequency

Specifies the average pitch (a frequency) of the speaking voice. The average pitch of a voice depends on
the voice family. For example, the average pitch for a standard male voice is around 120Hz, but for a fe-
male voice, it's around 210Hz.

Values have the following meanings:
<frequency>p. 338

Specifies the average pitch of the speaking voice in hertz (Hz).

x-low, low, medium, high, x-high
These values do not map to absolute frequencies since these values depend on the voice family. User
agents should map these values to appropriate frequencies based on the voice family and user envi-
ronment. However, user agents must map these values in order (i.e., 'x-low' is a lower frequency than
'low', etc.).

Name: pitch-range

Value: <number>p.57 | inheritp.99

Initial: 50

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

Specifies variation in average pitch. The perceived pitch of a human voice is determined by the funda-
mental frequency and typically has a value of 120Hz for a male voice and 210Hz for a female voice. Hu-
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man languages are spoken with varying inflection and pitch; these variations convey additional meaning
and emphasis. Thus, a highly animated voice, i.e., one that is heavily inflected, displays a high pitch
range. This property specifies the range over which these variations occur, i.e., how much the fundamental
frequency may deviate from the average pitch.

Values have the following meanings:
<number>p. 57

A value between '0' and '100'. A pitch range of '0' produces a flat, monotonic voice. A pitch range of
50 produces normal inflection. Pitch ranges greater than 50 produce animated voices.

Name: stress

Value: <number>p.57 | inheritp.99

Initial: 50

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

Specifies the height of "local peaks" in the intonation contour of a voice. For example, English is a
stressed language, and different parts of a sentence are assigned primary, secondary, or tertiary stress. The
value of 'stress'p.352 controls the amount of inflection that results from these stress markers. This property
is a companion to the 'pitch-range'p.351 property and is provided to allow developers to exploit higher-end
auditory displays.

Values have the following meanings:
<number>p. 57

A value, between '0' and '100'. The meaning of values depends on the language being spoken. For ex-
ample, a level of '50' for a standard, English-speaking male voice (average pitch = 122Hz), speaking
with normal intonation and emphasis would have a different meaning than '50' for an Italian voice.

Name: richness

Value: <number>p.57 | inheritp.99

– Appendix A. Aural style sheets –

– 352 –



Initial: 50

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

Specifies the richness, or brightness, of the speaking voice. A rich voice will "carry" in a large room, a
smooth voice will not. (The term "smooth" refers to how the wave form looks when drawn.)

Values have the following meanings:
<number>p. 57

A value between '0' and '100'. The higher the value, the more the voice will carry. A lower value will
produce a soft, mellifluous voice.

A.10 Speech properties: 'speak-punctuation'p.353 and 'speak-numeral'p.354

An additional speech property, 'speak-header'p.354, is described below.

Name: speak-punctuation

Value: code | none | inheritp.99

Initial: none

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

This property specifies how punctuation is spoken. Values have the following meanings:
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code
Punctuation such as semicolons, braces, and so on are to be spoken literally.

none
Punctuation is not to be spoken, but instead rendered naturally as various pauses.

Name: speak-numeral

Value: digits | continuous | inheritp.99

Initial: continuous

Applies to: all elements

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

This property controls how numerals are spoken. Values have the following meanings:
digits

Speak the numeral as individual digits. Thus, "237" is spoken "Two Three Seven".

continuous
Speak the numeral as a full number. Thus, "237" is spoken "Two hundred thirty seven". Word repre-
sentations are language-dependent.

A.11 Audio rendering of tables

When a table is spoken by a speech generator, the relation between the data cells and the header cells must
be expressed in a different way than by horizontal and vertical alignment. Some speech browsers may al-
low a user to move around in the 2-dimensional space, thus giving them the opportunity to map out the
spatially represented relations. When that is not possible, the style sheet must specify at which points the
headers are spoken.

A.11.1 Speaking headers: the 'speak-header'p.354 property

Name: speak-header
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Value: once | always | inheritp.99

Initial: once

Applies to: elements that have table header information

Inherited: yes

Percentages: N/A

Media: auralp.336

Computed value: as specified

This property specifies whether table headers are spoken before every cell, or only before a cell when that
cell is associated with a different header than the previous cell. Values have the following meanings:
once

The header is spoken one time, before a series of cells.

always
The header is spoken before every pertinent cell.

Each document language may have different mechanisms that allow authors to specify headers. For exam-
ple, in HTML 4 ([HTML4]p.361), it is possible to specify header information with three different attributes
("headers", "scope", and "axis"), and the specification gives an algorithm for determining header informa-
tion when these attributes have not been specified.

– Appendix A. Aural style sheets –

– 355 –



Image of a table with header cells ("San Jose" and "Seattle") that are not in the same column or row as the da-
ta they apply to.

This HTML example presents the money spent on meals, hotels and transport in two locations (San
Jose and Seattle) for successive days. Conceptually, you can think of the table in terms of an n-
dimensional space. The headers of this space are: location, day, category and subtotal. Some cells de-
fine marks along an axis while others give money spent at points within this space. The markup for
this table is:
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<TABLE>

<CAPTION>Travel Expense Report</CAPTION>

<TR>

<TH></TH>

<TH>Meals</TH>

<TH>Hotels</TH>

<TH>Transport</TH>

<TH>subtotal</TH>

</TR>

<TR>

<TH id="aural.html.san-jose" axis="san-jose">San Jose</TH>

</TR>

<TR>

<TH headers="san-jose">25-Aug-97</TH>

<TD>37.74</TD>

<TD>112.00</TD>

<TD>45.00</TD>

<TD></TD>

</TR>

<TR>

<TH headers="san-jose">26-Aug-97</TH>

<TD>27.28</TD>

<TD>112.00</TD>

<TD>45.00</TD>

<TD></TD>

</TR>

<TR>

<TH headers="san-jose">subtotal</TH>

<TD>65.02</TD>

<TD>224.00</TD>

<TD>90.00</TD>

<TD>379.02</TD>

</TR>

<TR>

<TH id="aural.html.seattle" axis="seattle">Seattle</TH>

</TR>

<TR>

<TH headers="seattle">27-Aug-97</TH>

<TD>96.25</TD>

<TD>109.00</TD>

<TD>36.00</TD>
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<TD></TD>

</TR>

<TR>

<TH headers="seattle">28-Aug-97</TH>

<TD>35.00</TD>

<TD>109.00</TD>

<TD>36.00</TD>

<TD></TD>

</TR>

<TR>

<TH headers="seattle">subtotal</TH>

<TD>131.25</TD>

<TD>218.00</TD>

<TD>72.00</TD>

<TD>421.25</TD>

</TR>

<TR>

<TH>Totals</TH>

<TD>196.27</TD>

<TD>442.00</TD>

<TD>162.00</TD>

<TD>800.27</TD>

</TR>

</TABLE>

By providing the data model in this way, authors make it possible for speech enabled-browsers to ex-
plore the table in rich ways, e.g., each cell could be spoken as a list, repeating the applicable headers
before each data cell:

San Jose, 25-Aug-97, Meals:  37.74

San Jose, 25-Aug-97, Hotels:  112.00

San Jose, 25-Aug-97, Transport:  45.00

...

The browser could also speak the headers only when they change:

San Jose, 25-Aug-97, Meals: 37.74

Hotels: 112.00

Transport: 45.00

26-Aug-97, Meals: 27.28

Hotels: 112.00

...
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A.12 Sample style sheet for HTML

This style sheet describes a possible rendering of HTML 4:

@media aural {

h1, h2, h3,

h4, h5, h6    { voice-family: paul, male; stress: 20; richness: 90 }

h1            { pitch: x-low; pitch-range: 90 }

h2            { pitch: x-low; pitch-range: 80 }

h3            { pitch: low; pitch-range: 70 }

h4            { pitch: medium; pitch-range: 60 }

h5            { pitch: medium; pitch-range: 50 }

h6            { pitch: medium; pitch-range: 40 }

li, dt, dd    { pitch: medium; richness: 60 }

dt            { stress: 80 }

pre, code, tt { pitch: medium; pitch-range: 0; stress: 0; richness: 80 }

em            { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }

strong        { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }

dfn           { pitch: high; pitch-range: 60; stress: 60 }

s, strike     { richness: 0 }

i             { pitch: medium; pitch-range: 60; stress: 60; richness: 50 }

b             { pitch: medium; pitch-range: 60; stress: 90; richness: 90 }

u             { richness: 0 }

a:link        { voice-family: harry, male }

a:visited     { voice-family: betty, female }

a:active      { voice-family: betty, female; pitch-range: 80; pitch: x-high }

}

A.13 Emacspeak

For information, here is the list of properties implemented by Emacspeak, a speech subsystem for the
Emacs editor.

• voice-family

• stress (but with a different range of values)

• richness (but with a different range of values)

• pitch (but with differently named values)

• pitch-range (but with a different range of values)

(We thank T. V. Raman for the information about implementation status of aural properties.)
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Appendix C. Changes

Contents

C.1 Changes since the Recommendation of 7 June 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

This appendix is informative, not normative.
Below are the changes relative to the first revision of CSS2 (CSS 2.1). The changes between the CSS2

specification (see [CSS2]p.363) and CSS 2.1 (see [CSS21]p.363) can be found in the Changes section of
CSS 2.1.

This chapter is not a complete list of changes. Minor editorial changes and most changes to examples
are not listed here.

C.1 Changes since the Recommendation of 7 June 2011

• [2011-10-12] In “6.2.1 The 'inherit' value,”p.99 change

Each property may also have a cascaded value of 'inherit', which means that, for a given element,
the property takes the same specified value as the property for as specified value the computed
value of the element's parent.

(See CSS WG minutes 2011-10-12.)

• [2011-10-12] In “6.1.1 Specified values,”p.98 add this clarification:

1. If the cascade results in a value use it. Except that, if the value is 'inherit', the specified value
is defined in “The 'inherit' value”p.99 below

(See CSS WG minutes 2011-10-12.)

