
U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

Navigating the Uncharted: Leveraging Modular Architectures
and End-to-End Learning for Autonomous Driving in

Unmapped Environments

Luis Alberto Rosero Rosero
Tese de Doutorado do Programa de Pós-Graduação em Ciências de
Computação e Matemática Computacional (PPG-CCMC)

SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP

Data de Depósito:

Assinatura: ______________________

Luis Alberto Rosero Rosero

Navigating the Uncharted: Leveraging Modular Architectures
and End-to-End Learning for Autonomous Driving in

Unmapped Environments

Thesis submitted to the Instituto de Ciências
Matemáticas e de Computação – ICMC-USP – in
accordance with the requirements of the Computer
and Mathematical Sciences Graduate Program, for
the degree of Doctor in Science. FINAL VERSION

Concentration Area: Computer Science and
Computational Mathematics

Advisor: Prof. Dr. Fernando Santos Osório

USP – São Carlos
August 2024

Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi
e Seção Técnica de Informática, ICMC/USP,

com os dados inseridos pelo(a) autor(a)

 Bibliotecários responsáveis pela estrutura de catalogação da publicação de acordo com a AACR2:
 Gláucia Maria Saia Cristianini - CRB - 8/4938
 Juliana de Souza Moraes - CRB - 8/6176

R795n
Rosero Rosero, Luis Alberto
 Navigating the Uncharted: Leveraging Modular
Architectures and End-to-End Learning for
Autonomous Driving in Unmapped Environments / Luis
Alberto Rosero Rosero; orientador Fernando Santos
Osório. -- São Carlos, 2024.
 112 p.

 Tese (Doutorado - Programa de Pós-Graduação em
Ciências de Computação e Matemática Computacional) --
 Instituto de Ciências Matemáticas e de Computação,
Universidade de São Paulo, 2024.

 1. Autonomous Driving. 2. Modular Architectures.
3. Perception system. 4. End-to-End learning. 5.
Intelligent and Autonomous Vehicles. I. Santos
Osório, Fernando , orient. II. Título.

Luis Alberto Rosero Rosero

Navegando pelo desconhecido: utilizando arquiteturas
modulares e aprendizado para direção autônoma em

ambientes não mapeados

Tese apresentada ao Instituto de Ciências
Matemáticas e de Computação – ICMC-USP,
como parte dos requisitos para obtenção do título
de Doutor em Ciências – Ciências de Computação e
Matemática Computacional. VERSÃO REVISADA

Área de Concentração: Ciências de Computação e
Matemática Computacional

Orientadora: Prof. Dr. Fernando Santos Osório

USP – São Carlos
Agosto de 2024

Este trabalho é dedicado aos meus pais Cardenio e Lucía, aos meus irmãos Carlos e Darío,

que sempre me deram seu amor.

ACKNOWLEDGEMENTS

I am grateful to everyone who me throughout my doctoral journey. Foremost, I thank my
advisor, Professor Fernando Osório, for giving me the opportunity to join the group and for his
unwavering friendship and encouragement throughout.

I extend my heartfelt thanks to my family, especially my parents, Cardenio and Lucía,
and my brothers, Carlos and Darío. Their constant support, encouragement, and motivation have
been the driving force behind my daily progress.

I am equally grateful to all the members of the Mobile Robotics Laboratory (LRM) for
their invaluable help and collaboration during this time.

Finally, I express my sincere thanks to FAPESP (PIPE), CAPES, and Rota 2030 for
providing the financial support that made this research possible.

“I have learned that everybody wants to live at the top of the mountain

without realizing that true happiness lies

in the way we climb the slope. ”

(Gabriel García Márquez)

RESUMO
ROSERO, L. A. Navegando pelo desconhecido: utilizando arquiteturas modulares e aprendi-
zado para direção autônoma em ambientes não mapeados. 2024. 112 p. Tese (Doutorado em
Ciências – Ciências de Computação e Matemática Computacional) – Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP, 2024.

A condução autônoma promete uma revolução na área de transportes, proporcionando benefícios
sociais e econômicos significativos. Apesar dos avanços notáveis na tecnologia de veículos
autônomos em ambientes mapeados, a navegação em áreas não mapeadas continua a ser um
desafio persistente.

