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Abstract

Protocol processing of received packets in BSD
Unix is interrupt-driven and may cause scheduling
anomalies that are unacceptable in systems that pro-
vide quality of service (QoS) guarantees. We propose
an alternative mechanism, Signaled Receiver Pro-
cessing (SRP), that generates a signal to the receiv-
ing process when a packet arrives. The default action
of this signal is to perform protocol processing asyn-
chronously. However, a receiving process may catch,
block, or ignore the signal and defer protocol pro-
cessing until a subsequent receive call. In any case,
protocol processing occurs in the context of the re-
ceiving process and is correctly charged. Therefore,
SRP allows the system to enforce and honor QoS
guarantees. SRP offers several advantages over Lazy
Receiver Processing (LRP), a previous solution to
BSD’s scheduling anomalies: SRP is easily portable
to systems that support neither kernel threads nor
Resource Containers (e.g., FreeBSD); gives applica-
tions control over the scheduling of protocol process-
ing; uses a demultiplexing strategy that is appropri-
ate for both hosts and gateways; and easily enables
real-time or proportional-share scheduling.

1 Introduction

Many Internet protocols, including TCP and IP, first
appeared on the BSD Unix operating system [19].
BSD implementations were widely circulated, evalu-
ated, and debugged both in industry and academia,
thus influencing many other implementations [23].
Such influence promoted interoperability, but also
disseminated artifacts that are neither desirable nor
part of the protocol standards.

One of these artifacts is that, in BSD-inspired im-

plementations, protocol processing of received pack-
ets typically occurs in the context of a software in-
terrupt, before the system demultiplexes packets to
socket receive queues. In many implementations,
this processing is charged to whatever application
was interrupted, even if the latter is unrelated to the
packets. In other implementations, this processing is
not charged at all. In either case, protocol process-
ing may thus cause scheduling anomalies; the sys-
tem cannot enforce CPU allocations and therefore
cannot provide quality of service (QoS) guarantees
to applications. Furthermore, BSD’s scheme always
prioritizes protocol processing of a received packet
over application processing, even if the respective
socket receive queue is full and therefore the sys-
tem will have to drop the packet. In fact, under
high receive loads, the system may waste all CPU
time processing packets that will have to be dropped
(a phenomenon known as receive livelock [20]): The
system gives applications no CPU time and there-
fore applications cannot empty the receive queues.
Receive livelock can be exploited in denial of service
attacks.

BSD’s scheduling anomalies can be avoided by
an alternative scheme, Lazy Receiver Processing
(LRP) [14]. LRP’s techniques are transparent to
applications and do not violate protocol standards.
LRP combines several mechanisms to guarantee that
resources used in a packet’s protocol processing are
charged to the application that will receive that
packet. LRP uses early demultiplexing, i.e., demul-
tiplexes packets to the respective receiving appli-
cations before protocol processing. In the case of
UDP packets, LRP always processes protocols syn-
chronously, i.e., when the receiving application is-
sues a receive call. On the other hand, LRP al-
ways processes TCP packets asynchronously, i.e.,
when packets arrive. For correct resource account-
ing, LRP may associate with each process an extra
kernel thread that asynchronously processes incom-



ing TCP packets for the respective process, and has
its resource utilization charged to the process [14].
Alternatively, LRP may process all incoming TCP
packets in a single process, and use a Resource Con-
tainers facility to charge resource usage to the Con-
tainers of the respective receiving applications [1].!

Unfortunately, LRP may also present significant dif-
ficulties. First, many operating systems support nei-
ther kernel threads (e.g., FreeBSD) nor Resource
Containers (e.g., most existing systems). There-
fore, it can be difficult to port LRP to such sys-
tems. Second, LRP’s UDP processing is always syn-
chronous, whereas LRP’s TCP processing is always
asynchronous and shares resources equally with the
receiving application. However, for some applica-
tions, different protocol scheduling or resource ap-
portionment may be preferable. Third, LRP and
Resource Containers were designed for hosts (as ac-
knowledged by the reference to “server systems” in
the titles of the respective papers [14, 1]). However,
scheduling and resource management in gateways is
becoming as important as in hosts. Gateways no
longer simply forward packets; they increasingly also
need to run applications such as routing protocols,
network management [10], firewalling, Network Ad-
dress Translation (NAT) [15], load balancing [22],
reservation protocols [4], or billing [12]. Extensible
routers [21] and active networks [9] suggest a num-
ber of other ways in which it may be advantageous
to run application-specific code on gateways.