• [2012-04-04] In “8.3.1 Collapsing margins,”p.119 add a new item as follows:
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Adjoining vertical margins collapse, except:

◦ Margins of the root element's box do not collapse.

◦ If the top and bottom margins of an element with clearance are adjoining, its margins col-
lapse with the adjoining margins of following siblings but that resulting margin does not col-
lapse with the bottom margin of the parent block.

◦ If the top margin of a box with non-zero computed 'min-height' and 'auto' computed 'height'
collapses with the bottom margin of its last in-flow child, then the child's bottom margin
does not collapse with the parent's bottom margin.

(See CSS WG minutes 2012-04-04.)

• [2012-04-11] In “10.7 Minimum and maximum heights: 'min-height' and 'max-height',” p.201 clarify
the note as follows:

These steps do not affect the real computed values of the above properties. The change of used
'height' has no effect on margin collapsing except as specifically required by rules for 'min-height'
or 'max-height' in "Collapsing margins" (8.3.1).

These steps do not affect the real computed value of 'height'. Consequently, for example, they
do not affect margin collapsing, which depends on the computed value.

(See CSS WG minutes 2012-04-11.)

• [2012-04-11] In “8.3.1 Collapsing margins,”p.119 clarify 7th bullet in the 2nd note:

The bottom margin of an in-flow block box with a 'height' of 'auto' and a 'min-height' of zero col-
lapses with its last in-flow block-level child's bottom margin if the box has no bottom padding
and no bottom border and the child's bottom margin does not collapse with a top margin that has
clearance.

The bottom margin of an in-flow block box with a 'height' of 'auto' collapses with its last in-
flow block-level child's bottom margin, if:

◦ the box has no bottom padding, and

◦ the box has no bottom border, and

◦ the child's bottom margin neither collapses with a top margin that has clearance, nor (if the
box's min-height is non-zero) with the box's top margin.
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(See CSS WG minutes 2012-04-11.)

• [2012-05-02] In “15.3 Font family: the 'font-family' property,”p.267 clarify that using the font name
“inherit” without quotes is an error:

Font family names that happen to be the same as a keyword value ('inherit', 'serif', 'sans-serif',
'monospace', 'fantasy', and 'cursive') must be quoted to prevent confusion with the keywords with
the same names. The keywords 'initial' and 'default' are reserved for future use and must also be
quoted when used as font names. UAs must not consider these keywords as matching the
'<family-name>' type.

Unquoted font family names that happen to be the same as the keyword values 'inherit', 'de-
fault' and 'initial' or the generic font keywords ('serif', 'sans-serif', 'monospace', 'fantasy', and 'cur-
sive') do not match the '<family-name>' type. These names must be quoted to prevent confusion
with the keywords with the same names. Note that 'font-family: Times, inherit' is therefore an in-
valid declaration, because 'inherit' in that position can neither be a valid keyword nor a valid font
family name.

(See CSS WG minutes 2012-05-02.)

• [2012-05-02] Spaces and comments are not allowed between the sign and the digits of a <number>,
<length> or <percentage>. In “4.3.1 Integers and real numbers,”p.57 insert “immediately” as follows:

Both integers and real numbers may immediately be preceded by a "-" or "+" to indicate the sign.

In “4.1.1 Tokenization,”p.44 allow "+" or "-" at the start of the {num} macro:

num[-+]?[0-9]+|[-+]?[0-9]*\.[0-9]+

(Note that this changes the definition of three tokens, NUMBER, DIMENSION and PERCENTAGE,
and thus the tokenization of CSS, but it does not change the language generated by the grammar as a
whole.)

No change is required in 4.3.2 (<length>) or 4.3.3 (<percentage>), because they refer to 4.3.1.
(See CSS WG minutes 2012-05-02.)

• [2012-08-01] In 10.1 “Definition of "containing block,"”p.184 change:
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1. […]

2. For other elements, if the element's position is 'relative' or 'static', the containing block is
formed by the content edge of the nearest ancestor box that is a block containerp.135 ancestor
box or which establishes a formatting context.

(See CSS WG minutes 2012-08-01.)

• [2012-08-01] In 9.4 “Normal flow,”p.145 replace as follows:

Boxes in the normal flow belong to a formatting context, which in CSS 2 may be table, block or
inline, but not both simultaneously. In future levels of CSS, other types of formatting context will
be introduced. Block-levelp.135 boxes participate in a block formattingp.145 context. Inline-level
boxesp.138 participate in an inline formattingp.145 context. Table formatting contexts are de-
scribed in the chapter on tables.p.295

(See CSS WG minutes 2012-08-01.)

• [2012-08-01] In 9.4.2 “Inline formatting contexts,”p.145 add this sentence:

An inline formatting context is established by a block container box that contains no block-level
boxes. In an inline formatting context, boxes are laid out horizontally, one after the other, begin-
ning at the top of a containing block.

(See CSS WG minutes 2012-08-01.)

• [2012-08-01] In 17.4 “Tables in the visual formatting model,” p.303 replace as follows:

The table wrapper box is a 'block' box if the table is block-level, and an 'inline-block' box if the
table is inline-level. The table wrapper box establishes a block formatting context, and the table
box establishes a table formatting context.

(See CSS WG minutes 2012-08-01.)

• [2012-08-01] In 17.5 “Visual layout of table contents,”p.305 replace as follows:

Internal table elements generate rectangular boxesp.113 with which participate in the table format-
ting context established by the table box. These boxes have content and borders. and cells have
padding as well. Internal table elements do not have margins.
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(See CSS WG minutes 2012-08-01.)

• [2012-08-01] In 11.1.1 “Overflow: the 'overflow' property,”p.210 change:

Applies to: block containers and boxes that establish a formatting context

(See CSS WG minutes 2012-08-01.)

• [2013-04-29] The letters u, r and l of the URI token may be written as escapes. In 4.1.1 “Tokeniza-
tion,”p.44 change in the first table:

URI
url{U}{R}{L}\({w}{string}{w}\)

|url{U}{R}{L}\({w}([!#$%&*-\[\]-~]|{nonascii}|{escape})*{w}\)

and in the second table:

baduri1url{U}{R}{L}\({w}([!#$%&*-~]|{nonascii}|{escape})*{w}
baduri2url{U}{R}{L}\({w}{string}{w}
baduri3url{U}{R}{L}\({w}{badstring}

And add to the second table:

L l|\\0{0,4}(4c|6c)(\r\n|[ \t\r\n\f])?|\\l

R r|\\0{0,4}(52|72)(\r\n|[ \t\r\n\f])?|\\r

Uu|\\0{0,4}(55|75)(\r\n|[ \t\r\n\f])?|\\u

(See CSS WG minutes 2013-01-30.)

• [2013-04-29] The letters u, r and l of the URI token may be written as escapes (see the previous erra-
tap.371). In G.2 “Lexical scanner,”p.410 change:

baduri1 url{U}{R}{L}\({w}([!#$%&*-\[\]-~]|{nonascii}|{escape})*{w}

baduri2 url{U}{R}{L}\({w}{string}{w}

baduri3 url{U}{R}{L}\({w}{badstring}

and

"url("{U}{R}{L}"("{w}{string}{w}")" {return URI;}

"url("{U}{R}{L}"("{w}{url}{w}")"    {return URI;}
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(See CSS WG minutes 2013-01-30.)

• [2013-04-29] Unicode control characters between U+0080 and U+009F can be used in identifiers
and in URI tokens. (Previously such characters made the style sheet invalid.) In 4.1.1 “Tokeniza-
tion,”p.44 change:

nonascii [^\0-\237\177]

(See CSS WG minutes 2013-01-30.)

• [2013-04-29] Unicode control characters between U+0080 and U+009F can be used in identifiers
and in URI tokens. (Previously such characters made the style sheet invalid.) In 4.1.3 “Characters
and case,”p.49 change:

◦ In CSS, identifiers (including element names, classes, and IDs in selectorsp.71) can contain
only the characters [a-zA-Z0-9] and ISO 10646 characters U+00A0 U+0080 and higher,
plus the hyphen (-) and the underscore (_);

(See CSS WG minutes 2013-01-30.)

• [2013-05-02] When a CSS file is known to be in a UTF-based character encoding, based on out-of-
band information, and the file starts with a BOM, then the BOM determines which of the UTF-based
encodings is used, overriding the out-of-band information. In 4.4 “CSS style sheet representa-
tion,”p.66 insert:
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If rule 1 above (an HTTP "charset" parameter or similar) yields a character encoding and it is one
of UTF-8, UTF-16 or UTF-32, then a BOM, if any, at the start of the file overrides that character
encoding, as follows:
First bytes (hexadecimal) Resulting encoding
00 00 FE FF UTF-32, big-endian
FF FE 00 00 UTF-32, little-endian
FE FF UTF-16, big-endian
FF FE UTF-16, little-endian
EF BB BF UTF-8
If rule 1 yields a character encoding of UTF-16BE, UTF-16LE, UTF-32BE or UTF-32LE, then it
is an error if the file starts with a BOM. A CSS UA must recover by ignoring the specified encod-
ing and using the table above.

Note that the fact that a BOM at the start of a file is an error in UTF-16BE, UTF-16LE,
UTF-32BE or UTF-32LE is specified by [UNICODE]p.362.

(See CSS WG minutes 2012-10-24.)

• [2013-07-15] In 11.1.1 “Overflow: the 'overflow' property,”p.210 change the definition of 'scroll' and
'auto':

scroll
This value indicates that the content is clipped and that if the user agent uses a scrolling
mechanism that is visible on the screen (such as a scroll bar or a panner), that mechanism
should be displayed for a box whether or not any of its content is clipped. This avoids any
problem with scrollbars appearing and disappearing in a dynamic environment. When this
value is specified and the target medium is 'print', overflowing content may be printed.
When used on table boxes,p.303 this value has the same meaning as 'visible'.

auto
The behavior of the 'auto' value is user agent-dependent, but should cause a scrolling mecha-
nism to be provided for overflowing boxes. When used on table boxes,p.303 this value has
the same meaning as 'visible'.