Esta tese investiga o desenvolvimento de arquiteturas de condução autônoma para navegação em
tempo real, com e sem mapas. Três abordagens são propostas, implementadas, comparadas e
avaliadas:

Arquitetura modular: Um agente personalizado realiza a coleta de dados e serve como linha de
base para navegação baseada em mapa. Algoritmos tradicionais e novos módulos para percepção,
tomada de decisão e previsão são integrados para garantir uma navegação segura em ambientes
mapeados. Este agente atua como “professor” para os agentes de navegação sem mapa.

Aprendizagem end-to-end: As redes neurais aprendem políticas a partir de dados por meio de
técnicas de aprendizagem por imitação. A simplicidade é priorizada para operação em tempo
real em ambientes sem mapas. Diferentes tipos de sensores e métodos de fusão são explorados
para melhorar o desempenho.

Arquitetura Híbrida: Combinando a interpretabilidade de sistemas modulares com a capacidade
de aprendizagem de modelos end-to-end, esta abordagem integra o planejamento de trajetória
baseado em dados com módulos de percepção, localizacao, tomada de decisao e controle.
Oferece robustez, flexibilidade e adaptabilidade.

Além disso, um framework baseado em ROS denominada "CaRINA agent" é desenvolvido para
implementar pipelines modulares e facilitar a incorporação de métodos end-to-end e a construção
de arquiteturas híbridas. Para avaliar de forma abrangente nossas metodologias, aproveitamos os
Leaderboards do CARLA, alcançando resultados competitivos tanto no Leaderboard 1 quanto
no Leaderboard 2, classificando as nossas abordagens especificamente entre os primeiros nas
categorias SENSORES e MAP. Além disso, a nossa arquitetura modular e agente híbrido
garantiram o 1º e o 2º lugar no CARLA Autonomous Driving Challenge (CADCH) 2023,
mostrando a eficácia das abordagens propostas.

Palavras-chave: Condução autônoma; arquitetura híbrida; arquitetura modular; end-to-end;
planejamento de trajetória; percepção; tomanda de decisão; predição; disparidade; Simulador
CARLA; Veículos Autônomos e Inteligentes.

ABSTRACT

ROSERO, L. A. Navigating the Uncharted: Leveraging Modular Architectures and End-
to-End Learning for Autonomous Driving in Unmapped Environments. 2024. 112 p.
Tese (Doutorado em Ciências – Ciências de Computação e Matemática Computacional) – Insti-
tuto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos – SP,
2024.

Autonomous driving promises a revolution in transportation, unlocking significant social and
economic benefits. Despite notable advancements in autonomous vehicle technology tailored for
mapped environments, navigating in unmapped areas remains a persistent challenge. The limited
utilization of developments in modular pipelines exacerbates this issue, impeding progress
towards map-free navigation.

This thesis delves into the development of autonomous driving architectures for real-time
navigation, both with and without maps. Three approaches are proposed, implemented, compared,
and evaluated to create new and robust methodologies:

Modular Pipeline: A custom agent performs data collection and serves as a baseline for map-
based navigation. Traditional algorithms and new modules for perception, decision-making, and
prediction are integrated to ensure safe navigation in mapped environments. This agent acts as
the "teacher" for the mapless navigation agents.

End-to-End Learning: Neural networks learn driving policies from data through imitation
learning techniques. Simplicity is prioritized for real-time operation in map-free environments.
Different sensor types and fusion methods are explored to enhance performance.

Hybrid Architecture: Combining the interpretability of modular systems with the learning
capabilities of end-to-end models, this approach integrates data-driven path planning with
modular perception and control modules. It offers robustness, flexibility, and adaptability.

Furthermore, a ROS-based framework named "CaRINA agent" is developed to implement
modular pipelines and facilitate incorporating end-to-end methods and constructing hybrid
architectures. To comprehensively evaluate our methodologies, we leverage the CARLA Leader-
boards, achieving competitive results in both Leaderboard 1 and Leaderboard 2, specifically
ranking among the top in the SENSORS and MAP categories. Moreover, our modular archi-
tecture and hybrid agent secured 1st and 2nd place in the 2023 CARLA Autonomous Driving
Challenge (CADCH), underscoring the effectiveness of our proposed approaches.

