Managing Large Networks of
Virtual Machines

Kyrre M Begnum — Oslo University College, Norway

ABSTRACT

As the number of available virtualization tools and their popularity continues to grow, the way
in which virtual machines can be managed in a data center is becoming more and more important. A
few commercial tools such as VMware ESX and XenEnterprise exist, but they are limited to a
certain virtual machine technology and offer no way to expand the tool’s capabilities to local needs.
This paper discusses an open source management tool, MLN, for large virtual networks transparent
of their virtualization platform. The current version supports the two popular open source virtual
machine packages: Xen and User Mode Linux. MLN uses an extensible configuration language for
the design of the virtual machines and their internal configuration. Large groups of virtual machines
can be managed as logical groups. We present a web-server hosting scenario and a on-demand
render farm as case studies to show the usefulness of our tool. The text concludes with a short
discussion on the difficulties of offering abstraction to virtualization platforms.

Introduction

With the growth in numbers of virtualization
platforms, the system administrator will face signifi-
cant challenges in getting them to work together. Most
of the platforms that are popular today have their own
areas of application. For example, User-Mode Linux
does not require root access to install and can mount
folders on the physical host as partitions. Xen has
impressive performance and is easy to connect to the
LAN. VMware offers graphical front-ends for VM
creation and management.

Consider a data center that hosts virtual machines
for third parties or a university IT department that pro-
vides virtual laboratories for their students.

Ideally, one should be able to choose the virtualiza-
tion platform that suits the task best. However, the man-
agement interface of the platform is currently so tightly
connected to the given product that it is impossible to
make a decision about the platform without also consid-
ering how the virtual machine should be managed.

Although virtualization platforms usually offer a
simple management interface, they are often difficult
for non-system administrators, e.g., as teachers, to use.
Further, these tools offer limited support for specify-
ing attributes inside the virtual machine, such as users
or network setup. Once the virtual machine is running,
the system needs to be configured additionally by
hand, a process that is known to be error prone.

Furthermore, if a user wants to manage many vir-
tual machines, she needs to be able to group virtual
machines together in a meaningful way and to manage
virtual machines spread out on several servers. The free
management tools scale badly because they are aimed
at running a few virtual machines on a single host. She
must buy a very expensive, more advanced tool in order

to still have control over multiple virtual machine host-
ing servers. The question of how to manage virtual
machines on a large scale is therefore a matter of cost
and design tool rather than platform and capability.

Managing VMs also inevitably overlaps with
specifying and implementing their configuration. For
example, a system administrator is given the task to
design and configure a cluster of 50 nodes in a render
farm running entirely on virtual machines. A minimal
version of the same cluster also has to be build from
the same specification for testing. Similarly, a web-
hosting company wants to consolidate several cus-
tomers onto the same physical network using groups
of virtual machines that belong to each customer. How
can we minimize the drain on the system administra-
tors time resulting from VM administration and con-
figuration? How easy is it to migrate virtual machines
between different platforms and/or to migrate them
between servers? In general, how can they focus
entirely on using the virtual machine rather than on its
implementation and configuration?

To summarize, these are the current challenges
virtual machine administrators face today:

¢ Virtual machine management software support
only a single virtual machine platform.

* Free management tools are often intended for
running few virtual machines. No support for
grouping nor the design of larger networks.

¢ Commercial tools offer better support for larger
networks but are proprietary and impossible to
modify.

® Host configuration is usually not a part of the
management software.

From the field of configuration management we
know many tools that group unrelated configuration
properties into a abstract configuration language thereby

20th Large Installation System Administration Conference (LISA 06) 205

Managing Large Networks of Virtual Machines

enabling the user to address the whole computer system
or network from a standard interface [1, 2]. They pro-
vide an abstraction layer so that the user can focus on
the intended policy without knowing the details of the
platform nor the necessary steps required to achieve it.
Based on the popularity and effectiveness of this
approach, we present an open source tool, MLN (Man-
age Large Networks), that takes a similar tactic to vir-
tual machine configuration and management.

MLN allows the administrator to design, create
and manage whole networks of virtual machines and
their internal configuration in a template-based fash-
ion. Two popular open source virtualization platforms,
Xen and User-Mode Linux, are currently supported.
MLN supports an expandable configuration language
using plug-ins that allows the data center administrator
to include local configurations easily. A MLN network
daemon allows for virtual networks to be spread and
managed across several physical servers.

MLN is freely available today and has been used
successfully as a tool for virtual student laboratories.
In this paper we show how the tool can offer signifi-
cant improvements to the management of virtual
machines, despite their underlying platform, in real-
life data centers.