(See CSS WG minutes 2012-08-08.)

• [2013-07-15] In 15.3 Font family: the 'font-family' propertyp.267 the grammar is missing a pair of
brackets:
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Value: [[ <family-name> | <generic-family> ] [, [ <family-name>| <generic-family> ] ]* ] | inher-
it

(See CSS WG minutes 2012-05-03.)

• [2013-07-15] Spaces and comments are not allowed between the sign and the digits of a <number>,
<length> or <percentage>. In “G.2 Lexical scanner,”p.410 change the {num} macro as follows:

num [-+]?[0-9]+|[-+]?[0-9]*"."[0-9]+

In “G.1 Grammar,”p.407 remove unary_operator from the grammar:

unary_operator

: '-' | '+'

;

and

term

: unary_operator?

[ NUMBER S* | PERCENTAGE S* | LENGTH S* | EMS S* | EXS S* | ANGLE S* |

TIME S* | FREQ S* ]

| STRING S* | IDENT S* | URI S* | hexcolor | function

;

(See CSS WG minutes 2012-05-02.)

• [2013-07-18] A percentage on 'height', even if not used, can be inherited. In “10.5 Content height:
the 'height' property,”p.195 change the “computed value” line as follows:

Computed value: the percentage or 'auto' (see prose under p.61<percentage>p.61) (as specified)

and in the definition of <percentage>:

<percentage>
Specifies a percentage height. The percentage is calculated with respect to the height of the
generated box's containing blockp.135. If the height of the containing block is not specified
explicitly (i.e., it depends on content height), and this element is not absolutely positioned,
the value computes to 'auto' the used height is calculated as if 'auto' was specified.
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(See CSS WG minutes 2013-05-08.)

• [2013-09-09] In “4.1.1 Tokenization,”p.44 make the UNICODE-RANGE token more precise:

UNICODE-RANGE

u\+[0-9a-f?]{1,6}(-[0-9a-f]{1,6})?

u\+[?]{1,6}|

u\+[0-9a-f]{1}[?]{0,5}|

u\+[0-9a-f]{2}[?]{0,4}|

u\+[0-9a-f]{3}[?]{0,3}|

u\+[0-9a-f]{4}[?]{0,2}|

u\+[0-9a-f]{5}[?]{0,1}|

u\+[0-9a-f]{6}|

u\+[0-9a-f]{1,6}-[0-9a-f]{1,6}

E.g., “U+A?5” previously was a single UNICODE-RANGE token (although a semantically meaning-
less one), now this is two tokens: “U+A?” (meaning the 16-character range U+A0-AF) and the num-
ber “5”.

(See CSS WG minutes 2013-09-03.)

• [2012-09-19] Modify “9.2 Controlling box generation”p.135 and “9.2.1 Block-level elements and
block boxes”p.136 as follows:
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Controlling box generation
The following sections describe the types of boxes that may be generated in CSS 2.1. A box's

type affects, in part, its behavior in the visual formatting model. The 'display' property, described
below, specifies a box's type.

Certain values of the ''display' property cause an element of the source document to generate a
principal box that contains descendant boxes and generated content and is also the box involved
in any positioning scheme. Some elements may generate additional boxes in addition to the prin-
cipal box: 'list-item' elements. These additional boxes are placed with respect to the principal
box.

9.2.1 Block-level elements and block boxes
Block-level elements are those elements of the source document that are formatted visually as

blocks (e.g., paragraphs). The following values of the 'display' property make an element block-
level: 'block', 'list-item', and 'table'.

Block-level elements – those elements of the source document that are formatted visually as
blocks (e.g., paragraphs) – are elements which generate a block-level principal box. Values of the
'display' property that make an element block-level include: 'block', 'list-item', and 'table'. Block-
level boxes are boxes that participate in a block formatting context.

Block-level boxes are boxes that participate in a block formatting context. Each block-level el-
ement generates a principal block-level box that contains descendant boxes and generated con-
tent and is also the box involved in any positioning scheme. Some block-level elements may gen-
erate additional boxes in addition to the principal box: 'list-item' elements. These additional boxes
are placed with respect to the principal box.

Except for table boxes, which are described in a later chapter, and replaced elements, In CSS 2,
a block-level box is also a block container box unless it is a table box or the principal box of a re-
placed element. A block container box either contains only block-level boxes or establishes an
inline formatting context and thus contains only inline-level boxes. An element whose principal
box is a block container box is a block container element. Values of the 'display' property which
make a non-replaced element generate a block container include 'block', 'list-item' and 'inline-
block'. Not all block container boxes are block-level boxes: non-replaced inline blocks and non-
replaced table cells are block containers but are not block-level boxes. Block-level boxes that are
also block containers are called block boxes.

The three terms "block-level box," "block container box," and "block box" are sometimes ab-
breviated as "block" where unambiguous.

• [2012-09-19] Modify “9.2.4 The 'display' property”p.139 as follows:
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block
This value causes an element to generate a principal block box.

inline-block
This value causes an element to generate an a principal inline-level block container. (The in-
side of an inline-block is formatted as a block box, and the element itself is formatted as an
atomic inline-level box.)

• [2012-09-19] Modify “17.4 Tables in the visual formatting model” p.303 as follows:

In both cases, the table generates a principal block container box called the table wrapper box
that contains the table box itself and any caption boxes (in document order). The table box is a
block-level box that contains the table's internal table boxes. The caption boxes are principal
block-level boxes that retain their own content, padding, margin, and border areas, and are ren-
dered as normal block boxes inside the table wrapper box. Whether the caption boxes are placed
before or after the table box is decided by the 'caption-side' property, as described below.

The table wrapper box is a 'block' box if the table is block-level block-level for 'display: table',
and an 'inline-block' box if the table is inline-level inline-level for 'display: inline-table'. The table
wrapper box establishes a block formatting context, and the table box establishes a table format-
ting context. The table box (not the table wrapper box) is used when doing baseline vertical
alignment for an 'inline-table'. The width of the table wrapper box is the border-edge width of the
table box inside it, as described by section 17.5.2. Percentages on 'width' and 'height' on the table
are relative to the table wrapper box's containing block, not the table wrapper box itself.

• [2012-09-19] For compatibility with SVG, modify the definition of macro num in “4.1.1 Tokeniza-
tion”p.44 as follows:

num[-+]?[0-9]+|[-+]?[0-9]*\.[0-9]+

num[+-]?([0-9]+|[0-9]*\.[0-9]+)(e[+-]?[0-9]+)?

• [2014-07-16] The background of the canvas cannot be taken from an element that is suppressed with
'display: none'. On the other hand, if the element is merely invisible ('visibility: hidden'), its back-
ground can still be used for the canvas. In other words, if the root element has 'display: none', the
background of the canvas is undefined. In the case of (X)HTML documents, if the root element has
'background: transparent' and the <body> element has 'display: none', the background of the canvas
is likewise undefined. Change the text in “14.2 The background”p.256 as follows:
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[…] Such backgrounds must also be anchored at the same point as they would be if they were
painted only for the root element.

However, if no boxes are generated for the element whose background would be used for the
background of the canvas, then the canvas background is transparent. (in CSS 2, that is the case
when the element or an ancestor has 'display: none'.)

Note that, if the element has 'visibility: hidden' but not 'display: none', boxes are generated for
it and its background is used for the canvas.

• [2015-07-01] An element with 'position: fixed' always establishes a new stacking context. (This is
different from 'position: absolute', where 'z-index' determines if the element establishes a stacking
context or not.)

Change the definition of 'auto' in “9.9.1 Specifying the stack level: the 'z-index' property” p.173 as
follows:

auto
The stack level of the generated box in the current stacking context is 0. The box does not
establish a new stacking context unless it is the root element. If the box has 'position: fixed'
or if it is the root, it also establishes a new stacking context.

• [2015-09-05] Malformed declarations are handled differently when the start of the malformed decla-
ration conforms to the syntax of an at-rule. In that case, parsing resumes not at the next semicolon or
at the closing curly brace of the enclosing block, but immediately after that at-rule. This is expressed
by adding the at-rule to the core syntax for rulesets, as shown below.

In “4.1.1 Tokenization”,p.44 change the production for ruleset as follows:

ruleset     : selector? '{' S* declaration? [ ';' S* declaration? ]* '}' S*;

ruleset     : selector? '{' S* declaration-list '}' S*;

declaration-list: declaration [ ';' S* declaration-list ]?

| at-rule declaration-list

| /* empty */;

In “4.1.7 Rule sets, declaration blocks, and selectors”, p.52 change the second paragraph as follows:

A declaration block starts with a left curly brace ({) and ends with the matching right curly brace
(}). In between there must be a list of zero or more semicolon-separated (;) declarations declara-
tions and at-rules. Declarations must end with a semicolon (;) unless they are last in the list.

Note: CSS level 2 has no at-rules that may appear inside rule sets, but such at-rules may be
defined in future levels.
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In “4.2 Rules for handling parsing errors”,p.54 change the rule for malformed declarations as follows:

◦ Malformed declarations. User agents must handle unexpected tokens encountered while
parsing a declaration by reading until the end of the declaration, while observing the rules
for matching pairs of (), [], {}, "", and '', and correctly handling escapes. For example, a
malformed declaration may be missing a property name, colon (:), or property value.

When the UA expects the start of a declaration or at-rule (i.e., an IDENT token or an
ATKEYWORD token) but finds an unexpected token instead, that token is considered to be
the first token of a malformed declaration. I.e., the rule for malformed declarations, rather
than malformed statements is used to determine which tokens to ignore in that case.