Keywords: Autonomous driving; hybrid architecture; modular architecture; end-to-end; path
planning; perception; decision-making; prediction; disparity; CARLA simulator; Intelligent and
Autonomous Vehicles.

LIST OF FIGURES

Figure 1 – Example that illustrates the main differences between modular, end-to-end,
and hybrid architectures. 29

Figure 2 – Predictions using Mask R-CNN . 33

Figure 3 – Pinhole camera model . 35

Figure 4 – General design of the proposed Modular architecture. 48

Figure 5 – OpenDRIVE Map. The dots represents high-level commands with red (turn
left), blue (turn right), green (keep lane), and white (go-straight). 49

Figure 6 – Perception module. 50

Figure 7 – CNN-MultiRegressor architecture. 54

Figure 8 – ResNet-50 inputs. Each channel is fed with different rasterized images from
the data in order to track the evolution of the scene. 54

Figure 9 – Risk assessment. Point 1 - Zone of influence of a red traffic light; Point 2 -
The predicted trajectory of another car intersects the ego vehicle’s path in the
yellow zone; Point 3 - A parked car within the yellow zone is identified as a
potential obstacle but receives lower priority compared to threats in the red
zone. 58

Figure 10 – State transition diagram for the Moore Finite State Machine used in our
decision-making module. 59

Figure 11 – The pose estimation stack used in our perception module. 60

Figure 12 – Geometry of a bicycle model. The ICC is determined from the length of the
bicycle body Dbl and the steering angle φ 62

Figure 13 – End-to-end modes. 65

Figure 14 – End-to-end driving using only monocular camera and high level commands
on intersections as inputs a CNN for regression of the path and the velocity. 67

Figure 15 – PWC-Net for disparity estimation. 69

Figure 16 – Dense synthetic stereo dataset generated using the CARLA simulator. . . . 70

Figure 17 – Comparison between two models (PWC-Net) tested in our synthetic stereo
dataset (first row) and Argoverse stereo dataset (second row). The first
column is the left RGB image, and the second column is the ground-truth.
The firs model is trained only using our CARLA stereo dataset (inference
results on third column) and the second model is the same model with further
fine-tuning in Argoverse stereo dataset (last column). 72

Figure 18 – PWC-Net for disparity, path and velocity estimation 73

Figure 19 – CNN-Planner: Our neural path planner takes as input BEVSFusion and the
output is a list w (path) that is followed by the MPC controller. 75

Figure 20 – End-to-end multi modal driving without fusion. 76
Figure 21 – End-to-end multi modal driving with intermediate fusion. 77
Figure 22 – Hybrid architecture for autonomous driving in unmaped scenarios. 80
Figure 23 – Rasterized inputs for the BEVSFusion structure: footprints (orientation angle

maped to hsv color), LiDAR point cloud, high level commands, and stereo
point cloud . 81

Figure 24 – Our instance detection dataset includes annotations of eight classes: Car,
pedestrian, bicycle, stop sign, red traffic light, yellow traffic light, green
traffic light and emergency vehicle in different urban environments and
weather conditions . 89

LIST OF TABLES

Table 1 – Summary of Related Works. 40
Table 2 – Results: Motion Prediction Challenge . 56
Table 3 – Results: Interaction Prediction Challenge 56
Table 4 – FSM inputs. 58
Table 5 – State transition table (based on hand-crafted rules) 59
Table 6 – Non-linear MPC parameters. 63
Table 7 – Result in the Argoverse stereo leaderboard 72
Table 8 – Time execution for main modules in hybrid and modular architectures 81
Table 9 – Results: Ablation studies on both end-to-end methods and the hybrid archi-

tecture for mapless autonomous driving using the local validation routes of
Leaderboard 1. 91

Table 10 – Results: Ablation study about influence of sensor fusion on data driven planner
on hybrid implementation (local evaluation) 92

