WinResMon: A Tool for Discovering
Software Dependencies, Configuration and
Requirements in Microsoft Windows

Rajiv Ramnath — National University of Singapore
Sufatrio — Temasek Laboratories, National University of Singapore
Roland H. C. Yap and Wu Yongzheng — National University of Singapore

ABSTRACT

This paper describes WinResMon, a system tool for determining resource usage and
interactions among programs in Microsoft Windows environments. Think of WinResMon as a
debugging tool to assist with software maintenance in a Microsoft Windows environment. It shows
the current system state in terms of how resources are used and explains how the system arrived at
that state. WinResMon can be used to determine how a program uses the registry and which files
are needed by that program. WinResMon differs from other systems/tools in that it is integrated,
designed to answer queries about resource usage and dependencies over time, and extensible,
allowing the addition of new functions and tools.

Introduction

The tasks of software maintenance and configu-
ration require a precise understanding of system
resources, the individual requirements of each piece of
software, and interdependencies between every soft-
ware program on the system. We use the term sofiware
maintenance to describe the system administration
task of ensuring that software on a system is config-
ured and maintained correctly over time. Examples of
software dependencies include:

e file sharing: including dynamic libraries and
external data storage

e sharing of software configurations: usually in
the form of registry keys in Microsoft Windows

® interprocess communication and synchronization.

Although software maintenance tasks might
seem conceptually trivial, they can be time consuming
and difficult, especially in large or complex environ-
ments. System administrators often rely on documen-
tation and on-line information such as FAQs or
forums, but such information is often incomplete.

In various distributions of Linux, software
dependency issues are partly addressed by the use of a
package manager. The Red Hat Package Manager
(RPM) [1], for example, records the currently installed
packages and the files required and provided by these
packages in a centralized database. RPM checks
dependencies before removing a package to ensure
that files required by other installed packages are not
removed. Similar checks are done to prevent installing
a package which contains files that conflicts with
other existing packages.

In Microsoft Windows, however, software instal-
lation can be complex, and the exact dependencies
between different software programs might not be

clear. The confusion is further compounded by many
implicit software interdependencies, e.g., registry keys
which are part of shared software configurations. As a
result, it is difficult to know whether to remove a file
when uninstalling an application. File removal might
lead to problems with another piece software or might
create security vulnerabilities.

When installing two or more programs that share
files, one program may cease to function correctly
because the installation of the second blindly over-
wrote shared libraries (DLL files). There is also the
question of when to perform a major software
upgrade. System administrators may delay upgrading
for fear of breaking existing software; yet such a
choice has its own risks.

This paper focuses on the problem of software
maintenance in Microsoft Windows NT-based operat-
ing systems (Microsoft Windows XP, Microsoft Win-
dows 2000, Microsoft Windows 2003)." We present
WinResMon, a discovery and system debugging tool for
determining a program’s resource usage as well as the
resource usage interactions between multiple programs.

Motivation and Applications

We believe that the key to solving the software
maintenance problem is to understand the life cycle of
the system and programs therein. We also wish to
empower ordinary users, removing the requirement of
knowing every minutiae of Microsoft Windows.
Although WinResMon is not tailored specially for system
security, it can also be utilized as a security auditing tool.

We designed WinResMon to act as both an infra-
structure or framework and a system utility. As a

"While an appropriate version of a tool similar to WinRes-
Mon could also be of use in UNIX, its value is much greater
in a Microsoft Windows environment.

20th Large Installation System Administration Conference (LISA *06) 175

WinResMon: A Tool for Discovering Software Dependencies ...

framework, it is extensible, and one can therefore add
new functionality and build customized tools. As a
tool, it comes with pre-built modules to answer typical
questions about resource usage and dependencies.

When used as a debugger, WinResMon investi-
gates the current system state, i.e., which program
uses which registry keys, and determines how the sys-
tem has arrived at that state. WinResMon accom-
plishes this by recording information about the evolu-
tion of system software dependencies and resource
usage over time. To solve general problems in soft-
ware maintenance, WinResMon monitors: files, the
registry, and interprocess communication and synchro-
nization. However, it is not feasible to continuously
and permanently record all changes to the system
since the required space would be prohibitive. Win-
ResMon employs a reasonable compromise by main-
taining detailed usage records over the current time
period and a subset of information that can be main-
tained over the lifetime of all software in the system.

We illustrate the software maintenance problem
with some simple examples. One attack vector for
spyware is to register itself as a start-up program,
thereby hiding itself from the end user. Also consider
a music player which may require some sound decod-
ing libraries. This application only functions correctly
with certain versions of the libraries. Thus, replacing a
library can lead to software failure. Various pieces of
software may also conflict, e.g., two mail transfer
agents (MTAs) usually do not co-exist.

