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Abstract
Language-based extensible systems, such as Java Vir-

tual Machines and SPIN, use type safety to provide mem-
ory safety in a single address space. By using software
to provide safety, they can support more efficient IPC.
Memory safety alone, however, is not sufficient to pro-
tect different applications from each other. Such systems
need to support a process modelthat enables the control
and management of computational resources. In partic-
ular, language-based extensible systems should support
resource control mechanisms analogous to those in stan-
dard operating systems. They need to support the sepa-
ration of processes and limit their use of resources, but
still support safe and efficient IPC.

We demonstrate how this challenge is being ad-
dressed in several Java-based systems. First, we lay out
the design choices when implementing a process model
in Java. Second, we compare the solutions that have
been explored in several projects: Alta, K0, and the
J-Kernel. Alta closely models the Fluke operating sys-
tem; K0 is similar to a traditional monolithic kernel;
and the J-Kernel resembles a microkernel-based system.
We compare how these systems support resource control,
and explore the tradeoffs between the various designs.

1 Introduction
Language-based extensible systems in the form of

Java virtual machines are used to implement execution
environments for applets in browsers, servlets in servers,
and mobile agents. All of these environments share the
property that they run multiple applications at the same
time. For example, a user may load applets from differ-
ent Web sites into a browser; a server may run servlets
from different sources; and an agent server may run
agents from across the Internet. In many circumstances
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these applications can not be trusted, either by the server
or user that runs them, or by each other. Given untrusted
applications, a language-based extensible system should
be able to isolate applications from one another because
they may be buggy or even malicious. An execution envi-
ronment for Java byte code that attempts to provide such
isolation is what we term a “Java operating system.”

Conventional operating systems provide the abstrac-
tion of a process, which encapsulates the execution of an
application. A process modeldefines what a process is
and what it may do. The following features are neces-
sary in any process model for safe, extensible systems:

� Protection. A process must not be able to destroy
the data of another process, or manipulate the data
of another process in an uncontrolled manner.

� Resource Management. Resources allocated to a
process must be separable from those allocated to
other processes. An unprivileged or untrusted pro-
cess must not be able to starve other processes by
denying them resources.

� Communication. Since an application may con-
sist of multiple cooperating processes, processes
should be able to communicate with each other.
Supported communication channels must be safe
and should be efficient.

These requirements on processes form one of the pri-
mary tradeoffs in building operating systems, as illus-
trated in Figure 1. On the right-hand side, processes
can be protected from each other most easily if they are
on completely separate machines. In addition, manag-
ing computational resources is much simpler, since the
resources are completely separate. Unfortunately, com-
munication is more expensive between processes on dif-
ferent machines. On the left-hand side, communication
is much cheaper, since processes can share memory di-
rectly. As a result, though, protection and accurate re-
source accounting become more difficult.

Operating systems research has spanned the entire
range of these systems, with a primary focus on systems
in the middle. Research in distributed systems and net-
working has focused on the right side of the figure. Re-
search on single-address-space operating systems such as
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Figure 1: Trading off sharing and isolation between pro-
cesses. On the right, running different processes on sep-
arate machines isolates them cleanly, but communica-
tion is more expensive. On the left, in theory a single-
address-space operating system allows the most efficient
communication between processes, but isolation is the
most difficult.

Opal [13], as well as older work on language-based oper-
ating systems [38, 43] has focused on the left side of the
figure. The reemergence of language-based extensible
systems, such as SPIN [9, 32, 51] has focused attention
back on the left side of the diagram. Such systems are
single-address-space systems that use type safety instead
of hardware memory mapping for protection. In this pa-
per we discuss how resource management can be pro-
vided in language-based systems (in particular, in Java),
and how the tradeoff between memory control and shar-
ing is expressed in these systems.

We view Java as an example language-based extensi-
ble system for several reasons. First, Java’s use of load-
time bytecode verification removes the need for a trusted
compiler. Second, Java’s popularity makes it possible
that a process model could be used widely. Finally, Java
is general enough that the lessons we have learned in
developing a process model for it should apply to other
language-based extensible systems.

Systems such as Servlet Engines [4] and mobile
agent servers [30] need to support multiple Java applica-
tions simultaneously. For safety, these systems use sep-
arate Java virtual machines to contain each application.
While it is possible to run multiple Java applications and
applets in separate Java virtual machines (JVMs), there
are several reasons to run them within a single virtual ma-

chine. Aside from the overhead involved in starting mul-
tiple JVMs, the cost of communication between appli-
cations and applets is greater when applications are run
in separate virtual machines (as suggested by Figure 1).
Additionally, in small systems, such as the PalmPilot,
an OS or hardware support for multiple processes might
not be present. In such environments, a JVM must per-
form operating system tasks. A final reason to use a sin-
gle JVM is that better performance should be achievable
through reduction of context switching and IPC costs.
Unfortunately, standard Java systems do not readily sup-
port multiprogramming, since they do not support a pro-
cess abstraction. The research issues that we explore in
this paper are the design problems that arise in imple-
menting a process model in a Java virtual machine.

The hard problems in implementing a process model
for Java revolve around memory management. Other
hard problems in designing a process model are not
unique to Java. In a Java system, protection is provided
through the type safety of the language. Memory man-
agement is harder in Java than in conventional operating
systems because the address space is shared. In a conven-
tional operating system, protection is provided through
a memory management unit. Process memory is inher-
ently separated, and systems must be engineered to pro-
vide fast, efficient communication.

In this paper we compare several Java systems, and
the process models that they support: Alta and K0, two
projects at the University of Utah, and the J-Kernel, a
project at Cornell. Alta is structured much like the Fluke
microkernel [22], provides a hierarchical process model,
and focuses on providing safe, efficient sharing between
processes with potentially different type-spaces. K0 is
structured much like a traditional monolithic kernel and
focuses on stringent and comprehensive resource con-
trols. The J-Kernel is structured like a microkernel-
based system, with automatic stub generation for inter-
task communication. It should not be surprising that
language-based operating systems can adopt ideas from
previous operating systems research: many of the de-
sign issues and implementation tactics remain the same.
These systems support strong process models: each can
limit the resource consumption of processes, but still per-
mit processes to share data directly when necessary.