Table 11 – Results: CARLA Leaderboard 1, Track MAP 93
Table 12 – Results: CARLA challenge 2023. CARLA leaderboard 2, Track MAP 93
Table 13 – Results: CARLA Leaderboard 1, Track SENSORS 94
Table 14 – Results: CARLA challenge 2023. CARLA leaderboard 2, Track SENSORS . 94

LIST OF ABBREVIATIONS AND ACRONYMS

ACC Adaptive Cruise Control

ADAS Advanced Driver Assistance

BEV Bird’s Eye View

CADCH CARLA Autonomous Driving Challenge

CaRINA Carro Robótico Inteligente para Navegação Autônoma

CNN Convolutional neural network

CRA Collision Risk Assessment

DCNN Deep Cascaded Neural Network

FSM Finite State Machine

GAT Graph Attention Network

GRU Gated Recurrent Unit

HD High-Definition

HMI Human-Machine Interface

IoU intersection over union

LiDAR light detection and ranging

LRM Mobile Robotics Lab.

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

MOT multi-object tracking

NHTSA National Highway Traffic Safety Administration of the United States

OpenCV Open Source Computer Vision Library

R-CNN Region-based CNN

ROS Robotic Operating System

RPN Region Proposal Network

RTOS real-time operating system

SAD sum of absolute differences

SAE Society of Automotive Engineers

SGBM semi global block matching

SGM semi global matching

SORT Simple Online and Realtime Tracking

SSD sum of squared differences

TTC time to collision

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

V2X Vehicle to Anything

YOLO "You Only Look Once"

CONTENTS

1 INTRODUCTION . 25
1.1 Context . 25
1.2 Problem Statement . 26
1.3 Contributions . 27
1.3.1 Honors and Awards . 28
1.3.2 Thesis Outline . 30

2 BACKGROUND . 31
2.1 Convolutional Neural Networks . 31
2.1.1 CNNs for classification and detection 32
2.2 Behavior Cloning . 33
2.3 Computer vision . 34
2.3.1 Perspective camera model . 34
2.3.2 Stereo vision . 35
2.3.3 Visual motion . 37
2.3.4 Disparity estimation using deep learning 38
2.4 Final Considerations . 38

3 LITERATURE REVIEW AND RESEARCH WORK 39
3.1 Modular Navigation Architecture . 39
3.2 End-to-End Autonomous Driving . 41
3.3 Data-driven Path Planning . 42
3.4 LRM Lab - fourteen years of research in Autonomous and Intelligent

Vehicles . 43
3.5 Final Considerations . 44

4 A MODULAR PIPELINE FOR AUTONOMOUS DRIVING 47
4.1 Map and planning . 47
4.1.1 OpenDRIVE . 49
4.1.2 Path Planning . 49
4.2 Perception and Sensing . 50
4.2.1 Height maps as obstacle detectors . 51
4.2.2 Instance segmentation . 51
4.2.3 Fusion with stereo camera . 51

4.2.4 3D detection in point clouds (dynamic objects): 52
4.2.5 Tracking . 52
4.2.6 Prediction . 53
4.2.6.1 Linear Prediction . 53
4.2.6.2 Motion Prediction Using Deep Learning and Multimodal Data Fusion . . . 54
4.3 Risk assessment . 57
4.4 Decision-Making . 57
4.5 Localization . 59
4.6 Control Systems . 61
4.6.1 Lateral Control (MPC) . 61
4.7 Final Considerations . 63

5 END-TO-END AUTONOMOUS DRIVING 65
5.1 Monocular camera for end-to-end driving 66
5.2 Stereo for end-to-end driving . 68
5.2.1 PWC-Net for stereo disparity estimation 68
5.2.2 Implementation . 69
5.2.3 Synthetic disparity dataset . 69
5.2.4 Training . 70
5.2.5 Results in the Argoverse stereo benchmark 71
5.2.6 Joint disparity, path and velocity estimation 73
5.3 Multi-modal end-to-end Driving . 73
5.3.1 BEVSFusion . 73
5.3.2 CNN-Planner: A Convolutional neural network for path regression 74
5.3.3 Separate path and velocity inference 75
5.3.4 Intermediate Fusion for Joint Inference 75
5.4 Final Considerations . 75

