Experience Implementing an
IP Address Closure

Ning Wu and Alva Couch — Computer Science Department, Tufts University

ABSTRACT

Most autonomic systems require large amounts of human labor and configuration before they
become autonomous. We study the management problem for autonomic systems, and consider the
actions needed before a system becomes self-managing, as well as the tasks a system administrator
must still perform to keep so-called “‘self-managing systems” operating properly. To understand
the problem, we implemented a prototype self-managing “IP address closure” that implements
integrated DNS and DHCP. We conclude that the system administrator is far from obsolete, but
that the administrator of the future will have a different skill set than those of the present, focused
around effective interaction with closures rather than management of individual machines.

Introduction

Imagine that you are asked to set up a new
DHCP/DNS infrastructure. You proceed to collect a
pocket-full of “Ethernet keys” that look like USB
keys, but each contains a micro-controller and an Eth-
ernet interface, where power is drawn from the Ether-
net plug. You proceed to plug one of these keys into a
test network and give it a specification of your net-
work architecture in the form of an operating policy.
Then you plug in the other keys to the same network,
and each copies the policy from the first key. Finally,
you unplug some of the keys and plug one or more
keys into each Ethernet subnet and voila, you have a
self-managing IP address infrastructure that is self-
healing, and in which telling any key about a policy
change causes that change to propagate to the whole
infrastructure of keys. If a key dies, you replace it with
another key that has — for awhile — been plugged into
any subnet containing a working key. No backups are
necessary; the infrastructure is completely self-manag-
ing and self-healing.

Are we dreaming? Not really, as this paper will
show. It is possible to implement such devices and in-
frastructure. But there is a larger question that we have
not addressed: what happens when something goes
wrong? The subtlety in managing such an infrastruc-
ture lies in the interface between the keys and the
human administrator. When things go wrong, a human
is still required to intervene and repair problems.

Closures

Our implementation of the above-mentioned
behavior is based upon the theory of closures. A clo-
sure [3] is a self-managing component of an infra-
structure that protects one part of IT infrastructure
while making its needs known to other closures [20].
The closure model of a managed system expresses the
system as a composition of communicating compo-
nents. In previous experiments on closures [20], it has
been demonstrated that any high-level closure needs

support from other low-level closures. For example,
consider a web service. The service itself can be
encapsulated within a closure, but does not handle IP
address assignment and DNS [15, 16]. These functions
must be handled via one or more lower-level closures
in a self-managing infrastructure.

In this paper, we describe experience and lessons
learned in building and testing an “IP address clo-
sure.” This closure is a self-managing ““fabric” of dis-
tributed nodes that handles DNS and DHCP for an in-
frastructure. The IP address closure handles address
assignment based upon three inputs: requests for
addresses, a policy on address assignment, and archi-
tectural information about routing and gateways
within the network. The IP address closure sits
between the web service closure and a routing closure
(which may be implemented by a human being),
accepting inputs from both (Figure 1).

Web Server
alocate *
address |
or name !
— | policy on )
IP Closure —_ | addréssallocation
: architecture
! of network
Y
Routers

Figure 1: Interaction between closures.

A New Management Style

Managing the IP address closure is very different
than managing the Web service closure. The web ser-
vice closure is managed via “commands” that change
state of a single server or web farm. By contrast, the IP
address closure fabric is composed of small, movable

20th Large Installation System Administration Conference (LISA °06) 119



Experience Implementing an IP Address Closure

“black boxes” that can serve as DHCP and/or DNS
servers. These are configured by a process of seeding.
Each box is initialized by physically plugging it into
the same subnet as an already seeded box, by moving
it physically. The new box discovers the existing
seeded box, clones its configuration, and receives an
idea of network topology, policy, and locations of
peers from the existing box. After this, it is moved to
its final physical location, after which it can serve to
seed other boxes.

Simple Hardware Components

An element of the IP address closure is an
extremely simple device with an Ethernet connection
and some form of persistent storage. It is conceivable
that a closure node could be implemented in hardware
using only non-moving parts such as flash and regular
memory (no hard disk would be required), thus lead-
ing to extremely low hardware cost for the self-man-
aging fabric. It is even possible to power a node from
the Ethernet connection, so that it can be a completely
self-contained device similar to a USB key (an “Eth-
ernet key”). We foresee a time in which IP manage-
ment could literally be accomplished by a pocket full
of keyring-sized devices, carried from room to room
as needed. A similar approach, using the same envi-
ronmental discovery and arbitration algorithms, could
be used to create closures for other tasks such as dis-
tributed monitoring, intrusion detection, troubleshoot-
ing, web caching, file system caching, and secure
remote access.

Backup and Recovery

This is a dramatic difference in how one provides
failover and recovery in the IP address closure fabric,
compared to managing current DNS and DHCP
servers. To establish redundancy on a subnet, one sim-
ply plugs another box into the subnet, and the new box
makes itself a clone of the boxes it discovers, to
become a backup server. If one unplugs a box, any
backup servers automatically start serving requests. If
a box fails, one simply unplugs it and plugs in another.
The boxes serve as their own backups; any box is
interchangeable with any other in case of failures.
Each box discovers where it is operating, and how
many neighbors it has, before deciding to provide ser-
vices or serve as a backup server. Thus backups are as
easy as keeping a spare box that one plugs into a sub-
net periodically in order to keep the backup node up to
date, and recovery is a matter of plugging the backup
node back into the network so that its changes can be
propagated to other nodes.

Low-level Last

It may seem to the reader that we have gone
about the problem of building closures “backwards”;
previous authors have studied “high-level” closures
that — to operate properly — require low-level closures
that we tend to implement affer the closures that uti-
lize them. The reason for this backward implementa-
tion order is that many of the challenges in building a

Wu & Couch

closure come into play at the lowest levels, where the
interface between the system administrator and the clo-
sure is most complex. At the lowest level, closures are
limited by the fact that software cannot accomplish
physical changes in hardware or network configuration.
When configuring a web server [20], this is not much
of a concern, but at the IP level, it is a central issue.