Some common system administration questions

and tasks which WinResMon can assist with include:

1. Can we safely remove a particular DLL file?
Some applications provide shared libraries
(DLL files) for use with other applications.
When the system administrator uninstalls an
application, she can also choose to remove the
DLLs. Removing a DLL can cause other pro-
grams which still use it to malfunction. On the
other hand, blindly retaining all DLLs will
cause the system to keep growing and may cre-
ate security vulnerabilities. The system admini-
strator generally lacks adequate information to
determine whether another program uses a
shared library. WinResMon can be used to
record the utilization of each DLL so that the
system administrator can determine which pro-
grams use which DLLs.
2. Why does a program need administrator privi-

lege to run?
Running programs with administrator privilege
is discouraged because malware such as
viruses/spyware or poorly written applications
can damage the system. However, some pro-
grams may need to run as the administrator
without an obvious reason. WinResMon can
detect whether a program needs administrator
access. The idea is to understand the reasons for

Ramnath, Sufatrio, Yap, & Wu

elevated privileges and configure the system to
limit the use of privileges. If it finds applications
that require certain administrator privileges to
function correctly, the system administrator can
set up a policy that restricts the administrator
privileges to the needed resources (files, registry
keys, etc.). We remark that this approach can be
contrasted with confinement systems such as
systrace [2] in UNIX. WinResMon is an audit-
ing tool, it does not confine system calls, but
provides useful input for system administrators
to create policies on resource access which can
then be used to limit privileges.

3. Monitoring sensitive registry locations to
detect spyware.
Managing the Microsoft Windows registry is
difficult due to its complexity. Spyware often
takes advantage of this complexity to bury
itself in the registry, making it difficult for the
user to remove it completely. In [3], the authors
have listed the most common entry points for
spyware to enter a Windows NT system. The
following are some of the configuration settings
WinResMon can monitor:

o Autostarts: monitor which programs load
on startup.

o Internet explorer hooks: track hooks which
define the default search page, toolbars and
browser helper objects (BHO), etc.

o Winlogon: look for applications that hook
into system resources.

o Services: monitor services such as auto-
matic startup services (e.g., task scheduler)
or drivers which are installed as services.

o DLL injection: monitor DLL injection
attacks (any application that uses user32.dll
can be hijacked by having a DLL injected
into its process space).

o File associations: monitor the registration of
file extensions with applications. For exam-
ple, .DOC is registered to Microsoft Word.

System Design

The WinResMon system infrastructure shown in
Figure 1 consists of the following components: logger,
archiver, query API, and user-log API. The logger
generates resource-access traces which are later used
by the analyzer. The archiver performs log com-
paction/summarization of old traces. Query and user-
log API provide the interface to the trace database.

The Logger

The logger consists of a system call (syscall)
interceptor and a trace generator module. The syscall
interceptor is an in-kernel driver which monitors system
calls made by each process and sends the monitored
event information to the trace generator. The trace gen-
erator is a user-space service (daemon) which collects
event information sent from the syscall interceptor and

176 20th Large Installation System Administration Conference (LISA °06)

Ramnath, Sufatrio, Yap, & Wu

generates resource access traces. Ideally, the logger is
meant to run all the time so as to record the entire life
cycle of how resources are used by software.2

A log trace file consists of a list of records, each
representing an access operation on one of the follow-
ing types of resource:

1. File: covering both directories and regular files

2. Registry

3. Process: mainly to record process creation

4. Synchronization objects: which records infor-
mation on inter-process synchronization mech-
anisms provided by Microsoft Windows

(mutex, semaphore, event and waitable timer)

5. IPC: including named pipes and mailslots.

In addition to these five basic resource types,
WinResMon also captures system event information
such as: process termination, system boot and shut-
down, user login and logout. Moreover, it also pro-
vides a user-log API for users or applications to insert
user/application-defined milestone events. One poten-
tial usage of custom events is to demarcate and distin-
guish the software installation and uninstallation por-
tions of the log.

A record entry contains common information
and specific information relevant to that record type.
The common information consists of: record-type,
time, process-id, and the error-code (in the case of
failure). The specific information recorded by differ-
ent record types are:

1. File:

o absolute path of the file

o file operation: open, read, write, delete or

move

o operation-specific information. For open:

the access flags. For read and write: the
number of bytes read or written. For move:
the new path.

2. Registry:

o absolute path of the registry key

o operation: open-key, query-value, set-

value, or delete-key

20ne might only run the logger at select times instead, but
this means WinResMon could miss critical information.

WinResMon: A Tool for Discovering Software Dependencies ...

o operation specific information. For open-
key: the access flags. For query-value and
set-value: the type, size, and value of the
registry key.

Due to the importance of the registry in soft-

ware maintenance, WinResMon logs the actual

data changes made to the registry; whereas for
file I/0, it is not practical to record the data.

. Process:

o absolute path of the executable corre-
sponding to the newly created process

o command line arguments

o process id of the newly created process.

. Synchronization objects:

o type of the object: mutex, semaphore,
event, or waitable-timer

o name of the object

o operation: create, open, or delete.

We are interested only in objects which have

names in the system-wide namespace, because

anonymous and process-wide named objects

will not interfere with other programs, thus they

are unrelated to software dependencies.

. IPC:

o type of the IPC: named-pipe, or mailslot

o name of the IPC

o operation: create, open, delete, send, or
receive.

WinResMon records the synchronization

objects and IPC operations listed above since

they involve global (system-wide) namespace
which could be used by different programs to
interact with each other. One can use WinRes-

Mon to uncover the causes of the following

problems:

a) If process 4 has created a semaphore s, and
process B, which is unaware of the exis-
tence of 4, is trying to create a semaphore
with the same name s, B’s operation will
fail.

b) If process A fails to run correctly and sem-
aphore s is not created, then process B,
assuming the existence of 4, will fail try-
ing to use s.

Archiver

User-Log
API

User-defined Log Writer 1 ‘

User-defined Log Writer 2 ‘

Logger
99 Analyzer 1
Trace
— Analyzer 2
generator Log User
i Database e mode
Kernel Kernel
mode mode
driver

Figure 1: WinResMon overall system architecture.

