
USENIX Association

Proceedings of the
FREENIX Track:

2003 USENIX Annual
Technical Conference

San Antonio, Texas, USA
June 9-14, 2003

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2003 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 63

Learning Spam: Simple Techniques
For Freely-Available Software

Bart Massey Mick Thomure
Raya Budrevich Scott Long

Computer Science Department
Portland State University

Portland, OR USA
{bart,thomure,binargrl,scottl}@cs.pdx.edu

http://oss.cs.pdx.edu/psam

Abstract
The problem of automatically filtering out spam e-mail
using a classifier based on machine learning methods is
of great recent interest. This paper gives an introduc-
tion to machine learning methods for spam filtering, re-
viewing some of the relevant ideas and work in the open
source community. An overview of several feature de-
tection and machine learning techniques for spam filter-
ing is given. The authors’ freely-available implementa-
tions of these techniques are discussed. The techniques’
performance on several different corpora are evaluated.
Finally, some conclusions are drawn about the state of
the art and about fruitful directions for spam filtering for
freely-available UNIX software practitioners.

1 Introduction
There has been a great deal of interest of late in the prob-
lem of automatically detecting and filtering out unso-
licited commercial e-mail messages, commonly referred
to as spam. (While the Hormel Corporation, owners of
the “Spam” trademark, are not happy about the choice of
name, they have acceded to the popular usage. For a fur-
ther etymology see [14].) Recent dramatic increases in
spam volume have combined with the success of a num-
ber of new filtering methods to make automated spam fil-
tering highly successful. The SpamAssassin [20] mail-
filtering tool is one such tool. SpamAssassin uses a large
manually-generated feature set and a simple perceptron
classifier with hand-tuned weights to select ham (non-
spam) messages and discard spam.

Much current interest has focused around the role of
machine learning [5, 15] in spam filtering methodolo-
gies. This paper describes the basics of machine learn-
ing and several simple supervised machine-learning al-
gorithms that are effective in filtering spam. The authors
have made implementations of these algorithms publi-
cally available, along with various kinds of feature data
from several corpora used to evaluate the algorithms.
These implementations and data are used to help eval-

uate the relative merits of these algorithms, and suggest
directions for future work.

2 Context
The spam problem has received increasing attention in
recent years. As a result, a number of approaches for
dealing with the problem have been proposed. A re-
cent issue of Wired magazine [11] lists a variety of pop-
ular strategies. Blacklists such as spamcop.net attempt
to stop spam by preventing spam-delivering hosts from
communicating with the rest of the Internet, or at least
with the victim machine. Distributed identification sys-
tems such as Vipul’s Razor allow users to manually iden-
tify spam for collaborative filtering. Header analysis can
be used to eliminate messages that have malformed or
unusual headers or header fields, as well as messages
that have invalid return addresses or sender informa-
tion. Legal approaches are gaining currency at both the
U.S. State and Federal levels, including proposed penal-
ties for unsolicited commercial e-mail and anonymous
commercial messages. (It should be noted that the le-
gal approach is widely credited with largely eliminating
unsolicited commercial messages via FAX.) The range
of approaches is growing rapidly in response to the in-
crease in spam traffic: approaches not noted by Wired in-
clude whitelist systems such as Active Spam Killer [16],
a mailback system that attempts to verify that e-mail is
ham by requiring a confirmation message from unknown
senders.

A recent conference on the spam problem at MIT [8]
was nearly overwhelmed by the volume of attendees.
The presentations were quite productive; many criti-
cal points were raised about spam filtering that deserve
wider attention by the open source community. There
was far too much useful information to summarize here:
perhaps one example will suffice. There seems to be
a widespread perception that false positives (ham mes-
sages flagged as spam by filters) are “intolerable” in
spam filtering.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association64

The MIT Spam Conference presenters mentioned sev-
eral reasons why insisting on zero tolerance for false
positives can lead users to wrongly reject spam filtering
as a technology. As many researchers have noted, the
absolute prohibition of false positives can only be jus-
tified by assuming that they have infinite cost: while a
false positive may have a cost much larger than a false
negative [10], this cost is not infinite. Further, false pos-
itive rates of most filtering algorithms can be lowered
in a tradeoff for false negative rates. Finally, a good
spam filter may actually exhibit super-human classifi-
cation performance: after all, this is the sort of repeti-
tive and error-prone task that a human may be expected
to perform poorly [12]. The unsophisticated filters re-
ported here uniformly achieve false positive rates of just
a few percent: the authors informally estimate their hu-
man false positive rates to be in a similar range. Third,
the false positive rate of a single spam filter is somewhat
irrelevant: both ensembles of filters and the combina-
tion of filtering with other approaches to spam detection
can largely take care of the overall false positive prob-
lem. Finally, spam will only be sent if it is profitable: in
the long haul, widespread use of filters may change the
economics of spamming enough to largely eliminate the
problem [7].

Research in spam filtering within the freely avail-
able software community is currently proceeding quite
quickly: some of what is said here about the state of the
art will no longer be true by the time it is published. The
general system engineering and machine learning princi-
ples that are key to the spam elimination effort, however,
should still be valuable for some time.

3 Machine Learning
Machine learning is a field with a broad and deep his-
tory. In general, a machine learner is a program or device
that modifies current behavior by taking into account re-
membered past results. This is a broad definition. How-
ever, much of machine learning research is focused on
inductive learning, in which general rules are built based
on a corpus, a set of specific examples. In spam filter-
ing (and many other applications) the corpus consists of
pre-classified examples, and the learned rules are used
to classify e-mail as either ham or spam.

This paper gives greatest emphasis to supervised
learning. In supervised learning, the examples to be
used for learning are collected and processed during a
training phase. The learned rules are then used without
further modification during a classification phase. Re-
inforcement learning—on-line correction of the learned
rules in response to classification errors—is also quite
valuable. This allows the system to adapt to changing
conditions, such as user preferences or spam content.
The simplistic approach of re-learning the entire corpus,

including newly acquired classifications, can suffice if
the learner is sufficiently fast on large inputs.

Supervised machine learning for spam classification
begins with a corpus consisting of a collection of cor-
rectly classified ham and spam messages. In the feature
selection stage, key features of the corpus are identified
that distinguish ham from spam. In the training stage,
the selected features of the corpus are studied to learn
characteristics that differentiate spam from ham mes-
sages. Concurrently or subsequently, a validation stage
is often used to check the accuracy of the learned char-
acteristics. Finally, the learned knowledge is used in a
classification stage that filters spam by giving a classifi-
cation to each target message in the classification set.

Some important considerations in supervised learn-
ing involve management of the corpus. For accuracy’s
sake, one would like to use the entire corpus as training
data. Unfortunately, this makes validation quite difficult:
the classifier will appear to perform unrealistically well
when asked to classify the messages on which it was
trained. Fortunately, in most problem domains the num-
ber of training instances needed to learn with a given
accuracy grows only logarithmically with the size of the
hypothesis space, the set of concepts that must be dis-
tinguished. Thus, it is customary to split the corpus into
a training set and a validation set. A rule of thumb in
machine learning is to make the validation set consist of
a randomly selected third of the corpus. There are much
more sophisticated methods for validation that improve
on the quality of this approach, but the simple method
will suffice for most cases.