LRP’s use in these modern gateways faces two prob-
lems. First, LRP’s early demultiplexing does not
provide the required flexibility. In gateways, each
packet may need to be processed not by a single
receiving application, but by a variable series of ap-
plications, each of which may modify the packet’s
header and affect what other applications need to
process the packet. Second, LRP and Resource Con-
tainers were described and evaluated in detail only
in conjunction with time-sharing scheduling. How-
ever, this type of scheduling may be inadequate for
gateways. For example, it would be improper to pe-
nalize IP forwarding according to its CPU usage, as
a typical time-sharing scheduler would. On the other
hand, giving IP forwarding a “real-time” priority

Tn many operating systems, including FreeBSD, the no-
tions of resource principal and protection domain coincide in
the process abstraction. Resource Containers are a proposal
to separate these notions, making resource management more
flexible. For example, a given client’s resource consumption
may be represented by a single Resource Container. In this
case, resources used by different servers on behalf of the client
may be charged to that client’s Resource Container.

may also be inadequate, because it could lead to the
starvation of time-sharing or other lower-priority ap-
plications (e.g., in FreeBSD 3.0, real-time priorities
are fixed and are always higher than time-sharing
priorities).

This paper contributes a new scheme, Signaled Re-
ceiver Processing (SRP), that overcomes both BSD’s
and LRP’s mentioned shortcomings. When an in-
coming packet is demultiplexed to a given process,
SRP signals that process. The default action on
such signal is to perform protocol processing asyn-
chronously. However, a process may choose to syn-
chronize protocol processing by catching, blocking,
or ignoring SRP’s signals. In the latter cases, pro-
tocol processing is deferred until a later receive call.
In all cases, protocol processing occurs in the context
of and is charged to the receiving process.

SRP has several advantages over LRP. First, SRP
uses signals and not kernel threads nor Resource
Containers. Therefore, SRP can be easily ported to
most existing systems, including FreeBSD. Second,
SRP gives applications considerable control over the
scheduling and resource apportionment of protocol
processing. For example, an application may catch
SRP’s signals to control the time spent doing proto-
col processing; block SRP’s signals to avoid interrup-
tions while processing some urgent event; or ignore
SRP’s signals to make TCP processing synchronous.
Synchronous TCP processing can improve memory
locality. Such control is not possible in LRP because
LRP was designed to be transparent to applications.
Third, SRP supports modern gateways. SRP uses
a multi-stage demultiplexing function that, unlike
LRP’s simple early demultiplexing, allows packets
to be examined and modified by a multiple and pos-
sibly variable series of applications. Moreover, SRP
supports proportional-share scheduling. In a gate-
way, proportional-share scheduling can guarantee to
each application (e.g., IP forwarding, load balanc-
ing, or billing) a minimum share of the CPU, with-
out penalties for usage and without starvation of
other applications. We implemented SRP as part
of Eclipse/BSD, a new operating system that is de-
rived from FreeBSD and that provides QoS guaran-
tees via proportional-share scheduling of each sys-
tem resource, including CPU, disk, and network out-
put link bandwidth [7].

The rest of this paper is organized as follows. Sec-
tions 2 and 3 describe in greater detail how BSD
and LRP process received packets, respectively. Sec-
tion 4 reports the difficulties we encountered when
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Figure 1: In FreeBSD, protocol processing of received packets occurs in the context of a hardware or software
interrupt at priority higher than that of any application, and is charged to whatever process was interrupted.

porting LRP to FreeBSD for the implementation of
Eclipse/BSD. Those difficulties led to the design of
SRP, described in Section 5. Experiments in Sec-
tion 6 demonstrate that, like LRP, SRP prevents re-
ceive livelock. However, the experiments also show
that SRP supports Eclipse/BSD’s QoS guarantees,
that such support is desirable for gateway function-
ality, such as IP forwarding, and that SRP, unlike
LRP, allows any application to control the schedul-
ing of protocol processing, e.g. to achieve better
memory locality. Section 7 discusses related work,
and Section 8 concludes.

2 BSD receiver processing

This section discusses how FreeBSD processes IP
packets received from an Ethernet. This discussion
is representative also of protocol processing in other
derivatives of BSD and for other protocol families

and networks.

As shown in Figure 1, packet arrival causes a hard-
ware interrupt that transfers CPU control to a net-
work interface driver. The driver retrieves the packet
from the network interface hardware, prepares the
hardware for receiving a future packet, and passes
the received packet to the ether_input routine.
ether_input places the packet in IP’s input queue
without demultiplexing: All IP packets go in the
same queue. ether_input then issues a network
software interrupt. This software interrupt has pri-
ority higher than that of any application, but lower
than that of the hardware interrupt.