The following are all equivalent:

p { color:green }

p { @foo { bar: baz } color:green }  /* unknown at-rule */

p { color:green; color }  /* malformed declaration missing ':', value */

p { color:red;   color; color:green }  /* same with expected recovery */

p { color:green; color: } /* malformed declaration missing value */

p { color:red;   color:; color:green } /* same with expected recovery */

p { color:green; color{;color:maroon} } /* unexpected tokens { } */

p { color:red;   color{;color:maroon}; color:green } /* same with recovery */

And, finally, in “13.2 Page boxes: the @page rule”,p.246 remove the following text, which is now re-
dundant:

The rules for handling malformed declarations, malformed statements, and invalid at-rules inside
@page are as defined in section 4.2,p.54 with the following addition: when the UA expects the
start of a declaration or at-rule (i.e., an IDENT token or an ATKEYWORD token) but finds an
unexpected token instead, that token is considered to be the first token of a malformed declara-
tion. I.e., the rule for malformed declarations, rather than malformed statements is used to deter-
mine which tokens to ignore in that case.
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Appendix D. Default style sheet for HTML 4

This appendix is informative, not normative.
This style sheet describes the typical formatting of all HTML 4 ([HTML4]p.361) elements based on ex-

tensive research into current UA practice. Developers are encouraged to use it as a default style sheet in
their implementations.

The full presentation of some HTML elements cannot be expressed in CSS 2.2, including replacedp.36

elements ("img", "object"), scripting elements ("script", "applet"), form control elements, and frame ele-
ments.

For other elements, the legacy presentation can be described in CSS but the solution removes the ele-
ment. For example, the FONT element can be replaced by attaching CSS declarations to other elements
(e.g., DIV). Likewise, legacy presentation of presentational attributes (e.g., the "border" attribute on
TABLE) can be described in CSS, but the markup in the source document must be changed.
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html, address,

blockquote,

body, dd, div,

dl, dt, fieldset, form,

frame, frameset,

h1, h2, h3, h4,

h5, h6, noframes,

ol, p, ul, center,

dir, hr, menu, pre   { display: block; unicode-bidi: embed }

li              { display: list-item }

head            { display: none }

table           { display: table }

tr              { display: table-row }

thead           { display: table-header-group }

tbody           { display: table-row-group }

tfoot           { display: table-footer-group }

col             { display: table-column }

colgroup        { display: table-column-group }

td, th          { display: table-cell }

caption         { display: table-caption }

th              { font-weight: bolder; text-align: center }

caption         { text-align: center }

body            { margin: 8px }

h1              { font-size: 2em; margin: .67em 0 }

h2              { font-size: 1.5em; margin: .75em 0 }

h3              { font-size: 1.17em; margin: .83em 0 }

h4, p,

blockquote, ul,

fieldset, form,

ol, dl, dir,

menu            { margin: 1.12em 0 }

h5              { font-size: .83em; margin: 1.5em 0 }

h6              { font-size: .75em; margin: 1.67em 0 }

h1, h2, h3, h4,

h5, h6, b,

strong          { font-weight: bolder }

blockquote      { margin-left: 40px; margin-right: 40px }

i, cite, em,

var, address    { font-style: italic }

pre, tt, code,

kbd, samp       { font-family: monospace }

pre             { white-space: pre }
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button, textarea,

input, select   { display: inline-block }

big             { font-size: 1.17em }

small, sub, sup { font-size: .83em }

sub             { vertical-align: sub }

sup             { vertical-align: super }

table           { border-spacing: 2px; }

thead, tbody,

tfoot           { vertical-align: middle }

td, th, tr      { vertical-align: inherit }

s, strike, del  { text-decoration: line-through }

hr              { border: 1px inset }

ol, ul, dir,

menu, dd        { margin-left: 40px }

ol              { list-style-type: decimal }

ol ul, ul ol,

ul ul, ol ol    { margin-top: 0; margin-bottom: 0 }

u, ins          { text-decoration: underline }

br:before       { content: "\A"; white-space: pre-line }

center          { text-align: center }

:link, :visited { text-decoration: underline }

:focus          { outline: thin dotted invert }

/* Begin bidirectionality settings (do not change) */

BDO[DIR="ltr"]  { direction: ltr; unicode-bidi: bidi-override }

BDO[DIR="rtl"]  { direction: rtl; unicode-bidi: bidi-override }

*[DIR="ltr"]    { direction: ltr; unicode-bidi: embed }

*[DIR="rtl"]    { direction: rtl; unicode-bidi: embed }

@media print {

h1            { page-break-before: always }

h1, h2, h3,

h4, h5, h6    { page-break-after: avoid }

ul, ol, dl    { page-break-before: avoid }

}

– Appendix D. Default style sheet for HTML 4 –

– 383 –



– Appendix D. Default style sheet for HTML 4 –

– 384 –



Appendix E. Elaborate description of Stacking Contexts
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This chapter defines the CSS 2.2 painting order in more detail than described in the rest of the specifica-
tion.

E.1 Definitions

Tree Order
Preorder depth-first traversal of the rendering tree, in logical (not visual) order for bidirectional con-
tent, after taking into account properties that move boxes around.

Element
In this description, "element" refers to actual elements, pseudo-elements, and anonymous boxes.
Pseudo-elements and anonymous boxes are treated as descendants in the appropriate places. For ex-
ample, an outside list marker comes before an adjoining ':before' box in the line box, which comes
before the content of the box, and so forth.

E.2 Painting order

The bottom of the stack is the furthest from the user, the top of the stack is the nearest to the user:

|           |             |          |

|                |    |          |        ⇦ ☻

|                |          |        user

z-index:  canvas  -1        0    1          2

The stacking context background and most negative positioned stacking contexts are at the bottom of the
stack, while the most positive positioned stacking contexts are at the top of the stack.

The canvas is transparent if contained within another, and given a UA-defined color if it is not. It is in-
finite in extent and contains the root element. Initially, the viewport is anchored with its top left corner at
the canvas origin.

The painting order for the descendants of an element generating a stacking context (see the 'z-
index'p.173 property) is:
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1. If the element is a root element:

1. background color of element over the entire canvas.

2. background image of element, over the entire canvas, anchored at the origin that would be used
if it was painted for the root element.

2. If the element is a block, list-item, or other block equivalent:

1. background color of element unless it is the root element.

2. background image of element unless it is the root element.

3. border of element.

Otherwise, if the element is a block level table:

1. table backgrounds (color then image) unless it is the root element.

2. column group backgrounds (color then image).

3. column backgrounds (color then image).

4. row group backgrounds (color then image).

5. row backgrounds (color then image).

6. cell backgrounds (color then image).

7. all table borders (in tree order for separated borders).

3. Stacking contexts formed by positioned descendants with negative z-indices (excluding 0) in z-index
order (most negative first) then tree order.

4. For all its in-flow, non-positioned, block-level descendants in tree order: If the element is a block,
list-item, or other block equivalent:

1. background color of element.

2. background image of element.

3. border of element.

Otherwise, the element is a table:

1. table backgrounds (color then image).

2. column group backgrounds (color then image).

3. column backgrounds (color then image).
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4. row group backgrounds (color then image).

5. row backgrounds (color then image).

6. cell backgrounds (color then image).

7. all table borders (in tree order for separated borders).

5. All non-positioned floating descendants, in tree order. For each one of these, treat the element as if it
created a new stacking context, but any positioned descendants and descendants which actually cre-
ate a new stacking context should be considered part of the parent stacking context, not this new one.

6. If the element is an inline element that generates a stacking context, then:

1. For each line box that the element is in:

1. Jump to 7.2.1p.387 for the box(es) of the element in that line box (in tree order).

7. Otherwise: first for the element, then for all its in-flow, non-positioned, block-level descendants in
tree order:

1. If the element is a block-level replaced element, then: the replaced content, atomically.

2. Otherwise, for each line box of that element:

1. For each box that is a child of that element, in that line box, in tree order:

1. background color of element.

2. background image of element.

3. border of element.

4. For inline elements:

1. For all the element's in-flow, non-positioned, inline-level children that are in this
line box, and all runs of text inside the element that is on this line box, in tree or-
der:

1. If this is a run of text, then:

1. any underlining affecting the text of the element, in tree order of the el-
ements applying the underlining (such that the deepest element's under-
lining, if any, is painted topmost and the root element's underlining, if
any, is drawn bottommost).

2. any overlining affecting the text of the element, in tree order of the ele-
ments applying the overlining (such that the deepest element's overlin-
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ing, if any, is painted topmost and the root element's overlining, if any,
is drawn bottommost).

3. the text.

4. any line-through affecting the text of the element, in tree order of the
elements applying the line-through (such that the deepest element's
line-through, if any, is painted topmost and the root element's line-
through, if any, is drawn bottommost).

2. Otherwise, jump to 7.2.1p.387 for that element.

For inline-block and inline-table elements:

1. For each one of these, treat the element as if it created a new stacking context,
but any positioned descendants and descendants which actually create a new
stacking context should be considered part of the parent stacking context, not this
new one.

For inline-level replaced elements:

1. the replaced content, atomically.

Some of the boxes may have been generated by line splitting or the Unicode bidirec-
tional algorithm.

2. Optionally, the outline of the element (see 10 belowp.388).

3. Optionally, if the element is block-level, the outline of the element (see 10 belowp. 388).

8. All positioned descendants with 'z-index: auto' or 'z-index: 0', in tree order. For those with 'z-index:
auto', treat the element as if it created a new stacking context, but any positioned descendants and de-
scendants which actually create a new stacking context should be considered part of the parent stack-
ing context, not this new one. For those with 'z-index: 0', treat the stacking context generated atomi-
cally.

9. Stacking contexts formed by positioned descendants with z-indices greater than or equal to 1 in z-
index order (smallest first) then tree order.

10. Finally, implementations that do not draw outlines in steps above must draw outlines from this stack-
ing context at this stage. (It is recommended to draw outlines in this step and not in the steps above.)