Related Systems

In large-scale systems, manual procedures for
maintaining static and dynamic IP address assignment
are both tedious and error-prone. IP management tools
have been developed to help administrators manage
the IP space in an enterprise; CISCO Network Regis-
trar [2], INS IPControl [6], and Lucent VitalQIP [13]
are examples of current products. Common features of
IP management software include integrated DHCP
and DNS service, centralized policy management, and
failover mechanisms for high availability. These prod-
ucts require crafting of detailed IP assignment poli-
cies, as well as manual configuration of all nodes
included in the service. Melcher and Mitchell [14]
mention the need for an autonomic solution for DHCP,
DNS, LDAP, and other services. It is also highly desir-
able to minimize the amount of human input necessary
to configure the system, avoiding the “incidental com-
plexity” of making policy decisions that have no
externally observable behavioral consequences [3].

Goals

Our goals in creating the IP address closure were to
help administrators by:
¢ Encapsulating a reusable design of the IP
assignment plan in a policy.
¢ Reducing incidental complexity by automating
unimportant decision-making.
* Automating the process of implementing
changes in policy.
¢ Providing autonomic features such as self-con-
figuration, self-backup, and self-healing.
e Simplifying day-to-day management of the IP
address (DHCP/DNS) infrastructure.

The IP address closure can be seen as an effort to
implement autonomic features [4, 5, 10] in the IP layer.

Paper Organization

In this paper, we will use the IP address closure
as an example of the potential impact of autonomic
systems upon system administrators, and show that
system administrators can benefit from it and similar
systems. Far from threatening the jobs of system
administrators, the IP address closure is instead a
“partner” that requires ongoing management, in return
for offloading some common management tasks.

This paper is organized as follows. We begin by
describing the overall design and function of the IP
address closure. We then discuss the design and imple-
mentation details for the IP address closure and critique
our prototype. We subsequently discuss the relationship

120 20th Large Installation System Administration Conference (LISA ’06)



Wu & Couch

between autonomic systems and system administration
and then discuss the issue of exception handling. Finally,
we conclude this paper and discuss future work.

Closure Design

The design of our IP address closure is so unlike
that of any prior work that a detailed discussion of its
theory of operation is necessary. In this section, we
give a detailed theory of operation intended to con-
vince the reader that the closure will work as
described. The closure’s theory of operation is some-
what subtle, and this section can be skipped without
loss of continuity if the reader is not interested in
implementation details.

Peer-Peer Architecture

Unlike prior closures, which resided primarily on
one machine, the IP address closure resides within a
peer-peer “fabric” of distributed “black boxes™ that
manage the state of the IP layer for an enterprise.
These “Peered IP” management nodes, or “PIPs,”
manage themselves based upon a high-level policy
and environmental factors that the PIPs discover
through direct probing of their environments. PIPs can
be implemented as small and cheap ‘“Ethernet appli-
ances” that support each other and implement both
self-healing and self-replication features.

Experience Implementing an IP Address Closure

A peer-to-peer solution is more robust and easier
to use; there is no need to manage a centralized data-
base. The distributed nodes have a better view of the
environment than a central probe; they can see
through firewalls and other protections, and can
acquire environmental information [12] that is more
accurate than relying upon human input. If we tell one
peer about a new policy, it distributes the policy to all
of its known peers, which continue relaying the policy
until it is present on all nodes. However, control of
information distribution is more difficult than in the
centralized case. For example, at any particular point
in time, there can be conflicts between the policy
information in replicas. A policy change must be
broadcast to all the PIPs.

It would have been nice if we could have utilized
an existing peer-peer scheme for implementing our
closure. The drawback of utilizing existing peer-peer
schemes is that their own bootstrap protocols require
prior existence of a stable IP layer. Also, their com-
plexity and goal of distributing large amounts of infor-
mation is much more ambitious than we need. We uti-
lize a simple pull-only gossiping protocol to commu-
nicate relatively brief policy information among PIPs,
after a (rather complex) bootstrap and environment
discovery protocol that is necessary because there is
no IP layer before the closure becomes functional.

router

(a) A new subnet

router

@x O

(c) Adding aPIP Y on the subnet; Y becomes the
secondary server; Y clones content of X.

router ‘

(a)x

(b) Moving an active PIP X (delta PIP) from elsewhere;
X becomes the primary server.

router

(v

(d) Removing the delta PIP X; Y beomes the primary
server.

Figure 2: Bootstrapping a new subnet from a delta PIP.

Subnet 2

IP Network

Subnet 3

Subnet 1

5

hod

|
O

L] Regular host
O rp
A Delta box

Figure 3: An example of how PIPs can be deployed.

20th Large Installation System Administration Conference (LISA *06)

121



Experience Implementing an IP Address Closure

In practice, using a complete peer-to-peer envi-
ronment poses problems in network design. If a net-
work policy chooses to maintain separate subnets, it
may still allow the DHCP servers to talk to a central
server, and vice versa. If administrators choose to use
a peer-to-peer architecture, the complexity of firewall
rules will be increased. The deployment of web ser-
vices [23] faces similar issues. If lower-level network
closures exist, the requirement of configuring firewalls
can be delegated to it; if not, administrators must man-
ually configure the firewalls.

Bootstrapping the Closure

The most innovative feature of our IP address
closure is how it bootstraps itself into a functional
state on a previously unmanaged network. Unlike
other closures and autonomic computing solutions, our
closure must be able to cope with a network where the
IP layer is not yet functional. This leads to a rather
unique process for bootstrapping, based upon policy
seeding and environmental discovery. There are three
types of hosts in an IP address closure: regular host,
PIP, and delta box(Figure 3). Regular hosts are the
clients of the DHCP service provided by PIPs. PIPs
are the management nodes that provide DHCP and
DNS services. A delta box is a special type of PIP that
potentially contains different information from other
PIPs on the same subnet; otherwise, it is the same as a
generic PIP. A delta box can be used to deliver infor-
mation to another subnet by connecting it physically
to that subnet. This feature is very useful for distribut-
ing policies to networks that are physically segregated
from the rest of the infrastructure, e.g., by firewalls.