20th Large Installation System Administration Conference (LISA *06) 177

WinResMon: A Tool for Discovering Software Dependencies ...

6. System event:
o system event type: process-termination,
boot, shutdown, user-login, or logout
o any event specific information: path of the
executable of the process in the case of
process termination, user name in the case
of user login/logout, etc.
7. User defined event:
o the path of the executable of the process
generating the event
o a binary string describing the event.

Not all operations need to be logged into the data-
base as some resources are not significant to record,
e.g., the temporary directory, C:\temp. A filter can there-
fore be used in the logger to prevent logging resource
access of no interest to the system administrator.

The Log Database

The log database consists of a number of log files
and one distinguished active log to which the logger
records current resource access activity. To maintain rea-
sonable log file sizes, WinResMon performs a “log
switch” to create a new active log for recording subse-
quent entries. The old log files are then subject to the
log compaction/summarization process by the archiver.
Any of the following conditions can trigger a log switch:

¢ The size of the current log file reaches the spec-
ified Max_log_size.

® The number of entries in the current log file
reaches Max_log_entries.

e The user manually initiates a log switch
process.

Archiving Old Traces

As WinResMon logs system activities over a
long period of time, the trace becomes very large. If
old traces are discarded, some early yet potentially
valuable information, such as identifying which pro-
gram first created a file, is lost. Since it is necessary to
eventually prune some information to avoid exces-
sively large log files, WinResMon summarizes old
trace files into a “compacted trace database. This
maintains a balance between compactness and the
ability to answer important questions about system
resource access.

There are two main issues in performing trace
compaction, determining when to initiate the com-
paction and how to perform compaction on old trace
entries. WinResMon uses a module called the archiver
which runs based on a specified Archive_interval_check
time interval. Upon activation, the archiver compacts
previously uncompacted entries which are older than
the specified Old_log_age. WinResMon employs the
following strategies in performing the compaction:

Log Entry Summarization/aggregation

WinResMon can summarize multiple entries
with similar information to produce an aggregated
entry in the compacted trace database. It applies the
following policies on various resource types:

Ramnath, Sufatrio, Yap, & Wu

¢ File: multiple read or write operations on the
same file are summarized by recording the time
of the first and last operations and the total
number of time the operations were done.

® Registry: multiple query-value operations on

the same registry key are aggregated. Multiple

set-value on a key are aggregated only if the

values written are identical.

IPC: send and receive operations of one IPC

object are aggregated by recording the time of

the first and last operations.

When matching a query on an aggregated entry
which records a time interval, WinResMon considers
that the entry satisfies the specified time constraint if
one of the values matches the constraint.

Selective Priority-based Entry Removal

One strategy to reduce the old traces involves
removing entries deemed to be of little value for
answering future questions. WinResMon implements
selective entry removal strategy based on a user-sup-
plied configuration file. The configuration file assigns
a priority to log entries. For example, a log entry for
writing a registry key might be considered more
important to keep than one for reading a registry key.

A fragment of an example configuration is shown
in Appendix 2. This example uses priority values rang-
ing from 1 (least important) to 5 (most important). For
each resource type, configuration entries are matched in
a sequential order, and mappings are listed from most
to least specific. It is possible to omit some arguments,
i.e., with wildcards. To simplify the priority assign-
ment, WinResMon classifies file open operations in
Microsoft Windows into one of three modes: RO (read-
only), RW (read-write) and WO (write-only/append).
The archiver translates the semantics of each operation
from file flags in the raw log entries to the appropriate
values for matching against the configuration.

The existing applications and anticipated usage,
together with some general principles, can be used to
derive the priority assignment for the configuration.
One general principle is that “transient information,”
such as that those on synchronization objects and IPC,
becomes less relevant after system shutdown and can
be given low priority. During the removal process, all
log entries with priority lower than the Lowest_prior-
ity_retained value will be purged.

Auto Deletion of Old Log Files

To maintain reasonable storage usage, WinRes-
Mon eventually needs to remove entries deemed too
old. The log file whose newest entry timestamp
exceeds Max_log_lifetime is deleted. If necessary, it is
also possible to additionally provide an API function
(in a secure manner) to perform deletion on selected
trace entries based on a specified selection condition.

A Query API and Analyzer

We want to support trace analyzers which answer
queries solving particular software maintenance problems.

178 20th Large Installation System Administration Conference (LISA ’06)

Ramnath, Sufatrio, Yap, & Wu

WinResMon therefore provides a query API which can
be used to obtain information from the trace database.
One can view the trace as a database and the provided
query API as the query language by which the analyzers
extract relevant information from the database.

The main query API, analogous to an SQL Select
command, is trace_select([selection condition], [field pro-
jection), [time interval], [output order]), where the caller
specifies the matching condition(s) and fields to
return. The Selection condition, specified on string types
such as program name and registry key path, takes the
form of a regular expression. Logical operators can be
used to combine matching conditions.

Continuing the database analogy, the caller uses
projection to specify which fields to return. For exam-
ple, suppose one only wants to know the list of pro-
grams accessing a certain file. In other cases, one
wishes to know all access operations on the file (i.e.,
the order and access time matter). In the former, the
analyzer only returns a set of program names. In the
latter, it returns the sequence of all access operations.

We specify time in the format below:

1. “YYYY-MM-DD hh:mm:ss”: an explicit time-
stamp

2. “-[count][m|h|d]’: a relative time earlier than the
current time

3. “OLDEST”: the time of the oldest available
entry in the log

4. “NOW?”’: the current time.