E.3 Notes

The background of the root element is only painted once, over the whole canvas.
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While the backgrounds of bidirectional inlines are painted in tree order, they are positioned in visual or-
der. Since the positioning of inline backgrounds is unspecified in CSS 2.2, the exact result of these two re-
quirements is UA-defined. CSS3 may define this in more detail.
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Appendix F. Full property table

This appendix is informative, not normative.

Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'azimuth'p.346

<angle>p.337 | [[ left-
side | far-left | left |
center-left | center |
center-right | right | far-
right | right-side ] ||
behind ] | leftwards |
rightwards | inheritp.99

center yes auralp.336

'background-
attachment'p.260

scroll | fixed |
inheritp.99 scroll no visualp.110

'background-
color'p.257

<color>p.63 |
transparent | inheritp.99 transparent no visualp.110

'background-
image'p.258

<uri>p.62 | none |
inheritp.99 none no visualp.110

'background-
position'p.261

[ [ <percentage>p.61 |
<length>p.58 | left |
center | right ] [
<percentage>p.61 |
<length>p.58 | top |
center | bottom ]? ] | [ [
left | center | right ] || [
top | center | bottom ] ]
| inheritp.99

0% 0% no
refer to the
size of the
box itself

visualp.110

'background-
repeat'p.259

repeat | repeat-x |
repeat-y | no-repeat |
inheritp.99

repeat no visualp.110

'background'p.263

['background-
color'p.257 ||
'background-
image'p.258 ||

see
individual
properties

no
allowed on
'background-
position'

visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'background-
repeat'p.259 ||
'background-
attachment'p.260 ||
'background-
position'p.261] |
inheritp.99

'border-
collapse'p.317

collapse | separate |
inheritp.99 separate

'table' and
'inline-
table'
elements

yes visualp.110

'border-
color'p.126

[ <color>p.63 |
transparent ]{1,4} |
inheritp.99

see
individual
properties

no visualp.110

'border-
spacing'p.317

<length>p.58

<length>p.58? |
inheritp.99

0

'table' and
'inline-
table'
elements

yes visualp.110

'border-
style'p.128

<border-
style>p.127{1,4} |
inheritp.99

see
individual
properties

no visualp.110

'border-top'p.129

'border-
right'p.129

'border-
bottom'p.129

'border-left'p.129

[ <border-width>p.124 ||
<border-style>p.127 ||
'border-top-color'p.126 ]
| inheritp.99

see
individual
properties

no visualp.110

'border-top-
color'p.126

'border-right-
color'p.126

'border-bottom-
color'p.126

<color>p.63 |
transparent | inheritp.99

the value
of the
'color'
property

no visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'border-left-
color'p.126

'border-top-
style'p.128

'border-right-
style'p.128

'border-bottom-
style'p.128

'border-left-
style'p.128

<border-style>p.127 |
inheritp.99 none no visualp.110

'border-top-
width'p.124

'border-right-
width'p.124

'border-bottom-
width'p.124

'border-left-
width'p.124

<border-width>p.124 |
inheritp.99 medium no visualp.110

'border-
width'p.125

<border-
width>p.124{1,4} |
inheritp.99

see
individual
properties

no visualp.110

'border'p.130

[ <border-width>p.124 ||
<border-style>p.127 ||
'border-top-color'p.126 ]
| inheritp.99

see
individual
properties

no visualp.110

'bottom'p.143
<length>p.58 |
<percentage>p.61 | auto
| inheritp.99

auto
positioned
elements

no

refer to
height of
containing
block

visualp.110

'caption-
side'p.304

top | bottom |
inheritp.99 top

'table-
caption'
elements

yes visualp.110

'clear'p.156 none | left | right | both |
inheritp.99 none

block-level
elements

no visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'clip'p.213 <shape>p.214 | auto |
inheritp.99 auto

absolutely
positioned
elements

no visualp.110

'color'p.255 <color>p.63 | inheritp.99
depends
on user
agent

yes visualp.110

'content'p.223

normal | none | [
<string>p.65 | <uri>p.62

| <counter>p.63 |
attr(<identifier>p.49) |
open-quote | close-
quote | no-open-quote |
no-close-quote ]+ |
inheritp.99

normal

:before and
:after
pseudo-
elements

no allp.110

'counter-
increment'p.230

[ <identifier>p.49

<integer>p.57? ]+ |
none | inheritp.99

none no allp.110

'counter-
reset'p.229

[ <identifier>p.49

<integer>p.57? ]+ |
none | inheritp.99

none no allp.110

'cue-after'p.343 <uri>p.62 | none |
inheritp.99 none no auralp.336

'cue-before'p.342 <uri>p.62 | none |
inheritp.99 none no auralp.336

'cue'p.343
[ 'cue-before'p.342 ||
'cue-after'p.343 ] |
inheritp.99

see
individual
properties

no auralp.336

'cursor'p.327

[ [<uri>p.62 ,]* [ auto |
crosshair | default |
pointer | move | e-
resize | ne-resize | nw-
resize | n-resize | se-
resize | sw-resize | s-
resize | w-resize | text |

auto yes
visualp.110,
interactivep.110

– Appendix F. Full property table –

– 394 –



Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

wait | help | progress ] ]
| inheritp.99

'direction'p.177 ltr | rtl | inheritp.99 ltr

all
elements,
but see
prose

yes visualp.110

'display'p.139

inline | block | list-item
| inline-block | table |
inline-table | table-row-
group | table-header-
group | table-footer-
group | table-row |
table-column-group |
table-column | table-
cell | table-caption |
none | inheritp.99

inline no allp.110

'elevation'p.347
<angle>p.337 | below |
level | above | higher |
lower | inheritp.99

level yes auralp.336

'empty-cells'p.319 show | hide | inheritp.99 show
'table-cell'
elements

yes visualp.110

'float'p.154 left | right | none |
inheritp.99 none

all, but see
9.7p.164 no visualp.110

'font-family'p.267

[[ <family-name>p.267 |
<generic-family>p.268 ]
[, [ <family-
name>p.267| <generic-
family>p.268] ]* ] |
inheritp.99

depends
on user
agent

yes visualp.110

'font-size'p.276

<absolute-size>p.276 |
<relative-size>p.277 |
<length>p.58 |
<percentage>p.61 |
inheritp.99

medium yes
refer to
inherited
font size

visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'font-style'p.271 normal | italic | oblique
| inheritp.99 normal yes visualp.110

'font-variant'p.272 normal | small-caps |
inheritp.99 normal yes visualp.110

'font-weight'p.273

normal | bold | bolder |
lighter | 100 | 200 | 300
| 400 | 500 | 600 | 700 |
800 | 900 | inheritp.99

normal yes visualp.110

'font'p.277

[ [ 'font-style'p.271 ||
'font-variant'p.272 ||
'font-weight'p.273 ]?
'font-size'p.276 [ / 'line-
height'p.204 ]? 'font-
family'p.267 ] | caption |
icon | menu | message-
box | small-caption |
status-bar | inheritp.99

see
individual
properties

yes
see
individual
properties

visualp.110

'height'p.195
<length>p.58 |
<percentage>p.61 | auto
| inheritp.99

auto

all
elements
but non-
replaced
inline
elements,
table
columns,
and column
groups

no see prose visualp.110

'left'p.144
<length>p.58 |
<percentage>p.61 | auto
| inheritp.99

auto
positioned
elements

no

refer to
width of
containing
block

visualp.110

'letter-
spacing'p.287

normal | <length>p.58 |
inheritp.99 normal yes visualp.110

– Appendix F. Full property table –

– 396 –



Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'line-height'p.204

normal | <number>p.57

| <length>p.58 |
<percentage>p.61 |
inheritp.99

normal yes

refer to the
font size of
the element
itself

visualp.110

'list-style-
image'p.237

<uri>p.62 | none |
inheritp.99 none

elements
with
'display:
list-item'

yes visualp.110

'list-style-
position'p.238

inside | outside |
inheritp.99 outside

elements
with
'display:
list-item'

yes visualp.110

'list-style-
type'p.235

disc | circle | square |
decimal | decimal-
leading-zero | lower-
roman | upper-roman |
lower-greek | lower-
latin | upper-latin |
armenian | georgian |
lower-alpha | upper-
alpha | none |
inheritp.99

disc

elements
with
'display:
list-item'

yes visualp.110

'list-style'p.240

[ 'list-style-type'p.235 ||
'list-style-position'p.238

|| 'list-style-image'p.237

] | inheritp.99

see
individual
properties

elements
with
'display:
list-item'

yes visualp.110

'margin-
right'p.118

'margin-left'p.118

<margin-width>p.117 |
inheritp.99 0

all
elements
except
elements
with table
display
types other
than table-

no

refer to
width of
containing
block

visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

caption,
table and
inline-table

'margin-top'p.117

'margin-
bottom'p.117

<margin-width>p.117 |
inheritp.99 0

all
elements
except
elements
with table
display
types other
than table-
caption,
table and
inline-table

no

refer to
width of
containing
block

visualp.110

'margin'p.118
<margin-
width>p.117{1,4} |
inheritp.99

see
individual
properties

all
elements
except
elements
with table
display
types other
than table-
caption,
table and
inline-table

no

refer to
width of
containing
block

visualp.110

'max-height'p.202
<length>p.58 |
<percentage>p.61 |
none | inheritp.99

none

all
elements
but non-
replaced
inline
elements,
table
columns,
and column
groups

no see prose visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'max-width'p.193
<length>p.58 |
<percentage>p.61 |
none | inheritp.99

none

all
elements
but non-
replaced
inline
elements,
table rows,
and row
groups

no

refer to
width of
containing
block

visualp.110

'min-height'p.201
<length>p.58 |
<percentage>p.61 |
inheritp.99

0

all
elements
but non-
replaced
inline
elements,
table
columns,
and column
groups

no see prose visualp.110

'min-width'p.193
<length>p.58 |
<percentage>p.61 |
inheritp.99

0

all
elements
but non-
replaced
inline
elements,
table rows,
and row
groups

no

refer to
width of
containing
block

visualp.110

'orphans'p.251 <integer>p.57 |
inheritp.99 2

block
container
elements

yes
visualp.110,
pagedp.110

'outline-
color'p.332

<color>p.63 | invert |
inheritp.99 invert no

visualp.110,
interactivep.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'outline-
style'p.332