The bootstrapping process for the IP address clo-
sure is different from that for a normal system. A PIP,
referred to as “delta PIP,” can be moved physically
through the network to propagate information about
changes. Bootstrapping of the closure is done by a
combination of logical specifications and physical
moves of devices. To bootstrap the closure, one starts
with a policy file and loads it into a single delta PIP.
Connecting this box to each segment of the network
discovers other peers on that segment and communi-
cates the policy to them. The delta box also records
and distributes the addresses of other peers. At the end
of the seeding process, every node knows about every
peer, and the delta box is no longer needed. The boot-
strapping process is depicted in Figure 2.

Figure 3 shows an example of the deployment of
PIPs. The IP network could contain many firewalls
between routers, and the subnets can even be discon-
nected with no ability to communicate, provided that
physical moves are utilized to propagate policy
changes. Assume subnet one is separated from subnet
two and subnet three. Subnet one has three PIPs
deployed (two PIPs and one newly arrived delta box).
Subnet two has only one PIP, so there is no failover
backup on subnet two. Subnet three has two PIPs that
will form a failover pair.

Wu & Couch

The one command that every PIP must under-
stand is ‘dump.’” Once a PIP receives a dump request,
it adds the requesting PIP into the known PIP list and
dumps its knowledge base to the requester. It is the job
of the requester to analyze the content and change its
own configuration accordingly. Each PIP periodically
probes other selected PIPs in the known PIP list. The
PIPs probed are chosen according to the structure of
the P2P network; one box per subnet is arbitrarily cho-
sen. If a PIP cannot be contacted in a specified period
of time, it is removed from the neighbor/known PIP
list.

The freshness of information is controlled by
versions consisting of time stamps. Each piece of
information is stamped with the clock time of the
change observer (which might not be a local peer).

Policy Change Planning

Each PIP records its own decisions in a low-level
operational policy file. When another PIP appears on
the same subnet, it might take over some tasks
because of performance or other reasons, and mark the
operational low-level policy accordingly. The func-
tional states of PIPs in a particular subnet are managed
by a “boss” PIP, whose identity is determined by a
booting race condition. Only the “boss” of a subnet
can change the low-level behavioral attributes related
to that subnet. The “boss” effectively acts as a coordi-
nator to prevent write conflicts.

We must assure that policy changes propagate to
every PIP, and that there is a global convergence
among the PIPs to one coherent overall policy. This
means that all the active PIPs in the IP address closure
either accept or reject a high-level policy together.
Before a high-level policy is used, a policy proposal is
published to the closure. Then the PIPs decide whether
the proposal is feasible. Our research does not focus
on how to quickly reach consensus in a distributed
environment; we choose a simple two-phase protocol
and leave the problem of optimizing this protocol to
future work. The good news is that because the IP
address closure is operating in a controlled environ-
ment, the complexity of the consensus problem is sig-
nificantly reduced.

A high-level policy proposal is accepted only
when all active PIPs vote ‘yes,” which indicates that
all the preconditions in this policy that are related to a
particular PIP are satisfied. It is possible that a change
is rejected and a PIP votes ‘no.” This happens when
the physical constraints of the policy are violated. For
example, one fixed mapping in the policy file might
be impossible because the host is physically on a dif-
ferent subnet than the policy expects.

Self-healing and Failover
While the self-healing features are implemented
by redundancy, there are some special considerations

for self-healing of DHCP and DNS servers. In particu-
lar, any failover should allow for:

122 20th Large Installation System Administration Conference (LISA *06)



Wu & Couch

1. Seamless management of leases granted by the
failed peer.
2. Address spoofing of failed DNS servers during
failover.
In our prototype, we handled the first condition but
not the second; it is reserved for future work.

In order to provide failover DHCP service from
one server to another server, IP leases must be cached
somewhere else so they can be managed on a new
server. One way to do this is to store the leases in a
P2P infrastructure (for example, openDHT [18]). In
this way, every IP assignment is recorded in the net-
work, and transitioning from one server to another is
easy, because the information is not stored in each
individual server alone; replicas are stored in the P2P
network. We chose to use the existing DHCP Failover
protocol [17], implemented by ISC DHCP. This
failover protocol meets most of our goals but has a
constraint that it only supports failover in pairs. This
constraint limits the number of backup servers to one
at any given time. Redundant backup servers are on
standby, awaiting future need.

Failures could be in hardware, network, soft-
ware, etc. The goal of redundancy is to keep the
DHCP and DNS service running whenever possible. If
a server starts functioning again after a failure, it
should be able to recover from the failure; if it fails
permanently, the service should still be provided if
possible. In the current failover protocol, if a failover
pair cannot communicate with each other, they split
and share the IP pool for new IP assignment until the
communication recovers, because a PIP does not
know whether the failure is due to network failure or
node failure. If the network partitions and both pri-
mary and secondary DHCP servers are assigning IP

Experience Implementing an IP Address Closure

addresses without splitting, there may be conflicts
when a PIP rejoins the network after a long absence.
Currently, we are satisfied with the solution of notify-
ing system administrators when the failover mecha-
nism is invoked. If human administrators determine
that one of the servers has indeed failed, a backup
server can be added to the subnet.

Bootstrapping a PIP

Each PIP acts as a primary DHCP server, sec-
ondary DHCP server, or backup DHCP server. A boot-
ing state diagram (Figure 4) shows the states of a PIP
when it boots. The booted PIP can be in several states
depending on the network environment. If it obtains
an IP address from a DHCP server, it will enter the
‘cloning’ state, in which policies are dynamically kept
synchronized with the current segment server. If it
does not receive a DHCP response and discovers its
own IP number from its environment and policy, it
will assume that it is alone on the network segment
and go into active service as a DHCP server. Else, if a
PIP cannot determine its IP address by any means, the
boot process fails.

During bootstrapping, a PIP must determine the
segment into which it has been plugged. It first sends a
DHCP request message on the segment, hoping a
DHCP server will respond and assign it an IP address.
If not, it probes the network and determines its loca-
tion, and then assigns itself an IP address based upon
that probe.