FreeBSD handles the network software interrupt by
dequeuing each packet from IP’s input queue and
calling the ip_input routine. ip_input checksums
the packet’s IP header and submits the packet to
preliminary processing: firewalling and/or NAT, if
configured in the system, and IP options, if present
in the packet header. This preliminary processing



may drop, modify, or forward the packet. ip_input
then checks the packet’s destination IP address. If
that address is the same as one of the host’s ad-
dresses, ip_input reassembles the packet and passes
it to the input routine of the higher-layer protocol se-
lected in the packet header (i.e., TCP, UDP, ICMP,
IGMP, RSVP, IPIP, or, in remaining cases, raw IP).
Otherwise, if the destination is a multicast address,
ip-input submits the packet to a higher-layer pro-
tocol, for local delivery, and to multicast forwarding,
if the system is configured as a multicast router. Fi-
nally, if the destination matches neither the host’s
nor a multicast address, and the system is configured
as a gateway, ip_input submits the packet to IP for-
warding; otherwise, ip_input drops the packet.

TCP’s and UDP’s input routines checksum the
packet and then demultiplex it. They find the pro-
tocol control block (PCB) that corresponds to the
destination port selected in the packet header, ap-
pend the packet to the respective socket receive
queue, and wake up processes that are waiting for
that queue to be non-empty. However, if the socket
receive queue is full, FreeBSD drops the packet.
Note that, because demultiplexing occurs so late in
FreeBSD, packets destined to the host are dropped
after protocol processing has already occurred.

Note also that, in FreeBSD, protocol processing of
a received packet is asynchronous relative to the re-
spective receiving process. On receive calls, the re-
ceiving process checks the socket receive queue. If
the queue is empty, the process sleeps; otherwise,
the process dequeues the data and copies it out to
application buffers.

However, processes only get a chance to run if the
receive load is not so high that all CPU time is spent
processing network hardware or software interrupts
(receive livelock). Moreover, even at moderate re-
ceive loads, process scheduling may be disturbed by
the fact that the CPU time spent processing net-
work interrupts is charged to whatever process was
interrupted, even if that process is unrelated to the
received packets.

3 LRP

Although popular, BSD’s scheme for processing re-
ceived packets can cause scheduling anomalies, as
discussed in the previous section. LRP [14] has been

proposed as a remedy to such anomalies. This sec-
tion reviews how LRP achieves that.

Asg illustrated in Figure 2, LRP uses channels in-
stead of a single IP input queue. A channel is a
packet queue; LRP associates one channel to each
socket. The network interface hardware or driver
examines packet headers and enqueues each packet
directly in the corresponding channel (early demul-
tiplexing). Following a hardware interrupt, LRP
wakes up the processes that are waiting for the chan-
nel to be non-empty. However, if the channel is
full, the network interface drops the packet immedi-
ately, before further protocol processing. LRP han-
dles TCP and UDP packets differently, as discussed
in the following subsections.

3.1 UDP

In the UDP case, on receive calls, the receiving pro-
cess performs the following loop while there is not
enough data in the socket receive queue: While the
corresponding channel is empty, sleep; then dequeue
each packet from the channel and submit the packet
to ip_input, which calls udp_input, which finally
enqueues the packet in the socket receive queue. The
receiving process then dequeues the data from the
socket receive queue and copies it out to application
buffers. Therefore, for UDP, LRP is synchronous
relative to the receiving process’s receive calls.

3.2 TCP

Unlike the UDP case, in the TCP case, LRP is asyn-
chronous relative to the receiving process. LRP was
designed to be completely transparent to applica-
tions and, in some applications, performing TCP
processing synchronously relative to application re-
ceive calls could cause large or variable delays in
TCP acknowledgments, adversely affecting through-
put. In order to process TCP asynchronously with-
out resorting to software interrupts, LRP may asso-
ciate with each process an extra kernel thread that
is scheduled at the process’s priority and has its re-
source utilization charged to the process, as shown in
Figure 2. This kernel thread continuously performs
the following loop: While the process’s TCP chan-
nels are empty, sleep; then dequeue each packet from
a non-empty TCP channel and submit the packet to
ip_input, which calls tcp_input, which finally en-
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Figure 2: LRP processes received UDP packets in the context of the receiving process, when the latter issues
a receive call. In the TCP case, LRP may use a kernel thread scheduled at the same priority as the receiving

process.

queues the packet in the respective socket receive
queue.

Instead of kernel threads, LRP may use a single pro-
cess for similarly handling packets from all TCP
channels in the system. In this case, LRP uses a
Resource Containers facility to charge the resources
used in processing each packet to the Container of
the respective receiving application [1].

In either case, LRP handles TCP receive calls sim-
ilarly to BSD: the receiving process simply checks
the socket receive queue and, if the queue is empty,
sleeps; otherwise, the process dequeues the data and
copies it out to application buffers.