Section 2 overviews Java and its terminology. Sec-
tion 3 describes the technical challenges in providing re-
source management in Java, and Section 4 compares the
design and implementation of Alta, K0, and the J-Kernel.
Section 5 describes related research in traditional operat-
ing systems, language-based operating systems, and Java
in particular. Section 6 summarizes our conclusions.



2 Background
Java is both a high-level object-oriented lan-

guage [26] and a specification for a virtual machine that
executes bytecodes [32]. Java gives applications control
over the dynamic linking process through special objects
called class loaders. Class loaders support user-defined,
type-safe [31] loading of new data types, object types,
and code into a running Java system.

A JVM is an architecture-neutral platform for object-
oriented, multi-threaded applications. The JVM provides
a number of guarantees, backed by run-time verification
and automatic memory management, about the memory
safety of applications it executes. Specifically, the byte-
codes that constitute an application must satisfy certain
semantic constraints, and only the JVM-provided auto-
matic garbage collector can reclaim storage.

A traditional JVM is structured as a trusted core, usu-
ally implemented in C, augmented with Java libraries.
Together, the core and libraries implement the standard
Java class libraries. Calls to the core C code are made
through native methods.

Protecting a system from buggy or malicious code,
and protecting clients from each other, requires more
control than just the protection afforded by type safety.
In particular, a JVM must also be able to provide se-
curity (control over data, such as information in files)
and resource management (control over computational
resources, such as CPU time and memory). A JVM is
therefore analogous to a traditional operating system.

Although extensive investigation has been devoted to
security issues in Java [25, 47], resource management
has not been as thoroughly investigated. For example,
a client can abuse its use of memory (either intentionally
or accidentally) to compromise the overall functionality
of a JVM. The design and implementation of robust Java
operating systems that tightly control resource usage is
an open area of research that we are addressing.

3 Resource Management
This section discusses the primary design choices for

managing resources in a Java operating system. We di-
vide the problem of resource management into three re-
lated subproblems:

� Resource accounting: the ability to track resource
usage. Accounting can be exact or approximate,
and can be fine-grained or coarse-grained.

� Resource reclamation: the ability to reclaim a pro-
cess’s resources when it terminates. Complex al-
location management policies and flexible sharing
policies can make reclamation difficult. Reclama-
tion can be immediate or delayed.

� Resource allocation: the ability to allocate re-
sources to processes in a way that does not allow
processes to violate imposed resource limits. Al-
location mechanisms should be fair and should not
incur excessive overhead.

We discuss each of the previous issues with respect
to several computational resources: memory, CPU usage,
and network bandwidth. We do not currently deal with
managing the use of persistent storage, because there
is little specific to the management of such storage in
language-based systems. Since Java encourages direct
sharing of memory, the primary difficulty in supporting
a process model in Java is in isolating processes’ mem-
ory from one another.

3.1 Memory
The issues of memory accounting, memory reclama-

tion and memory allocation within a Java process model
can be divided into two discussions: memory accounting
and the impact of the inter-process sharing model; and
allocation and deallocation policies.

3.1.1 Sharing Model

A sharing modeldefines how processes can share
data with each other. In a Java operating system, three
choices are possible: copying, direct sharing, and indi-
rect sharing. The sharing model in standard Java (with-
out processes) is one of direct sharing: objects contain
pointers to one another, and a thread accesses an object’s
fields via offsets from the object pointer. In Java with
processes, the choice of sharing model affects how mem-
ory accounting and process termination (resource recla-
mation) can be implemented.

Copying. Copying is the only feasible alterna-
tive when address spaces are not shared: for example,
when two processes are on different machines. Copying
was the traditional approach to communication in RPC
systems [10], although research has been aimed at re-
ducing the cost of copying for same-machine RPC [8].
Mach [1], for example, used copy-on-write and out-of-
line data to avoid extra copies.

If data copying is the only means of communication
between processes, then memory accounting and process
termination are straightforward. Processes do not share
any objects, so a process’s objects can be reclaimed im-
mediately; there can be no ambiguity as to which process
owns an object. Of course, the immediacy of reclamation
depends on the garbage collector’s involvement in mem-
ory accounting: reclaiming objects in Java could require
a full garbage collection cycle.

In Java, the use of copying as a communication
mechanism is unappealing because it violates the spirit
of the Java sharing model, and because it is slow. There



is enough support in a JVM for one process to safely
share a trusted object with an untrusted peer; not lever-
aging this support for fine-grained sharing in a Java pro-
cess model neutralizes the major advantage of using a
language-based system. On the other hand, in a system
that only supports copying data between processes, pro-
cess termination and per-process memory accounting are
much simpler.

Direct Sharing. Since Java is designed to support
direct sharing of objects, another design option is to al-
low direct sharing betweenprocesses. Interprocess shar-
ing of objects is then the same as intraprocess sharing.
Direct sharing in single-address-space systems is some-
what analogous to shared memory (or shared libraries) in
separate-address-space systems, but the unit of sharing is
much finer-grained.

If a system supports direct sharing between pro-
cesses, then process termination and resource reclama-
tion are complicated. If a process exports a directly
shared object, that object cannot be reclaimed when the
exporting process is terminated. The type-safety guar-
antees made by the Java virtual machine cannot be vio-
lated, so any reference to the object must remain valid.
To reclaim the object would require that all references to
the object be located. In the presence of C code, such
a search is impossible to do without extensive compiler
support. Therefore, in order to support resource reclama-
tion when a process is killed, either direct sharing needs
to be restricted or the system must guarantee that all out-
standing references to any object can be located.

Indirect Sharing. An alternative to direct sharing is
indirect sharing, in which objects are shared through a
level of indirection. When communicating a shared ob-
ject, a direct pointer to that object is not provided. In-
stead, the process creates a proxy object, which encap-
sulates a reference to the shared object. It then passes a
pointer to the proxy object. Proxies are system-protected
objects. In order to maintain indirect sharing (and pre-
vent direct sharing), the system must ensure that there is
no way for a client to extract a direct object pointer from
a proxy. Such second-class handles on objects are com-
monly called capabilities; analogues in traditional oper-
ating systems include file descriptors and process identi-
fiers.