How does a PIP determine its own IP address if
DHCP is not yet running and it is the first potential
server? Ideally, we should be able to obtain this loca-
tion information from lower-level closures — for exam-
ple, through a broadcast-based protocol. Without such
a luxury, we must probe for an IP address that we can

LIGHT:PWR Booting

LIGHT:GREEN

No IP obtained

Cannot get information

Boot Failed

LIGHT:RED

Self-bootstrap Booted as primary

Obtain an IP from DHCP servers

LIGHT:PWR

Cloning

-

Both primary 3

Booted as backup

nd secondary server exists

LIGHT:GREEN

Booted as secondary

Primary server exists

LIGHT: YELLOW
Figure 4: The booting state diagram.

20th Large Installation System Administration Conference (LISA *06) 123



Experience Implementing an IP Address Closure

use to exchange information with other nodes. We
implemented the probe mode in our prototype. For
example, we have the following definition for segment
192.168.3.0/24 in the seed file:

{seed>
{segment>
<{network>»192.168.3.0<{/network>
{cidr>24</cidr>
{router>192.168.3.1</router>
<bootip»192.168.3.2</bootip>
{/segment>
{/seed>

Each node actively probes to determine which
segment in the list of possible segments is directly
connected to it. The seed file contains a list of primary
routers, with one unused IP address (called the boot-
strap IP) for each segment. A PIP iterates through the
segments and try to ARP the corresponding primary
router. If it receives an ARP reply from the router

Wu & Couch

within a specified period of time, then it concludes
that it is connected to the corresponding subnet.

In using the probe protocol, a race condition can
occur when two PIPs are bootstrapping on the same
segment simultaneously. Then both PIPs try to use the
same IP address. To avoid the race condition, each
node sends an ARP request to resolve the bootstrap IP
address. We refer this kind of ARP request as a claim-
ing ARP, because the goal of this ARP request is to
claim that a node is going to use the bootstrap IP
address. If this IP address is already used, the node
will receive an ARP reply from the bootstrap IP
address, indicating that this address is already in use
by another host. Then the booting node will simply
abort the bootstrapping process.

If, after a period of time, no other claiming ARP
request for the bootstrap IP address is received, the
PIP will assign itself that address (we will call this

1P1

PIP2

Subnet Smartbox3

1 : DHCPRequest()

2 : DHCPRequest()

3 : timeout()

6 : ARPBootIP()

4 : timeout()

5 : DHCPRequest()

7 : ARPBootIP()

9 : ARPBOGLIP()

yield; low MAC
number
11 : timeout()

"commit" mode ™

E 10 : abort()

12 : ARPBootIP()
13 : ARPResponse()

14 : setIP()
16 : launchDHCP()

:l 15 : abort()

Figure 5: The bootstrapping sequence di

agram. PIP1 wins in the bootstrap competition.

Send DHCP request

Timeout

During wait, receives a claim
with higher MAC address, or

receives an ARP response message.

Figure 6: The boo

124 20th Large I

DHCP request sent

Receive DHCP reply
IP obtained

Set IP

IP Committed

Claiming

During wait, no claiming with higher
MAC address or ARP response is
received; timeout

tstrapping state diagram.

nstallation System Administration Conference (LISA °06)



Wu & Couch

state ‘committed’). If before this timeout (commit)
event, more than one PIP is booted at the same time,
each will receive the claiming ARP request at roughly
the same time; the winner is determined based on
MAC address. The PIP with a higher MAC address
proceeds while PIPs with lower MAC addresses yield
quietly. However, if one PIP has already committed its
IP address, it will send a ARP reply claiming the
IP/MAC mapping, as if it is already using that IP
address. Any PIP, even though it may have a higher
MAC address, will yield when it receives such an
ARP reply, because that means the IP has been taken.

Before the IP address on the PIP is committed,
the bootstrapping program is responsible for sending
ARP responses so other nodes will yield. After the IP
address is set, the ARP response will be generated by
the OS. In this bootstrap protocol, the timeout period
must be long enough to guarantee the ARP response is
received if there is another host using the same IP
address. Note that in this protocol, no incorrect ARP
replies are sent to the network, so no ARP poisoning is
caused by our protocol. Figure 5 shows a sequence
diagram of three PIPs trying to boot at about the same
time. A state diagram (Figure 6) shows the state tran-
sitions for this protocol.

Seed File Distribution

To minimize the work of the system administra-
tor, we designed a mechanism to help with distribution
of the seed file. We achieve this goal via a seed PIP,
which is a delta PIP, indicating that it moves between
subnets to gather information information from PIPs
in each one. The seed PIP first self-bootstraps, then
provides DHCP service. When a second PIP is
plugged into the network, it gets an IP address via
DHCP from the seed PIP. Then it configures itself as a
failover for the seed PIP. In turn, the seed PIP can be
removed without affecting the service, and moved to
another subnet, where the process repeats.

Once the seed files are copied, a seed PIP is no
different from other PIPs. The administrator can
unplug any of the PIPs on the current net and use it as
a seed PIP on a different subnet. We intend for the PIP
to eventually have a light weight and a small size, so it
can be carried easily around to seed other PIPs, e.g.,
behind firewalls.

The State Transition Problem

A system is rarely static. During its lifecycle,
humans will request many changes in system behav-
ior. System administrators need to be able to move the
system from one operational state to another. This is
called the state transition problem.

Traditionally, humans have been in charge of
state transitions. The human administrator manipulates
each device (in some way) into a new state. When sys-
tems become self-managing, however, it is possible for
the systems themselves to take an active role in chang-
ing states. The ideal situation occurs when the system

Experience Implementing an IP Address Closure

being self-managed knows the best possible way to
change state, so that it serves as a “co-pilot” or “part-
ner” to the system administrator requesting the change.

In autonomic computing, several change plan-
ning systems have been developed — for example,
CHAMP [9]. CHAMRP is a task scheduling system that
tries to optimize task scheduling based on cost and
time constraints. CHAMP differs markedly from the
IP address closure. It tries to solve the scheduling
problem for changes so that downtime and disruption
are minimized, and distributes the tasks for parallel-
ism; and the calculation is centralized on a single mas-
ter host. By contrast, the IP address closure does not
compute change schedules centrally. Change sched-
ules for the IP address closure can be computed
locally, because the IP assignments for different sub-
nets do not depend on one another.