6 HYBRID ARCHITECTURE FOR AUTONOMOUS DRIVING 79
6.1 Taking advantage of the modular pipeline 79
6.2 CNN-Planner for a Hybrid architecture 80
6.2.1 Time Execution . 81
6.2.2 Soft Real-Time System . 82
6.3 Final Considerations . 83

7 EVALUATION AND VALIDATION 85
7.1 Experimental setup . 85
7.2 Metrics . 86
7.3 Datasets . 88
7.4 Results . 90

7.4.1 Evaluating End-to-End and hybrid architectures for mapless AD . 90
7.4.2 Influence of sensor fusion in the data driven planner 92
7.4.3 Results on CARLA Leaderboards (online) 92
7.5 Analysis and Discussion . 94
7.5.0.1 Modular Architecture . 94
7.5.0.2 Hybrid Architecture . 95
7.5.0.3 Comparison and Final Remarks . 96

8 CONCLUSION . 97
8.1 Challenges and Future Directions . 98

BIBLIOGRAPHY . 101

APPENDIX A PUBLICATIONS . 111

25

CHAPTER

1
INTRODUCTION

Autonomous driving has the potential to revolutionize transportation, offering a multitude
of societal benefits beyond mere convenience. The reduction of human error, a significant
contributor to road accidents, holds the promise of significantly decreasing crashes and fatalities.
Moreover, this technology provides mobility solutions for individuals with disabilities who may
encounter challenges driving themselves. By facilitating communication among autonomous
vehicles and infrastructure, coordinated traffic patterns could be established, thereby mitigating
congestion and reducing fuel consumption.

Various methodologies exist for developing autonomous systems, encompassing software
components and algorithms from fields such as machine learning, computer vision, decision
theory, and probability theory. The standard approach employs modular pipelines, proven ef-
fective in scenarios with access to detailed High-Definition (HD) maps or dense waypoints.
This approach, widely adopted by both companies and research groups (TENG et al., 2023),
decomposes the navigation problem into specific tasks such as localization, object detection,
tracking, prediction, decision-making, path planning, and control (TAMPUU et al., 2020; JO et

al., 2015; LIU et al., 2017). On the other hand, recent advancements in autonomous driving have
introduced end-to-end learning, aiming to directly map sensor input to driving actions without
explicit task decomposition (CHEN et al., 2023).

1.1 Context

Levels of Driving Automation: The Society of Automotive Engineers (SAE) defines
six levels of vehicle driving automation ranging from Level 0 (no driving automation) to Level
5 (full driving automation) in the context of motor vehicles and their operation on roadways.
Where Level 0 means there is no driving automation and the human is responsible for driving.
Level 1 is driver assistance. Level 2 offers partial driving automation, where the vehicle can
control acceleration and deceleration but the driver must be attentive and ready to take control

26 Chapter 1. Introduction

at any time. At Level 3 the vehicle can perform most driving tasks under certain conditions
but the driver must be prepared to intervene if necessary. At Level 4 the vehicle has a high
level of automation where it can perform all driving tasks in specific scenarios without human
intervention, the human has the option to intervene. Finally, Level 5 represents full driving
automation, where vehicles are capable of driving under any conditions without the need for
human intervention1.

It is known that there are currently commercial models at Level 2 (Tesla) and Level 3
(Mercedes-Benz, BMW), but there are no commercial vehicles at Level 4 (Mercedes offers Level
4 only for autonomous parking). In recent years, various automobile manufacturers and related
companies have cooperated to develop autonomous driving technology worldwide. This has
begun in some areas, such as Level 4 autonomous driving taxis operating in limited areas in the
United States, for example, Waymo, Motional, and Cruise.

This work is part of the research conducted at the Mobile Robotics Lab. (LRM) of
ICMC-USP in São Carlos. Historically, this laboratory began its research and initial tests with
intelligent and autonomous vehicles in 2009, fifteen years ago, in a project funded by INCT-
SEC. During this period, three generations of intelligent and fully autonomous vehicles were
developed, namely Carro Robótico Inteligente para Navegação Autônoma (CaRINA) 1 (electric
vehicle "Club Car") (FERNANDES et al., 2012) (KLASER; OSóRIO; WOLF, 2014), CaRINA 2
(Fiat Pálio Adventure) (FERNANDES et al., 2014), and Smart Truck (Scania partnership) 2. The
work presented in this Thesis began during the master’s degree and follows up the development
of this Thesis, with significant contributions to the architecture of the intelligent systems of the
vehicles and their perception modules (Vision, Radar, LiDAR), as well as participating in the
projects developed by the LRM team in partnership with industry (Scania and Vale) (CALDAS
et al., 2023).