<border-style>p.127 |
inheritp.99 none no

visualp.110,
interactivep.110

'outline-
width'p.332

<border-width>p.124 |
inheritp.99 medium no

visualp.110,
interactivep.110

'outline'p.331

[ 'outline-color'p.332 ||
'outline-style'p.332 ||
'outline-width'p.332 ] |
inheritp.99

see
individual
properties

no
visualp.110,
interactivep.110

'overflow'p.210 visible | hidden | scroll |
auto | inheritp.99 visible

block
containers
and boxes
that
establish a
formatting
context

no visualp.110

'padding-
top'p.122

'padding-
right'p.122

'padding-
bottom'p.122

'padding-
left'p.122

<padding-width>p.122 |
inheritp.99 0

all
elements
except
table-row-
group,
table-
header-
group,
table-
footer-
group,
table-row,
table-
column-
group and
table-
column

no

refer to
width of
containing
block

visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'padding'p.123
<padding-
width>p.122{1,4} |
inheritp.99

see
individual
properties

all
elements
except
table-row-
group,
table-
header-
group,
table-
footer-
group,
table-row,
table-
column-
group and
table-
column

no

refer to
width of
containing
block

visualp.110

'page-break-
after'p.250

auto | always | avoid |
left | right | inheritp.99 auto

block-level
elements
(but see
text)

no
visualp.110,
pagedp.110

'page-break-
before'p.249

auto | always | avoid |
left | right | inheritp.99 auto

block-level
elements
(but see
text)

no
visualp.110,
pagedp.110

'page-break-
inside'p.250 avoid | auto | inheritp.99 auto

block-level
elements
(but see
text)

no
visualp.110,
pagedp.110

'pause-after'p.341
<time>p.337 |
<percentage>p.61 |
inheritp.99

0 no see prose auralp.336
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'pause-
before'p.340

<time>p.337 |
<percentage>p.61 |
inheritp.99

0 no see prose auralp.336

'pause'p.342
[ [<time>p.337 |
<percentage>p.61]{1,2}
] | inheritp.99

see
individual
properties

no

see
descriptions
of 'pause-
before' and
'pause-after'

auralp.336

'pitch-range'p.351 <number>p.57 |
inheritp.99 50 yes auralp.336

'pitch'p.350

<frequency>p.338 | x-
low | low | medium |
high | x-high |
inheritp.99

medium yes auralp.336

'play-during'p.344
<uri>p.62 [ mix || repeat
]? | auto | none |
inheritp.99

auto no auralp.336

'position'p.141
static | relative |
absolute | fixed |
inheritp.99

static no visualp.110

'quotes'p.225
[<string>p.65

<string>p.65]+ | none |
inheritp.99

depends
on user
agent

yes visualp.110

'richness'p.352 <number>p.57 |
inheritp.99 50 yes auralp.336

'right'p.143
<length>p.58 |
<percentage>p.61 | auto
| inheritp.99

auto
positioned
elements

no

refer to
width of
containing
block

visualp.110

'speak-
header'p.354

once | always |
inheritp.99 once

elements
that have
table
header
information

yes auralp.336
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'speak-
numeral'p.354

digits | continuous |
inheritp.99 continuous yes auralp.336

'speak-
punctuation'p.353 code | none | inheritp.99 none yes auralp.336

'speak'p.340 normal | none | spell-
out | inheritp.99 normal yes auralp.336

'speech-rate'p.348

<number>p.57 | x-slow
| slow | medium | fast |
x-fast | faster | slower |
inheritp.99

medium yes auralp.336

'stress'p.352 <number>p.57 |
inheritp.99 50 yes auralp.336

'table-
layout'p.311 auto | fixed | inheritp.99 auto

'table' and
'inline-
table'
elements

no visualp.110

'text-align'p.282 left | right | center |
justify | inheritp.99

a nameless
value that
acts as
'left' if
'direction'
is 'ltr',
'right' if
'direction'
is 'rtl'

block
containers

yes visualp.110

'text-
decoration'p.284

none | [ underline ||
overline || line-through
|| blink ] | inheritp.99

none
no (see
prose)

visualp.110

'text-indent'p.281
<length>p.58 |
<percentage>p.61 |
inheritp.99

0
block
containers

yes

refer to
width of
containing
block

visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'text-
transform'p.288

capitalize | uppercase |
lowercase | none |
inheritp.99

none yes visualp.110

'top'p.142
<length>p.58 |
<percentage>p.61 | auto
| inheritp.99

auto
positioned
elements

no

refer to
height of
containing
block

visualp.110

'unicode-
bidi'p.178

normal | embed | bidi-
override | inheritp.99 normal

all
elements,
but see
prose

no visualp.110

'vertical-
align'p.206

baseline | sub | super |
top | text-top | middle |
bottom | text-bottom |
<percentage>p.61 |
<length>p.58 |
inheritp.99

baseline

inline-level
and 'table-
cell'
elements

no

refer to the
'line-height'
of the
element
itself

visualp.110

'visibility'p.216 visible | hidden |
collapse | inheritp.99 visible yes visualp.110

'voice-
family'p.349

[[<specific-voice>p.350

| <generic-voice>p.350

],]* [<specific-
voice>p.350 | <generic-
voice>p.350 ] |
inheritp.99

depends
on user
agent

yes auralp.336

'volume'p.338

<number>p.57 |
<percentage>p.61 |
silent | x-soft | soft |
medium | loud | x-loud
| inheritp.99

medium yes
refer to
inherited
value

auralp.336

'white-
space'p.289

normal | pre | nowrap |
pre-wrap | pre-line |
inheritp.99

normal yes visualp.110
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Name Values
Initial
value

Applies to
(Default:
all)

Inherited?
Percentages
(Default: N/
A)

Media groups

'widows'p.251 <integer>p.57 |
inheritp.99 2

block
container
elements

yes
visualp.110,
pagedp.110

'width'p.187
<length>p.58 |
<percentage>p.61 | auto
| inheritp.99

auto

all
elements
but non-
replaced
inline
elements,
table rows,
and row
groups

no

refer to
width of
containing
block

visualp.110

'word-
spacing'p.288

normal | <length>p.58 |
inheritp.99 normal yes visualp.110

'z-index'p.173 auto | <integer>p.57 |
inheritp.99 auto

positioned
elements

no visualp.110
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Appendix G. Grammar of CSS 2.2
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This appendix is non-normative.
The grammar below defines the syntax of CSS 2.2. It is in some sense, however, a superset of CSS 2.2

as this specification imposes additional semantic constraints not expressed in this grammar. A conforming
UA must also adhere to the forward-compatible parsing rules, the selectors notation, the property and val-
ue notation, and the unit notation. However, not all syntactically correct CSS can take effect, since the
document language may impose restrictions that are not in CSS, e.g., HTML imposes restrictions on the
possible values of the "class" attribute.

G.1 Grammar

The grammar below is LALR(1) (but note that most UA's should not use it directly, since it does not ex-
press the parsing conventionsp.54, only the CSS 2.2 syntax). The format of the productions is optimized
for human consumption and some shorthand notation beyond Yacc (see [YACC]p.363) is used:

• *: 0 or more

• +: 1 or more

• ?: 0 or 1

• |: separates alternatives

• [ ]: grouping

The productions are:

– Appendix G. Grammar of CSS 2.2 –

– 407 –

syndata.html#syntax
about.html#property-defs
about.html#property-defs


stylesheet

: [ CHARSET_SYM STRING ';' ]?

[S|CDO|CDC]* [ import [ CDO S* | CDC S* ]* ]*

[ [ ruleset | media | page ] [ CDO S* | CDC S* ]* ]*

;

import

: IMPORT_SYM S*

[STRING|URI] S* media_list? ';' S*

;

media

: MEDIA_SYM S* media_list '{' S* ruleset* '}' S*

;

media_list

: medium [ COMMA S* medium]*

;

medium

: IDENT S*

;

page

: PAGE_SYM S* pseudo_page?

'{' S* declaration? [ ';' S* declaration? ]* '}' S*

;

pseudo_page

: ':' IDENT S*

;

operator

: '/' S* | ',' S*

;

combinator

: '+' S*

| '>' S*

;

property

: IDENT S*

;

ruleset

: selector [ ',' S* selector ]*

'{' S* declaration? [ ';' S* declaration? ]* '}' S*

;

selector

: simple_selector [ combinator selector | S+ [ combinator? selector ]? ]?

;

simple_selector
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: element_name [ HASH | class | attrib | pseudo ]*

| [ HASH | class | attrib | pseudo ]+

;

class

: '.' IDENT

;

element_name

: IDENT | '*'

;

attrib

: '[' S* IDENT S* [ [ '=' | INCLUDES | DASHMATCH ] S*

[ IDENT | STRING ] S* ]? ']'

;

pseudo

: ':' [ IDENT | FUNCTION S* [IDENT S*]? ')' ]

;

declaration

: property ':' S* expr prio?

;

prio

: IMPORTANT_SYM S*

;

expr

: term [ operator? term ]*

;

term

: [ NUMBER S* | PERCENTAGE S* | LENGTH S* | EMS S* | EXS S* | ANGLE S* |

TIME S* | FREQ S* ]

| STRING S* | IDENT S* | URI S* | hexcolor | function

;

function

: FUNCTION S* expr ')' S*

;

/*

* There is a constraint on the color that it must

* have either 3 or 6 hex-digits (i.e., [0-9a-fA-F])

* after the "#"; e.g., "#000" is OK, but "#abcd" is not.