Using the Closure

This section describes how one uses the closure.
Low-level closures such as this one pose unique chal-
lenges for the system administrator. For the IP address
closure to be functional, the system administrator must
synthesize a description of its operating environment
as well as its operating policies. There is an intimate
relationship between contents of the closure configu-
ration file and the routing architecture of the site. Thus
the human administrator is in no sense obsolete;
changes in the environment must be made known to
the closure on a continuing basis.

Our IP address closure’s input is a policy file
describing the desired relationships between IP num-
bers, network names, MAC addresses, and subnets.
For example, it specifies which subnets are present
and their numbering ranges. Some of this information
would ideally be determined by a lower-level routing
closure, e.g., the addresses of subnet gateways; here
we (temporarily) encode that information into a seed
file instead.

When using the IP address closure, the only
thing a system administrator must specify is the
intended behavior of the IP space; one is relieved from
managing superfluous and “incidental complexity”
with no behavioral impact [3]. For example, the
tedious task of insuring agreement between DHCP
servers on the location of routing gateways is man-
aged by the closures and the human administrator
need not participate.

The Policy File

In the IP address closure, there are two levels of
policy. The first is a high-level policy that defines the
overall behavior of the closure and reflects the IP
scheme of the whole organization. This is determined
by the system administrator. The second is a low-level
policy that describes the behavior of the running sys-
tem and how actual configuration files are generated.
This is determined by the closure itself. For example,

20th Large Installation System Administration Conference (LISA ’06) 125



Experience Implementing an IP Address Closure

the number of hosts allowed in a certain subnet is part
of a high-level policy, whereas which host serves as
primary and which serves as secondary failover server
is part of a low-level policy. The high-level policy file
contains the DHCP pools of available public IP
addresses and private IP addresses, physical subnets,
lease period, and some strategies about how the IP
address closure is formed. These attributes define the
behavior of the closure. The high-level policy speci-
fies the goals of a bootstrap, while the low-level pol-
icy represents a steady operating state in which the
bootstrap has been accomplished.

The high-level policy file reflects the IP scheme
of the whole organization. Some part of the high-level
policy may not be realized by a particular closure.
Before a new version is released, it can be validated
by several rules, including checks for consistency, IP
overlapping, and syntax errors. After validation, a new
policy will be broadcast to all the servers in the clo-
sure. The following code shows an example high-level
policy file.

{policy ts="1136488200">
{!-- static mapping from MAC to
IP address -->
{include tag="mac-to-IP">
fixed-ip.xml</include>
{!-- static mapping from MAC to
host name -->
{include tag="mac-to-name">
fixed-name.xml
<{/include>
{!-- will be maintained by a
router closure -->
{topology>
{1-- defines subnets connected
by DHCP relay agents --»>
{relayed-subnet id="departmentl">
{subnet>192.168.1.0</subnet>
{subnet>192.168.5.0</subnet>
{/relayed-subnet>
<{/topology>
{pools>
{pool access="private">
{from>»192.168.0.0</from>
{t0>192.168.254.0</to>
{cidr>24</cidr>
{max-lease-time>51000
{/max-lease-time>
{subpool>
{from>»192.168.3.10</from>
<t0>192.168.3.254</to>
{cidr>24</cidr>
{max-lease-time>510000
{/max-lease-time>
{include tag="restriction">
res.xml</include>

</subpool>
</pool>
<{/pools>
{!-- Special rules (exceptions)
to the previous rules -->
{!-- Some rejected hosts -->

{include tag="rejected-hosts">
blacklist.xml</include>
{!-- Some VIP hosts -->
{include tag="VIP">vip.xml</include>
{/policy>

Wu & Couch

The high-level policy file does not depict which
server is currently serving which subnet, and where
the configuration files are located, etc. This type of
unnecessary information is part of the “incidental
complexity” that closures are designed to avoid. By
excluding nonessential and architecture-specific infor-
mation, the high-level policy can achieve a high level
of reusability.

The low-level policy file contains nearly the
same information as the DHCP/DNS configuration
files, but it also contains the running state of the peer-
peer system. For example, the following code is a part
of the low-level policy. The ‘auth’ attribute records the
current “‘boss” in charge of this segment. The
‘failover’ attribute shows that the failover is on. This
protocol distinguishes between owners of information
at a relatively fine grain.

{closure ts="1136491620">

{dns>

<ip>192.168.0.100/24</ip>
</dns>

{subnet-segments>
{1-- The auth attribute hold the
current owner of this subnet. -->
{subnet physical="192.168.0.0"
authMAC="00:02:3F:1F:9C:88"
auth="192.168.0.21/24"
failover="on">
<id>192.168.0.0</id>
<{netmask>255.255.255.0<{/netmask>
{max-lease-time>51000
{/max-lease-time>
{pool>

<{/closure>

When changes are needed, such as changing the
range of available IP addresses, or IP renumbering
[11], IP address closure can ease the job of an admini-
strator. Currently renumbering is very labor-intensive
and requires a series of carefully orchestrated steps.
Given a change in policy, the closure could in princi-
ple take over this orchestration and accomplish the
renumbering with minimal outside help. This includes
validating that the renumbering is possible, and actu-
ally performing the renumbering once it is proved to
be valid, leading the human administrator through a
series of foolproof steps.

Implementation Details

We implemented a prototype of the IP address
closure using the ISC DHCP [8] and BIND [7] soft-
ware. The gossip protocol is built on TCP, and policy
content is encoded in XML. The information is man-
aged using Berkeley DB XML by sleepycat [21]. Our
test environment consists of ten PCs running Linux.
They are separated into four IP subnets connected by
PCs configured as routers.

To implement self-bootstrapping, we extended
the function of DHCP client and implemented the logic

126 20th Large Installation System Administration Conference (LISA ’06)



Wu & Couch

shown in Figure 5. The PIP box is pre-installed with
the modified version of the ISC DHCP v3.0.2 package.
When a PIP is booted, the Ethernet interface is config-
ured to obtain its IP via DHCP. If an IP is obtained
from fellow PIPs, the booting PIP will launch the gos-
siping process; otherwise, the self-bootstrapping
process starts. The gossiping protocol is implemented
as a pull-only peer-to-peer gossiping application. The
transformation from a low-level policy to the actual
configuration file utilizes XSLT [22] technology.