Compared to direct sharing, indirect sharing is less
efficient, since an extra level of indirection must be fol-
lowed whenever an interprocess call occurs. The advan-
tage of indirection, however, is that resource reclamation
is straightforward. All references to a shared object can
be revoked, because the level of indirection enables the
system to track object references. Therefore, when a pro-
cess is killed, all of its shared objects can be reclaimed
immediately. As with copying, immediate revocation is
subject to the cost of a full garbage collection cycle in

Java.

3.1.2 Allocation and Deallocation

Without page-protection hardware, software-based
mechanisms are necessary to account for memory in
a Java operating system. Every allocation (or group
of allocations) must be checked against the allocating
process’s heap limit. Stack frame allocations must be
checked against the executing thread’s stack limits.

Memory is necessarily reclaimed in Java by an auto-
matic garbage collector [50]. It seems obvious to use the
garbage collector to do memory accounting as well. The
simplest mechanism for keeping track of memory is to
have the allocator debit a process that allocates memory,
and have the garbage collector credit a process when its
memory is reclaimed.

In the presence of object sharing (whether direct or
indirect), other memory accounting schemes are possi-
ble. For example, a system could conceivably divide the
“cost” of an object among all the parties that keep the
object alive. This model has the drawback that a process
can be spontaneously charged for memory. For example,
suppose a process acquires a pointer to a large object,
and is initially only charged for a small fraction of the
object’s memory. If the other sharers release their refer-
ences, the process may asynchronously run out of mem-
ory, because it will be forced to bear the full cost of the
entire object.

Another potential scheme is to allow processes to
pass memory “credits” to other processes. For example,
a server could require that clients pass several memory
credits with each request to pay for the resources the
server allocates. Such a scheme is analogous to eco-
nomic models that have been proposed for resource allo-
cation [46]. A similar system might permit a process to
transfer the right to allocate under its allowance. A sim-
ilar effect is possible in the simple allocator-pays model
by having a client allocate an object and pass it to the
server to be “filled in.”

An important issue in managing memory is the re-
lationship between allocation and accounting schemes.
In particular, a system that charges per object, but al-
locates memory in larger chunks, might be subject to
a fragmentation attack. A process with a small budget
could accidentally or maliciously cause the allocation of
a large number of blocks. One solution is to provide
each process with its own region of physical or virtual
addresses from which to allocate memory. While this so-
lution guarantees accurate accounting for internal frag-
mentation, it may introduce external fragmentation.

3.2 CPU Usage
The two mechanisms necessary for controlling CPU

usage are accounting and preemption. The system must



be able to account accurately for the CPU time consumed
by a thread. The system must also be able to prevent
threads from exceeding their assigned CPU limits by pre-
empting (or terminating) them. Desirable additional fea-
tures of CPU management are multiple scheduling poli-
cies, user-providable policies, and support for real-time
policies.

3.2.1 CPU Accounting

The accuracy of CPU accounting is strongly influ-
enced by the way in which processes obtain services.
If services are implemented in libraries or as calls to a
monolithic kernel, accounting simply amounts to count-
ing the CPU time that a thread accrues.

CPU accounting is difficult with shared system ser-
vices, where the process to bill for CPU usage is not
easily determined. Examples of such services include
garbage collection and interrupt processing for network
packets. For such services, the system needs to have a
means of deciding what process should be charged.

Garbage Collection. The simplest accounting pol-
icy for garbage collection is to treat it as a global sys-
tem service. Unfortunately, such a policy is undesirable
because it opens the system to denial-of-service attacks.
For example, a process could trigger garbage collections
frequently so as to slow down other processes. In ad-
dition, treating garbage collection as a universal service
allows priority inversion to occur. If a low-priority thread
allocates and deallocates large chunks of memory, it may
cause a high-priority thread to wait for a garbage collec-
tion.

We see two approaches that can be taken to solve this
problem. First, the garbage collector could charge its
CPU usage to the process whose objects it is traversing.
However, since this solution would require fine-grained
measurement of CPU usage, its overhead would likely be
prohibitive.

The second alternative is to provide each process
with a heap that can be garbage-collected separately,
such that the GC time can be charged to the owning pro-
cess. Independent collection of different heaps requires
special treatment of inter-heap references if direct shar-
ing is to be allowed. In addition, distributed garbage
collection algorithms might be necessary to collect data
structures that are shared across heaps.

Packet Handling. Interrupt handling is another sys-
tem service, but its behavior differs from that of garbage
collection, because the “user” of an external interrupt
cannot be known until the interrupt is serviced. The
goal of the system should be to minimize the time that
is needed to identify the receiver, as that time cannot be
accounted for. For example, Druschel and Banga [20]
showed how packets should be processed by an operat-
ing system. They demonstrated that system performance

can drop dramatically if too much packet processing is
done at interrupt level, where normal process resource
limits do not apply. They concluded that systems should
perform lazy receiver processing(LRP), which is a com-
bination of early packet demultiplexing, early packet dis-
card, and processing of packets at the receiver’s priority.
The use of LRP improves traffic separation and stability
under overload.

3.2.2 Preemption and Termination

Preempting a thread that holds a system lock could
lead to priority inversion. As a result, it is generally
better to let the thread exit the critical section before it
is preempted. Similarly, destroying a thread that holds
a system lock could lead to consistency problems if the
lock is released or deadlock if the lock is never released.
Preemption and termination can only be safe if the sys-
tem can protect critical sections against these operations.

By making a distinction between non-preemptible,
non-killable code, and “regular” code a Java system ef-
fectively makes a distinction between user-mode and
kernel-mode [5]. In a traditional, hardware-based sys-
tem, entry to (and exit from) the kernel is explicit: it is
marked with a trap instruction. The separation between
kernel and user code is not as clear in Java, since making
a call into the kernel might be no different than any other
method invocation.

In addition to providing support for non-preemptible
(and non-killable) critical sections, a Java operating sys-
tem needs to have a preemption model within its kernel.
The design choices are similar to those in traditional sys-
tems. First, the kernel could be single-threaded, and pre-
emption would only occur outside the kernel. Alterna-
tively, the system can be designed to allow multiple user
threads to enter the kernel. In the latter case, preemp-
tion might be more immediate, but protecting the kernel’s
data structures incurs additional overhead.