This paper is organized as follows: the next sec-
tion provides some brief background information. We
then outline the main features of the configuration lan-
guage. The two subsequent sections showcase the tool
used in real-world contexts: a web hosting scenario
and as a management interface for an on-demand ren-
der farm. We then present the interaction and control
commands of MLN are presented. Finally, we evaluate
the tools current capabilities and present directions for
future work.

Background

The diversity of today’s virtualization platforms
make them suitable for a wide range of tasks. We see a
growth in the interest of virtual machines in many areas:

¢ Consolidation and Commercialization. Virtu-
alized hosting and service encapsulation is per-
haps the most attractive use today, as they are
commonly associated with cost saving, flexibil-
ity, uptime and security.

® Research. A virtual machine is more adaptable
in terms of assigned hardware resources and

fits well into self-management scenarios [3, 4].

o Testing. Creating test-beds for services and
software is also becoming more common.

¢ Education. Advanced student labs can be
implemented with less cost and more flexibility

using virtual laboratories [5].

User-Mode Linux [6] is a version of the
GNU/Linux kernel that can be run as an application on
a running Linux system. The User-Mode Linux kernel
is started on the command line, and host parameters

Begnum

such as memory size and filesystem image are sup-
plied as arguments. Folders can be mounted as parti-
tions, and one does not require root access to start vir-
tual machine instances. User-Mode Linux is consid-
ered to be lightweight in terms of resources and easy
to install. A switch emulator (uml_switch) is supplied as
a tool and enables the user to create network topolo-
gies entirely in user space. User-Mode Linux does not
offer any higher level configuration tools, although
several third party software projects exist today (with
varying progression) [7].

Xen is a virtual machine monitor that uses the
concept of parallelization [8, 9] to enable several con-
current operating system instances to run simultane-
ously on a thin management layer called a ‘“hypervi-
sor.” Xen virtual machines (called domains) have low
overhead and are considered to be almost as fast as if
the operating system were running directly on the
hardware. Xen installation and management requires
root access. An attractive feature of Xen is the ability
to migrate running virtual instances seamlessly across
physical servers without down-time.

Connecting Xen virtual machines together in net-
works is done using bridge devices on the physical
server. A bridge device functions the same way as an
Ethernet switch and can either provide isolated internal
networks on the server or bridge the physical network,
making the virtual machines appear to be regular hosts
on the LAN. A Xen domain is defined in a configura-
tion file that addresses virtual machine features such as
memory, disk image and simple network parameters.
A Xen daemon (xend) is responsible for managing the
domains. A tool called xm will create a single virtual
machine based on the supplied domain configuration
file. A commercial tool called XenEnterprise is avail-
able for purchase which features increased server,
management and resource control [9]. From the avail-
able information on the XenSource site at the time of
this writing it is difficult to assess the management and
design capabilities of XenEnterprise.

VMware [10] is a well-known actor in the virtual
machine industry. For brevity, we will consider the
freely available tools currently offered by VMware
and how they fit into our approach. VMware offers a
free product called “VMware Server,” which has both
a web and graphical application interface for manag-
ing virtual machines even on remote servers. The soft-
ware offers an easy way to create a single new virtual
machines but has no way to define groups of virtual
machines. Also, since every new virtual machine is
created graphically it becomes cumbersome if a user
wants to design a large network of say 50 virtual
machines spread out over 15 physical servers and
make sure they have a consistent configuration. A
simple tool, called VMware Player offers a quick way
for users to run single pre-configured virtual
machines. VMware also has a group of products
aimed at hosting scenarios, but since they are not
freely available, they are not considered in this text.

206 20th Large Installation System Administration Conference (LISA *06)

Begnum

MLN: A Management Tool for Virtual Machines

MLN (Manage Large Networks) [11] was first
used in 2004 as a tool for providing a virtual firewall
lab running User-Mode Linux for students [5]. It has
since then been expanded to support Xen as a virtual-
ization platform and to include a plug-in framework.
MLN can be downloaded from http://mln.sourceforge.
net and has its own installer, which also downloads
and installs a version of User-Mode Linux. Xen must
be installed separately.

The MLN configuration language contains both
system variables and grouping mechanisms. In MLN,
a logical group of virtual machines is defined as a
project. A file in the MLN configuration language will
typically define one project.