It is reasonable to be concerned about the minimum
corpus size required for full accuracy. As corpus size in-
creases, machine learning algorithms tend to asymptoti-
cally approach their maximum accuracy. Figure 1 shows
the accuracy of a number of different machine learning
algorithms on increasingly large subsets of a synthetic
corpus discussed in Section 7. The figure shows that for
the algorithms discussed here, 100–1000 messages are
sufficient to achieve maximal accuracy. The variance at
low corpus sizes is due to statistical error, and represents
a large inter-run variance.

A risk that must be countered when training a machine
learner is overtraining: building a learner that classifies
based on quirks of the training set rather than general
properties of the corpus. Figure 2 shows the change in
classification rate during training for the perceptron of
Section 4.2.4 on the 15,000 instance personal e-mail cor-
pus described in Section 7. In the figure, the accuracy of
classification on the training set continues to increase,
while the accuracy on the validation set actually begins
to drop. This explains the need for an independent vali-
dation set: training should stop when maximal validation
set accuracy is reached.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 65

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 10 100 1000 1e+04 1e+05

T
ot

al
 E

rr
or

 R
at

e

Total Instances

hamming
nbayes
graham
neuron

dtree

Figure 1: Learning Rate

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 20 40 60 80 100 120 140 160

T
ot

al
 E

rr
or

 R
at

e

Iteration

training
validation

Figure 2: Overtraining

An important tradeoff in spam filtering is between
false positive (ham messages flagged as spam) and false
negative (misses, spam messages flagged as ham) rates.
A detector that always says “ham”, after all, will never
experience a false positive. In communications theory,
this tradeoff is illustrated by a receiver operating curve
that shows the tradeoff between rates. Most spam filters
prefer to operate with a bias that minimizes the total er-
ror. False positives, however, are generally much more
expensive than false negatives, so it may be desirable to
operate the filter outside of its optimal range. Figure 3
shows receiver operating curves for several spam filters
on the synthetic corpus discussed below. The spam fil-
ters were biased by varying the percentage of spam from
5% to 95%: for these filters, this caused the detection
profile to shift. The strong preference of the filters for
operating with a particular optimal bias is notable.

The accuracy of the corpus is also a concern. It is
to be expected that a certain amount of misclassifica-
tion of messages and mis-recognition of features will be
present in the data. Section 7 discusses some of the char-
acteristics of the corpora used here. While these corpora
have received a great deal of attention from a variety of
sources, they nonetheless seem to have some residual
misclassification.

Different learners may cope with different types of
features and classifications. Ultimately, spam filtering
tends to concern itself with a binary classification: ham

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6

Fa
ls

e
N

eg
at

iv
e

R
at

e

False Positive Rate

hamming
dtree

neuron

Figure 3: Receiver Operating Curves

vs. spam. More sophisticated document classifiers can
provide both more detailed classification outputs (e.g.
“Nigerian spam”, “message from Mom”) and more pre-
cise estimates of their classification confidence.

Some machine learners (notably neural nets) can han-
dle continuous feature values. Many learners are re-
stricted to discrete feature domains, and one of the algo-
rithms discussed here is tailored to binary features. The
learning algorithms described in this paper have been set
up to use binary features, for several reasons. The fact
that binary feature data can be handled by essentially any
inductive learner permits the comparison of a wide range
of approaches. The binary-feature version of a typical
learning algorithm is easier to explain: the mathematical
notation is complicated enough without worrying about
many-valued features. Perhaps most importantly, the
common types of binary feature detectors are more dif-
ficult for a spammer to manipulate. For example, if the
number of occurences of a particular feature in a given
message is considered, a spammer can load a message
up with repeated instances of a “good” feature and over-
whelm the spam-related features of the message.

4 Learning Methods

There are a huge range of approaches to machine learn-
ing discussed in the literature. Several criteria have been
used to select algorithms for presentation:

Simplicity: First and foremost, the algorithm must
be comprehensible and easily implementable by
UNIX developers of freely available software. Al-
gorithms comprehensible only to machine learning
experts have been eschewed: they often offer only
a marginal increase in performance in any case.

Currency: Most of the algorithm families currently
being used by freely-available spam detectors are
represented in this sample. A glaring omission is
genetic algorithms. The range of algorithms and
implementations in this category is enormous, mak-
ing it difficult to select a canonical candidate. In
addition, the performance of genetic algorithms in

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association66

spam filtering does not currently appear to be ex-
ceptional.

Pedagogy: The algorithms presented here are those
that are commonly used in introductory artificial
intelligence and machine learning texts [15, 5] to
introduce various classes of learners. While much
more sophisticated variants of each technique pre-
sented are possible, grossly speaking the perfor-
mance gains over these simple techniques are mod-
est, and the extra implementation difficulties sub-
stantial.

It is worth emphasizing this last point again. More so-
phisticated variants of each of the algorithms presented
here have already been applied to spam filtering. Simple
algorithms tend to perform reasonably well, so focus-
ing on them is practical. More importantly, the study of
simple algorithms is intended to be inspirational, leading
to further investigation by spam filtering practitioners in
the freely available software community.

4.1 Notation
As mentioned earlier, this paper considers binary fea-
tures for binary classification. A feature detector is
applied to an e-mail message to produce a set x =
x1 . . . xm of binary features of the message. The binary
classification c of the message may be given or may be
the quantity to be determined: this classification is ei-
ther + indicating spam, or indicating ham. Both the
classified feature detector output x → c and the original
e-mail message are informally referred to as an instance.
In the absence of other context the feature detector out-
put will be implied. Negation will be represented with
an overline, thus xi is true when feature xi is absent.

The instances considered here are drawn from up to
three disjoint sets: a set T of training instances, a set
V of validation instances, and a set C of classification
instances. When more than one instance is involved, ad-
ditional subscripts for features and classifications will
represent the instance; for example xj = x1j . . . xmj .
The set of positive and negative instances drawn from
a set S will be represented by S+ and S respectively.
The set of instances with feature i true and false will be
represented by Sxi

and Sxi
respectively.

4.2 Techniques
In this section, several supervised learning techniques
are considered. An extremely simple baseline algorithm
is presented, intended partly to illustrate concepts and
to provide a standard of comparison. A discussion of
commonly-used and important algorithms ensues, con-
cluding with a decision-tree method. Finally, an ad-
vanced approach using multilayer neural networks is dis-
cussed.

The authors have made UNIX utility implementations

00011

10111

11011

10101

10000

01010

Figure 4: MHDV Classification

of each of the algorithms described in this section freely
available: see Availability at the end of this document.
The corpus data used is also freely available from the
authors. (The exception is personal e-mail messages, for
which only feature data is available.) Thus, the perfor-
mance measurements reported in Sec. 8 below should be
readily replicable by other investigators.

4.2.1 Minimum Hamming Distance Voting
Perhaps the simplest conceptual method of learning is
as follows. When presented with the feature set x of a
target instance to be classified, find a subset M of the in-
stances in the training set T with the same feature values
x. Then classify x → c if |M+| > |M |, and x → c
otherwise. (Actually, ties should be randomized appro-
priately.)