The time interval is then specified as: ““[start time]
TO [end time]”.3 Some examples of time interval defi-
nitions are:
e <2006-01-25 11:47:51 TO 2006-08-21 13:41:16”
e “-1d TO NOW” (in the last 24 hours)
e “OLDEST TO -8h” (everything except the past 8
hours).

Output order controls the ordering of query
results. It can be either: FORWARD, to list the oldest
entry first or BACKWARD, to show the most recent
entry first. The BACKWARD option is useful to get the
k most recent operations.

After obtaining the trace_handle from
trace_select(), one can call trace_next (trace_handle) to
retrieve the records and trace_close(frace_handle) to fin-
ish retrieval. Some sample analyzer applications
using this query API are described later.

The User-Log API

The user-log API lets applications add their own
entries into the log database. As applications are not
allowed to write directly to the log file, custom events
are generated using an ioctl interface to the kernel
driver. One use of user-entries includes marking
events related to software installation, making it easier

3Although an analyzer can include constraints on log’s
timestamp as conditions in the Selection condition, an explicit
time interval specification is less complex.

WinResMon: A Tool for Discovering Software Dependencies ...

to determine what files and registry keys are cre-
ated/modified during installation. This feature also
provides a general purpose logging facility.

The API for user-entries is winresmon_userlog(/og-
data, length). 1t signals the trace generator to record the
logdata to the log database in binary form. The owner-
ship information of a user log entry (i.e., the program
pathname and process) is always recorded.

Figure 2 shows a simple wrapper for an installer
program which generates custom installation events. In
this example, the logdata consists of the name of the
software and path of the installer program. Invoking the
wrapper as “C:\ins-wrapper.exe photoshop_cs2 H:\setup.
exe”, generates logdata containing “INBGH:\setup.exe|
photoshop_cs2”” and “‘INEDH:\setup.exe|photoshop_ cs2”.

jldefine MAGIC_INSTALL BEGIN "INBG"
jldefine MAGIC_INSTALL END "INED"

int main (int argc, char **argv)
{
char buff[256];
if (arge != 3) {
printf ("example: %s software_name"
" c:\...\installer.exe",
argv[0]);
exit(1);
}
buff[sizeof (buff)-1] = *\0’;

_snprintf (buff, sizeof (buff)-1,
MAGIC_INSTALL_BEGIN "%s|%s",
argv[2], argv([1l]);

winresmon_userlog(buff, strlen(buff));

system(argv[2]); // fork and wait

_snprintf (buff, sizeof(buff)-1,
MAGIC_INSTALL_END "%s|%s",
argv([2], argv([1]);

winresmon_userlog(buff, strlen(buff));

return O;

Figure 2: A sample installer wrapper.

| trace file |

F 3
5.log

| iexploreexe || trace generator |

1. CreateFile() 16. return 14 send event user
v kernel
| syscall interceptor |
r 5
2. pass down ¢ 3. return
| syscall dispatcher |

Figure 3: Overview of how the logger works.

Implementation

Figure 3 gives an overview of how the logger
works. The information flow is as follows:

20th Large Installation System Administration Conference (LISA *06) 179

WinResMon: A Tool for Discovering Software Dependencies ...

1. A sample program iexplore.exe calls CreateFile(
"C:\WINDOWS\system32\Macromed\Flash\Flash8.ocx",
READ, ...).

2. This is intercepted by our system call intercep-
tor which passes the parameters to the original
syscall handling routine.

3. The syscall handling routine returns the file
handle.

4. The handle, together with the system -call
parameters are then sent to the trace generator.

5. As the call is successful, the trace generator
updates the file handle/path lookup table. Since
"foo" is a relative path, the trace generator con-
catenates "foo" with the current directory and
add it to the trace.

6. The handle is returned to iexplore.exe and opera-
tion continues as per normal .4

System Call Interception

The overview of the logger in Figure 3 shows
that resource usage is captured by intercepting system
calls. In practice, this is actually more complex.
Rather than defining and using the actual system calls,
the Microsoft Windows API is described at a level
higher than the operating system using the Win32
API. Although most programs use Win32, they can
use the native API [4] directly. The native system call
interface API is unfortunately not well documented
and supported. Furthermore, the view of the operating
system at the native API level is not quite the same as
at the Win32 level. This means that intercepting sys-
tem calls at what regular programs might think of as
the Microsoft Windows API is problematic, and there
could be discrepancies and mismatches between API
use at the Win32 level and native level. To ensure
accuracy, WinResMon intercepts system calls at the
native API level.

WinResMon implements the syscall interceptor
by means of a kernel mode driver. The driver captures
syscall requests made by a process by “hooking” the
native system calls as described in [5]. Appendix 1
lists the system calls intercepted by WinResMon. We
found these to be the most common system calls aris-
ing from file, registry, IPC, synchronization, and
process operations.’ To gather information about pro-
cesses, WinResMon uses a simpler method. Microsoft
Windows NT exports a set of process callback func-
tions in the kernel space [6]. WinResMon makes use
of PsSetCreateProcessNotifyRoutine() and PsSetlLoadIm-
ageNotifyRouting() which notifies the call back function
during process creation or termination.

Event Handling

When sending the data from the kernel to the
user space, it is inefficient to send every event as it

4Step 6 and 4 are independent. Thus, depending on the
scheduler, step 6 is not necessarily executed after step 4.