Defining Projects

The structure of the language is a hierarchical
sequence of blocks containing keyword/value pairs. A
block is enclosed in curly brackets ({ }). A keyword is
generally expressed in the form keyword value but is
not bound to it. Some keywords are lines with several
parameters. It is often natural to place one key-
word/value per line, but semicolons can be used to
place several pairs on the same line.

Each host and network switch will have one
block. All hosts in a project do not have to be con-
nected in the same network.

A project has no restrictions regarding the num-
ber of hosts or switches. The only mandatory part of a
project description is a block of global definitions with
at least the name of the project. Project names must be
unique for each user. Definitions of one or more hosts
and perhaps network switches constitute the network
topology. Hosts can have several network interfaces
that can be assigned to switches in arbitrary topologies.

Here is an example of a ring-topology:

global {
project ring

}

host routerl {
network ethO {
switch A
}
network ethl {
switch B
}
}

host router2 {
network ethO {
switch B
}
network ethl {
switch C
}

Managing Large Networks of Virtual Machines

host router3 {
network ethO {
switch C
}
network ethl {
switch A

}

switch A { }
switch B { }
switch C { }

This is a simple but complete MLN project. In later
examples we will show how configurations such as
network addresses, users and startup commands are
included.

Features for Larger Projects

Language features such as superclasses and vari-
ables are helpful when the project is big. We will
review these two features next.

Superclasses are a concept from Object Oriented
Programming. They describe a class which another
class is a subclass of (i.e., a parent). In MLN, a super-
class is a description of a virtual machine from which
other virtual machines can inherit from. A superclass
virtual machine will not be built by MLN. Its most
common use is to define a configuration that is to be
kept constant and let a group of hosts point to it.

In the example below, the virtual machine node1
inherits all the keywords from the superclass common.
It also specifies additional keywords, such as the net-
work interface address. Notice that hosts are free to
override keywords from a superclass.

superclass common {
memory 128M
free_space 1000M
xen
network ethO {
netmask 255.255.255.0
}
}

host nodel {
superclass common
network ethO {
address 10.0.0.1
}
}

Hierarchies of superclasses can be constructed. Hosts
only inherit from a single superclass (or superclass
hierarchy).

MLN supports string variables in its syntax. This
enables the user to keep information consistent across
keywords. Consider the following example:

global {
project examplel
Spassword = 2mf9fmcaioa8w

20th Large Installation System Administration Conference (LISA *06) 207

Managing Large Networks of Virtual Machines

host node {
root_password $password
users f
jack $Spassword

}

The variable $password is defined in the global block
and used later on inside a host. Variables have scope,
so if a variable is used, MLN will look for its value
upwards in the block structure and lastly inside the
global block. Variables can be expanded into strings if
the variable name is enclosed in brackets ([]).

Virtual Appliances

Every virtual machine has its own filesystem. One
approach to virtual machine management is to create
new machines that boot into an installer the first time
and install a new version of an operating system.
Another approach is to use a ready-made filesystems
which are installed and configured with software already.

MLN supports a repository of these filesystems,
called templates, from which the user can choose
from. Templates vary in size based on the amount of
installed software they contain. A virtual machine
based on a template of this kind is the basis for what is
called virtual appliances [12] which can be special-
ized to perform specific tasks (as the examples later
will show). The encapsulation of software components
in this way has the benefit that experts can put
together and properly configure software, and enables
users to hit the ground running with a working virtual
machine. For example, in educational contexts, this
allows students to focus on using a software tool with-
out having to learn how to install and configure it first.

A variety of templates can be downloaded from
the MLN web-site. Users and system administrators
can also modify existing virtual appliances as well as
create new ones.

Plug-ins

It is not the intent of this tool to re-invent config-
uration management paradigms in its own language.
The plug-in architecture is a way to allow other con-

figuration management tools to be integrated as easily
as possible with MLN.

A plug-in that is executed can do two actions:
access the entire MLN data tree and change the project
before it is built, or configure virtual machine filesys-
tems during the build process. Plug-ins have no need
to write their own parsing code.