4 LRP’s difficulties,
and open questions

shortcomings,

LRP was initially developed for a workstation
time-sharing operating system, SunOS. However,
LRP’s ability to prevent certain networking-

related scheduling anomalies caught our attention
when we were modifying FreeBSD to implement
Eclipse/BSD [7]. Eclipse/BSD is a new operat-
ing system that provides QoS guarantees using
proportional-share scheduling. Eclipse/BSD is in-
tended for both hosts and gateways. Our initial in-
tention was to use LRP, but we ran into the problems
reported in this section.

Our most obvious difficulty was that FreeBSD sup-
ports neither kernel threads nor Resource Contain-
ers, which are used in LRP’s TCP processing. We
could have chosen to build either piece of infra-
structure, but decided against that because (1) the
effort required would be nontrivial, and (2) we found
that the redesign described in the next section (SRP)
both leads to an easier implementation and solves
several shortcomings and open questions in LRP, as
discussed in the following subsections.

4.1 Inflexibility

Although LRP is an architecture with several imple-
mentation options, it is unnecessarily inflexible.



First, implementors may choose to perform early de-
multiplexing either in hardware (network interface
card) or in software (network interface driver). How-
ever, in either case, each packet is demultiplexed
only once, directly to the application that will con-
sume the packet’s data. These options do not sup-
port gateways, where applications like NAT may
modify packet headers, and packets may need to be
demultiplexed multiple times.

Second, implementors may choose to implement
LRP’s asynchronous TCP processing using, e.g., an
additional kernel thread per process, or a system-
wide TCP process and Resource Containers. How-
ever, LRP’s TCP processing is always asynchronous.
In some cases, synchronous TCP processing could
give better performance, e.g. because of better mem-
ory locality, but the LRP architecture does not en-
able such option.

4.2 Interaction with real-time sched-
ulers

The LRP and Resource Container papers [14, 1]
suggest that the respective techniques can be used
in conjunction with real-time or proportional-share
schedulers, but do not satisfactorily explain how to
achieve that. Those papers describe in reasonable
detail only how LRP and Resource Containers are
used in conjunction with time-sharing schedulers.
The latter schedulers typically assign to each pro-
cess a dynamic priority based on an average of the
process’s CPU usage [19]; no process has a fixed pri-
ority or CPU share.

Consider, in contrast, a real-time scheduler and pro-
cesses that have fixed priorities. If LRP’s asyn-
chronous TCP processing is implemented with ker-
nel threads, what should be the priority of those
threads? By analogy to the time-sharing case, a
TCP thread’s priority would be the same as that of
the respective process. However, in this case, pro-
cess latencies and cumulative service [5] may suffer:
Process events cannot preempt the TCP thread and
may be delayed until the end of the latter’s CPU
quota.

On the other hand, if LRP is implemented with a
single TCP process and Resource Containers, what
should be the priority of the TCP process? Resource
Containers calculate each thread’s priority based on
the thread’s scheduler binding, i.e., the set of Con-

tainers recently served by the thread. In order to
enable asynchronous TCP processing for all Con-
tainers, it appears that the TCP process’s priority
should be no less than the maximum priority of Con-
tainers in its scheduler binding. Therefore, similarly
to the previous case (TCP kernel threads), applica-
tion latencies and cumulative service may suffer. To
reduce such degradation and prevent priority inver-
sions and other scheduling anomalies, the TCP pro-
cess’s priority would have to be recomputed and the
system would need to be rescheduled each time (1)
the TCP process performs a resource binding, i.e.,
makes a call informing what Container it is about
to serve, or (2) a packet arrives for a previously
idle Container. These modifications may increase
the Resource Container overhead considerably.

4.3 Interaction with proportional-share
schedulers

The interaction of LRP with proportional-share
schedulers similarly raises a number of questions. If
LRP’s asynchronous TCP processing is implemented
with kernel threads, what CPU shares should those
threads have? By analogy with the time-sharing
case, (1) a TCP thread should have the same
share as that of the respective process, and (2)
if a TCP thread does not fully utilize its alloca-
tion, the respective process should be given the ex-
cess allocation (and vice-versa). To meet these re-
quirements, LRP would need a hierarchical (not a
flat) proportional-share scheduler. In a hierarchical
proportional-share scheduler, LRP can take a CPU
share and split it into subordinate equal shares for
a process and the respective TCP thread [7]. Flat
proportional-share schedulers, however, do not allow
the hierarchical subdivision of shares, and divide ex-
cess allocations among all processes or threads, even
if they are unrelated. Thus, LRP cannot prevent
scheduling anomalies if it is used with such sched-
ulers.