3Since Microsoft Windows is closed source and the native
API is only partially documented, it is difficult to make any
guarantees about completeness.

Ramnath, Sufatrio, Yap, & Wu

arrives. WinResMon’s implementation therefore makes
use of double buffering. When the size of a buffer
reaches a threshold, WinResMon sends the contents of
the buffer to the user space and switches to another
buffer to continue logging in the kernel space. This
strategy tries to ensure that most, if not all, events are
captured and reduces the system overhead due to con-
text switching. Again, due to the undocumented nature
of the kernel, we can not claim to capture all events.

In the prototype implementation, the kernel and
user space communicate through an ioctl mechanism.
Toctls are used to define a protocol to synchronize data
transfer between the driver and user level trace gener-
ator. WinResMon can also be extended into a remote-
monitoring tool.

struct trace_struct *handle;
struct trace_entry *entry;

trace_handle = trace_select(
"type==\"registry\" && "
"prog path="\"/iexplorer.exe$/\"",
"time, registry.path",
"-1d TO NOW",
FORWARD) ;

if (trace_handle == NULL)

exit(1);

while ((entry = trace_next(trace_handle))

I= NULL) {
printf ("time=%s, registry=%s",
entry->fields[0],
entry->fields[1]);

}

trace_close(trace_handle);

Figure 4: A sample analyzer.

Writing Custom Analyzers

This section demonstrates how to write custom
analyzers on top of the WinResMon framework by
means of examples.

® An analyzer to show all the programs which
read C:\foo.txt after 2005/1/1 could use the fol-
lowing query:
trace_select (
"file.path == \"C:\\foo.txt\"",
"prog_path",
"2005-1-1 00:00:00 TO NOW",
FORWARD) ;

* A more complicated example asks, “What’s the
most recent execution of msnmsgr.exe before
this boot?”” First determine the last shut-
down_time with the query:

trace_select (

"sysevent.type == \"shutdown\"",
"time",

"OLDEST TO NOW",

BACKWARD) ;

The next query gets the whole process creation
event for msnmsgr.exe:

180 20th Large Installation System Administration Conference (LISA *06)

Ramnath, Sufatrio, Yap, & Wu

trace_select ("proc.childname =~ "
"\"/~.*\\msnmagr.exe$S/\"",
NULL,
"OLDEST TO last_shutdown_time" ,
BACKWARD) ;

¢ Figure 4 shows a code fragment from a simple
analyzer which searches for all the registry keys
opened by Internet Explorer.

WinResMon issues the query with selection
type == "registry" && prog_path =" "fiexplorer.exe$/"
and projection on time and registry.path. After
correctly obtaining a trace_handle, it iterates
over all selected records by using trace_next(). It
prints all the fields, time and registry.path, for
each selected trace entry. After iterating over all
relevant records, it closes the handle.

Using WinResMon

The extended example below shows the use of
WinResMon to solve software maintenance problems.

Yahoo Toolbar [7] adds tabbed browsing to Inter-
net Explorer (IE) and adds various icons and links
from within IE to different Yahoo services. The fol-
lowing walk-through illustrates monitoring the Yahoo
toolbar throughout its entire life cycle. There are three
stages: Installation, Program usage, and Uninstalling.
Installation

The provided installer refuses to run under a
standard user account as it needs administrator privi-
leges. Upon successful installation under an admini-
strator account, it creates the following DLLS and
keys:

DLLs

C:\ProgramFiles\Yahoo!\Companion\
Installs\cpn\yt.dll
C:\ProgramFiles\Yahoo!\Companion\
Installs\cpn\YTabBar.dll

Registry keys
HKEY_LOCAL_MACHINE\SOFTWARE\Yahoo

From our list of sensitive registry locations, we note
the following.

Before Installation
Search Page:

http://www.microsoft.com/isapi/
redir.dl11?prd=ie&ar=iesearch

Search Bar: -

After Installation
Search Page:

http://us.rd.yahoo.com/customize/
ycomp/defaults/sp/*http://www.yahoo.com

Search Bar:
http://us.rd.yahoo.com/customize/

ycomp/defaults/sb/*http://www.yahoo.com/

search/ie.html

WinResMon: A Tool for Discovering Software Dependencies ...

Yahoo! Toolbar Helper:

02478D38-C3F9-4EFB-9B51-7695ECA05670 -
C:\ProgramFiles\Yahoo!\Companion\
Installs\cpnOl\yt.dll

Among the changes made, Yahoo replaced MSN
search as the default search engine.

Program Usage

Since the database is persistent, WinResMon
logs all the events associated with Yahoo and pre-
serves the information even if the system reboots. This
helps analyze the behavior of Yahoo toolbar over a
period of time.

Uninstalling

When uninstalling Yahoo toolbar, WinResMon
observes that all the files have been removed. How-
ever, the registry settings it made are left unchanged.
As a result, Yahoo remains the default search engine
for the system.

WinResMon Overhead

To measure the performance overhead resulting
from constant monitoring of systems with WinResMon,
we first look at some worst case scenarios using micro-
benchmarks consisting of only repeated system calls.