In the following example, we want to build a
project where the virtual machines use the configuration
management tool cfengine [1] for internal maintenance.
The template used in this project already has the
cfengine software installed, but for flexibility, we want
to be able to define the cfagent policy inside the MLN
project as a block inside a host or superclass. The cfa-
gent policy should be written to a file /cfenginefinputs/

Begnum

cfagent.conf when the project is built. Here is a MLN
project with an embedded cfengine policy:

suberclass common {
template ubuntu-server-cfengine.ext3
cfagent {
control:
any: :
actionsequence =

(
shellcommands
processes

)
}

host agent {
cfagent {
shellcommands:
"/usr/bin/updatedb"
processes:
"cron" signal=hup

}

A plug-in in the Perl programming language that
writes the above specified cfagent into a file does not
have to be more than the following code:
sub cfenginePlugin_configure {
my S$hostname = $_[0];
if (getScalar("/host/$hostname/cfagent")) {
my @cfagent_poligy =
getArray ("/host/$hostname/cfagent");
writeToFile ($hostname,
"/cfengine/inputs/cfagent.conf",
@cfagent_policy);

The benefit of this approach is that it is easy to
combine MLN with tools that the community is expe-
rienced with and that can handle long-term manage-
ment of the host while it is running. Many system
admins have established policies which can be inte-
grated this way using a small amount of code and
removes the task of adding the policy manually on
each virtual machine. We will see an example later
where a plug-in is used to modify the data structure
and not the filesystem.

Distributed Projects

Until now, the examples have all been on the
same server. MLN also provides a network daemon
for distribution of projects among several physical
servers. A physical server is in MLN called a ser-
vice_host because it provides a hosting service to the
virtual machine. A physical host must be made aware
of it being a service host in its local MLN configura-
tion files.

A virtual machine is assigned a service host the
following way:

host startfish {
service_host huldra.iu.hio.no

208 20th Large Installation System Administration Conference (LISA *06)

Begnum

memory 96M
network ethO {
address dhcep

}

Project Organization

All the files belonging to a project are stored in a
dedicated project folder. The contents of each project
folder is the start and stop scripts for the network
switches and each VM together with its filesystem
image (unless it is placed in a LVM partition). Starting
and stopping a project will result in the corresponding
scripts being called. UML does not possess any other
way to interact with it then through the command line in
the time of writing. Xen, on the other hand, is working
on an RPC-based approach for VM management which
in time might be possible for MLN to interact with.

In the following example, we show a configura-
tion for a data-center that provides virtualized hosting
in the form of virtual sites. Customers can deploy a
gateway and a set of servers on a back-net for their
services. A typical example would be a web service
with redundant load balanced servers. For simplicity,
we omit another tier of database servers.

The physical layout is set up with a single gate-
way server and a back-net of hosting nodes. The gate-
way server will host all the virtualized gateway
machines. It is possible to physically mirror the gate-
way server also. A single customer may span one or
several of the back-end nodes. Back-end servers may
contain one or more virtualized machines from several
customers. The customers can chose the amount of
web-servers they want to deploy based on the
expected load on their web-sites. See Figure 1 for an
example setup.

Managing Large Networks of Virtual Machines

Every server runs the MLN daemon. Each virtual
site is represented as one MLN project. The virtual
machines in the project are spread across the servers
using the service_host keyword. The project is built
across all the servers that host a node from that project.

global {
Scust_name = kafe
Sdefault_gateway = 10.0.0.141
project S$Scust_name

}

general settings
superclass common {
xen
lvm
root_password
free_space 1000M
memory 128M
term screen
template ubuntu-server.ext3
network ethO {
bridge back-net
netmask 255.255.255.0

* ok ok ok ok ok ok ok Kk

}
files |
/customers/$ [cust_namel] /www
/var/www

}

host gw {

superclass common

service_host gatewayl

memory 256M

network ethl {
address 128.39.73.101
netmask 255.255.255.0
gateway 128.39.73.1

Internet

’
¢
i
rl

A
\

Q = Virtual Machine

\ = Physical server

Gateway server . =
(gw.abc) (gw. kafe)

gatewayl °, \ ’f

Backend Servers

switch

-:s}”’i

=P

backend1 P

1

Ay

backend4

=

] [(=)\(o)]

backend2

backend3

Figure 1: A web-hosting scenario where virtual machines are encapsulations for customer services. Two customers
are accommodated in this setup: “abc toys” with three web-servers and a gateway and ‘“‘kafe on-the-corner”
with two web-servers and a gateway. In MLN they are represented as the two projects abc and kafe.

20th Large Installation System Administration Conference (LISA *06)

209

Managing Large Networks of Virtual Machines

network ethO {
address Sdefault_gateway

}

startup {

echo 1 > /proc/sys/net/ipv4/ip_forward

iptables -t nat -A POSTROUTING
-0 ethl -j MASQUERADE

}

host wwwl {
superclass common
service_host backend3
network ethO {
10.0.0.142
gateway Sdefault_gateway

host www2 {
superclass common
service_host backend4
network ethO {
10.0.0.143
gateway Sdefault_gateway
}

continues to node N ...