On the other hand, if LRP is implemented with
a single TCP process and Resource Containers,
how should scheduling be performed? In the time-
sharing case, to avoid excessive context switching,
systems with Resource Containers schedule threads,
not Containers. A thread is scheduled based on
a priority computed according the thread’s sched-
uler binding. It is unclear what the analogous con-
struct would be in the hierarchical proportional-
share case. In particular, what would be the map-



ping between the hierarchy and shares of, on the
one hand, Containers, and on the other hand, the
threads that may dynamically serve those Contain-
ers? Proportional-share schedulers often compute
fairly elaborate virtual time or virtual work func-
tions in order to approximate GPS (Generalized Pro-
cessor Sharing) scheduling. These functions may de-
pend not only on shares, but also on requests’ start
and finish times [3, 2, 17, 7]. How would virtual
time or work in the hierarchical Container space
map to equivalents in the thread space? Further-
more, Resource Containers require each thread to do
its own scheduling of requests from different Con-
tainers served by the thread. In the time-sharing
case, thread-level scheduling is according to Con-
tainer priority [1]. But in a proportional-share case,
how would thread-level Container scheduling be in-
tegrated with system-level thread scheduling so as to
approximate a global hierarchical proportional-share
scheduling of Containers??

5 SRP

As discussed in the previous section, the use of
LRP in a system based on FreeBSD and with
proportional-share scheduling, such as Eclipse/BSD,
is fraught with difficulties and open problems. To
circumvent those problems, we designed the alter-
native solution, SRP, described in this section. We
discuss in the following subsections SRP’s protocol
organization, packet demultiplexing, packet notifica-
tion, and protocol scheduling. Finally, we summa-
rize the advantages of our approach.

5.1 Protocol organization

This subsection gives an overview of how SRP orga-
nizes the protocol processing of received packets.

SRP does not require modifications in the network
interface hardware or driver. As illustrated in Fig-
ure 3, packet arrival causes a network hardware

2The initial LRP prototype [14] used a system-wide TCP
process. However, its reported results for TCP show only
immunity to receive livelock, not correct resource account-
ing (the RPC results use UDP, which is always synchronous,
and demonstrate the performance benefits of improving mem-
ory locality) [14]. Note that LRP’s later implementation in
the Resource Container prototype used an additional kernel
thread per process for TCP processing, instead of a system-
wide TCP process [1].

interrupt and transfers CPU control to the net-
work interface driver, which passes the packet to
ether_input.

In order to accommodate gateway functionality,
such as firewalling and NAT, SRP organizes protocol
processing in stages, where each stage comprises one
or more protocol functions. Stages can be prelimi-
nary (including the ether_input, firewalling, NAT,
and IP option handling stages) or final (including
the end-application, ICMP, IGMP, RSVP, IPIP, raw
IP, multicast, and IP forwarding stages). Prelimi-
nary stages invoke SRP’s next stage submit (NSS)
function to submit a packet to the respective next
stage. Final stages are those that include IP and
higher-layer protocols necessary to give a final dispo-
sition to each packet. The end-application stage, for
example, includes IP, TCP, and UDP, and enqueues
the packet in the corresponding socket receive queue.

Only the ether_input stage runs at interrupt level.
The end-application stage runs in the context of the
respective receiving application. All other stages run
in the context of system processes with CPU guar-
antees from Eclipse/BSD. In the current SRP im-
plementation, all protocol processing occurs inside
the kernel. With minor SRP modifications, however,
user-level processing would also be possible.

5.2 Packet demultiplexing and buffering

This subsection discusses how SRP demultiplexes
and buffers incoming packets.

NSS is the central component in SRP’s demultiplex-
ing. NSS uses SRP’s multi-stage early demultiplex
(MED) function. MED returns a pointer to the PCB
of the next stage to which a packet should be submit-
ted, based on current stage and packet header. MED
caches the PCB pointer in a field in the packet’s first
buffer, so that later, for example, TCP and UDP do
not have to again look up the packet’s PCB. Each
PCB points to a socket, which in turn points to an
unprocessed input queue (UIQ), to an input function,
and to a list of owner processes, which are the pro-
cesses that have the socket open. In order to reduce
demultiplexing latency, MED optimistically assumes
the common case where the packet header has ap-
propriate length and version, is contiguous in the
first buffer, and has a correct checksum. Stages can
invoke an early demultiplex verifier function, EDV,
to verify MED’s assumptions. EDV caches the veri-
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Figure 3: SRP processes received packets in the context of the receiving process, either in the default
SIGUIQ signal handler or in receive calls. System processes with CPU reservations implement gateway

protocol functionality.

fication in a flag in the packet’s first buffer.

SRP buffers packets as follows. NSS invokes MED
and determines the socket and UIQ pointed by
the returned PCB. If the total amount of buffering
used for the packet plus the socket’s UIQ and re-
ceive queue exceeds the socket’s receive buffer limit,
NSS drops the packet; otherwise, NSS enqueues the
packet in UIQ.? By demultiplexing and, in overload
conditions, dropping packets before further process-
ing them, SRP avoids receive livelock.