3.3 Network Bandwidth
While bandwidth can be important for certain appli-

cations of Java, such as active networks [48], there is lit-
tle about controlling network bandwidth that is specific
to Java. A range of approaches, from byte counting to
packet scheduling, is available.

The J-Kernel experimented with a special version of
the WinSocket DLL to count bytes in outgoing network
streams. The implementations of K0 and Alta could
easily provide access to packet scheduling facilities pro-
vided by the infrastructure on which they run.

4 Comparison
In this section we describe in detail our two proto-

type systems, K0 and Alta, and the prototype of a third



Java operating system, J-Kernel, that has been built at
Cornell. These systems represent different sets of design
tradeoffs:

� The J-Kernel disallows direct sharing between
processes, and uses bytecode rewriting to support
indirect sharing. Because it consists of Java code
only, it is portable across JVMs. As a result,
though, the resource controls that the J-Kernel pro-
vides are approximate. J-Kernel IPC does not in-
volve a rendezvous: a thread migrates across pro-
cesses, which can delay termination.

� K0 partitions the Java heap so as to isolate re-
source consumption. In addition, restricted di-
rect sharing is permitted through the system heap.
Garbage collection techniques are put to interest-
ing use to support this combination. CPU inheri-
tance scheduling is used as a framework for hier-
archical scheduling of CPU time.

� Alta uses hierarchical resource management,
which makes processes responsible for (and gives
them the capability of) managing their subpro-
cesses’ resources. Direct sharing between sibling
processes is permitted because their parent is re-
sponsible for their use of memory. The hierarchy
also is a good match for CPU inheritance schedul-
ing.

4.1 J-Kernel
The J-Kernel [15, 28] implements a microkernel ar-

chitecture for Java programs, and is itself written in Java.
It supports multiple protection domains that are called
tasks. Names are managed in the J-Kernel through the
use of resolvers, which map names onto Java classes.
When a task creates a subtask, it can specify which
classes the subtask is allowed to access. Class loaders
are used to give tasks their own name spaces.

4.1.1 System Model

Communication in the J-Kernel is based on capabil-
ities. Java objects can be shared indirectly by passing
a pointer to a capability object through a “local RMI”
call. The capability is a trusted object containing a di-
rect pointer to the shared object. Because of the level
of indirection through capabilities to the shared object,
the capabilities can be revoked. A capability can only be
passed if two tasks share the same class. Making a class
shared is an explicit action that forces two class loaders
to share the class.

All arguments to inter-task invocations must either
be capabilities, or be copied in depth, i.e., the complete
tree of objects that are reachable from the argument via

direct references must be copied recursively. By de-
fault, standard Java object serialization is used, which
involves marshaling into and unmarshaling from a lin-
ear byte buffer. To decrease the cost of copying, a fast
copy mechanism is also provided. Specialized code for
a class creates a direct copy of an object’s fields. Both
the specialized fast copy code and the stubs needed for
cross-domain calls are generated dynamically.

The J-Kernel supports thread migration between
tasks: cross-task communication is not between two
threads. Instead, a single thread makes a method call
that logically changes protection domains. Therefore, a
full context switch is not required. To prevent malicious
callers from damaging a callee’s data structures, each
task is only allowed to stop a thread when the thread is
executing code in its own process. This choice of system
structure requires that a caller trust all of its callees, be-
cause a malicious or erroneous callee might never return.

4.1.2 Resource Management

The J-Kernel designers made the explicit decision not
to build their own JVM. Instead, the J-Kernel is written
entirely in Java. As a result of this decision, the J-Kernel
designers limited the precision of their resource control
mechanisms. The lack of precision occurs because the
JVM that runs under the J-Kernel cannot know about
processes. As a result, it cannot account for the resources
that it consumes on behalf of a process.

Memory Management. In order to account for
memory, the J-Kernel rewrites the bytecode of construc-
tors and finalizers to charge and credit for memory usage.
Such a scheme does not take fragmentation into account.
In addition, memory such as that occupied by just-in-
time compiled code is hard to account for.

CPU Management. The NT version of the J-Kernel
uses a kernel device driver to monitor the CPU time con-
sumed by a thread. This mechanism is reactive: threads
can only be prevented from consuming further resources
after they already exceeded their limits. In addition, it is
difficult to add custom scheduling policies for tasks.

4.1.3 Implementation Status

A version of the J-Kernel that does not support re-
source controls is freely available from Cornell [45]. The
advantage of their implementation approach is a high de-
gree of portability: the J-Kernel can run on most JVMs.
Since it uses class reloading, there are some dependen-
cies on the specific interpretation of gray areas in the Java
language specification.

The J-Kernel is distributed with two additional pieces
of software. The first is JOS, which uses the J-Kernel to
provide support for servers. The second is J-Server, a
Web server that safely runs client-provided Java code.



4.1.4 Summary
The J-Kernel adopts a capability-based model that

disallows direct sharing between tasks. As a result, its
capabilities are directly revocable, and memory can be
completely reclaimed upon task termination. In addition,
the J-Kernel exploits the high-level nature of Java’s byte-
code representation to support the automatic creation of
communication channels.

4.2 K0
K0’s design loosely follows that of a traditional

monolithic kernel. K0 is oriented toward complete re-
source isolation between processes, with the secondary
goal of allowing direct sharing. As in a traditional oper-
ating system, each process is associated with a separate
heap, and sharing occurs only through a special, shared
heap.

K0 can run most JDK 1.1 applications without mod-
ification. It cannot run those that assume that they were
loaded by a “null” class loader.

4.2.1 System Model
A K0 process consists of a name space, a heap, and a

set of threads. K0 relies on class loaders to provide dif-
ferent processes with separate name spaces. Each pro-
cess is associated with its own class loader, which is log-
ically considered part of the kernel. To provide different
processes with their own copies of classes that contain
static members, K0 loads classes multiple times. Unlike
other JVMs, K0 allows safe reloading of all but the most
essential classes, such as Object or Throwable. To re-
duce a process’s memory footprint, classes that do not
contain shared data may be shared between processes,
akin to how different processes map the same shared li-
brary into their address spaces in a traditional OS. How-
ever, since all shared classes must occupy a single name
space, sharing is a privileged operation.