1.2 Problem Statement

While the advantage of modular architectures lies in its interpretability, extensive cou-
pling of numerous components increases the risk of error propagation, resulting in heightened
complexity in maintaining the entire architecture, associated costs. This mix of components
adds complexity to both the development and evaluation process. Furthermore, reliance on high-
definition (HD) maps for navigation poses limitations, including restricted coverage, privately
held maps, and potential processing issues or access errors.

To overcome these limitations, end-to-end methods for autonomous driving have been
used. Although this approach streamlines the system architecture and eliminates manual feature

1 Available at: <https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.
21.pdf>

2 Available at: <http://lrm.icmc.usp.br/web/index.php?n=Eng.ProjSTruck>

https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf
https://www.sae.org/binaries/content/assets/cm/content/blog/sae-j3016-visual-chart_5.3.21.pdf
http://lrm.icmc.usp.br/web/index.php?n=Eng.ProjSTruck

1.3. Contributions 27

engineering, it often requires substantial amounts of diverse training data, which is costly and
time-consuming to collect in real scenarios. Additionally, the opaque decision-making process
within end-to-end models raises concerns about safety and accountability, particularly in critical
situations.

Another challenge in autonomous driving involves evaluating the architecture employed,
whether it follows a modular, end-to-end, or hybrid methodology. Kalra and Paddock (KALRA;
PADDOCK, 2016), Koopman and Wagner (KOOPMAN; WAGNER, 2016), and Huang et al.
(HUANG et al., 2016) suggest that to comprehensively assess an autonomous system, it is
important to combine real-road and simulation tests. In this regard, simulators offer advantages
by creating repeatable scenarios for component performance assessments. They simulate diverse
driving situations with realistic dynamics, including weather conditions, sensor malfunctions,
traffic violations, hazardous events, traffic jams, and crowded streets. Simulations also serve as
effective benchmarks, enabling the evaluation of different system approaches under the same
conditions for comparative analysis.

Considering all the advances in autonomous driving achieved by modular pipelines in
mapped environments and the recent success of machine learning algorithms for autonomous
driving, the scientific question arises: Is it possible to combine the advantages of these two
approaches to build a new hybrid approach that navigates more safely in both mapped and
unmapped environments? Additionally, can we benchmark these approaches in realistic and
repeatable scenarios under different weather and traffic conditions?

1.3 Contributions

Based on the aforementioned considerations, this thesis focuses on developing au-
tonomous driving architectures capable of navigating without relying on maps in real-time3. To
achieve this objective, we propose, implement, compare, and evaluate three approaches:

Modular pipeline: We design a modular agent from scratch to automate data collection
and serve as a baseline for map-based navigation. Drawing from previous work in our laboratory,
we integrate traditional algorithms and propose new modules for perception, decision-making,
and prediction, ensuring safe navigation in mapped environments. These enhancements establish
the modular agent as the "teacher" for our end-to-end, mapless navigation agents.

End-to-end agents based on different types of sensors and fusion: For this, we propose
autonomous agents based on cloning and imitation learning techniques, where a neural network
learns driving policies from data. We prioritize the simplicity of our methods to achieve real time
operation while ensuring their effectiveness in navigating environments without map.

3 In this context, we consider soft real-time, which aim to meet deadlines for data delivery or pro-
cessing as often as possible. However, occasional missed deadlines are permissible without severe
consequences.

28 Chapter 1. Introduction

We contribute a new hybrid method for mapless autonomous driving by integrating
data-driven path planning with modular perception and control modules. This approach offers
robustness, flexibility, and adaptability. Our method and framework represent a novel contribution
to the development of autonomous driving, ADAS, and mobile robotics, and can be integrated
with both existing and new perception and control methods developed by the LRM Lab or
external contributors. Our hybrid architecture achieves results comparable to current state-of-the-
art algorithms, combining the interpretability of modular systems with the learning capabilities
of end-to-end models.