This brute-force method is simple to implement, but it
has drawbacks. Foremost of these is that given a reason-
ably small training set and reasonably large number of
features, it may be unlikely to find any training instances
whose features match those of the target instance. In this
situation, the error rate may be very high.

Minimum Hamming Distance Voting (MHDV) is an
adaptation of this “brute force” method designed to
achieve higher accuracy for a given training set size. The
Hamming distance h(x,x′) between two binary vectors
x and x′ is defined to be the number of bit positions in
which x and x′ differ. Thus, h(x,x′) = #(x ⊕ x′),
where ⊕ is the exclusive-or operator and # is the pop-
ulation count or Hamming weight: the number of 1 bits
in the vector.

MHDV generalizes brute force learning via the simple
mechanism of using nearby instances rather than identi-
cal ones. Consider a target instance x and a training set
T . Let M be the subset of T with minimal Hamming
distance from x. A target message x is classified as spam
if |M+| > |M | and ham otherwise. Ties are broken
randomly. Formally, MHDV is an instance-based learn-
ing method, specifically a k-nearest-neighbor algorithm
with k = 1. Figure 4 illustrates the MHDV classification
process: the target instance (the empty dot with feature
vector 11011) is classified positive in accordance with
the majority of its distance-2 neighbors.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 67

To the best of the authors’ knowledge, instance based
learning has not previously been proposed as a spam fil-
tering methodology. There are serious advantages to this
approach, but also serious drawbacks. The accuracy of
MHDV improves dramatically as a function of the size
of M , and therefore as a function of the size of T . But
in a naı̈ve implementation a single classification requires
comparing the target x to each instance in T , and thus
time o(m|T |) where m is the number of features. (More
sophisticated implementations can use similarity hash-
ing techniques to improve this performance somewhat.)
The storage of the large set of instances is also a burden,
although storage is increasingly inexpensive.

Note that reinforcement learning is easy with MHDV:
simply put misclassified instances into the training set
with the correct classification. MHDV should be easily
extensible to discrete or continuous features that obey a
distance metric.

4.2.2 Naı̈ve Bayesian
An interesting class of supervised learning algorithms
focuses on probabilistic interpretation of training data.
One of the simplest of these is the so-called naı̈ve
Bayesian approach. Bayes’ Rule famously notes that

pr(S|x) =
pr(x|S) · pr(S)

pr(x)

where pr(S|x) is the probability that an instance is spam
given that it has the given feature set, pr(x|S) is the
probability that it has the given feature set given that
it is spam (an important distinction), pr(S) is the over-
all probability that a message is spam, and pr(x) is the
probability of receiving a message containing the given
features. Crucially, the quantities on the right-hand side
of the equation can all be measured, under the (wrong,
but surprisingly harmless in practice) assumption that
the features x1 . . . xm are independent, having no par-
ticular statistical relationship. A Naı̈ve Bayes classifier
thus classifies a message as spam when

(
∏m

i=1 pr(xi|S)) · pr(S)
pr(x)

>
(
∏m

i=1 pr(xi|H)) · pr(H)
pr(x)

Note that the denominator is constant across the inequal-
ity and can be dropped.

Some algebraic and probabilistic manipulation yields
a decision rule that classifies a message x as spam if and
only if

|T+|
m∏

i=1

|T+,xi
|

|T+| > |T |
m∏

i=1

|T ,xi
|

|T |

To oversimplify, Naı̈ve Bayes classifies an instance as
spam if it shares more significantly in the features of

spam than in the features of non-spam. The rule also
takes into account the a priori probability that the mes-
sage is spam, i.e. the overall spamminess of the training
set. A statistical adjustment (see [15]) is used for fea-
tures that appear rarely or not at all with a given sign
in the corpus. It is also common to take logarithms to
turn the product computation into a sum computation:
this greatly improves numerical robustness at a slight ex-
pense in performance.

The Naı̈ve Bayes classification rule can be seen as a
relative of the MHDV rule that uses the feature set in a
different, more principled fashion. Another major dif-
ference is that the set sizes used in the decision rule can
be computed during the learning phase, and the train-
ing data then discarded. This makes classification more
efficient than with MHDV.

Naı̈ve Bayes learning is relatively simple to imple-
ment, and accommodates discrete features reasonably
well. It is not quite as accurate or robust as some other
methods, but is highly efficient to train. Reinforcement
learning is also easy: the relevant set sizes are simply
continuously updated with newly-classified instances.

4.2.3 Graham

As mentioned earlier, much of the interest in Bayesian
methods in the freely available software community was
inspired by Graham’s article A Plan For Spam [6]. The
machine learning approach used by Graham was an in-
formal probabilistic one: Robinson [18] later elucidated
the relationship between Graham’s technique and Naı̈ve
Bayesian methods.

In essence, Graham’s method is similar to Naı̈ve
Bayesian: the a priori probabilities of a message’s words
are combined to yield a likelihood that the message is or
is not spam. Specifically, Graham classifies a message
as spam if

m∏

i=1

|T+,xi
|

|T+|
|T+,xi

|
|T+| + |T ,xi

|
|T |

is greater than 0.9. The features xi used in the calcu-
lation are those words whose contribution to the prod-
uct differs most from 0.5: roughly speaking, these are
the high-gain words (Sec. 4.2.5). Various empirical ad-
justments are made to the above formula in the imple-
mentation: Graham asserts that they do not change the
classification except in unusual cases.

Robinson has designed an adapted Bayesian method
that is claimed to be a strict improvement on Graham’s
approach: true Naı̈ve Bayesian is supposed to be better
yet, although it often seems to offer only a small im-
provement in experiments reported here. Graham’s suc-
cess in spam filtering shows that even an extremely sim-
ple and less-principled approach to spam feature detec-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association68

+
w

w

w

Figure 5: Artificial Neuron

tion and machine learning can get good results in prac-
tice.

4.2.4 Perceptron
Neural nets are commonly used in supervised learning.
The simplest form of neural net is the single-element
perceptron: a message is classified as spam if and only
if

m∑

i=1

wi · xi > w0

where the wi are real-valued weights. Note that the out-
put is made binary by thresholding: in addition to be-
ing convenient for a binary classifier, this non-linearity
is important in building larger neural networks. Figure 5
shows the perceptron structure schematically.

The weights are assigned during the training phase
by gradient descent. Repeated passes are made over
all training instances: small adjustments are made to
the weights on misclassified training instances until the
number of misclassified validation instances is mini-
mized. This somewhat awkward procedure minimizes
the probability of overtraining the perceptron.

Multilayer neural nets use the output of single percep-
trons or similar structures as inputs to subsequent per-
ceptrons. This allows the system to learn more complex
features, at the expense of more complex training and
difficult control.

Perceptrons and other artificial neurons accommodate
binary and discrete features essentially by treating them
as continuous. Reinforcement learning in these systems
is by adjusting the training weights to correctly reclas-
sify misclassified instances.