Threads access kernel services by calling into kernel
code directly. The kernel returns references to kernel ob-
jects that act as capabilities to such things as open files
and sockets. In order to support the stopping or killing of
threads, K0 provides a primitive that defers the delivery
of asynchronous exceptions until a well-defined cancel-
lation point within the kernel is reached. This primitive
does not solve all of the problems with thread termina-
tion, but it enables the kernel programmer to safely can-
cel user processes without compromising the integrity of
the kernel.

Each K0 process is associated with its own heap.
Shared classes and other shared data reside in a distinct
heap called the shared heap. K0 supports comprehen-
sive memory accounting that takes internal allocations
by the JVM into account. Because K0 controls inter-
heap references, it is able to support independent collec-

tion of individual heaps and it is able to charge garbage
collection time to the appropriate processes. The use of
separate heaps has the additional benefit of allowing K0
to avoid priority inversions: it is not necessary to stop
higher-priority threads in other processes when perform-
ing a collection.

4.2.2 Resource Management

Memory Management. The use of separate heaps
simplifies memory accounting because each heap is sub-
ject to its own memory budget, and simplifies CPU ac-
counting because each heap can be collected separately.
In order to preserve these benefits while still allowing
for efficient process communication, K0 provides lim-
ited direct sharing between heaps. If two processes want
to share an object, two criteria must be met. First, the
processes must share the type of the object. Second, the
object must be allocated in the shared heap. The creation
of a shared object is a privileged operation. An object in
a process heap can refer to a shared object, and a shared
object can refer to an object in a process heap. However,
K0 explicitly disallows direct sharing between objects in
separate processes’ heaps, and uses write barriers [50] to
enforce this restriction.

Acquiring a reference to a shared object is only pos-
sible by invoking the system, and K0 ensures that re-
sources allocated within the system heap on behalf of an
process are subject to a specific limit. For instance, each
process may only open a certain number of files, since
the kernel part of a file descriptor is allocated in system
space. K0 must be careful to not hand out references to
objects that have public members, or objects it uses for
internal synchronization.

Shared objects have a restricted execution model.
During their construction, they can allocate objects on
the system heap. After the objects are constructed,
threads that methods on them are subject to normal seg-
ment limits: if a thread attempts to use a shared object to
write a reference to a foreign heap into its own heap, a
segmentation violation error will be triggered.

To allow for separate garbage collection of individ-
ual heaps, K0 implements a form of distributed GC [37].
For each heap, K0 keeps a list of entry itemsfor objects
to which external references exist. An entry item consists
of a pointer to the local object and a reference count. The
reference count denotes the number of foreign heaps that
have links to that object. The garbage collector of a heap
treats all entry items as roots. For each heap, K0 also
keeps a list of exit itemsfor non-local objects to which
the heap refers. An exit item contains a pointer to the
entry item of the object to which it refers. At the end
of a garbage collection cycle, unreferenced exit items are
collected and the reference counts in the corresponding
entry items are decremented. An entry item can be re-



claimed if its reference count reaches zero.
Write barriers are used to automatically create and

update exit and entry items, as well as to maintain the
heap reference invariants described previously. If a write
barrier detects a reference that is legal, it will lookup and
create the corresponding exit item for the remote object.
In turn, the corresponding entry item in the foreign heap
is updated. The same write barrier is used to prevent the
passing of illegal cross-heap references. If the reference
that would be created by a write is illegal, a segmenta-
tion violation error is thrown. The use of a write barrier
is similar to the use of write checks in Omniware [2]. Al-
though it may seem odd to use another protection mech-
anism (software fault isolation) in a type-safe system, the
motivation is resource management, not memory safety.

Finally, to improve the use of the JVM’s memory as
a whole, K0 does not reserve non-overlapping, contigu-
ous memory regions for each heap. Instead, memory ac-
counting is done on a per-block basis. Small objects are
stored in page-sized blocks, whereas larger objects are
stored in dedicated blocks. Heaps receive new memory
in blocks, and the garbage collector only reimburses a
heap if it frees a whole block.

CPU Management. In traditional Java, each thread
belongs to a thread group. Thread groups form a hierar-
chy in which each thread group has a parent group. The
initial thread group is the root of the group hierarchy. K0
adapts the thread group classes such that all threads be-
longing to a process are contained in a subtree. Process
threads cannot traverse this tree past the root of this sub-
tree.

K0 combines the thread group hierarchy with CPU
inheritance scheduling [23]. CPU inheritance schedul-
ing is based on a directed yield primitive: a scheduler
thread donates CPU time to a specific thread by yield-
ing to it, which effectively schedules that thread. Since
the receiver thread may in turn function as a scheduler
thread, scheduler hierarchies can be built. Each non-root
thread has an associated scheduler thread that is notified
when that thread is runnable. A scheduler may use a
timer to revoke its donation, which preempts a sched-
uled thread. Using CPU inheritance scheduling allows
K0 to do two things. First, K0 can provide each process
with its own scheduler that may implement any process-
specific policy to schedule the threads in that process.
Second, thread groups within processes may hierarchi-
cally schedule the threads belonging to them.

Each thread group in K0 is associated with a sched-
uler, which is an abstract Java class in K0. Different poli-
cies are implemented in different subclasses. At the root
of the scheduling hierarchy, K0 uses a fixed priority pol-
icy to guarantee that the system heap garbage collector
is given the highest priority. At the next level, a stride
scheduler divides CPU time between processes. To pro-

vide compatibility with traditional Java scheduling, the
root thread group of each process by default is associ-
ated with a fixed-priority scheduler that is a child of the
stride scheduler.

4.2.3 Implementation Status

We have prototyped a K0 kernel that is composed
of a modified JVM that is based on Kaffe 1.0beta1. It
is supplemented by classes in binary format from Java-
Soft’s JDK 1.1.5, and a package of privileged classes
that replace part of the core java packages. K0 ran as
a stand-alone kernel based on the OSKit [21] (a suite
of components for building operating systems). Addi-
tionally, K0 ran in user-mode with libraries that sim-
ulate certain OSKit components such as interrupt han-
dling and raw device access. We implemented sepa-
rate heaps, as well as write barriers. Our initial proto-
type did not support separate garbage collection nor class
garbage collection. The prototype supported CPU inher-
itance scheduling in the way described above, although it
only supported schedulers implemented as native meth-
ods in C. We implemented four different policies: fixed-
priority, rate-monotonic scheduling, lottery, and stride-
scheduling.

