THALES

SPIE-DCS 2019

THEORETICAL AND EXPERIMENTAL ANALYSIS OF DEWAR THERMAL PROPERTIES

D. WILLEMS, S. GARCIA, R. ARTS, K. LIGTENBERG, C. VASSE 2018-04-14

Outline

- Background
- Methods for determining dewar properties
- Limitations and potential sources of error
- Measurements and Comparison
- Conclusion

Background

To predict performance of an IDCA, you need to understand:

- > Cooler performance
- > Dewar-Detector performance

Dewar parameters:

Parameter	Unit	Description?
Heat load P _{th}	W	Amount of heat to be removed from the cold finger well to keep a constant detector temperature. Typically defined at 77 K
Thermal mass M _{th}	J	Amount of energy to be removed from the dewar to cool down from [] to []. Typically defined from 296 K to 77 K
Thermal resistance R _{th}	K/W	Temperature gradient required to transport 1 W of heat from cold finger well to detector.

Background

The ever-present drive towards lower Size, Weight and Power

- > Increase in detector temperature
- > Decrease in dewar parasitics & size
- ➤ More efficient cryocoolers

SWAP requires better accuracy

- > Typical input power curve:
 - Misestimation of 50 mW of dewar load
 - ... results in 10% error in estimating input power

SWAP requires HOT:

> Dewar characterization at temperatures other than 150 K

Methods for determining dewar loss

T	heoret	ical	mode	lling
---	--------	------	------	-------

	Liquid	boil-off	(typi	ically	': N2)
--	--------	----------	-------	--------	---------------

- Transient warm-up method (SCD / Veprik, 2015)
- Direct heat flux measurement (JPL / 1992...)

Boiling point @ 1 bar		
77.4		
87.6		
165.3		

Theoretical modelling in ThermXL

- Linearized model in ThermXL
 - Node-based model using an Excel front-end
 - > Time based simulation possible
- Used within Thales for cooldown time calculations
 - > Dewar parameters as input
 - > Cryocooler "fit function" as input

- Model can also be used to simulate the various dewar characterization methods
- Allows both transient and steadystate simulation
 - Transient for, e.g., a warm-up calorimetry measurement
 - > Steady-state for, e.g., a calibrated LN2 boil-off measurement

Boil-off method (with LN2)

Insert LN2 in dewar cold finger

Wait for "last drop boil"

Measure multiple slopes with added load

Flow rate "last drop" used to determine dewar heat load

Mass flow [g/s]

Added load to calibrate measurement

> Actual heat absorbed by N2 flowing out is higher than only evaporation – potential large difference. Dependent on dewar geometry.

Requires consistent interpretation – what is the "last drop boil" point?

Only usable at boiling temperature of liquid (very few practical options – LN2)

nt may not be reproduced, modified, adapted, published, translated, in any way, in whole or in sed to a third party without the prior written consent of Thales - ® Thales 2015 All rights reserved.

Derive the dewar losses from warmup rate

- > Cool down the dewar first (LN2 boil-off)
- > Start measurement immediately after boil-off
- > Warmup rates as a function of temperature
- Calibrate by performing multiple curves with added heat load

Several advantages

- No operator interpretation required
- > Gives thermal mass as well as dewar heat load
- Gives dewar load at all intermediate temperatures

Warmup rate [K/s]

■ Measured via △T

- > Uses cold source other than cryoliquid
- > Heat bridge with known Rth

Advantages

- > Can be used for any cold temperature
- > Very direct measurement of heat flux
- > Useful for off-state parasitics as well (eg space cooler)

Disadvantages

- > Requires calibration of self heat load
- > Can not be used with real-world IR dewar
- > Bulky

OPEN

111mW injected

Step2:

55mW injected

Step1:

Cold source

Dewar 1

Dewar 2

Measurements performed on test dewar with 10mm cold finger bore

Conclusion:

- Calibrated Boil-off, static model, and transient model are in good agreement
- Warmup gives a much higher value for dewar heat load
- Single-point boil-off gives a much lower value for dewar heat load -> difference depends on CF geometry

Measurements performed on test dewar with 1/4" cold finger bore

Conclusion:

- Heat flux measurement and calibrated boil-off are in good agreement
- ➤ Boil-off without direct calibration gives a lower heat load
- > Warmup gives a higher heat load
- Warmup result dependent on starting temperature

OPE

So the methods are not in perfect agreement...

... but which one is right?

Experiments performed to test influence of:

- > Presence of vapor column during warm-up method
- ➤ Influence of boiling LN2 on temperature gradient in cold finger
- Influence of thermal mass on warm-up method

Experiment: Warm-up with and without pumped cold finger bore

Conclusion:

- > No significant effect of vapor column conduction
- > Measurement reproducibility of calibrated boil-off within 25 mW

Experiment: Warm-up with and without added mass

Conclusion:

- > No significant effect of added mass of 3.5 grams of copper
- Quasi-static assumption for warmup method remains valid

Experiment: Thermal gradient during last-drop boiling

T2 jumps up right after last-drop:

> Clear influence on thermal gradient

Conclusion:

- > Significant (cooling) effect of gas flow on gradient along cold finger
- > Gas absorbs more heat than simply the evaporative heat
- > Gas also influences cold finger conduction

Conclusion

Good agreement between some methods

- Calibrated boil-off, thermal modelling, and direct heat flux measurement are in good agreement
- > Clear influence of the gas flow inside the cold finger
- > However, this is for the most part compensated in the calibrated method

Differences between multislope warm-up and other methods not yet understood

- > Higher heat load reported by warm-up
- Apparent dependency on starting temperature (different slopes with different starting temperatures)
- ➤ At this stage, the warm-up method is not understood well enough to be a reliable benchmark

So what should a dewar manufacturer do?

- Direct flux measurement as performed not possible
 - > Dewar already closed off
- Multi-slope or calibrated boil-off only possible with mock-up dewar
 - > Heater is needed for these measurements
- More work is needed to understand warm-up method
 - > Differences not fully understood
- Adaptation of direct flux measurement can be proposed

Thank you for listening

Corporate Communications - February 2016