4.2.5 ID3
Decision tree learning is a bit more complicated than the
above methods. The ID3 decision tree algorithm [17] is
a simple, classic decision tree learner. The information-
theoretic entropy U of a set of messages S represents the
difficulty of determining whether a message in S is spam
or non-spam:

U(S) = p(S+, S) log2 p(S+, S)

10101

x3 x3+

x2 x2+

Figure 6: Decision Tree

p(S , S) log2 p(S , S)

where

p(S0, S) =
|S0|
|S|

If S is partitioned based on the value of some particu-
lar feature xi, so that S = Sxi

∪ Sxi
, the information-

theoretic gain

G(S, xi) = U(S) p(Sxi
, S)U(Sxi

) p(Sxi
, S)U(Sxi

)

represents the information gained by considering the
subsets Sxi

and Sxi
separately.

In ID3 the feature xi yielding the highest gain on the
training set T is selected for splitting. These subsets
are further split until subsets are produced containing
instances of only one or largely a single classification.
The resulting tree is used in the classification stage: tar-
get instances are given the classification matching that of
the training instances in their leaf subset. Overtraining
is controlled by stopping the split when the largest gain
is small, or when the statistical significance of a split as
given by a χ2 test is too low. Figure 6 shows a binary de-
cision tree: an instance is classified by walking from the
root of the tree to the leaf, choosing a direction at each
node based on the properties of the given feature. Since
the given instance has feature 3 positive and feature 2
negative, it will be classified as ham.

Decision trees can easily accomodate multi-valued
discrete features by way of n-ary trees. Continuous fea-
tures are usually handled by quantization. Reinforce-
ment learning usually involves simply putting the newly-
classified instance at the appropriate leaf: occasionally
tree operations may have to be performed to preserve the
property of splitting on the highest-gain features first.

4.3 Advanced Learning With Neural Nets
In addition to the relatively unsophisticated techniques
described above, more advanced machine learning tech-
niques can also be used to filter spam. In general, these
techniques trade off more complex and difficult designs
and implementations for potentially higher quality re-
sults. This study explores one such approach as an ex-
ample: constructing a multilayer neural network. This
methodology generalizes the simple perceptron of Sec-
tion 4.2.4, and provides a good illustration of the trade-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 69

offs of an advanced machine learning approach for spam
detection.

When constructing a multilayer neural network, one
is faced with the choice between implementing from
scratch, or attempting to use an existing package that
is freely available. Implementing a neural network from
scratch is appropriate when performing neural network
research: however, it requires substantial effort to de-
velop and debug it, and more effort still to validate it.
Subtle numerical bugs can easily contaminate data in
ways which are difficult to detect.

Given a focus on spam filtering research rather than
neural network research, a free software platform is
a natural choice. Using free neural network soft-
ware leverages years of development and debugging ef-
fort. Because free software is in widespread use by re-
searchers around the world, it undergoes intense scrutiny
for correctness, and bugs can be fixed quickly when they
are found. The availability of the software makes it eas-
ier for other researchers to reproduce and extend results.
One caveat, however, is that a firm grasp of the principles
behind neural networks is still necessary. Neural net-
works are sometimes finicky learners, and can produce
poor results when improperly constructed and used.

4.3.1 Introduction to Neural Networks
A neural network consists of multiple, interconnected
computational units. Each unit can have multiple inputs,
but only a single output. The unit’s basic function is to
add up the values of its inputs, and transform the result
with a nonlinear function to produce its output. The in-
dividual units are not very powerful by themselves, but
when linked together in a network they can carry out
complex computations.

Although each unit can only produce a single output
value, this value can be used as input to many other units.
Connections between the output of one unit and the in-
put of another are called links. Each link has an associ-
ated weight. The output of the first unit is multiplied by
this weight to become the input of the second unit. In a
network with hundreds of units there can be thousands
of links, and therefore thousands of weights. It is these
weights which change as the network is trained.

The network configuration used for spam filtering was
a basic feedforward topology. In this configuration, the
network can be viewed as a series of layers of units with
the outputs of one layer fully connected to the inputs of
the next layer. This topology is called feedforward be-
cause there are no loops (links only go forward, never
backward) and no jumps (links never skip over interven-
ing layers). The input cascades from layer to layer, un-
dergoing a transformation at each step, until it becomes
the output. The first layer of the network is the input
layer. This layer collects the input and passes it through

Figure 7: Neural Net

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

-10 -5 0 5 10

(1-exp(-x))/(1+exp(-x))

Figure 8: Sigmoid Response Function

weighted links to the first interior hidden layer. Each
hidden layer computes the weighted sum of its inputs,
and then transforms the resulting values with a nonlin-
ear transfer function to produce its output. The last hid-
den layer sends its output to the output layer, which in
some configurations may apply a final nonlinear trans-
formation. In our network, the output layer did not use
a nonlinear transfer function. Figure 7 shows one such
network, with three input neurons, two hidden neurons,
and one output neuron.

The nonlinearity of the hidden units is what gives a
neural network its power to learn complex functions.
Without some form of nonlinearity, the transformations
performed by the layers of the network amount to noth-
ing more than a series of matrix multiplications; a multi-
layer network would be equivalent to our simple percep-
tron. Thus it is necessary to introduce nonlinearity if
the network is to be able to learn complex mappings.
For our networks we selected a transfer function called
the sigmoid, an S-shaped curve whose graph is shown
in Figure 8. This function is commonly used in neural
network research, and should be available in any free or
commercially available neural network package.

4.3.2 A Spam Filtering Network

In the feedforward networks employed in this project,
the input layer consists of a number of units equal to
the feature vector size of the input: each input unit cor-
responds to a single feature. Because we are treating

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association70

spam detection as a binary classification problem, only
one output unit is used. The output of this unit should
be 0 for nonspam inputs, and 1 for spam inputs. Note
that, as with the perceptron, it is possible to allow the
neural network output to vary continuously, indicating
the likelihood that a message is spam: this provides one
way to trade off false negatives for false positives, while
flagging marginal messages for further consideration.

One of the trickier tasks in constructing a multilayer
neural net is choosing the number of hidden layers and
the number of units in each layer. The spam filter de-
sign uses a single hidden layer with many fewer units
than the input layer. It is desirable to have as few hidden
units as possible to avoid a form of overfitting in which
the extra neurons end up modeling unimportant training
set details. However, with too few hidden units, the net-
work will not be able to accurately model the underlying
function.

The weights in large networks correspond to a large
number of degrees of freedom. Estimating how many
degrees of freedom are truly necessary involves estimat-
ing the degree of correlation between inputs. It is eas-
ier to estimate the number of degrees of freedom if the
inputs are as uncorrelated as possible. A word cluster-
ing feature detector (Sec. 5.3) helps to achieve this by
dividing words into clusters which are maximally inde-
pendent.

Like the perceptron, a neural net is trained through
a process of adjusting the link weights between layers
so as to bring the actual output vectors closer to the de-
sired ones. The network essentially learns ”by exam-
ple.” The most famous training algorithm for feedfor-
ward networks is backpropagation. In backpropagation,
values first flow forward through the network to produce
outputs. These outputs are compared with the desired
ones, and errors are then propagated backward through
the network, adjusting the weights so as to reduce the
error. A closely related training technique, Rprop, has
many of the same features as backpropagation: it was
selected for filtering because of its robustness and quick
convergence.

Several issues arise when selecting a network design.
It is clear that the input layer must have as many units as
the number of features in the feature vectors, but these
value can be presented to the network in different ways.
Simplest is to treat each feature as a binary input, which
is 0 when the feature is not present, and 1 if it is, re-
gardless of how many times that feature might occur in
a single message. This makes the neural net compati-
ble with the other machine learners discussed here, and
simplifies feature processing.