In our current setting, the size of contents in a
PIP is around 4KB. The cloning of whole contents
(from one PIP to a newly installed one) happens in
about one second. We set the interval between two
pull operations to be 20 seconds. Because of the size
of our testing environment, the propagation delay is
bounded to 20 seconds as well. Propagation delay is
affected by both the frequency of pulling and the num-
ber of neighbors each PIP has. In our setting, it is safe
for a PIP to have 10 neighbors. It will be interesting to
validate this light-weight protocol in a real large-scale
enterprise environment, and discover a range of opti-
mal number of neighbors that each PIP should have.

The current capabilities of this prototype are boot-
strapping, the dissemination of high-level policy and
proposal through a P2P network, high-level to low-
level policy translation, and automatic DHCP server
configuration update (ISC DHCP only). Future self-
managing features of an IP address closure (yet to be
implemented) include policy-environment conflict
detection, IP address pool shortage warning and auto-
allocation. We achieved many of our goals in this proto-
type: to validate the feasibility of (1) self-bootstrapping,
and (2) realizing a distributed configuration based on a
high-level policy to provide a robust IP infrastructure.

Autonomics and System Administration

The popular vision of “autonomic computing”
(or “self-managing systems’’) is that there will be no
system administrators and systems will manage them-
selves. This vision is inaccurate and naive. Before an
autonomic system becomes functional, much initial
setup work must be completed by administrators.
After the system is successfully configured into a
functioning state, the system is monitored by both
self-managing components and system administrators.
If a problem occurs and it is beyond the self-healing
ability of the autonomic system to correct itself,
administrators must take over and restore the system
to a functional state.

A rather obvious property of autonomic systems
is also their most major pitfall. Current autonomic sys-
tems can only cope with predictable failure modes. If
something unpredictable happens, a human is required
to intervene and take appropriate action. The system
can “learn” (postmortem) what it should have done,
but cannot cope with the new problem without guid-
ance and help.

Experience Implementing an IP Address Closure

Here there is a major and unexpected pitfall for
the system administrator. The problems with which an
autonomic system cannot cope are also problems that
may stump the experienced system administrator. The
autonomic system is best thought of as a “‘junior sys-
tem administrator” armed with a set of “best prac-
tice” scripts that can solve most problems. When a
problem does not fit any known description, then by
nature, advanced intervention is needed. The system
administrator who can cope with problems of this
nature must be better trained than many current sys-
tem administrators, with an emphasis on efficient and
rational troubleshooting. But how (in the context of
self-managing closures) does the system administrator
achieve this high level of training, when the closure is
trying to take control away, and isolate the system
administrator from the behavior of the system? One
cannot both train and isolate the system administrator.
This is a major quandary in the design of autonomic
systems: how will the administrator achieve the level
of knowledge required to cope with contingencies?

Administering the IP Address Closure

We use the IP address closure as an example to
discuss the impact of similar autonomic systems upon
system administrators. The system administrators del-
egate some low level decisions to the closure. Thus,
they can focus on the larger picture of IP address
assignment schemes. The IP address closure relieves
system administrators from the job of backing up poli-
cies, because PIPs clone policies from one another and
are in essence self-preserving.

However, in no way is the system administrator
redundant in the IP address closure. The closure can-
not control or define the physical connectivity
between devices, or guarantee the architecture of
physical or virtual subnets. The system administrator
has a permanent role in matching the physical archi-
tecture of the network with policies, and in intervening
when the closure discovers a mismatch between the
physical network and desired operating characteristics.

Another unavoidable role is that of bootstrapping
the system from a non-functional state to a self-manag-
ing state. In our closure, this is accomplished by physi-
cal moves of devices. This eliminates common human
errors in copying configurations and makes the boot-
strapping protocol more or less foolproof, but requires
a basic understanding of how the PIPs self-replicate.

Lessons Learned

The PIPs show us something fundamental about
the ongoing relationship between system administra-
tors and autonomic elements. The administrator is far
from obsolete, but also somewhat removed from the
day-to-day management tasks that were formerly part
of the job. The system administrator becomes a crafter
of policies, rather than just a troubleshooter. Far from
being less skilled, the system administrator of the clo-
sure system actually needs a higher level of sophisti-
cation to deal with unexpected problems.

20th Large Installation System Administration Conference (LISA *06) 127



Experience Implementing an IP Address Closure

The changing role of system administrators
includes the deployment and bootstrapping of auto-
nomic systems. Each autonomic system has a set of
preconditions that must be met before it can function
as designed. System administrators must maintain the
appropriate environment for the autonomic system.
Before the autonomic mechanisms are implemented
from top to bottom, each autonomic system must rely
on human administrators to cope with the bottom lay-
ers. Although these autonomic systems provide self-
configuration features, deployment and bootstrapping
are unavoidable and uniquely human tasks.

The role of system administrators also include
tuning and validation of the new autonomic systems.
Many autonomic systems contain heuristics that
require the collection and analysis of real production
data. Before the system is tuned, system administra-
tors may have to manage the system manually. After
the system is tuned, it must be validated to make sure
that it is configured as desired.

Administrators also must intervene when a prob-
lem cannot be handled by an autonomic system. This
poses new challenges to autonomic systems and their
users. Unlike current practice in which the administra-
tors have absolute control, system administrators must
turn off certain parts of the automated process and
take over, just like taking over from automobile cruise
control or auto-piloting. The responsibilities must be
well-defined and documented. The switching process
between autonomic and manual management must be
well documented and practiced.

An autonomic system itself is more complex than
a corresponding traditional system. For example, in
configuring our PIPs, one must describe their operating
environment and policies in great detail, giving infor-
mation that would not be known by hosts in a non-
autonomic DHCP/DNS infrastructure, such as the loca-
tions of routers on foreign subnets. This extra configu-
ration, however, pays off when the resulting fabric of
servers relieves one from routine tasks such as rebuild-
ing servers or propagating changes to the network.