The example above shows three virtual machines
connected together where the host gw has an extra net-
work interface to the outside. The superclass common
defines common keywords for all the virtual
machines. In one case, the memory keyword is over-
ridden locally by the gateway host. A variable is used
to keep track of the gateway address on the back-net.
This way we make sure all the back-end nodes point
to the correct address and that the gateway actually
has that address. The keywords xen and Ivm enable the
virtual machines to run on the Xen platform and to put
their filesystems in LVM partitions for maximum per-
formance. The files block defines what files should be
copied into the filesystems at build time. In this case,
it is the source files for the web-servers.

The project is spread over three physical servers.
The following command can be used to build the
project:
mln build -f kafe.mln

MLN will attempt to contact the daemons on all the
involved servers except where the build command is
launched. Once the project is built, it can be started
using the following command:

mln start -p kafe

A remaining task is to configure the virtual site to its
intended product. Generally this might be done by the
owner of the project. Auto-configuration using promise
theory and roles on virtualized sites like this was
explored in a separate paper [13]. The hosting company
can also offer dynamic configurations, where the

Begnum

number of web-servers is adjusted to the real-time
loads on the web-site.

Case Study 2: An On-demand Render Farm

Managing a cluster for rendering can be expen-
sive for small companies as one needs to support a
location and hardware for it. In addition, hardware
performance increases each year making the local ren-
der farm outdated quickly unless one has extra room
for expansion.

In this scenario, we consider a small animation
company that does not support their own render farm.
Instead, they contract with a data center to provide vir-
tual machine hosting for a render farm of virtual
machines that the animation company manages them-
selves. The cost model is pay-per-use, so the anima-
tion company only has costs when they are doing
actual work, something they consider as an advantage.
The data center can rent out their servers to other cus-
tomers as well and may even run several customer net-
works at the same time. Moreover, since the data-cen-
ter is likely to upgrade their servers on a regular basis,
they are more likely to attract customers of this kind
who will get better performance over time with no
extra costs.

The way this is realized with MLN is that the
administrator at the animation company has a small,
local test-bed on a single machine running a light-
weight virtualization platform. There, the template for
the render nodes and the master is maintained. Once
the animation company has a new contract, a render
farm is deployed from these templates. A contract
with the data center is made with regard to the number
virtual machines to deploy and their resources.

To ease the design of the MLN project for the
render farm we introduce a plug-in, autoenum, that
enumerates the render nodes for us. Here is a project
for one master and 50 render nodes:

global {
project renderfarm customerX
the following block contains the
3 configuration for the autoenum
3 plug-in
autoenum {
superclass render_node
addresses enum
addresses_begin 2
numhosts 50
network 10.0.0.0
service_hosts {
f#finclude /tmp/servers.txt
}
}
Sgateway_address = 10.0.0.1
}

superclass common {
term screen
xen
lvm

210 20th Large Installation System Administration Conference (LISA ’06)

Begnum

superclass render_node {
superclass common
template renderNode.ext3
free_space 1500M
memory 256M
network ethO {
netmask 255.255.255.0
gateway Sgateway_address

}

host master {

superclass common

template renderMaster.ext3

free_space 5GB

memory 512M

network ethO {
netmask 255.255.255.0
address Sgateway_address
bridge cluster-network

}

network ethl {
netmask 255.255.255.0
address 128.39.73.102
gateway 128.39.73.1

The entire render farm of 51 virtual machines is
specified in only 45 lines of code. Actually, the render
farm could be increased to 254 without increasing the
complexity of the project. We see the use of two super-
classes, common and render_node. The platform specific
details are all in the first superclass. Xen is chosen as
the virtualization platform with LVM partitions for
their hard-disks. A simple test bed of only a few nodes
using User-Mode Linux that runs on a laptop could be
realized with only minor changes to the file above. This
way, the administrator from the animation company
could make sure the software on the two templates
works as he intends before the full-blown cluster is cre-
ated and charges start accumulating.

The autoenum block in the beginning of the
project sets flags for the plug-in. This plug-in has a
different intention compared to the one showed in Sec-
tion 3.4. Upon parsing, the plug-in will fetch the infor-
mation from the autoenum block and use it to create
the rest of the virtual machines that make the cluster.
This is done by adding them to the data structure
before the project is built. This plug-in is therefore not
something that expands the configuration of each vir-
tual machine filesystem, but adds design features and
logic to MLN based on local needs.

The list of servers where the nodes are spread out
is written in a separate file. The #include statement is
used to read in the contents of that file during the
MLN parsing process. The autoenum plug-in will
assign the render nodes to the servers.