(Another option would be to standardize the input
values according to some statistical model. Originally,
the input values were standardized under the assumption

that they are normally distributed. The purpose of this
was primarily to accelerate the learning of the network.
Because the feature counts have a wide spread—many
are 0, some can be in the hundreds—it takes a long time
for the network to adjust its weights to account for this
spread. Standardizing the inputs brings the values closer
together, which speeds convergence.)

4.3.3 SNNS

SNNS is a neural network simulation package devel-
oped at the University of Stuttgart in Germany. The
source code is open, and the software is freely avail-
able for research and academic use. The homepage of
the SNNS project can be found at http://www-ra.
informatik.uni-tuebingen.de/SNNS/.

SNNS was selected for many reasons. Most impor-
tant is its great flexibility. SNNS supports a wide range
of network topologies, not just feedforward networks. It
provides an array of training algorithms which can be
applied to almost any kind of network design. Parame-
ters like the number of layers, layer dimensions, links,
and transfer functions are all fully configurable. This al-
lows experimentation with a variety of designs with no
time wasted recoding the network.

SNNS has a very attractive GUI which runs under X.
Although there is no visual design tool, it is straight-
forward to configure a basic feedforward network. The
GUI can display the network in action and can produce
graphs of output error over time. These features make
it simple to visually determine when the network is per-
forming well.

The package can also be operated in a batch mode.
The batch interpreter has a complete scripting language
to automate training sessions. Training and validation
can be scheduled arbitrarily, and error results can be
written to disk at any time during the process. This
makes it simple to begin training runs on large datasets
overnight.

Finally, SNNS has the ability to translate a trained net-
work into a C program. Although the network cannot be
trained further once converted to C, it is very compact
and easily callable from other C code. This makes it
possible to build high-performance message classifiers
once the network is trained.

The use of an open source neural network “construc-
tion kit” thus permits simple implementation of a quite
sophisticated machine learner for spam. A similar ap-
proach could be employed for other machine learners
discussed earlier, as open source construction kits are
available for a wide variety of machine learning tech-
niques.

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 71

5 Feature Detection
The problem of feature detection is largely orthogonal
to the problem of learning on the identified feature set.
(This observation does not seem to be commonly made
in the open source community, and deserves wider atten-
tion.) This work has experimented with several different
types of feature detector. More sophisticated methods
have been applied to feature detection. For example,
Lewis’ Data Enrichment Method [13] is unbelievably
powerful, but has other drawbacks that prevent its use
in the real world.

5.1 SpamAssassin
The feature set computed by SpamAssassin was the ini-
tial basis of this study. The advantages of this approach
are manifold: SpamAssassin provides several hundred
hand-crafted binary features, the features seem to be rea-
sonably sensitive, and using SpamAssassin features per-
mits easy comparison with the classification performed
by SpamAssassin itself.

The features recognized by SpamAssassin provide a
fine feature source for the learning algorithms described
above. Maintenance of this feature detector, however, is
a tremendous amount of work. In addition, the detector
is quite slow, as slow as a few messages per second if the
network-based lookup features are enabled.

5.2 Gain-Based
Rather than hand-crafting a feature detector, it would be
useful to automatically extract features directly from the
corpus. When trying to classify email the most natu-
ral features are the words of the message. A standard
approach is to use individual words directly as features.
Each feature vector element indicates whether a partic-
ular word is present in a message. However, the En-
glish language contains thousands of words, while ev-
ery email message contains only a small subset of those
words. This makes it difficult to decide which words are
good representatives of spam mail and nonspam mail,
given a limited amount of features.

To this end, a feature detector has been con-
structed that selects e-mail body words with the high-
est information-theoretic gain (Sec. 4.2.5) as likely high-
utility candidates for learning algorithms. This detector
appears to work quite well, with learning accuracies ap-
proaching those achieved with the SpamAssassin detec-
tor. The detector operates by breaking the e-mail body
into words using simplistic rules, and then measuring the
gain of each word using a dictionary. Those words with
gain above a set threshold are retained.

5.3 Word Clustering
A preliminary attempt was made to assess the perfor-
mance of word-based features, using the 134 words with

the highest information gain as features. The resulting
feature vectors were quite sparse: most messages had
few high-gain words. The training cost of supervised
learning algorithms generally grows in proportion to the
number of inputs. For example, the number of weights
in a feedforward neural network grows in this fashion.
Because training time is proportional to the number of
weights, considering a large number of inputs can make
training intractably slow. What is needed, then is a way
to automatically extract a small number of features that
nonetheless give a strong signal on every message.

One solution to this problem is to cluster words of
similar meaning together into a single feature. This
allows more unique words (thousands instead of hun-
dreds) to be considered when scanning a message for
features, while simultaneously keeping the feature count
low enough to make training managable. This gives
much better coverage of the set of words occurring in
email messages.

An information-theoretic clustering algorithm de-
scribed in a recent paper by Dhillon and Modha [4]
seems to be a good candidate. This algorithm was se-
lected from among many other clustering algorithms
proposed for machine learning primarily because its ex-
ecution time is linear in the number of words and clus-
ters. Other clustering techniques tend to be quadratic or
worse in the number of words and clusters. In addition,
the Dhillon algorithm is unlike some other clustering al-
gorithms in that it considers the spam/non-spam classi-
fication of the messages while clustering. The mechan-
ics of the Dhillon algorithm are briefly described here;
the original paper by Dhillon gives a deeper look at the
information-theoretic concepts underlying it.

The initial assignment of words to clusters is done
by allocating two sets of empty clusters of equal size.
Words which occur more often in nonspam messages are
randomly assigned to one of the “ham clusters”. Simi-
larly, spam words are assigned to a spam cluster. This
concept of nonspam clusters vs. spam clusters is only
meaningful during initialization, since the clustering al-
gorithm will move the words between clusters to mini-
mize the clustering metric. In the final clustering, some
clusters may contain both ham and spam words.

After the initialization step the algorithm becomes it-
erative. On each pass through the loop words are moved
between clusters to decrease the value of a divergence
metric. This metric quantifies the average dissimilarity
of the words in each cluster. Minimizing this value thus
maximizes the intra-cluster similarities. Iteration then
continues until the divergence metric does not change
more than a fractional amount from the previous itera-
tion.

The implementation of the clustering algorithm is
done in three major blocks: collection of data, cluster-

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association72

ing of data, and output of clusters. Each message body
is initially scanned and tokenized into words. The clus-
tering function takes as input the desired number of clus-
ters. The clusters are initialized as described above. To
reduce the number of candidate words to a manageable
size, the implementation only considers words which oc-
cur more than a minimum number of times over all the
messages.

The iterative algorithm then executes. After a num-
ber of iterations the clustering converges. The number
of clusters output by the algorithm may be less than re-
quested, because some clusters become empty during
the iteration of the main loop. Only non-empty clusters
are output at this phase.