5.3 Packet notification and delivery

This subsection describes how protocols and appli-
cations receive notification and delivery of packets
from SRP.

3Receive buffer limits can be set using the setsockopt sys-
tem call.

When SRP’s NSS demultiplexes and enqueues a
packet in a certain socket’s UIQ, if there are pro-
cesses waiting for that UIQ to be non-empty, NSS
wakes up those processes; otherwise, NSS signals
SIGUIQ to the socket’s owner processes.*

SIGUIQ is a new signal whose default action is to de-
queue packets from UIQ of the process’s sockets and
submit each packet to the respective socket’s input
function. However, any process can catch, block, or
ignore SIGUIQ signals and, for example, defer proto-
col processing of received packets until a subsequent
receive call.

On receive calls, the receiving process first dequeues

41f all owner processes are sleeping non-interruptibly, sig-
nal delivery will be delayed until the first owner process
is woken up. However, because processes only sleep non-
interruptibly while waiting for a short-term (e.g., disk) event,
the resulting SIGUIQ delay should not exceed other schedul-
ing delays also present in a multitasking environment.



unprocessed packets from the socket’s UIQ and sub-
mits those packets to the socket’s input function. In
the case of TCP or UDP sockets, the input func-
tion is a modified version of ip_input, which calls a
modified version of tcp_input or udp_input, which
finally enqueues the packet in the socket’s receive
queue. (The modifications in ip_input, tcp_input,
and udp_input replace the original demultiplexing
operations by cheaper verifications of MED’s opti-
mistic demultiplexing.) The receiving process then
checks the socket’s receive queue. If the queue is
empty, the process sleeps; otherwise, the process
dequeues the data and copies it out to application
buffers.

5.4 Protocol scheduling options

This subsection discusses SRP’s scheduling alterna-
tives for protocol processing.

SRP’s default SIGUIQ signal handler makes proto-
col processing asynchronous, accommodating those
TCP applications for which synchronous protocol
processing would be inappropriate.

Any application can, however, catch, block, or ignore
SIGUIQ. To catch SIGUIQ, an application specifies
one of the application’s functions, f, to be called
asynchronously by the system when a packet des-
tined to the application arrives. f has the option of
(1) issuing a receive call immediately, making pro-
tocol processing asynchronous with respect to the
application’s main control flow, or (2) deferring pro-
tocol processing to a synchronous receive call in the
application’s main control flow.

Another option is to block SIGUIQ. If an applica-
tion blocks SIGUIQ, delivery of this signal is delayed
until the application unblocks SIGUIQ. A final al-
ternative is to ignore SIGUIQ. If an application ig-
nores SIGUIQ, the system generates no signal when
a packet destined to the application arrives. In such
case, protocol processing is synchronous, occurring
only when the application issues a receive call.

Applications may exploit the flexibility of catching,
blocking, or ignoring SIGUIQ, for example: to con-
trol how much CPU time they spend on protocol
processing; to prevent being interrupted while they
are processing some critical event; or to perform pro-
tocol processing only immediately before they need
the received data, which may improve memory lo-

cality.

If SIGUIQ signals are ignored or blocked, the num-
ber of context switches is the same as in the con-
ventional BSD approach (no context switching when
packets arrive), but memory locality may improve
(packet data first accessed immediately before the
application needs the data). LRP realizes the same
benefits for UDP, but not for TCP.

If SIGUIQ signals are processed by the default han-
dler or caught, the number of context switches may
be higher than that of BSD, depending on the
scheduling policy. However, the number of context
switches will usually be less than one per packet.
The default handler processes multiple packets in a
process’s UIQs when the process is scheduled. Ad-
ditionally, if scheduling is time-sharing or real-time
priority-based, a receiving process will preempt the
currently running process only if the receiving pro-
cess has higher priority (otherwise, context switch-
ing cannot happen). But if the receiving process
has higher priority and is blocked on the socket, it
would usually preempt the running process also on
BSD. Similar observations apply to LRP’s TCP han-
dling. However, compared to SRP, LRP incurs addi-
tional context switching between the asynchronous
TCP kernel threads or process and the receiving pro-
cesses. Memory locality is similar for BSD, LRP’s
TCP, and SRP with default or caught SIGUIQ: The
packet data is accessed asynchronously during pro-
tocol processing, possibly disturbing the cache.

5.5 Advantages

Because SRP checks buffering limits before protocol
processing and processes protocols in the context of
the receiving processes, SRP avoids receive livelock,
charges protocol processing to the correct processes,
and allows Eclipse/BSD to enforce and honor CPU
guarantees.