Managing Large Networks of Virtual Machines

Control Commands and Monitoring

The MLN command builds and starts the virtual
machines and networks defined as projects. Here are
some examples:

e min build -f example.min
Build the project from the file example.mln.
min -P /my/important/projects start -a
Start all the projects in the folder /my/impor-
tant/projects .
min status -p mysql-servers -u
List all the switches and virtual machines
belonging to the project mysql-servers that are
currently running.
min stop -p web-services -w 120
Stop all the virtual machines belonging to the
project web-services. Wait 120 seconds for the
hosts to shutdown. After the time is elapsed,
destroy the remaining ones of the project.

The last example is useful when the physical
host is to shut down and has limited time to wait for
all of the virtual machines to shut down properly.

Regular users can use MLN without root privi-
leges while using User-Mode Linux as a virtualization
platform. Only users with administrator access can
start projects that are based on Xen.

The building of a distributed project is started the
same way as for other projects. MLN will contact the
service hosts for the virtual machines not intended for
the local machine and will send them the project for
them to do their part.

Upon receiving the build request, the daemons
start to build the project in the background and await a
subsequent request from the same client asking for the
output. Starting and stopping a project will also result
in the attempt to contact the other service hosts so that
the entire project is managed simultaneously.

MLN will always start the network switches
before the virtual machines. The boot order and time
to wait between each virtual machine can be specified.
Best practice is to avoid a strain on the system by sim-
ply letting MLN sleep a few second between each host
starts. An example of this, introducing a three second
pause, is:

mln start -p example -s 3

A project is often part of a bigger context on the net-
work or the physical server. Often times one needs to
run specific commands on the physical server prior or
after the virtual machines have started, such as adding
firewall rules or modifying routing information. MLN
provides blocks for additions of shell commands so
that they are run by MLN at specified points during
the starting or stopping of a project.

Modifying Existing Projects
It is not always possible to initially design a

project to be optimal for its task. Once the project is
running, certain design-time decisions, like memory or

20th Large Installation System Administration Conference (LISA *06) 211

Managing Large Networks of Virtual Machines

disk-space, might be re-evaluated and have to be
adjusted. The problem is often that the project already
is in use and cannot be rebuilt from scratch. This prob-
lem was encountered several times when running vir-
tual student labs over the course of a semester (five
months).

MLN’s approach to this problem is to provide an
upgrade command, which will read in a new and mod-
ified version of the project and try to upgrade it
accordingly. Typical modifications are to change the
amount of memory, increase the disk size or even
add/remove virtual machines from the project. System
specific changes, such as adding users, can also be
performed this way. For networks which can scale
from a software point of view, like web-servers and
computing clusters, the upgrade feature can be used to
manage the amount of nodes that participate in the
cluster at any given time. The modification of a
project can be done manually by the system admini-
strator, but recent literature suggests a range of appli-
cations for this within self-managing and adaptive sys-
tems [13, 4].

A more fundamental change to the virtual
machine would be to change its virtualization plat-
form, like going from User-Mode Linux to Xen. To
change service host will result in a migration of the
virtual machine between two service hosts. The result
of this is that one can start with a lightweight User-
Mode Linux virtual machine on a regular laptop or
workstation, and the virtual machine could later be
moved to a more powerful server using MLN where it
would be running on the Xen platform with perhaps
more memory assigned to it too.

Monitoring

The user can use MLN to collect the status infor-
mation from all the servers that run the MLN daemon.
The information displayed includes how many
projects are running, the number of virtual machines,
the amount of used memory and how much memory is
left from the allowed maximum for that server. This
information is useful for monitoring and planning of
new projects.

Here, we see the result of the min daemon_status
command on the network discussed in Case Study 1.
Note that the total number of projects can be misguiding,
as several servers can have a part of a project and that
every part will count as a single project in the summary.

Begnum

Servers can be put into groups and status can be
queried on a per group basis, thereby giving more spe-
cialized feedback. One example is to only show the
resources on the servers assigned for testing or the
ones used in production. Whether or not a project or a
certain host is up is also possible through MLN.

Discussion

Successes

Consolidation of several virtual machine tech-
nologies into one tool is a new and challenging task.
Until now, it seems, the focus for development of vir-
tual machine monitors has been on performance, and
carving out a niche. The authors do not see any direct
competition between the virtual machine platforms
used in this project. In fact, the sum of them is a
greater gain. The user should have ability to choose
which one to use without affecting the choice of the
management interface. Through MLN we have pro-
vided one way to design large virtual networks before
thinking about the platform it will run on.