One primary obstacle to acceptance of auto-
nomic solutions is trust [1, 10]. People often do not
trust that machines can handle tasks reliably, when
humans will lose control. In truth, autonomic solutions
are ‘‘assistants” rather than masters; the fabric of
management still contains both machines and humans.
This paradigm is especially necessary at the lower lev-
els, where human assistance is required. The human
administrators can use help in implementing complex
processes. One goal for autonomic systems is to auto-
mate IT service and resource management best prac-
tices [4]. Automating these best practices can best gain
the trust of the management and administrators. Fur-
ther, autonomic assistants can help humans track the
state of a task. Our problem domain is close to the
hardware; so close that a human element cannot be

Wu & Couch

avoided to serve as the “hands and feet” of the sys-
tem. Accountability issues are also unavoidable. Who
should be responsible if a system is not tuned well and
does not meet the specific requirement of a site and
cause downtime?

Our brief discussion of the changing role of sys-
tem administrator may seem daunting, but the job is in
no danger of extinction. Current closures require
extensive bootstrapping and handling of contingen-
cies, and require monitoring by a highly skilled system
administrator. In fact, management of autonomic sys-
tems seems to elevate the profession in several ways:

1. by requiring a high level of system administra-
tion expertise.

2. by redefining the role of system administrator
as someone who directly interacts with policy.

3. by providing (through interaction with policy)
upward mobility to management positions.

4. by providing a much needed human interface
between autonomic elements and upper man-
agement.

Exception Handling

The effectiveness of an autonomic solution
depends upon the efficiency with which humans can
communicate with it. Our PIPs cannot solve all prob-
lems, so that their ability to effectively communicate
problems to humans is crucial to their success.

A key feature of any autonomic system is how it
handles cases in which self-management does not
resolve an issue. The goal of exception handling in
autonomic systems is to report any violations of policy
and resolve them. For example, in the IP address clo-
sure, suppose an interface is declared to have a fixed IP
address. When an administrator activates that interface,
if this host is not physically located on the same subnet
as it should be, the interface might get an IP address
from DHCP on a different subnet than desired. In this
scenario, no obvious error is generated. However, this
is a clear exception to the policy. In this example, the
root cause is that the interface is not connected physi-
cally to the proper subnet. We may choose to correct
the root cause by physically moving the interface or
perhaps setting up a VLAN to simulate physical
rewiring. Alternatively, we could choose to reject the
policy on the grounds that it is not implementable. This
constitutes a form of exception in the closure.

The concept of exception has been widely used
in the computer science field. Exceptions have been
used mostly to express a predictable abnormal sce-
nario that can be categorized in advance. Researchers
have explored exception handling mechanisms in both
intra-component and inter-component situations. For
example, Romanovsky divided exception handling
into local error detection in one component and coor-
dinated action level handling among components [19].
Here we focus on handling of unexpected exceptions,
or exceptions with unknown causes.

128 20th Large Installation System Administration Conference (LISA *06)



Wu & Couch

Because a closure defines observable behaviors,
it is natural to define the possible exceptions raised by
this closure also in terms of observable behaviors, just
like the symptoms of patients. However, unlike the
policy file, the more detailed the exception, the more
helpful the information. A simple exception contain-
ing no extra information will almost definitely require
a human to troubleshoot the problem.

The exceptions that a closure could raise can be

divided into two categories:

¢ Exceptions that cannot be handled by this closure.
The cause of the exception is out of the scope of
control of a certain closure. i.e., self-healing does
not function properly in one situation. For exam-
ple, in the Apache closure, if the file system is
corrupted, the closure cannot possibly work prop-
erly, thus an exception must be thrown. Some-
times, the reason for the exception is unclear.
Thus a generic exception might be raised.
Exceptions that may be handled by this closure
but that the closure chooses not to handle.
Rather, the closure wants the exception to be
handled by other closures.

For example, in the Apache closure, if the
server is unstable, the closure may choose to restart
the server. Or, if the closure decides that a better way
to handle this is to reboot the whole host machine, it
may raise an exception and let another entity handle
it (such as a host closure).

A special type of exception is related to human
input. When the closure discovers that the intention
of the administrator is unclear, or it encounters a
condition where more human input is needed, it
should raise an exception to request more informa-
tion, instead of relying upon itself.

Exceptions can be handled by other closures or
human administrators. Since we cannot wait to have
closures to be built on all the layers and switched on at
once, it is necessary to have a way for closures to
request services from other non-closure systems or
human administrators. In the exception-handling
process, after the event causing the exception is
resolved, the closure can be contacted manually or
programmatically to continue its work. In a true auto-
nomic system, most exceptions should be handled by a
program, rather than by a human administrator.

Conclusions and Future Work

We propose an “IP address closure,” a self-man-
aging IP management infrastructure providing DHCP
and DNS services. The IP address closure mimics the
best practices that administrators discovered in prac-
tice, and automates them through the coordination
among Peered IP management nodes (PIPs). Thus, the
IP address closure is designed to gain the trust of the
system administrators to assist with their work.

The task of making low-level systems self-man-
aging still requires solving many open problems. The

Experience Implementing an IP Address Closure

key problem for IP management is to maintain an
effective interface between the fabric and its human
counterparts. Human administrators are not obsolete,
and they are still critical because autonomic systems
cannot escape exception problems due to physical lim-
its upon architecture. However, designing policies and
resolving exceptions might require a new set of skills
for existing administrators. The policy still depends
upon architecture.

The most complex and challenging problem is that
of planning for safety in very complex changes. When
policies change, there are often safe and unsafe ways to
transition between policies, where an unsafe transition
is one that temporarily exposes a security risk.

Another related problem is how to make the
lower layers (routing and switching) self-managed in a
similar way. These layers suffer from the same ““boot-
strap problem” that we observe for IP address man-
agement; the management fabric has to use what it
manages for its own sustenance, and cannot do that
until it manages that fabric. The simple solution of
managing routing via an out-of-band management net-
work may not be cost-effective for many sites.

Clearly, there are many issues to explore. If there
is a single most important contribution of this paper, it
is that the closure idea is possible at the IP layer, and
that — even with bootstrapping difficulties — self-man-
aging fabrics can function near the physical layer of a
network, provided that there is a carefully orchestrated
relationship between the self-managing fabric and its
human partners.