We are currently working on a successor system
called KaffeOS, which is based on a much improved base
JVM, supports separate garbage collection, and will pro-
vide full resource reclamation.

4.2.4 Summary

K0’s design is oriented towards complete resource
isolation between processes, with the secondary goal of
allowing direct sharing. By giving each process a sepa-
rate heap, many memory and CPU management resource
issues become simpler. Sharing occurs through a shared
system heap, and distributed garbage collection tech-
niques are used to safely maintain sharing information.

4.3 Alta
Alta [44] is an extended Java Virtual Machine that

provides a hierarchical process model and system API
modeled after that provided by the Fluke microkernel.
Fluke supports a nested process model[22], in which
a process can manage all of the resources of child pro-
cesses in much the same way that an operating system
manages the resources of its processes. Memory man-
agement and CPU accounting are explicitly supported by
the Alta system API. Higher-level services, such as net-
work access and file systems, are managed by servers,
with which applications communicate via IPC. Capabil-
ities provide safe, cross-process references for commu-
nication.

Each process has its own root thread group, threads,
and private copies of static member data. Per-process



memory accounting in Alta is comprehensive. For ac-
cess control purposes, Alta expands the Fluke model by
providing processes with the ability to control the classes
used by a sub-process. Alta also extends the Java class
model in that it allows a process to rename the classes
that a subprocess sees. As a result, a process can inter-
pose on all of a subprocess’ interfaces.

The Alta virtual machine does not change any of the
interfaces or semantics defined by the JVM specification.
Existing Java applications, such as javac (the Java com-
piler), can run unmodified as processes within Alta.

4.3.1 System Model

Communication in Alta is done through an IPC sys-
tem that mimics the Fluke IPC system. Inter-process
communication is based on a half-duplex, reversible,
client-server connection between two threads (which
may reside in different processes). Additionally, Alta
IPC provides immediate notification to the client or
server if the peer at the other end of the connection is
terminated or disconnects.

Alta permits sibling processes to share objects di-
rectly. Objects can be shared by passing them through
IPC. Sharing is only permitted for objects where the two
processes have consistent views of the class name space.
Enforcing this requirement efficiently requires that the
classes involved are all final, i.e., that they cannot be
subclassed. While this is somewhat restrictive, all of the
primitive types — such as byte[] (an array of bytes)
and java.lang.String — and many of the core Alta
classes meet these requirements.

4.3.2 Resource Management

The strongest feature of the Alta process model is
the ability to “nest” processes: every process can man-
age child processes in the same way the system manages
processes. Resource management in Alta is strictly hi-
erarchical. Any process can create a child process and
limit the memory allowance of that process.

Memory Management. Alta supports memory ac-
counting through a simple allocator-pays scheme. The
garbage collector credits the owning process when an
object is eventually reclaimed. When a process is termi-
nated, any existing objects are “promoted” into its par-
ent’s memory. Thus, it the responsibility of the parent
process to make sure that cross-process references are
not created if full memory reclamation is necessary upon
child process termination. It is important to note that Alta
enables a process to prevent child processes from passing
Java object references through IPC.

Memory reclamation is simple if a process only
passes references to its children. In the nested process
model, when a process is terminated all of its child pro-
cesses are necessarily terminated also. Therefore, refer-

ences that are passed to a process’s children will become
unused.

To support clean thread and process termination, Alta
uses standard operating system implementation tricks to
prevent the problem of threads terminated while execut-
ing critical system code, just like in K0. For example,
to avoid stack overflows while executing system code,
the entry layer will verify sufficient space is available
on the current thread stack. This check is analogous
to the standard technique of pre-allocating an adequate
size stack for in-kernel execution in traditional operat-
ing systems. Additionally, Alta is structured to avoid ex-
plicit memory allocations within “kernel mode.” A sys-
tem call can allocate objects before entering the kernel
proper. Thus, all allocation effectively happens in “user
mode.” Since the notion of the system code entry layer
is explicit, some system calls (for example, Thread.-
currentThread()) never need enter the kernel.

CPU Management. Alta provides garbage collec-
tion as a system service. This leaves Alta open to
denial-of-service attacks that generate large amounts of
garbage—which will cause the garbage collector to run.
Given the memory limits on processes, and limits on the
CPU usage of a process, GC problems like this can be
mitigated.

4.3.3 Implementation Status

Alta’s implementation is based on a JDK 1.0.2-
equivalent JVM and libraries (Kaffe [49] version 0.9.2
and Kore [14] version 0.0.7, respectively). The bulk of
the system is implemented entirely in Java. The internals
of the VM were enhanced to support nested processes. A
number of the core library classes were modified to use
Alta primitives and to make class substitution more ef-
fective. In addition to javac, Alta supports simple appli-
cations that nest multiple children and control their class
name spaces, along with a basic shell and other simple
applications.

In terms of code sharing, a process in Alta is analo-
gous to a statically linked binary in a traditional systems
— each process has its own JIT’d version of a method.
The Kaffe JIT could be modified to provide process-
independent, sharable code, just as compilers can gener-
ate position-independent code for shared libraries. Like
the version of Kaffe on which it is based, Alta does not
yet support garbage collection of classes.

Alta does not implement CPU inheritance schedul-
ing. Because Alta and K0 share a common code base,
the CPU inheritance scheduling that is implemented in
the K0 should be easy to migrate to Alta. In addition,
like K0, Alta runs as a regular process on a traditional
operating system and could be made to run on top of bare
hardware using the OSKit.



4.3.4 Summary

Alta implements the Fluke nested process model and
API in a Java operating system. It demonstrates that the
nested process model can provide Java processes with
flexible control over resources. Because of the hierarchi-
cal nature of the model, direct sharing between siblings
can be supported without resource reclamation problems.

4.4 Performance Evaluation
We ran several microbenchmarks on our two proto-

type systems, Alta and K0, and a port of the J-Kernel
to Kaffe to measure their baseline performance. These
benchmarks demonstrate that no undue performance
penalties are paid by “normal” Java code, in any of these
systems, for supporting processes. In addition, they
roughly compare the cost of IPC and Java process cre-
ation in all three systems.