The final step is generating the feature vectors. Us-
ing the cluster file generated by the clustering algo-
rithm, each message body in the corpus is again scanned,
matching each scanned word to its cluster. This is
done by loading the cluster file into a hash table which
maps each word to its cluster number, which is a nearly
constant-time operation. Since each word in the mes-
sage must be examined once, the time it takes to scan a
message is thus roughly linear in the number of words in
the message.

5.4 Combined Approaches
It is sensible to consider combinations of feature detec-
tors. The comparison is complicated. As noted previ-
ously, larger feature sets slow recognition and learning:
it may be better to use more features of a given type than
to combine features of several types.

For the feature detectors examined here, combinations
are less problematic. The SpamAssassin detector op-
erates on header information (and by all accounts does
well at this): the other detectors operate only on body
information. The clustering detector is believed to per-
form strictly better than the gain-based detector, since
it is essentially a superset of it. Thus, there are five
combinations that are leading candidates for examina-
tion: the three detectors alone; SpamAssassin plus gain-
based; and SpamAssassin plus clustering.

6 Related Work
Work on text classification in general, and spam detec-
tion in particular, dates back many years in the machine
learning community. For example, Androutsopoulos has
worked with a number of researchers on machine learn-
ing spam filters [1, 19]. A good overview of machine
learning for e-mail classification is in Itskevitch’s M.S.
Thesis [9].

These approaches first caught the wide attention of
the open source community with Graham’s web article
(Sec. 4.2.3). This article and Robinson’s commentary
on it inspired a number of implementations of semi-

Bayesian word-based filters, many of which can be
found at sourceforge.net.

At the same time, non-learning-based approaches to
spam filtering have also been widely attempted. The
SpamAssassin tool is a freely-available Perl-based spam
filter that combines hand-crafted features using a per-
ceptron. Initially, the perceptron weights were hand-
tuned: more recently, a genetic algorithm was used to
train the weights on a synthetically composited corpus.
Oddly, the SpamAssassin authors have apparently not
used a traditional gradient-descent approach to tune their
perceptron: it was this omission that inspired the au-
thors of this paper to begin the research reported here.
SpamAssassin combines its primary feature data with
other sources of information, such as spam databases
and word data, to produce a final classification.

7 Corpora
The problem of selecting a corpus for evaluation of
learning algorithms for spam detection is a difficult one.
One challenge is that private e-mail is rarely available
for public study: thus, other sources of ham must be
found if the corpus is to be made publically available.
For evaluation purposes, four corpora were assembled.

The first corpus consists of the first author’s e-mail
over a recent two-year period, a total of 15,498 mes-
sages. These messages were randomly sampled to se-
lect exactly 15,000 messages for ease of use. This cor-
pus has the advantage of verisimilitude: most studies
have used only corpora consisting of synthetic combi-
nations of messages from public mailing lists and spam
databases. The corpus is about 50% spam: a percentage
higher than indicated in older publications on the sub-
ject [3], but consistent with current anecdotal evidence.
For privacy reasons, the corpus itself is not publically
available: however, the instance data derived from the
corpus by feature recognition is.

The second corpus is a total of 15,000 messages
drawn equally from two sources: 50% of the messages
are ham from the X Window System developer’s Xpert
mailing list; 50% are spam from the Annexia spam
archive [2]. The a priori accuracy rate of this corpus
is much lower; there are frequent classification errors in
both data sets. This corpus is publically available.

The third corpus is the Lingspam corpus, a synthetic
corpus of 2405 messages. 80% of these messages are
ham from a linguistics mailing list: the rest is spam. The
corpus has been made publically available by Ion An-
droutsopoulos, and used in publications by several au-
thors: it thus provides a basis for comparison with pub-
lished work.

The fourth corpus is used to tune SpamAssassin, and
consists of 8686 messages, 80% ham and the remainder
spam, from a variety of sources. It is deemed useful for

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 73

Table 1: Percentage Error Rate In Classification

SA BD SA+BD CL SA+CL
⊕ T ⊕ T ⊕ T ⊕ T ⊕ T

synthetic (7500 ham, 7500 spam)
hamming 0.40 7.11 2.10 4.45 1.00 4.86 1.29 2.56 0.68 2.80

nbayes 0.10 8.12 0.12 11.30 0.02 8.86 0.52 3.98 0.14 3.08
graham 1.70 5.98 0.52 9.70 0.76 3.74 0.00 47.64 0.06 9.50
neuron 1.60 5.90 2.66 4.40 1.90 3.30 1.40 2.58 1.84 2.68

dtree 0.53 6.02 3.33 5.41 2.08 4.23 2.20 3.86 1.88 3.52
net 0.30 5.28 1.04 6.38 0.48 3.16 0.98 2.68 0.54 3.28

personal (8400 ham, 6600 spam)
hamming 0.36 3.27 1.33 5.44 0.59 2.66 1.14 2.49 0.29 2.89

nbayes 0.46 2.46 2.56 14.48 1.26 4.56 2.96 5.42 0.60 1.94
graham 3.58 4.36 3.94 9.06 4.56 5.44 0.00 38.14 0.14 3.32
neuron 1.32 2.28 2.04 6.84 0.76 2.08 1.24 2.72 0.96 1.98

dtree 0.58 2.24 2.23 6.53 1.14 2.51 1.91 3.68 1.46 2.76
net 0.28 2.20 0.90 6.10 0.48 2.08 0.86 2.68 0.40 2.06

lingspam (1924 ham, 481 spam)
hamming 0.87 9.86 0.87 5.24 0.78 7.05 0.78 4.06 0.44 4.87

nbayes 0.25 5.99 0.87 5.24 0.50 4.49 3.25 5.12 1.50 3.75
graham 0.87 7.74 1.25 2.62 0.75 3.25 3.00 6.24 2.50 5.12
neuron 1.87 5.49 1.87 3.75 0.75 3.25 9.11 11.61 8.49 10.74

dtree 0.94 8.24 2.12 6.12 1.03 5.06 1.37 4.24 1.37 3.50
net 1.12 6.10 0.87 3.86 1.00 4.36 0.50 3.11 0.25 2.24

spamassassin (6948 ham, 1737 spam)
hamming 0.16 3.28 1.00 6.22 0.15 2.95 1.06 3.30 0.30 3.13

nbayes 3.90 5.35 4.73 13.75 4.66 7.22 6.80 10.02 5.08 6.42
graham 5.01 6.15 10.50 13.26 6.98 7.56 7.50 9.64 6.04 6.77
neuron 1.00 2.14 2.49 9.95 0.76 2.38 7.25 10.12 9.46 11.88

dtree 0.59 2.66 1.68 6.48 1.73 2.80 1.75 3.30 0.86 2.25
net 0.62 2.59 1.07 7.15 0.28 2.59 0.62 3.49 0.38 2.38

comparison with a fielded freely-available spam filter, as
well as being a robust corpus useful in its own right.

8 Evaluation
Each of the algorithms reported in Sec. 4.2 has been im-
plemented in C and Perl by the authors. These imple-
mentations are freely available as noted at the end of
this document. Accuracy and speed of the implementa-
tions have been measured on a 1.8AGHz AMD box with
512MB of main memory, running Debian “Woody” with
kernel 2.4.19.