*/

hexcolor

: HASH S*

;

– Appendix G. Grammar of CSS 2.2 –

– 409 –



G.2 Lexical scanner

The following is the tokenizer, written in Flex (see [FLEX]p.361) notation. The tokenizer is case-
insensitive.

The "\377" represents the highest character number that current versions of Flex can deal with (decimal
255). It should be read as "\4177777" (decimal 1114111), which is the highest possible code point in Uni-
code/ISO-10646.
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%option case-insensitive

h                [0-9a-f]

nonascii        [\240-\377]

unicode                \\{h}{1,6}(\r\n|[ \t\r\n\f])?

escape                {unicode}|\\[^\r\n\f0-9a-f]

nmstart                [_a-z]|{nonascii}|{escape}

nmchar                [_a-z0-9-]|{nonascii}|{escape}

string1                \"([^\n\r\f\\"]|\\{nl}|{escape})*\"

string2                \'([^\n\r\f\\']|\\{nl}|{escape})*\'

badstring1      \"([^\n\r\f\\"]|\\{nl}|{escape})*\\?

badstring2      \'([^\n\r\f\\']|\\{nl}|{escape})*\\?

badcomment1     \/\*[^*]*\*+([^/*][^*]*\*+)*

badcomment2     \/\*[^*]*(\*+[^/*][^*]*)*

baduri1         {U}{R}{L}\({w}([!#$%&*-\[\]-~]|{nonascii}|{escape})*{w}

baduri2         {U}{R}{L}\({w}{string}{w}

baduri3         {U}{R}{L}\({w}{badstring}

comment                \/\*[^*]*\*+([^/*][^*]*\*+)*\/

ident                -?{nmstart}{nmchar}*

name                {nmchar}+

num                [-+]?[0-9]+|[-+]?[0-9]*"."[0-9]+

string                {string1}|{string2}

badstring       {badstring1}|{badstring2}

badcomment      {badcomment1}|{badcomment2}

baduri          {baduri1}|{baduri2}|{baduri3}

url                ([!#$%&*-~]|{nonascii}|{escape})*

s                [ \t\r\n\f]+

w                {s}?

nl                \n|\r\n|\r|\f

A                a|\\0{0,4}(41|61)(\r\n|[ \t\r\n\f])?

C                c|\\0{0,4}(43|63)(\r\n|[ \t\r\n\f])?

D                d|\\0{0,4}(44|64)(\r\n|[ \t\r\n\f])?

E                e|\\0{0,4}(45|65)(\r\n|[ \t\r\n\f])?

G                g|\\0{0,4}(47|67)(\r\n|[ \t\r\n\f])?|\\g

H                h|\\0{0,4}(48|68)(\r\n|[ \t\r\n\f])?|\\h

I                i|\\0{0,4}(49|69)(\r\n|[ \t\r\n\f])?|\\i

K                k|\\0{0,4}(4b|6b)(\r\n|[ \t\r\n\f])?|\\k

L               l|\\0{0,4}(4c|6c)(\r\n|[ \t\r\n\f])?|\\l

M                m|\\0{0,4}(4d|6d)(\r\n|[ \t\r\n\f])?|\\m

N                n|\\0{0,4}(4e|6e)(\r\n|[ \t\r\n\f])?|\\n

O                o|\\0{0,4}(4f|6f)(\r\n|[ \t\r\n\f])?|\\o

P                p|\\0{0,4}(50|70)(\r\n|[ \t\r\n\f])?|\\p
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R                r|\\0{0,4}(52|72)(\r\n|[ \t\r\n\f])?|\\r

S                s|\\0{0,4}(53|73)(\r\n|[ \t\r\n\f])?|\\s

T                t|\\0{0,4}(54|74)(\r\n|[ \t\r\n\f])?|\\t

U               u|\\0{0,4}(55|75)(\r\n|[ \t\r\n\f])?|\\u

X                x|\\0{0,4}(58|78)(\r\n|[ \t\r\n\f])?|\\x

Z                z|\\0{0,4}(5a|7a)(\r\n|[ \t\r\n\f])?|\\z

%%

{s}                        {return S;}

\/\*[^*]*\*+([^/*][^*]*\*+)*\/                /* ignore comments */

{badcomment}                         /* unclosed comment at EOF */

"<!--"                {return CDO;}

"-->"                        {return CDC;}

"~="                        {return INCLUDES;}

"|="                        {return DASHMATCH;}

{string}                {return STRING;}

{badstring}             {return BAD_STRING;}

{ident}                        {return IDENT;}

"#"{name}                {return HASH;}

@{I}{M}{P}{O}{R}{T}        {return IMPORT_SYM;}

@{P}{A}{G}{E}                {return PAGE_SYM;}

@{M}{E}{D}{I}{A}        {return MEDIA_SYM;}

"@charset "                {return CHARSET_SYM;}

"!"({w}|{comment})*{I}{M}{P}{O}{R}{T}{A}{N}{T}        {return IMPORTANT_SYM;}

{num}{E}{M}                {return EMS;}

{num}{E}{X}                {return EXS;}

{num}{P}{X}                {return LENGTH;}

{num}{C}{M}                {return LENGTH;}

{num}{M}{M}                {return LENGTH;}

{num}{I}{N}                {return LENGTH;}

{num}{P}{T}                {return LENGTH;}

{num}{P}{C}                {return LENGTH;}

{num}{D}{E}{G}                {return ANGLE;}

{num}{R}{A}{D}                {return ANGLE;}
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{num}{G}{R}{A}{D}        {return ANGLE;}

{num}{M}{S}                {return TIME;}

{num}{S}                {return TIME;}

{num}{H}{Z}                {return FREQ;}

{num}{K}{H}{Z}                {return FREQ;}

{num}{ident}                {return DIMENSION;}

{num}%                        {return PERCENTAGE;}

{num}                        {return NUMBER;}

{U}{R}{L}"("{w}{string}{w}")" {return URI;}

{U}{R}{L}"("{w}{url}{w}")"    {return URI;}

{baduri}                {return BAD_URI;}

{ident}"("                {return FUNCTION;}

.                        {return *yytext;}

G.3 Comparison of tokenization in CSS 2.2 and CSS1

There are some differences in the syntax specified in the CSS1 recommendation ([CSS1]p.363), and the
one above. Most of these are due to new tokens in CSS2 that did not exist in CSS1. Others are because the
grammar has been rewritten to be more readable. However, there are some incompatible changes, that
were felt to be errors in the CSS1 syntax. They are explained below.

• CSS1 style sheets could only be in 1-byte-per-character encodings, such as ASCII and ISO-8859-1.
CSS 2.2 has no such limitation. In practice, there was little difficulty in extrapolating the CSS1 tok-
enizer, and some UAs have accepted 2-byte encodings.

• CSS1 only allowed four hex-digits after the backslash (\) to refer to Unicode characters, CSS2 allows
sixp.49. Furthermore, CSS2 allows a white space character to delimit the escape sequence. E.g., ac-
cording to CSS1, the string "\abcdef" has 3 letters (\abcd, e, and f), according to CSS2 it has only one
(\abcdef).

• The tab character (ASCII 9) was not allowed in strings. However, since strings in CSS1 were only
used for font names and for URLs, the only way this can lead to incompatibility between CSS1 and
CSS2 is if a style sheet contains a font family that has a tab in its name.

• Similarly, newlines (escaped with a backslashp.65) were not allowed in strings in CSS1.

• CSS2 parses a number immediately followed by an identifier as a DIMENSION token (i.e., an un-
known unit), CSS1 parsed it as a number and an identifier. That means that in CSS1, the declaration
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'font: 10pt/1.2serif' was correct, as was 'font: 10pt/12pt serif'; in CSS2, a space is required before
"serif". (Some UAs accepted the first example, but not the second.)

• In CSS1, a class name could start with a digit (".55ft"), unless it was a dimension (".55in"). In CSS2,
such classes are parsed as unknown dimensions (to allow for future additions of new units). To make
".55ft" a valid class, CSS2 requires the first digit to be escaped (".\35 5ft")

G.4 Implementation note

The lexical scanner for the CSS core syntax in section 4.1.1p.44 can be implemented as a scanner without
back-up. In Lex notation, that requires the addition of the following patterns (which do not change the re-
turned tokens, only the efficiency of the scanner):

{ident}/\\          return IDENT;

#{name}/\\          return HASH;

@{ident}/\\         return ATKEYWORD;

#/\\                return DELIM;

@/\\                return DELIM;

@/-                 return DELIM;

@/-\\               return DELIM;

-/\\                return DELIM;

-/-                 return DELIM;

\</!                return DELIM;

\</!-               return DELIM;

{num}{ident}/\\     return DIMENSION;

{num}/\\            return NUMBER;

{num}/-             return NUMBER;

{num}/-\\           return NUMBER;

[0-9]+/\.           return NUMBER;

u/\+                return IDENT;

u\+[0-9a-f?]{1,6}/- return UNICODE_RANGE;

APPENDIX H: HAS BEEN INTENTIONALLY LEFT BLANK
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Appendix I. Index

This appendix is informative, not normative.
Ap.415 Bp.416 Cp.417 Dp.418 Ep.418 Fp.419 Gp.419 Hp.419 Ip.419 Jp.420 Kp.420 Lp.420 Mp.420 Np. 421 Op.421