Our micro-benchmarks comprise of: seven
benchmarks on file access, five on registry access, and
two on process creation. All of these micro-bench-
marks run on a Pentium 4 2.4GHz machine with
512MB running Microsoft Windows XP with SP2.
The benchmarking procedure consists of first running
the benchmarks on a clean Microsoft Windows XP
(with SP2) to get the baseline performance. The next
battery runs with WinResMon loaded. The last battery
is run with FileMon [8] loaded for file access bench-
marks and RegMon [9] loaded for registry access
benchmarks. Each micro-benchmark repeats an opera-
tion n times. We performed each benchmark four
times to get the average execution time. Tables 1, 2
and 3 show the average and standard deviation of the
execution time in seconds.

The file access benchmarks consist of:

(F1) Open an existing file. The same filename is
used every time.

(F,) Create a new file and delete it. A different file-
name is used every time.

(F3) Read 1 byte from a file. We ensure that the file
is large enough so that EOF is never met for
multiple reads.

(F4) Read 4,096 bytes from a file. The file size is a
multiple of 4,096. When we reach EOF, we
rewind to the beginning of the file.

(F5) Write 1 byte to a file. We start with an empty
file.

(Fg) Write 4,096 bytes to a file. When we reach
EOF, we rewind to the beginning of the file.

(F;7) Create a new directory and delete it. A different
filename is used every time.

20th Large Installation System Administration Conference (LISA ’06) 181

WinResMon: A Tool for Discovering Software Dependencies ...

The benchmarks for registry access are:

(R;) Open an existing registry key. The same key is
used every time.

(R,) Create a new registry key and delete it. A dif-
ferent name is used every time.

(R;3) Create a new volatile registry key and delete it.
RegCreateKeyEx is used with the
REG_OPTION_VOLATILE option.

(R4) Query the value of a registry key. The type
REG_DWORD is used.

(Rs) Set the value of a registry key. The type
REG_DWORD is used.

The benchmarks for process creation are:

(P;) Create a dummy console process and wait for
its termination.

(P,) Create a dummy GUI process and wait for its
termination.

Table 1 shows the execution time (in seconds)
for the file access benchmarks. In order to avoid any
extraneous overhead from the FileMon GUI, the win-
dow is always minimized during the experiments. It
appears that FileMon does not capture all the opera-
tions during the performed micro-benchmark, though.
For example, during the “Read 1 byte” test, 10 M
events occurred, but FileMon only captured about
15K. During the “Create a new file” test, 600 K
events occurred, but only about 18 K were actually
captured. We observe that WinResMon, by contrast,
captured all operations in all the tests.

Table 2 shows the execution time (in seconds) of
the registry related benchmarks. This benchmark is
conducted similarly to the file benchmark. It appears
that RegMon also drops events. For example, during
one of the “Query value” test, 1 M events occurred,
but only 993,938 were actually captured by RegMon.

Note that FileMon, RegMon and WinResMon
address different goals. FileMon and RegMon are
meant for short term monitoring while WinResMon is

Ramnath, Sufatrio, Yap, & Wu

designed for long term use and is therefore always run-
ning in the background. These two benchmark compar-
isons merely give us a baseline on how WinResMon
compares with other, similar monitoring software.

Table 3 shows the results of the process creation
benchmark. The console process in the benchmark
creates a dummy child process using the CreatePro-
cess() function and waits for its termination using the
WaitForSingleObject() function. The difference between
a console program and a GUI program is that the GUI
program uses the WinMain() entry function and is
linked using the /SUBSYSTEM:WINDOWS option, while
the console program uses main() and /SUBSYS-
TEM:CONSOLE. The measured overhead is quite small
because process creation is a slower operation than
file or registry access.

We would expect normal programs to have much
smaller overhead than that of the micro-benchmarks
because the micro-benchmarks are very system call
intensive. Normal programs, such as our macro-
benchmarks, typically make significantly fewer sys-
tem calls, spending more time in the application rather
than the kernel. Table 4 gives some macro-benchmark
results which show the impact of WinResMon on the
following normal programs: WinRAR, gcc, BTEX, and
Lame. The benchmarks perform the following:

¢ WinRAR: compress a 150 MB file

e gcc: compile a 500 K-line C program

e |atex: compile a 2,000-page IBTEX file into PDF
using the pdflatex program

¢ Lame: encode a 100 M wave file into a mp3
file.

The macro-benchmark results demonstrate that
running WinResMon all the time is quite reasonable
under typical usage.

Related Work

From a high level perspective, WinResMon dif-
fers from previous systems/tools in that it is:

File Operation n Clean WinResMon FileMon

(F;) Open an existing file IM | 20.457£0.240 46.266 + 3.271 (126.2%) 44.168 £ 0.279 (116.0%)
(F,) Create a new file 100K | 53.004 £2.532 67.539 £ 0.469 (27.4%) 73.117 £ 0.265 (37.9%)
(F;) Read 1 byte 10M | 14.277+£1.084 | 278.175+14.282 (1848.4%) | 107.414 £4.765 (652.4%)
(F,) Read 4096 bytes 10M | 41.207£0.133 328.203 = 34.869 (696.5%) 138.816 £ 0.793 (236.9%)
(F5) Write 1 byte 10M | 49.824+11.160 388.050 + 0.837 (678.8%) 172.422 + 1.114 (246.1%)
(F,) Write 4096 bytes 10M | 116.355%0.716 448.933 £2.192 (285.8%) 212.828 +2.950 (82.9%)
(F,) Create a new directory | 100 K | 46.546 +0.344 57.750 £ 9.565 (24.1%) 56.395 £ 0.282 (21.2%)

Table 1: Performance comparison on file access (in seconds).