SRP also solves LRP’s problems mentioned in Sec-
tion 4. Because SRP requires only a signaling fa-
cility, it can be easily ported to most existing sys-
tems, including those that support neither kernel
threads nor Resource Containers. SRP’s multi-
stage demultiplexing function supports gateways, in-
cluding NAT and other gateway functionality that
may require packets to be demultiplexed multiple
times. SRP’s signals allow all applications, includ-
ing those that use TCP, to opt for synchronous or



Protocol processing || Throughput (Mbps) || Utilization (%)
ave | std dev ave std dev
FreeBSD 69.35 0.70 36.3 0.6
SRP/default SIGUIQ 67.88 0.77 36.2 0.4
SRP/ignored SIGUIQ 68.30 1.00 36.4 0.6

Table 1: SRP does not significantly alter FreeBSD’s TCP throughput and CPU utilization.

asynchronous protocol processing, thereby possibly
improving performance. Finally, SRP’s interaction
with time-sharing, real-time, and flat or hierarchi-
cal proportional-share CPU schedulers is straightfor-
ward. SRP processes protocols always in the context
of and under the control of the receiving process, re-
gardless of how that process is scheduled. SRP thus
avoids the difficult assignment of real-time priorities
or proportional shares to separate TCP threads or
system-wide TCP processes.

6 Experimental results

This section presents an experimental evaluation of
SRP.

The first two experiments show that SRP does
not significantly hurt FreeBSD’s networking perfor-
mance (throughput, CPU utilization, and latency).
For these experiments, we connected two PCs S and
R to the same Fast Ethernet hub (100 Mbps). Host
S has a 300 MHz Pentium IT CPU and 32 MB RAM
and runs FreeBSD. Host R has a 266 MHz Pen-
tium II CPU and 64 MB RAM and runs FreeBSD,
Eclipse/BSD with default SIGUIQ, or Eclipse/BSD
with ignored SIGUIQ. Both hosts use Intel EtherEx-
press PRO 100 Ethernet cards. In the first experi-
ment, we ran on S a sender application that sends 10
MB data to a receiver application on R, using TCP
with 64 KB send and receive socket windows and no
delayed acknowledgments. A compute-bound back-
ground application also ran on R, but the hosts and
network were otherwise idle. We measured the TCP
throughput and R’s CPU utilization (estimated by
the background application’s rate of progress) dur-
ing the data transfer, repeating the experiment ten
times. Table 1 presents the averages and standard
deviations of our measurements.

In the second experiment, we ran on S and R appli-
cations that send to each other packets of increas-
ing length, using UDP with 64 KB send and receive
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Figure 4: SRP does not significantly alter FreeBSD’s
UDP round-trip times.

socket windows. No other application ran on R. We
measured the round-trip times and report on Fig-
ure 4 the averages of ten tries.

The results in Table 1 and Figure 4 suggest that
SRP’s performance penalties on FreeBSD are quite
small or not statistically significant.

The third experiment demonstrates that SRP avoids
receive livelock. In this experiment, host S is a Pen-
tium Pro PC running FreeBSD, while host R is a
PC running either FreeBSD or Eclipse/BSD on a
266 MHz Pentium Pro CPU with 64 MB RAM. The
hosts were connected by Fast Ethernet at 100 Mbps.
There was no other load on the hosts or network. A
sender application on host S sent 10-byte UDP pack-
ets at a fixed rate to a receiver application on host
R. When running on Eclipse/BSD, the receiver ap-
plication used SRP’s default SIGUIQ handler. We
measured the application-level reception rate while
varying the transmission rate, and report the av-
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Figure 5: SRP prevents receive livelock in

Eclipse/BSD.

erages of five runs. Figure 5 shows that, both on
FreeBSD and on Eclipse/BSD, essentially all pack-
ets were received up to a transmission rate of about
5600 packets per second. Above a certain trans-
mission rate, however, FreeBSD’s reception rate col-
lapses because of receive livelock. On the contrary,
Eclipse/BSD’s reception rate reaches a plateau and
remains substantially at that level as the transmis-
sion rate increases. Eclipse/BSD’s stability is due to
SRP, which avoids receive livelock.