The Alta, J-Kernel, and basic Kaffe tests were per-
formed on a 300 MHz Intel Pentium II with 128MB of
SDRAM. The system ran FreeBSD version 2.2.6, and
was otherwise idle. The K0 tests were performed on the
same machine, but K0 was linked to the OSKit and run-
ning without FreeBSD.

Table 1 shows the average time for a simple null
instance method invocation, the average cost of allo-
cating a java.lang.Object, the average overhead of
creating and starting a Thread object, and the aver-
age cost of creating a Throwable object. All of the
benchmarks were written to avoid invocation of the
GC (intentional or unintentional) during timing. For
K0 and Alta the benchmarks were run as the root
task in the system. For the J-Kernel, the benchmarks
were run as children of the J-Kernel RootTask, cor-
nell.slk.jkernel.std.Main.

None of the systems significantly disrupts any of the
basic features of the virtual machine. Previously pub-
lished results about the J-Kernel [28] used Microsoft’s
Java virtual machine, which is significantly faster than
Kaffe. The Alta null thread test is significantly more ex-
pensive than the basic Kaffe test because Alta threads
maintain additional per-thread state for IPC, process
state, and blocking.

Table 2 measures the two critical costs of adding a
process model to Java. The first column lists the over-
head of creating a new process, measured from the time
the parent creates the new process to the time at which
the new process begins its main function. The Kaffe
row lists the time required for Kaffe to fork and exec a
new Kaffe process in FreeBSD. The J-Kernel supports a
more limited notion of process—J-Kernel processes do
not require an active thread—so the J-Kernel test simply
creates a passive Task and seeds it with a simple initial
object.

The subsequent columns of Table 2 show the time
required for cross-task communication. Alta IPC is sig-
nificantly slower because it is a rendezvous between two
threads and uses ports, whereas J-Kernel IPC is sim-
ply cross-process method invocation. K0 IPC is imple-
mented using a shared rendezvous object and is based
directly on wait/notify. The IPC cost in K0 reflects its un-
optimized thread package that is different than the thread
package in the other JVMs.

Our performance results indicate that our systems
need substantial optimization in order to realize the per-
formance potential of language-based operating systems.
The performance benefits from fine-grained sharing in
software can be dominated by inefficiencies in the basic
JVM implementation. As the difference to previously
published J-Kernel results demonstrates, the future per-
formance of Java systems will likely be spurred by ad-
vances in just-in-time compilation, which is orthogonal
to the research issues we are exploring.

To analyze the implementation costs of our deci-
sion to build our own JVM, we examined each system
in terms of useful lines of code (i.e., non-blank, non-
comment lines of source). As a reference point, the orig-
inal version of Kaffe v0.9.2 contains 10,000 lines of C,
while Kaffe v1.0beta1 is comprised of just over 14,000
lines of C and 14,000 lines of Java. (Much of this in-
crease is due to the move from JDK 1.0 to JDK 1.1.)
Alta is comprised of 5,000 lines of Java and adds approx-
imately 5,000 lines of C to Kaffe v0.9.2 (a significant
fraction of this C code consists of features from later ver-
sions of Kaffe that we ported back to Kaffe v0.9.2). K0
adds approximately 1,000 lines of C code to the virtual
machine and almost 2,000 lines of Java code to the basic
libraries. The additional C code consisted of changes to
the garbage collector to support K0’s separate heaps.

In comparison, the J-Kernel consists of approxi-
mately 9,000 lines of Java. Building the J-Kernel as a
layer on top of a JVM was probably an easier implemen-
tation path than building a new JVM. The primary dif-
ficulty in building the J-Kernel probably lay in building
the dynamic stub generator.

5 Related Work
Several lines of research are related to our work.

First, the development of single-address-space operating
systems — with protection provided by language or by
hardware — is a direct antecedent of work in Java. Sec-
ond, a great deal of research today is directed at building
operating system services in Java.

5.1 Prior Research
A great deal of research has been done on hardware-

based single-address-space operating systems. In



Virtual Machine Method Invocation Object Creation Null Thread Test Exception Creation
Kaffe 1.0beta1 0.16�s 1.9�s 480�s 12�s
K0 0.16�s 3.1�s 725�s 18�s
Alta 0.16�s 2.5�s 1030�s 15�s
Kaffe 0.10.0 0.17�s 1.8�s 470�s 10�s
J-Kernel 0.17�s 1.8�s 480�s 29�s

Table 1: Despite the fact that we have five distinct Java virtual machines based around different versions of the Kaffe virtual
machine, base performance of the versions are not very different. The J-Kernel is run on Kaffe 0.10.0, because of deficiencies in
object serialization in Kaffe 1.0beta1.

Virtual Machine Process Creation Null IPC 3-integer request 100-byte String request
Alta 120ms 90�s 109�s 138�s
K0 89ms 57�s 57�s 183�s
J-Kernel 235ms 2.7�s 2.7�s 27�s
Kaffe 300ms N/A N/A N/A

Table 2: Process Tests. Note that numbers in the first column are reported in ms, while the other columns are reported in �s. Alta
and K0 IPC is between separate threads while the J-Kernel IPC uses cross-process thread migration. The 3-integer request and
100-byte String request operations include the time to marshal and unmarshal the request. The J-Kernel uses object serialization to
transmit a String while K0 and Alta use hand-coded String marshal and unmarshal code.

Opal [13], communication was accomplished by passing
256-bit capabilities among processes: a process could
attach a memory segment to its address space so that
it could address the memory segment directly. Because
Opal was not based on a type-safe language, resource al-
location and reclamation was coarse-grained, and based
on reference counting of segments.

Many research projects have explored operating sys-
tems issues within the context of programming lan-
guages. For example, Argus [33] and Clouds [16] ex-
plored the use of transactions within distributed pro-
gramming languages. Other important systems that stud-
ied issues of distribution include Eden [3], Emerald [11],
and Amber [12]. These systems explored the concepts
underlying object migration, but did not investigate re-
source management.

Language-based operating systems have existed for
many years. Most of them were not designed to pro-
tect against malicious users, although a number of them
support strong security features. None of them, how-
ever, provide strong resource controls. Pilot [38] and
Cedar [43] were two of the earliest language-based sys-
tems. Their development at Xerox PARC predates a
flurry of research in the 1990’s on such systems.