Figure 1 illustrates the main difference between the three approaches for architecture,
being modular, end-to-end, and hybrid architecture.

Finally, we develop a framework based on ROS named “CaRINA agent” that implements
modular pipelines for autonomous driving, facilitating the replacement of existing modules
with others performing perception, planning, localization, decision-making, etc. Additionally,
the framework allows for the incorporation of end-to-end methods and construction of hybrid
architectures for testing on CARLA leaderboards for both tracks: MAP and SENSORS. The
code is available online4.

1.3.1 Honors and Awards

During the doctoral studies, the author actively participated in international competitions
aimed at advancing the fields of autonomous driving and perception. Two notable experiences
directly tied to this research are highlighted as follows:

Argoverse 2022 Challenge (Stereo Depth Estimation): This competition tasked par-
ticipants with developing algorithms for stereo camera disparity calculation, crucial for depth
perception in autonomous driving. Leveraging deep learning techniques, the author implemented
an algorithm that achieved third place. Results were presented at the esteemed CVPR 2022 Work-
shop on Autonomous Driving5. The technical report is available on the competition website6.

CARLA Autonomous Driving Challenge (CADCH): Since 2019, the author has
participated in the prestigious CARLA Autonomous Driving Challenge, an annual international
competition testing self-driving algorithms in simulated urban environments. As a member of
Team LRM, the author achieved outstanding results:

CADCH 2019 7,8:

4 Available at: <https://github.com/lrmicmc/CaRINA-agent>.
5 Available at: <https://www.youtube.com/watch?v=Z1q9ijuLLvU&t=1440s>.
6 Available at: <https://www.argoverse.org/priorCompetitions.html>.
7 Available at: <https://web.archive.org/web/20201107230101/https://carlachallenge.org/

results-challenge-2019/>.
8 Available at: <https://agenciabrasil.ebc.com.br/en/geral/noticia/2019-08/

brazilians-win-intl-self-driving-car-challenge>.

https://github.com/lrmicmc/CaRINA-agent
https://www.youtube.com/watch?v=Z1q9ijuLLvU&t=1440s
https://www.argoverse.org/priorCompetitions.html
https://web.archive.org/web/20201107230101/https://carlachallenge.org/results-challenge-2019/
https://web.archive.org/web/20201107230101/https://carlachallenge.org/results-challenge-2019/
https://agenciabrasil.ebc.com.br/en/geral/noticia/2019-08/brazilians-win-intl-self-driving-car-challenge
https://agenciabrasil.ebc.com.br/en/geral/noticia/2019-08/brazilians-win-intl-self-driving-car-challenge

1.3. Contributions 29

Navigation Pipeline

Modular Architecture

Sensors Actuator

Perception Prediction
Decision

Making
Control

L
o
c
a
li
z
a
ti

o
n

M
a
p

p
in

g

Navigation Pipeline

End-to-End Architecture

Sensors Actuator

Navigation Pipeline

Hybrid Architecture

Sensors Actuator

ControlPerception

Steering

Brake

Acceleration

Steering

Brake

Acceleration

Steering

Brake

Acceleration

Camera

LiDAR

RADAR

GPS

Camera

LiDAR

RADAR

GPS

Camera

LiDAR

RADAR

GPS

High-De�nition

Map

Obstacle-free

Planning

s
0

s
1

s
2

s
3

Finite-State

Machine

X
X

Longitudinal

Lateral

Longitudinal

Lateral

SLAM
GNSS

Trajectory

Prediction

Figure 1 – Example that illustrates the main differences between modular, end-to-end, and hybrid archi-
tectures.

Source: Elaborated by the author.

1st Place in 3 out of 4 categories: LiDAR-only, All Sensors, and Map.

2nd Place in Camera-only category.

We made available a technical report (ROSERO et al., 2020) and these results were
presented at the Workshop on Autonomous Driving at CVPR 2019.

30 Chapter 1. Introduction

CADCH 2023 9:

1st Place in the SENSORS category.