Registry Operation n Clean WinResMon RegMon

(R,) Open an existing key M 10.378 £ 0.039 35.324 £ 0.080 (240.4%) 361.438 £ 40.504 (3382.7%)
(R,) Create a new key 100K 8.980 + 0.037 13.769 £ 0.041 (53.3%) 134.879 = 10.778 (1402.0%)
(R;) Create a new temp key | 100K 7.832 £0.045 12.750 £ 0.082 (62.8%) 142.961 +12.811 (1725.3%)
(R,) Query value M 1.461 +0.009 27.203 £0.061 (1761.9%) | 166.301 £4.406 (11382.7%)
(R;) Set value 1M 22.890+0.153 46.379 £ 0.090 (102.6%) 182.473 £7.272 (697.1%)

Table 2: Performance comparison on registry access (in seconds).

182

20th Large Installation System Administration Conference (LISA *06)

Ramnath, Sufatrio, Yap, & Wu WinResMon: A Tool for Discovering Software Dependencies ...

® integrated: since it monitors accesses on files
and registry under one infrastructure

® extensible: system administrators can write
their own custom modules to utilize the gener-
ated log

® geared for log management: system administra-
tors can view resource access activities gener-
ated over time, and inspect their relationships
with respect to software configuration and
dependencies.

We briefly mention some other tools/systems
below, and highlight the important differences with
WinResMon.

FileMon [8] and RegMon [9] are file and registry
monitoring tools, respectively. They monitor opera-
tions taking place on the registry or specified file sys-
tem in real time. Although WinResMon shares the
basic monitoring functionalities with these two tools,
WinResMon’s infrastructure is integrated, and its log
database is designed to assist system administrators in
inspecting software configuration and dependencies.

Strace [10] is a Linux/UNIX tool used to inter-
cept and log system calls invoked by a process. There
is also a Microsoft Windows NT port of strace [11]
with similar functionality. WinResMon differs from
strace in that is focused more on resource usage (files,
registry, etc.) rather than system calls. In Microsoft
Windows, a system call viewpoint can be confusing
since there are multiple levels of APIs which translate
into the poorly documented native APL

Systrace [2] is a UNIX tool for sandboxing
untrusted code. Unlike Systrace, which examines sys-
tem-call sequences issued by the monitored processes
and applies a specific security policy, WinResMon is
meant as a monitoring tool to inspect resource usage
and interactions among programs in a system.

DTrace [12], SystemTap [13] and LBox [14] are
auditing and instrumentation systems on various UNIX
operating systems. They are all event based auditing
systems, performing a specific action only on a specific
event. DTrace and SystemTap allow administrators to
dynamically execute supplied code in the kernel when
certain event occurs. LBox allows the kernel to notify a
user space program when certain events happen. Both

LBox and WinResMon are designed for monitoring
resource usage, while DTrace and SystemTap are
designed for general system call instrumentation.

Conclusion

This paper presented the motivation, design,
implementation and usage of WinResMon. Its main use
is to inspect resource access and software dependency
issues in Microsoft Windows environments. As Win-
ResMon is extensible, system administrators can also
build tools using WinResMon for custom queries and
system analysis. Benchmarking shows that WinResMon
is reliable and is comparable to other popular tools.

Future work is to increase the usability and robust-
ness. We would also like to ensure that logging is as
comprehensive as possible taking into account the
undocumented and unsupported nature of the APIs in the
Microsoft Windows NT kernel. We would also like to
further increase the efficiency of the logging mechanism.

Acknowledgments

We acknowledge the support of the “Defence
Science and Technology Agency” and “Temasek Lab-
oratories.” We also would like to thank Amy Rich for
many useful comments and suggestions in improving
the paper.

Author Biographies

Rajiv Ramnath is currently a final year student in
the School of Computing at National University of
Singapore. His interests include operating systems and
computer security. He can be reached at rajivram@
comp.nus.edu.sg .

Sufatrio holds a B.Sc. from University of
Indonesia and an M.Sc. from National University of
Singapore. He is currently a Ph.D. student in the
School of Computing and an associate scientist in
Temasek Laboratories at National University of Singa-
pore. His interests include intrusion detection systems
and infrastructure for secure program execution. He
can be reached electronically at tslsufat@nus.edu.sg .

Roland Yap obtained his Ph.D. from Monash
University. He is currently an associate professor in
the School of Computing at National University of

Process Operation n Clean WinResMon
(P;) Create a console process | 10K | 35.488+0.071 | 37.855+0.150 (6.7%)
(P,) Create a GUI process 10K | 34.641+£0.044 | 36.938 £0.097 (6.7%)

Table 3: Performance of process creation (in seconds).

Test Case Clean WinResMon

WinRAR | 224.443 £0.542 | 226.524 £3.502 (0.9%)
gcc 26.265+1.219 26.973 £ 0.968 (2.70%)
RBTEX 27.211+0.473 27.498 £ 0.981 (1.1%)
Lame 45.631 +£0.538 45.662 £ 0.534 (0.6%)

Table 4: Performance of macro-benchmarks (in seconds).

20th Large Installation System Administration Conference (LISA *06) 183

WinResMon: A Tool for Discovering Software Dependencies ... Ramnath, Sufatrio, Yap, & Wu

Singapore. His interests include systems security,
operating systems, programming languages, and dis-
tributed systems. He can be reached electronically at
ryap@comp.nus.edu.sg .