The fourth experiment shows that proportional-
share scheduling is desirable in gateways that pro-
cess application-specific code, in addition to for-
warding packets. We used the netperf utility to
measure TCP throughput between hosts A and B on
two separate Fast Ethernets connected via a gateway
G. Gateway G is a 266 MHz Pentium II PC with 64
MB RAM and running Eclipse/BSD, while host A
is a 400 MHz Pentium IT PC with 64 MB and run-
ning Linux, and host B is a 133 MHz Pentium PC
with 32 MB RAM and running FreeBSD. In addi-
tion to IP forwarding, the gateway ran a variable
number of instances of an application called onoff.
After each time an onoff process runs for 11 ms, it
sleeps for 5 ms. The IP forwarding process ran either
with a 50% CPU reservation or with no reservation.
The onoff processes ran with no CPU reservation.
There was no other load on the hosts or network.
Figure 6 demonstrates that, without a CPU reser-
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Figure 6: IP forwarding needs a CPU reservation to
avoid losing performance due to other applications
on the gateway.

vation for IP forwarding, other application load on
the gateway can cause TCP throughput to collapse.
On the contrary, an appropriate CPU reservation
isolates IP forwarding performance from other load
on the gateway.

The final experiment demonstrates that some ap-
plications can benefit from SRP’s ability to defer
protocol processing. In this experiment, a client ap-
plication on host C continuously executed transac-
tions each consisting of sending requests with 512
KB of random integer data to a server application
on host S, and then receiving the server’s reply of a
few bytes. Host C is a 300 MHz Pentium II PC with
64 MB RAM and running FreeBSD, while host S is
a 266 MHz Pentium II PC with 32 MB RAM and
running Eclipse/BSD. The hosts were connected by
a Fast Ethernet at 100 Mbps. Client and server ap-
plications communicated over a TCP connection be-
tween sockets with 512 KB send and receive buffers.
Hosts and network were otherwise unloaded. The
server application processed requests using one of
three algorithms: compute five averages of the re-
quest data; view the request data as two sets of four
64 KB vectors and compute their 16 internal prod-
ucts; or select the nth largest number among the re-
quest data (using partition [13]). While processing
these algorithms, the server application either used
the default SIGUIQ handler or ignored the SIGUIQ



Elapsed time (ms) with SIGUIQ
Application default ignored Improvement
ave | std dev || ave | std dev yA
Averages 63.1 0.8 54.8 0.2 13.1
Internal products || 50.7 0.2 46.5 0.4 8.3
Select nth 61.0 0.3 55.7 0.2 8.6

Table 2: On Eclipse/BSD, some applications can improve performance by catching, blocking, or ignoring

SIGUIQ signals.

signal. We used the CPU’s internal cycle counter to
measure, in the server application, the time inter-
val necessary for sending the reply to the previous
request, computing the current request, and receiv-
ing the next request. We report the averages and
standard deviations of ten runs. Table 2 shows that
this server application runs up to 13% faster when
it ignores SIGUIQ, making protocol processing syn-
chronous. This improvement is due to better mem-
ory locality when protocol processing is performed
only immediately before the data is needed.

7 Related and future work

We are not aware of previous reports about expe-
riences in porting LRP or Resource Containers to
other systems, especially systems that offer QoS
guarantees via proportional-share scheduling, such
as Eclipse/BSD.

This paper describes only how Eclipse/BSD pro-
cesses packets received from a network. Other pa-
pers describe Eclipse/BSD’s overall architecture and
application programming interface (/reserv [7]),
CPU scheduler (MTR-LS [5]), disk scheduler
(YFQ [6]), and network output link scheduler (Ben-
net and Zhang’s WF2Q [2, 3]). Eclipse/BSD is easy
to use: Even unmodified legacy Unix applications
can automatically run with appropriate QoS guar-
antees under Eclipse/BSD [8].

Nemesis [18] is an operating system built from
scratch according to a radical new architecture de-
signed to prevent QoS cross-talk, that is, one appli-
cation’s interference in another application’s perfor-
mance. Most Nemesis services, including TCP/IP,
are implemented as libraries that are linked with
applications. Therefore, services are performed in
the context of and charged to the respective ap-

plications, similarly to what is achieved by SRP’s
SIGUIQ signals. However, SRP’s signals and kernel-
mode signal handler may be easier to port to today’s
mainstream systems, which typically have a mono-
lithic architecture quite unlike that of Nemesis.

Because LRP is not available on FreeBSD, we were
unable to compare SRP and LRP directly. Such
comparison would be interesting future work.

8 Conclusions

We proposed a new mechanism, SRP, whereby
packet arrival sends a signal to the receiving process.
The default handler of this signal performs protocol
processing on the packet, but the receiving process
may catch, block, or ignore the signal and defer pro-
tocol processing until a subsequent receive call. In
any case, protocol processing occurs in the context of
the receiving process and is correctly charged. Our
experiments show that, like LRP, SRP avoids BSD’s
receive livelock. However, SRP has the advantages
of being easily portable to systems that support nei-
ther kernel threads nor Resource Containers, such as
FreeBSD; giving applications control over protocol
scheduling; using a multi-stage demultiplexing strat-
egy that supports gateway functionality; and easily
enabling real-time or proportional-share scheduling.
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