MLN creates start and stop scripts for each vir-
tual machine and switch. As a result, any virtual
machine technology that is controllable from the com-
mand line, would be relatively easy to integrate into
MLN. There is no common API to virtualization
today. A stronger effort to provide a common API to
all the virtual machine technologies would greatly
improve the result for projects like this and enable
MLN to support even more virtualization platforms by
talking to the API directly.

MLN has been tested and used as a commercial
hosting tool for over a year, during which it has pro-
vided us with much feedback on the needed features
for and limitations of current tools. Many features,
such as the plug-in framework, have spawned from
this exchange. The plug-in framework allows for
administrators to add features both in configuration
scope as well as logic without re-inventing the wheel.

MLN has become the standard tool for virtual
machine management at Oslo University College. It
provides the means for massive virtual student labora-
tories in security classes as well as a virtual appliance
tool for student projects. Other institutions, such as
University of Linkping in Sweden and Oregon State
University in the US have also benefited from it in
educational contexts. A Norwegian ISP uses MLN

Mem Mem
Server # Projs #vms Used Ava Groups
gateway1 2 2 512 768 gateways,xen
backendl 1 1 128 896 backends,xen
backend2 1 1 128 896 backends,xen
backend3 2 2 256 768 backends,xen
backend4 1 1 128 896 backends,xen
Total 7 7 1152 4224

Table 1: Status information.

212 20th Large Installation System Administration Conference (LISA *06)

Begnum

today in their R&D department to rapidly create vir-
tual test-beds.

MLN is one of the few freely available tools that
offer “cold migration,” where the virtual machine is
shut down first and the filesystem is compressed and
copied to the new service host. Live migration is sup-
ported in Xen but requires the two servers to be on the
same LAN and to have the same CPU architecture and
concurrent access to the virtual machine’s disk. This is
hard to realize transparently to the user as it is bound
to a certain platform. Cold migration works in many
scenarios where live migration would fail because the
servers are of a different architecture and have no con-
current access to the filesystems. Another benefit of
this approach is that virtual machines can change other
aspects in the migration process. A User-Mode Linux
host can migrate into a Xen host with more memory
and a different network setup. This is practical for
moving test-beds onto more powerful servers of differ-
ent architecture and to completely separate locations,
changing network parameters in the process. All of
this is realized using the min upgrade command.

Current Limitations

MLN’s configuration language addresses both
hardware attributes of the virtual machine and system
configurations. It is therefore not possible to avoid the
challenges of host configuration management. Cur-
rently, GNU/Debian based templates, such as Ubuntu
Linux, are best supported. MLN should ideally be able
to support several operating systems let alone support
different Linux distributions. However, such concerns
are part of the ongoing effort of a large systems config-
uration management community. The plug-in infra-
structure of MLN is one way to invite seasoned config-
uration management systems and third-parties to handle
the lower level tasks. However, some languages might
fit better then others into this framework and certain
new requirements might surface. This research is in
progress and will be discussed in a later publication.

Sufficient monitoring of the virtual machines is a
critical feature for data centers. MLN supports status
on projects, hosts and globally. Memory usage, the
number of virtual machines and projects on each
server can be collected as well. This works well for
monitoring a project’s status and to see the level of
remaining resources on a physical server. However, a
usage indicator as to how much CPU and network traf-
fic is related to each virtual machine might further help
capacity planning. Xen has tools like xentop and xen-
mon [14] that can monitor network, CPU usage and 10
operations of their virtual machines. One improvement
to MLN would be to expand the plug-in framework to
also enable monitoring and management. This would
allow the local data center to develop specializations
that assist in capacity planning or fault detection, such
as a plug-in that finds free IP addresses or logs opera-
tions such as starting and stopping.

Managing Large Networks of Virtual Machines

Another question is weather or not MLN should
provide better encapsulation of each project in order to
protect them from each other. In User-Mode Linux,
this is possible as the virtual machines run as pro-
cesses and are assigned to users. In Xen, all virtual
machines exist in the same “pool” and have no direct
ownership. Although the Xen domains are considered
to be securely encapsulated, they might still have net-
work access to other virtual machines. One solution is
to create virtual switches on each physical server and
to connect those with virtual tunnels. This implemen-
tation is in progress at this time of writing and will be
presented as a plug-in.

Future Directions

The MLN daemon uses IP-based access control
for management access. Added features, such as user
support for the daemon and finer access control would
indeed be a benefit. This way, one could separate
access for building a project and the ability to start and
stop them.