The role of administrators in the autonomic era
has already changed. Instead of being obsolete, auto-
nomic systems challenge system administrators to
obtain a higher level of expertise, including knowl-
edge of policy design and architecture, tuning, and
troubleshooting. At the same time, autonomic systems
elevate the system administration profession and
shorten the distance between management and system
administration through the common language of pol-
icy-based interfaces. Some system administration jobs
may be lost to autonomic systems, but those that
remain may well enjoy better advancement opportuni-
ties, as well as increased respect and recognition for
the profession.

Author Biographies

Ning Wu is pursuing his Ph.D. at Tufts Univer-
sity. His research interests are in system management,
autonomic computing, system integration, and P2P
systems. Before studying at Tufts, he had worked as
an engineer for Genuity and Level 3 Communications
Inc. He received an M.S. from State University of
New York at Albany, an M.E. from East China Insti-
tute of Computer Technology, and a B.S. from South-
east University in China. Ning can be reached via
email at ningwu@cs.tufts.edu.

20th Large Installation System Administration Conference (LISA *06) 129



Experience Implementing an IP Address Closure

Alva L. Couch was born in Winston-Salem,
North Carolina where he attended the North Carolina
School of the Arts as a high school major in bassoon
and contrabassoon performance. He received an S.B.
in Architecture from M.LT. in 1978, after which he
worked for four years as a systems analyst and admin-
istrator at Harvard Medical School. Returning to
school, he received an M.S. in Mathematics from
Tufts in 1987, and a Ph.D. in Mathematics from Tufts
in 1988. He became a member of the faculty of Tufts
Department of Computer Science in the fall of 1988,
and is currently an Associate Professor of Computer
Science at Tufts. Prof. Couch is the author of several
software systems for visualization and system admini-
stration, including Seecube(1987), Seeplex(1990),
Slink(1996), Distr(1997), and Babble(2000). He can
be reached by surface mail at the Department of Com-
puter Science, 161 College Avenue, Tufts University,
Medford, MA 02155. He can be reached via electronic
mail as couch@cs.tufts.edu.

Bibliography

[1] Chan, Hoi, Alla Segal, Bill Arnold, and Ian
Whalley, “How can we trust an autonomic sys-
tem to make the best decision?” 2nd Interna-
tional Conference on Autonomic Computing
(ICAC 2005), pp. 351-352, 2005.

[2] Cisco Systems, Cisco CNS Network Registrar
Users Guide, Software Release 6.1, 2004.

[3] Couch, Alva, John Hart, Elizabeth G. Idhaw, and
Dominic Kallas, “Seeking closure in an open
world: A behavioral agent approach to configu-
ration management,” Proceedings of the 17th
Conference on Systems Administration (LISA
2003), pages 125-148, 2003.

[4] Ganek, A. G. and T. A. Corbi, “The dawning of
the autonomic computing era,” [BM Systems
Journal, Vol. 42, Num. 1, pp. 5-18, 2003.

[5]1IBM, An architectural blueprint for autonomic
computing, IBM white paper, April, 2003.

[6] International Network Services, [PControl,
http://www.ins.com/software/ipcontrol.asp .

[7] Internet Systems Consortium, Inc., ISC BIND,
http://www.isc.org/index.pl?/sw/bind/ .

[8] Internet Systems Consortium, Inc., ISC Dynamic
Host Configuration Protocol (DHCP), http://www.
isc.org/index.pl?/sw/dhcp/ .

[9] Keller, A., J. Hellerstein, J.L. Wolf, K. Wu, and
V. Krishnan, “The champs system: Change man-
agement with planning and scheduling,” Pro-
ceedings of the IEEE/IFIP Network Operations
and Management Symposium (NOMS 2004),
Kluwer Academic Publishers, April, 2004.

[10] Kephart, Jeffrey O. and David M. Chess, “The
vision of autonomic computing,” [EEE Com-
puter magazine, January, 2003.

[11] Limoncelli, Tom, Tom Reingold, Ravi Narayan,
and Ralph Loura, “Creating a network for lucent

Wu & Couch

bell labs research south,” Proceedings of the 11th
Conference on Systems Administration (LISA
1997), pp. 123-140, 1997.

[12] Logan, Mark, Matthias Felleisen, and David
Blank-Edelman, “Environmental acquisition in
network management,” Proceedings of the 16th
Conference on Systems Administration (LISA
2002), pp. 175-184, 2002.

[13] Lucent, Lucent network management software
for enterprises.

[14] Melcher, Brian and Bradley Mitchell, “Towards
an autonomic framework: Self-configuring net-
work services and developing autonomic appli-
cations,” Intel Technology Journal, Vol. 8, Num.
4, Nov., 2004.

[15] Mockapetris, P., “Domain names — concepts and
facilities,” RFC 1034, 1987.

[16] Mockapetris, P., “Domain names — implementa-
tion and specification,” RFC 1035, 1987.

[17] Network Working Group, DHCP failover proto-
col, 2003, http://www3.ietf.org/proceedings/04mar/
[-D/draft-ietf-dhc-failover-12.txt .

[18] Rhea, Sean, Brighten Godfrey, Brad Karp, John
Kubiatowicz, Sylvia Ratnasamy, Scott Shenker,
Ion Stoica, and Harlan Yu, “OpenDHT: A public
DHT service and its uses,” Proceedings of ACM
SIGCOMM 2005, 2005.

[19] Romanovsky, A., “Exception handling in com-
ponent-based system development,” The [5th
Int. Computer Software and Application Confer-
ence, COMPSAC 2001, 2001.

[20] Schwartzberg, Steven and Alva Couch, “Experi-
ence in implementing a web service closure,”
Proceedings of the 18th Conference on Systems
Administration (LISA 2004), 2004.

[21] Sleepycat Software, Berkeley DB XML, http:/
www.sleepycat.com/products/bdbxml.html .

[22]1 W3C, XSL Transformations (XSLT) Version 1.0,
http://www.w3.org/TR/xslt .

[23] W3C, Web services architecture, 2004, http://www.
w3.org/TR/ws-arch/.

130 20th Large Installation System Administration Conference (LISA *06)