Pp.422 Qp.423 Rp.423 Sp.423 Tp.424 Up.425 Vp.425 Wp.425 Xp.425 Yp.425 Zp.425

:active, 86

:after, 221, 95

:before, 221, 95

:first, 248

:first-child, 84

:first-letter, 91

:first-line, 89

:focus, 86

:hover, 86

:lang, 88

:left, 247

:link, 86

:right, 247

:visited, 86

=, 77

~=, 77

|=, 77

@charset, 50, 66, 67

"@charset", 67

@import, 100, 100, 107

@media, 107, 108

@page, 246

absolute length, 59

absolutely positioned element, 161

active (pseudo-class), 86

actual value, 98

adjoining margins, 120

after, 221

'all' media group, 110

ancestor, 37

<angle>, 346, 348

definition of, 337

anonymous, 136

anonymous boxes., 99
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anonymous inline boxes, 138

armenian, 236

at-rule, 50

at-rules, 50

atomic inline-level box, 138

attr(), 224

attribute, 37

'audio' media group, 110

auditory icon, 336

Author, 38

authoring tool, 38

automatic numbering, 221

'azimuth', 346

'background', 263

'background-attachment', 260

'background-color', 257

'background-image', 258

'background-position', 261

'background-repeat', 259

backslash escapes, 49

before, 221

bidirectionality (bidi), 177

'bitmap' media group, 110

block, 51

block box, 136

block container box, 135

block container element, 135

'block', definition of, 139

block-level box, 135

block-level element, 135

BOM, 66

border box, 114

border edge, 114

'border', 130

'border-bottom', 129

'border-bottom-color', 126

'border-bottom-style', 128

'border-bottom-width', 124

'border-collapse', 317

'border-color', 126

'border-left', 129

'border-left-color', 126

'border-left-style', 128

'border-left-width', 124

'border-right', 129

'border-right-color', 126

'border-right-style', 128

'border-right-width', 124

'border-spacing', 317
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<border-style>, 324

<border-style>, definition of, 127

'border-style', 128

'border-top', 129

'border-top-color', 126

'border-top-style', 128

'border-top-width', 124

<border-width>

definition of, 124

'border-width', 125

border

of a box, 113

<bottom>

definition of, 214

'bottom', 143

box

border, 113

content, 113

content height, 114

content width, 114

margin, 113

overflow, 209

padding, 113

canvas, 336, 31

'caption-side', 304

cascade, 101

case sensitivity, 49

character encoding, 66

default, 66

user agent's determination of, 66

child, 37

child selector, 76

circle, 236

'clear', 156

clearance, 157

'clip', 213

clipping region, 213

close-quote, 228, 224

collapse, 119

collapse through, 121

collapsing margin, 119

color, 409

<color>, 127, 257

definition of, 63

'color', 255

combinator, 74

comments, 54

computed value, 98

conditional import, 100

conformance, 39, 283

consecutive, 300
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containing block, 184, 135, 135

initial, 184

content, 37

content box, 114

content edge, 114

'content', 223

content

of a box, 113

rendered, 37

'continuous' media group, 110

<counter>, 224

<counter>, definition of, 63

counter(), 63

'counter-increment', 230

'counter-reset', 229

counters, 229

'cue', 343

'cue-after', 343

'cue-before', 342

cursive, definition of, 270

'cursor', 327

'dashed', 127, 325

decimal, 236

decimal-leading-zero, 236

declaration, 53

declaration block, 52

default style sheet, 101

default

character encoding, 66

descendant, 37

descendant-selectors, 75

'direction', 177

disc, 236

'display', 139

document language, 36

document tree, 37

'dotted', 127, 325

'double', 128, 325

drop caps, 91

DTD, 79, 179

element, 36

following, 38

preceding, 38

'elevation', 347

em (unit), 58

empty, 37
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'empty-cells', 319

ex (unit), 58

exact matching, 77

fantasy, definition of, 270

fictional tag sequence, 90, 93, 95

first-child, 84

first-letter, 91

first-line, 89

float rules, 155

'float', 154

flow of an element, 140

focus, 334

focus (pseudo-class), 86

following element, 38

'font', 277

'font-family', 267

'font-size', 276

'font-style', 271

'font-variant', 272

'font-weight', 273

formatting context, 370, 145

formatting structure, 31

forward-compatible parsing, 44

<frequency>, 351

definition of, 338

generated content, 221

<generic-voice>, definition of, 350

georgian, 236

'grid' media group, 110

'groove', 128, 325

'height', 195

'hidden, 325

'hidden', 127

hover (pseudo-class), 86

hyphen-separated matching, 77

identifier, 49

identifier, definition of, 49

ignore, 37, 40, 40, 54, 51, 52, 52, 52, 54, 54, 55,
55, 56, 56, 56, 50, 318
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in-flow, 140

inherit, definition of, 99

initial caps, 91

initial containing block, 184

initial value, 98

inline box, 138

'inline', definition of, 139

'inline-block', definition of, 139

inline-level box, 138

inline-level element, 138

inline-table, 298

inner edge, 114

'inset', 128, 325

<integer>, 174

definition of, 57

'interactive media group, 110

internal table box, 300

internal table element, 298

intrinsic dimensions, 37

invert, 333

iso-10646, 410

LALR(1), 407

lang (pseudo-class), 88

language (human), 88

language code, 77

<left>

definition of, 214

'left', 144

<length>, 262, 282, 288, 287, 196, 202, 205,
207, 187, 194

definition of, 58

'letter-spacing', 287

ligatures, 287

line box, 145

line-box, 155

'line-height', 204

link (pseudo-class), 86

list properties, 235

'list-item', definition of, 139

'list-style', 240

'list-style-image', 237

'list-style-position', 238

'list-style-type', 235

lower-greek, 236

lower-latin, 236

lower-roman, 236
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mapping elements to table parts, 298

margin box, 114

margin edge, 114

'margin', 118

'margin-bottom', 117

'margin-left', 118

'margin-right', 118

'margin-top', 117

<margin-width>

definition of, 117

margin

of a box, 113

match, 72

'max-height', 202

'max-width', 193

MAY, 35

media, 108

media group, 110

media-dependent import, 100

message entity, 41

'min-height', 201

'min-width', 193

monospace, definition of, 271

multiple declarations, 74

MUST, 35

MUST NOT, 35

newline, 65

no-close-quote, 229, 224

no-open-quote, 229, 224

none, 224

'none'

as border style, 127, 324

as display value, 139

normal, 224

<number>, 339, 349, 352, 337, 352, 353, 337,
338, 61, 205, 205

definition of, 57

open-quote, 228, 224

OPTIONAL, 35

'orphans', 251

out of flow, 140

outer edge, 114

outline, 331

'outline', 331

'outline-color', 332

'outline-style', 332

'outline-width', 332
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'outset', 128, 325

overflow, 209

'overflow', 210

padding box, 114

padding edge, 114

'padding', 123

'padding-bottom', 122

'padding-left', 122

'padding-right', 122

'padding-top', 122

<padding-width>

definition of, 122

padding

of a box, 113

page area, 246

page box, 246

page selector, 246

'page-break-after', 250

'page-break-before', 249

'page-break-inside', 250

page-context, 246

'paged' media group, 110

parent, 37

'pause', 342

'pause-after', 341

'pause-before', 340

<percentage>, 339, 341, 262, 282, 196, 202, 205,
207, 188, 194

definition of, 61

'pitch', 350

'pitch-range', 351

pixel, 60

'play-during', 344

'position', 141

positioned element/box, 142

positioning scheme, 140

preceding element, 38

principal box, 135

proper table child, 300

proper table row parent, 300

Property, 38

property, 53

'property-name', 19

pseudo-class

:first, 248

:left, 247

:right, 247

pseudo-classes, 84

:active, 86

:focus, 86
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:hover, 86

:lang, 88

:link, 86

:visited, 86

pseudo-elements, 84

:after, 221, 95

:before, 221, 95

:first-letter, 91

:first-line, 89, 90

quad width, 58 'quotes', 225

RECOMMENDED, 35

reference pixel, 60

relative positioning, 148

relative units, 58

rendered content, 37

replaced element, 36

REQUIRED, 35

'richness', 352

'ridge', 128, 325

<right>

definition of, 214

'right', 143

root, 37

row group box, 300

row groups, 298

rule sets, 50

run-in, 138

sans-serif, definition of, 269

scope, 232

screen reader, 336

selector, 408, 74, 72, 52

match, 72

subject of, 74

separated borders, 317

serif, definition of, 269

SHALL, 35

SHALL NOT, 35

<shape>

definition of, 214

sheet, 245

shorthand property, 22, 102, 74

SHOULD, 35

SHOULD NOT, 35
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sibling, 38

simple selector, 73

'solid', 128, 325

source document, 36

space-separated matching, 77

'speak', 340

'speak-header', 354

'speak-numeral', 354

'speak-punctuation', 353

<specific-voice>

definition of, 350

specified value, 98

'speech' media group, 110

'speech-rate', 348

square, 236

stack level, 174

stacking context, 174

statements, 50

'static' media group, 110

'stress', 352

string, 51

<string>, 224, 226, 226

<string>, definition of, 65

illegal, 36

style sheet, 35

subject (of selector), 74

system fonts, 278

table, 298

table box, 303

table element, 298

internal, 298

table wrapper box, 303

table-caption, 299

table-cell, 299

table-column, 299

table-column-group, 299

table-footer-group, 299

table-header-group, 299

'table-layout', 311

table-row, 298

table-row-group, 298

tables, 296

tabular container, 300

'tactile' media group, 110

'text-align', 282

'text-decoration', 284

'text-indent', 281

'text-transform', 288

text/css, 41
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<time>, 341

definition of, 337

tokenizer, 410

<top>

definition of, 214

'top', 142

type selector, 75

UA, 38

unicode, 410

'unicode-bidi', 178

universal selector, 74

upper-latin, 236

upper-roman, 236

<uri>, 343, 345, 345, 345, 258, 224, 328

definition of, 62

used value, 98

User, 38

user agent, 38

User agent (UA), 38

UTF-8, 67

valid style sheet, 36

validity, 36

value, 54

'vertical-align', 206

viewport, 135

'visibility', 216

visited (pseudo-class), 86

visual formatting model, 134

'visual' media group, 110

'voice-family', 349

volume, 338

'volume', 338

'white-space', 289

'widows', 251

'width', 187

'word-spacing', 288

x-height, 58
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'z-index', 173
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