Wu Yongzheng holds a B.Comp. from National
University of Singapore. He is currently a Ph.D. stu-
dent in the School of Computing at National Univer-
sity of Singapore. His interests include systems secu-
rity and operating system. He can be reached at wuy-
ongzh@comp.nus.edu.sg .

Bibliography

[1] http://www.rpm.org/ .

[2] Provos, N., “Improving Host Security with Sys-
tem Call Policies,” USENIX Security Sympo-
sium, pp. 257-272, 2003.

[3] Wang, Y. M., R. Roussev, C. Verbowski, A.
Johnson, M. W. Wu, Y. Huang and S. Y. Kuo,
“Gatekeeper: Monitoring Auto-Start Extensibil-
ity Points (ASEPs) for Spyware Management,”
Large Installation System Administration Con-
ference, pp. 33-46, 2004.

[4] Nebbett, G., Windows NT/2000 Native API Ref-
erence, Macmillan Technical Publishing, Indi-
anapolis, 2000.

[5] http://www.ddj.com/184410109 .

[6] Microsoft MSDN, ““Process Callbacks,” http://
msdn.microsoft.com/library/default.asp?url=/
library/en-us/Kernel _r/hh/Kernel r/k108 a0f7bff2-
270e-411b-87d4-d8d533aalbef.xml.asp .

[7] http://toolbar.yahoo.com/.

[8] http://www.sysinternals.com/Utilities/Filemon.
html .

[9] http://www.sysinternals.com/Utilities/Regmon.
html .

[10] http://www.liacs.nl/ wichert/strace/ .

[11] http://www.bindview.com/Services/RAZOR/
Utilities/Windows/strace readme.cfm .

[12] Cantrill, B. M., M. W. Shapiro and A. H. Leven-
thal, “Dynamic Instrumentation of Production
Systems,” USENIX Annual Technical Confer-
ence, pp. 15-28, 2004.

[13] Prasad, V., W. Cohen, F. Eigler, M. Hunt, J.
Keniston, B. Chen, “Locating System Problems
Using Dynamic Instrumentation,” Linux Sympo-
sium, Vol. 2, pp. 57-72, 2005.

[14]Wu, Y. Z. and R. H. C. Yap, “A User-level
Framework for Auditing and Monitoring,”
Annual Computer Security Applications Confer-
ence, pp. 95-105, 2005.

184 20th Large Installation System Administration Conference (LISA ’06)

Ramnath, Sufatrio, Yap, & Wu

App

WinResMon: A Tool for Discovering Software Dependencies ...

endix 1: List of Intercepted System Calls

File

ZwCreateFile
ZwOpenFile
ZwDeleteFile
ZwReadFile
ZwWriteFile

ZwQuerySystemInformation

opens or creates a new file

opens an existing file

deletes a file

reads from an open file

writes to an open file

queries for information internal to the system

Registry

ZwCreateKey opens an existing key or creates it if it does not exist
ZwDeleteKey deletes a key
ZwOpenKey opens an existing key
ZwQueryKey provides information about the size and number of subkeys (if any)
ZwQueryValueKey provides the value of a registry key entry
ZwSetValuekey creates or replaces a registry key’s value entry
ZwDeleteValueKey deletes a registry key’s value entry

Process
ZwTerminateProcess terminates a process and all its threads.

Synchronization Object (Mutex)
ZwCreateMutant creates a mutex or opens an existing mutex
ZwOpenMutant opens an existing mutex
Synchronization Object (Semaphore)
ZwCreateSemaphore creates a semaphore or opens an existing semaphore
ZwOpenSemaphore opens an existing semaphore
Synchronization Object (Event)
ZwCreateEvent creates a new event or opens an existing event
ZwOpenEvent opens an existing event
Synchronization Object (Waitable Timer)
ZwCreateTimer creates a new timer object or opens an existing timer object
ZwOpenTimer opens an existing timer object
IPC (Named pipe)
ZwCreateNamedPipeFile \ creates a named pipe
IPC (Mailslot)

ZwCreateMailslotFile

‘ creates a mailslot

Table 5: Intercepted system calls.

20th Large Installation System Administration Conference (LISA *06)

Table 5 lists the Microsoft Windows NT native-level system calls intercepted in our current implementation.

185

WinResMon: A Tool for Discovering Software Dependencies ... Ramnath, Sufatrio, Yap, & Wu

Appendix 2: Example of Log Priorities for Trace Compaction

The following example shows a fragment from a log configuration which assigns priorities on FILE resource-
type entries. We map log entries into priority values ranging from 1 (least important to retain) to 5 (most important
to retain).

J# File Section

Format:
Type Action Object Mode Priority
FILE Read * * 1
FILE Write * * 1
File Open C:\Windows\Temp\ * * 1
File Open C:\Windows\System32* RW | WO 5
File Open C:\Windows\System32* RO 4
File Open C:\Windows* RW | WO 4
File Open C:\Windows* RO 3
File Open C:\ProgramFiles* RW|WO 3
File Open C:\ProgramFiles* RO 2
File Open C:\Documentsand Settings\LocalSettings)\

{Temp* |Temporary Internet Files*} * 1
File Open * RW | WO 2
File Open * RO 1
File Delete C:\Windows\Temp* * 1
File Delete C:\Windows\System32* * 5
File Delete C:\Windows* * 4
File Delete C:\ProgramFiles* * 3
File Delete C:\Documentsand Settings\LocalSettings\

{Temp*|Temporary Internet Files*} * 1
File Delete * * 2

186 20th Large Installation System Administration Conference (LISA ’06)