The preliminary nature of the measurements reported
here should be emphasized. There are an enormous
number of interesting experiments that can be run given
the sample setup, and there is an enormous amount of
work that can be done to improve the design and imple-
mentation of these spam filters. Nonetheless, the mea-
surements in this section serve both to provide a gross
comparison between various learners and detectors, and
to illustrate some of the issues that arise in practical ma-

chine learning. Figures 1, 2 and 3 show some of the
measurements made. Those measurements are good il-
lustrations of the power of experimental data in elucidat-
ing machine learning issues.

Table 1 shows the classification accuracy of the algo-
rithms on the sample corpora. The columns labeled ⊕
and T are false positive and total error percentages re-
spectively. (The false positives are shown as percent-
age of total messages, rather than percentage of ham
messages; they thus reflect the mix of messages in the
given corpus.) The columns labeled SA, BD, and CL de-
note the use of the SpamAssassin, Body Dictionary, and
CLustering feature detector: the SA+BD and SA+CL
columns denote the use of combined feature sets. All
programs were run using default parameter settings.
Statistics reported are worst of 10 runs, in accordance
with PAC theory [21]. Two-thirds of the corpus have
been used for training (and validation when required),
while the final third has been used for classification: a
new random split has been used for each run, with all

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association74

programs being run over the same 10 splits. The gain
threshold of the body word detector was selected to give
a maximum of a few hundred features across all corpora.
This seemed to give sufficient accuracy for evaluation
purposes, but more experimentation in this area would
be prudent.

Table 1 is unfortunately difficult to read. Nonetheless,
it contains a great deal of useful data, from which sev-
eral conclusions can be drawn. While the differences be-
tween classifiers and between feature detectors are quite
significant, it can fairly be said that overall the accuracy
of the filtering systems is similar. The exceptions reveal
a number of interesting phenomena.

The more complex classifiers seem to be consistently
better than the simpler ones. In particular, the neural net
is the most consistently strong classifier: the decision
tree learner also produces good results. As expected, the
combined feature detectors tend to be stronger overall
than their components: the SA detector appears to work
well with most classifiers and corpora.

Specific classifiers seem to have trouble with spe-
cific corpora or detectors. Note particularly the 100%
false negative rate of the graham classifier on the
personal and synthetic corpora with the CL de-
tector. It is believed that this anomaly is not a program
defect, but results from a peculiarity of the CL feature
set: for these large inputs, the detector tends to group all
of the spam words into just one cluster, while the ham
words have a large number of clusters. Graham’s heuris-
tic does not cope well with this case: the large number of
ham features swamps the signal from the much more sig-
nificant spam features. The graham classifier appears
to be less strong than the nbayes classifier overall, but
not dramatically so: the choice of corpus and features
appears to matter significantly. The hamming detector
appears to be a good, reliable detector overall, and may
actually be a reasonable choice in situations where its
slow classification rate can be reduced or ignored.

Table 2: Feature Detection Time

s/Kmsg s/MB
SA 1784 391
BD 15.2 1.9
CL 14.0 1.7

Table 2 shows feature detection time for the
synthetic corpus. The BD classifier gain thresh-
old is 0.05. Times shown are wall clock seconds per
1000 messages and seconds per megabyte (1,048,576
bytes). Neither the BD nor the CL detector is signifi-
cantly optimized for performance—significant improve-
ments could be expected in practice. These times sug-
gest why work on alternate feature detectors and an over-

all move away from SpamAssassin may be important in
the future.

Table 3: Training and Classification Time

T C
hamming 0.00 44.05

nbayes 0.65 0.06
graham 0.65 0.02
neuron 10.66 0.00

dtree 5.45 0.00
net 140.35 0.13

Table 3 shows training and classification time for the
synthetic corpus and SA feature detector. Training
and classification times are exclusive of feature detection
and other times. All times are CPU seconds per 1000 in-
stances, and are the average of 10 runs. Times shown
as 0.00 are less than 0.01 seconds per 1000 instances,
in other words in excess of 100,000 instances per sec-
ond. As expected, the neuron and dtree detectors
require a moderate training period. The net detector is
slow to train (although not unusably so). The hamming
detector as implemented is probably too slow to use for
server filtering, although it would work fine for filtering
an individual’s messages.

9 Deployment
The initial integration target for the work described here
has been SpamAssassin, a rule-based mail filter written
in Perl by a team including Justin Mason. SpamAssassin
is an open source project distributed under Perl’s Artis-
tic license: it was hoped that it would be a good ba-
sis for third-party extension. The mechanism by which
SpamAssassin classifies a message is via handcrafted
header and body text analysis rules, along with black-
list/whitelist support (lists of addresses to automatically
deny or accept) and use of a spam tracking database
such as Vipul’s Razor. After the test suite has been run,
the mail message can optionally be marked with a spam
header for easy processing by a user’s mail reader. The
package is primarily made up of libraries of test and mail
handling code, forming an API that allows for easy in-
tegration with mail applications on multiple platforms.
Various command line and daemon scripts for interfac-
ing with the API are also supplied.

The SpamAssassin API libraries consist of two main
sections: code to run each of the tests, and the engine
that calls the test code and combines (and scores) the
results. The text analysis portion of the testing code
is comprised of regular expressions that are matched
against the headers and body of the mail message.
SpamAssassin allows for quite a bit of flexability by
coding many of the tests in user editable configura-

FREENIX Track: 2003 USENIX Annual Technical ConferenceUSENIX Association 75

tion files—tests can thus be added or modified without
change to the Perl libraries themselves. Unfortunately,
the format of the configuration file only allows for the
specification of new tests involving single regular ex-
pressions.

The classification engine is responsible for handling
mail input and output, including mail message headers
and body text. It also supports routines to update test
parameters. For example, adding and removing mail ad-
dresses from accept and deny lists, or reporting a mail
message to collaborative spam tracking databases on-
line. After running the full suite of classification tests,
the testing engine scores the mail message based on the
results of each of the tests. If the message is classified as
spam the engine takes appropriate action, such as rewrit-
ing the mail message to include easily recognizable tags
for the user in the subject line and message body, as well
as adding an extra header for the user’s mail user-agent
to automatically refile spam messages.

Recently, the SpamAssassin team has added support
for classification of mail messages using a “Bayesian-
like form of probability-analysis”, apparently based on
a Graham/Robinson (Sec. 4.2.3) or Naı̈ve Bayes detec-
tor. This extension seems to allow for online learning
and storage of new message characteristics, although the
documentation is incomplete at the time of this writ-
ing. While the Bayesian extension appears to implement
the same algorithm as the Naı̈ve Bayesian classifier de-
scribed here, it is embedded in the SpamAssassin code.
This makes it hard to inspect, and requires modifying the
SpamAssassin code itself to make changes.

One straightforward way to integrate the classifiers
with the SpamAssassin package is to convert them to
Perl. Currently the perceptron learner has been com-
pletely converted and an offline classification mode has
been implemented. The SpamAssassin feature set is
used as training input to this learner. The other learn-
ers are only partially integrated: the classification phase
is available to SpamAssassin. A SpamAssassin-style
manually-weighted perceptron is used to integrate the
classifiers, including SpamAssassin’s built-in classifier.
New feature detectors can be integrated with the setup
and used by all of the learning classifiers.