Oberon [51] has many of Java’s features, such
as garbage collection, object-orientation, strong type-
checking, and dynamic binding. Unlike Java, Oberon is
a non-preemptive, single-threaded system. Background
tasks like the garbage collector are implemented as calls
to procedures, where “interruption” can only occur be-
tween top-level procedure calls.

A related project, Juice [24] provides an execution
environment for downloaded Oberon code (just as a JVM
provides an execution environment for Java). Juice is
a virtual machine that executes “binaries” in its own
portable format: it compiles them to native code dur-
ing loading, and executes the native code directly. The
advantage of Juice is that its portable format is faster to
decode and easier to compile than Java’s bytecode for-
mat.

SPIN [9] is an operating system kernel that lets ap-
plications load extensions written in Modula-3 that can
extend or specialize the kernel. As with Java, the type
safety of Modula-3 ensures memory safety. SPIN sup-
ports dynamic interposition on names, so that extensions
can have different name spaces.

Inferno [19], an OS for building distributed services,
has its own virtual machine called Dis and its own pro-
gramming language called Limbo. Inferno is a small sys-
tem that has been ported to many architectures: it has
been designed to run in resource-limited environments,
such as set-top boxes. In order to minimize garbage
collection pauses, Inferno uses reference counting to re-
claim memory, avoiding a number of accounting issues
related to garbage collection in an operating system.

VINO is a software-based (but not language-based)
extensible system [40] that addresses resource control is-
sues by wrapping kernel extensions within transactions.
When an extension exceeds its resource limits, it can be
safely aborted (even if it holds kernel locks), and its re-
sources can be recovered.



5.2 Java-Based Research
Besides Alta, K0, and the J-Kernel, a number of other

research systems have explored (or are exploring) the
problem of supporting processes in Java.

Balfanz and Gong [6] describe a multi-processing
JVM developed to explore the security architecture ram-
ifications of protecting applications from each other, as
opposed to just protecting the system from applications.
They identify several areas of the JDK that assume a
single-application model, and propose extensions to the
JDK to allow multiple applications and to provide inter-
application security. The focus of their multi-processing
JVM is to explore the applicability of the JDK security
model to multi-processing, and they rely on the existing,
limited JDK infrastructure for resource control.

IBM [18] released a JVM for its OS/390 family of
systems that is targeted towards server applications such
as Enterprise Java Beans. Their system puts each trans-
action into a separate worker JVM that initialize from
and execute out of a shared heap. This shared heap holds
those classes and objects that are expected to survive a
transaction. Worker JVMs that leave no resources behind
can be reused for multiple transactions. If a transaction
does leave resources behind, the worker JVM process is
terminated and the OS is used to free those resources.
IBM’s motivation for providing a quasi-process model in
Java are faster startup times attributable to the savings in
class loading and processing, which increases transaction
throughput. However, they do not consider the case of
malicious and uncooperative applications because there
is no control over what data individual applications can
store on the shared heap. In addition, the shared heap is
not garbage collected.

One approach to resource control is to dedicate an
entire machine to the execution of client code. For in-
stance, AT&T’s “Java Playground” [34] and Digitivity’s
“CAGE” Applet Management System [17] define special
Java applet execution models that require applets to run
on dedicated, specially protected hosts. This execution
model imposes extremely rigid limits on mobile code, by
quarantining applets on isolated hosts. As a result, richer
access is completely disallowed. Although the above-
mentioned systems guarantee the integrity of the JVM,
they do not provide any inter-applet guarantees beyond
that offered by the underlying “stock” JDK. These sys-
tems are similar to Kimera [41], which uses dedicated
servers to protect critical virtual machine resources (e.g.,
the bytecode verifier) but not to protect applications from
each other.

Luna [29] is a recent system from one of the J-Kernel
developers. Luna extends the Java language and run-
time with explicit, revocable remote pointers. Remote
pointers can be dynamically revoked, and processes can
safely share fine-grained data without compromising

type-safety.
Sun’s original JavaOS [42] was a standalone OS writ-

ten almost entirely in Java. It is described as a first-
class OS for Java applications, but appears to provide a
single JVM with little separation between applications.
It is being replaced by a new implementation termed
“JavaOS for Business” that also only runs Java applica-
tions. “JavaOS for Consumers” is built on the Chorus
microkernel OS [39] in order to achieve real-time prop-
erties needed in embedded systems. Both of these sys-
tems require a separate JVM for each Java application,
and all run in supervisor mode.

Joust [27], a JVM integrated into the Scout operating
system [35], provides control over CPU time and net-
work bandwidth. To do so, it uses Scout’s path abstrac-
tion. However, Joust does not provide memory limits.

The Open Group’s Conversant system [7] is yet an-
other project that modifies a JVM to provide processes.
It provides each process with a separate address range
(within a single Mach task), a separate heap, and a sepa-
rate garbage collection thread. Conversant does not sup-
port sharing between processes, unlike our systems and
the J-Kernel. Its threads are native Mach threads that
support POSIX real-time semantics. Conversant pro-
vides some real-time services. Another real-time sys-
tem, PERC [36], extends Java to support real-time per-
formance guarantees. The PERC system analyzes Java
bytecodes to determine memory requirements and worst-
case execution time, and feeds that information to a real-
time scheduler.

6 Conclusions
In order to support multiple applications, a Java oper-

ating system must control computational resources. The
major technical challenges that must be addressed in
building such a system are managing memory and CPU
usage for shared code. Some of these challenges can
be dealt with by adapting techniques used in conven-
tional systems to language-based systems. Other chal-
lenges can be dealt with by adapting language technol-
ogy, such as garbage collection, to fit into an operating
system framework.

We have described two prototype Java operating sys-
tems that are being built at Utah: Alta and K0. These two
prototypes and Cornell’s J-Kernel illustrate tradeoffs that
can be made in terms of system structure, resource man-
agement, and implementation strategies. We have shown
that many design issues from conventional operating sys-
tems resurface in the structural design of Java operating
systems. Java operating systems can be built with mono-
lithic designs, as K0; or they can be built with micro-
kernel designs, as Alta or the J-Kernel. Finally, we have
shown how garbage collection techniques can be used to



support resource management for Java processes.
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