Interaction with MLN is currently in the form of a
configuration language and shell commands. Although
the language features improve design and control over
large virtual networks, one can investigate other
approaches such as graphical design and control tools.
Also, adding support for well-known document formats
such as XML may enable MLN to play the role of a
back-end for higher level tools.

Future work will also look at the improvement of
the distributed management aspects of MLN. Scenar-
ios such as management of large and distributed vir-
tual hosting platforms and how to introduce closer
monitoring and fail-over are of particular interest.

Conclusion

We have presented an approach to virtual
machine administration that lets the user describe the
wanted configuration in an understandable declarative
language and then build the virtual hosts and networks
from it. The virtualization platform is secondary to the
configuration interface. A concept of logical groups of
virtual machines enables the user to issue management
commands to all virtual machines that belong together.
Language features such as inheritance from machine
superclasses and variable expansion make it possible
to consistently describe large networks in just a few
lines and to avoid redundant information.

A plug-in architecture lets the user transparently
expand the configuration domain of the language to
solve their specialized needs. Part of the toolkit is a
daemon that allows management of virtual networks
that span several physical servers. All of these features
have been harnessed to provide a flexible and power-
ful way to define, create and manage scenarios for
data-centers. Two case studies show the usefulness of
our approach; a web-hosting facility and a on-demand
render farm are realized using simple configurations
and local additions to the MLN language.

20th Large Installation System Administration Conference (LISA *06) 213

Managing Large Networks of Virtual Machines

Author Biography

Kyrre earned his M.Sc. in Computer Science
from the University in Oslo. Apart from his studies,
Kyrre has worked as a course instructor at a Linux
company where he has written and held courses in
system administration and Linux. Kyrre started as a
full time Ph.D. student in 2003 at the University Col-
lege of Oslo. His main research areas are anomaly
detection, formal modelling of distributed systems and
configuration management.

Acknowledgments

The author would like to thank Professor Mark
Burgess and John Sechrest for helpful discussions and
pointers throughout this work.

Bibliography

[1] Burgess, M., “Cfengine: a site configuration
engine,” USENIX Computing Systems, Vol 8§,
1995.

[2] Desai, N., A. Lusk, R. Bradshaw, and R. Evard,
“Befg: A configuration management tool for het-
erogeneous environments,” [EEE International
Conference on Cluster Computing (CLUS-
TER’03), 2003.

[3] Liu, X., J. Heo, L. Sha, and X. Zhu, “Adaptive
control of multi-tiered web application using
queueing predictor,” [0th IEEE/IFIP Network
Operations and Management Symposium
(NOMS 2006), 2006.

[4] Xu, W., X. Zhu, S. Singhal, and Z. Wang, ‘“Pre-
dictive control for dynamic resource allocation in
enterprise data centers,” [0th IEEE/IFIP Net-
work Operations and Management Symposium
(NOMS 2006), 2006.

[5] Begnum, K., K. Koymans, A. Krap, and J.
Sechrest, “Using virtual machines in system and
network administration education,” Proceedings
of the System Administration and Network Engi-
neering Conference (SANE), 2004.

[6] Dike, J., ©“A user-mode port of the linux kernel,”
Proceedings of the 4th Annual Linux Showcase
& Conference, Atlanta, 2000.

[7]1 The UMLwiki tools page, 2006, http://uml.har-
lowhill.com/index.php/tools .

[8] Barham, P., et al., “Xen and the art of virtualiza-
tion,”” SOSP 03, 2003.

[9] The xensource homepage, 2006, http://www.xen
source.com .

[10] The vmware website, 2006, http://www.vmware.
com.

[11] The min project homepage, 2006, http://mln.
sourceforge.net/.

[12] Sapuntzakis, C., D. Brumley, R. Chandra, N.
Zeldovich, J. Chow, M. S. Lam, and M. Rosen-
blum, ““Virtual appliances for deploying and
maintaining software,” Proceedings of the 17th

Begnum

Large Installation Systems Administration Con-
ference, (LISA ’03), October, 2003.

[13] Begnum, K., M. Burgess, and J. Sechrest,
“Adaptive provisioning using virtual machines
and autonomous role-based management,” SELF
— Self-adaptability and self-management of con-
text-aware systems, SELF’06, 2006.

[14] Gupta, Diwaker, Rob Gardner, and Ludmila
Cherkasova, “Xenmon: Qos monitoring and per-
formance profiling tool,” 2005.

214 20th Large Installation System Administration Conference (LISA *06)