Modifications to the SpamAssassin code have been
kept as minimal as possible. Code implementing a linear
perceptron has been added to the check() method of
the Mail::SpamAssassinmodule to allow as many
classifiers to be run on a message as desired: the result
of each classifier is weighted in a user-specified fashion.
Parameters have been added to the new() method of
the module to select combinations of classifiers and fea-
ture detectors, weights for the classifier’s output, and a
perceptron threshold value used to make the final classi-
fication decision on the e-mail message.

Modifications have also been made to the
Mail::SpamAssassin::PerMsgStatus mod-
ule. Parameters have been added to the new() method
specifying the existing (and allowable) feature detectors
and classifiers. Each feature detector is associated with
the method implementing it as well as the dictionary
file required to create a feature vector. Each classifier
is associated with a file containing state information
required for classification (a listing of current weights
for the single neuron learner, for example). Methods
have been added to implement the feature detectors,
or retrieve the classification test results from Spam-
Assassin’s builtin feature detector, as well as to encode
the returned feature sets according to the specified
dictionary. A psam check() method has also been
added: the method calls the indicated classifier with the
created feature vector and returns the result.

As of this writing, the integrated system is close to be-
ing ready to submit to the SpamAssassin team for review
and integration. Unfortunately, the runtime overhead as-
sociated with the Perl implementation of SpamAssassin
and the learners and classifiers has proven to be a sig-
nificant problem. Thus, the direction to take from here
is unclear. Finding a simpler and more efficient open
source framework is currently under consideration as an
alternative, as is building yet another mail classification
framework.

10 Future Work and Conclusions
It has been said that good research raises more ques-
tions than it answers. By that standard, the research
reported here has been successful indeed. Much more
work is needed on the corpora: it would be nice to estab-
lish a trustworthy and representative test corpus of about
10,000 messages for future work. Validation and tun-
ing of both the feature detectors and classifiers is badly
needed to establish confidence in their correctness and to
understand ideal operating parameters for them. Using
ensembles of detectors, detector biasing techniques, and
other advanced methods should be explored to improve
accuracy. An integrated mail-filtering system should be
built, and overall system accuracy and performance eval-
uated. An anonymous referee of this paper suggested
that the learners and classifiers should be packaged in a
library for use in this and other projects: this is an excel-
lent idea and will be implemented.

Supervised machine learning is an effective technique
for spam filtering. The methods described in this pa-
per provide the basis for reasonably accurate, efficient
classification of messages as ham and spam. Freely-
available software implementors interested in spam fil-
tering are encouraged to take advantage of these tech-
niques (and their more sophisticated cousins) to help
control the spam deluge.

FREENIX Track: 2003 USENIX Annual Technical Conference USENIX Association76

Acknowledgements
Special thanks to: the Usenix Association and the Port-
land State University Computer Science Department for
enabling the student authors of this paper to attend the
conference; Carl Worth for shepherding the paper; Keith
Packard and Mike Haertel for help and advice (as usual)
with code and algorithms; and Jeff Brandt for valuable
ideas, criticism, encouragement, and help with corpora.

Availability
The instance data and implementations used in this work
are freely available under an MIT-style license at http:
//oss.cs.pdx.edu/psam.

References
[1] Ion Androutsopoulos, John Koutsias, Konstanti-

nos V. Chandrinos, George Paliouras, and Con-
stantine D. Spyropoulos. An evaluation of naive
Bayesian anti-spam filtering. In G. Potamias,
V. Moustakis, and M. van Someren, editors, Pro-
ceedings of the Workshop on Machine Learning in
the New Information Age: 11th European Confer-
ence on Machine Learning, pages 9–17, Barcelona,
Spain, June 2000.

[2] Annexia Spam Archive. URL http:
//www.annexia.org/spam/index.msp
accessed 25 November 2002, 22:00 UTC.

[3] Lorrie Faith Cranor and Brian A. LaMacchia.
Spam! Communications of the ACM, 41(8):74–83,
August 98.

[4] Inderjit Dhillon, Subramanyam Mallela, and Rahul
Kumar. Enhanced word clustering for hier-
archical text classification. Technical Report
TR–02-17, Department of Computer Sciences,
University of Texas at Austin, Austin, Texas,
March 2002. URL http://citeseer.nj.
nec.com/507920.html accessed 8 Apr 2003,
00:41:35 UTC.

[5] Matthew L. Ginsberg. Essentials of Artificial Intel-
ligence. Morgan Kaufmann, 1993.

[6] Paul Graham. A plan for spam. URL http:
//www.paulgraham.com/spam.html
accessed 18 November 2002, 22:00 UTC.

[7] Paul Graham. Better Bayesian filtering. In Houbart
[8]. URL http://spamconference.org/
proceedings2003.html accessed 23 March
2003, 21:18 UTC.

[8] Gilberte Houbart, editor. Proc. 2003 MIT
Spam Conference, Cambridge, MA, January
2003. URL http://spamconference.
org/proceedings2003.html accessed 23
March 2003, 21:18 UTC.

[9] Julia Itskevitch. Automatic hierarchical e-mail
classification using association rules. Master’s the-
sis, Simon Fraser University, July 2001.

[10] Paul Judge. Spam research: Establishing a
foundation and moving forward. In Houbart
[8]. URL http://spamconference.org/
proceedings2003.html accessed 23 March
2003, 21:18 UTC.

[11] Seth Kaplan. How antispam software works. Wired
Magazine, 11(4):43, April 2003.

[12] David D. Lewis. (Spam vs. forty years of ma-
chine learning for text classification. In Houbart
[8]. URL http://spamconference.org/
proceedings2003.html accessed 23 March
2003, 21:18 UTC.

[13] Henry R. Lewis. The data enrichment method. Op-
erations Research, vol. 5, 1957. Reprinted in J.
Irreproducible Results 15(1), 1966, and in subse-
quent collections from same.

[14] Stanton McCandlish. Archeology of
spam. URL http://www.eff.org/
Spam_cybersquatting_abuse/Spam/
archeology_of_spam.article accessed 8
April 2003, 20:45 UTC.

[15] Tom M. Mitchell. Machine Learning. McGraw-
Hill, 1997.

[16] Marco Paganini. ASK: Active Spam Killer. In
Proc. 2003 Usenix Annual Technical Conference,
San Antonio, TX, June 2003. To appear.

[17] J. Ross Quinlan. Induction of decision trees. Ma-
chine Learning, 1(81):106, 1986.

[18] Gary Robinson. Spam detection. URL
http://radio.weblogs.com/0101454/
stories/2002/09/16/spamDetection.
html accessed 18 November 2002, 22:00 UTC.

[19] G. Sakkis, I. Androutsopoulos, G. Paliouras,
V. Karkaletsis, C. D. Spyropoulos, and P. Stam-
atopoulos. Stacking classifiers for anti-spam fil-
tering of e-mail. In L. Lee and D. Harman, editors,
Empirical Methods in Natural Language Process-
ing (EMNLP 2001), pages 44–50, Pittsburgh, PA,
2001.

[20] SpamAssassin. URL http://www.
spamassassin.org accessed 18 Novem-
ber 2002, 22:00 UTC.

[21] Leslie G. Valiant. A theory of the learnable.
Communications of the ACM, 27(11):1134–1142,
November 1984.