2nd Place in the MAP category.

We publish a article describing our approach in the journal SENSORS (ROSERO et al.,
2024) and the author had the opportunity to present developments and results at the NeurIPS
2023 Machine Learning for Autonomous Driving Workshop10.

1.3.2 Thesis Outline

This thesis is organized as follows: Chapter 2 delves into various deep learning tools
utilized in autonomous driving. It covers Convolutional Neural Networks (CNNs) and their
applications in object detection, behavior cloning, and imitation learning. Additionally, it provides
insights into Long Short-Term Memory (LSTM) networks and reinforcement learning. Chapter
3 provides a critical overview of related-works; Chapter 4 describes the modular software
architecture developed in this research, and describe our modules for parsing the OpenDrive
map, perception, prediction, risk assessment, and decision-making. Chapter 5 presents our end-
to-end implementations for maples autonomous driving. Chapter 6 presents a hybrid architecture
approach; Chapter 7 presents our experimental setup and created dataset for training our agents,
discusses the results and other experiments; Finally, Chapter 8 addresses the final remarks and
suggests some future work.

9 Available at: <https://leaderboard.carla.org/challenge/>.
10 Available at: <https://ml4ad.github.io>.

https://leaderboard.carla.org/challenge/
https://ml4ad.github.io

31

CHAPTER

2
BACKGROUND

In this chapter, we cover theoretical concepts and terminology related to computer vision
and machine learning. We provide an overview of the most important concepts in each area to
understand our research proposal.

2.1 Convolutional Neural Networks

Convolutional neural network (CNN) (LECUN et al., 1990) is a neural network for
processing data that has a grid topology, for example a RGB image. CNN employs a specialized
linear mathematical operation called convolution in place of general matrix multiplication. The
use of CNN was consolidated with the results obtained by (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012) the 2012 ImageNet LSVRC-2012 competition.

Convolutions

In convolutional network terminology, the first argument (in this example, the function x)
to the convolution is often referred to as the input, and the second argument (in this example, the
function w) as the kernel. The output is some times referred to as the feature map. If we now
assume that x and w are defined only on integer t, we can define the discrete convolution:

s(t) = (x∗w)(t) =
∞

∑
a=−∞

x(a)w(t −a) (2.1)

In machine learning applications, the input is usually a multidimensional array of data,
and the kernel is usually a multidimensional array of parameters that are adapted by the learning
algorithm.

32 Chapter 2. Background

Pooling layers

The typical layer of a convolutional network consists of three stages. In the first stage, the
layer performs several convolutions in parallel to produce a set of linear activations. In the second
stage, each linear activation is run through a nonlinear activation function, such as the rectified
linear activation function. This stage is sometimes called the detector stage. In the third stage,
we use a pooling function to modify the output of the layer further. A pooling function replaces
the output of the net at a certain location with a summary statistic of the nearby outputs. For
example, the max pooling (ZHOU; CHELLAPPA, 1988) operation reports the maximum output
within a rectangular neighborhood. Other popular pooling functions include the average of a
rectangular neighborhood, the L2 norm of a rectangular neighborhood, or a weighted average
based on the distance from the central pixel.

2.1.1 CNNs for classification and detection

Residual Networks

Increasing the depth leads to an increase the accuracy of the network, as long as over-
fitting is taken care of. But the problem with increased depth is that the signal required to change
the weights, which arises from the end of the network by comparing ground-truth and prediction
becomes very small at the earlier layers, because of increased depth. It essentially means that
earlier layers are almost negligible learned. This is called vanishing gradient. The second problem
with training the deeper networks is, performing the optimization on huge parameter space and
therefore naively adding the layers leading to higher training error. Residual networks (HE et

al., 2016a) allow training of such deep networks by constructing the network through modules
called residual models.

YOLO

The "You Only Look Once" (YOLO) (REDMON et al., 2015) detector is a little bit less
precise (Improved on v2) but it is a really fast detector. The idea of this detector is using a CNN
model to get the detection on a single pass. First the image is resized to 448×448, then fed to
the network and finally the output is filtered by a Non-max suppression algorithm.

Region Proposals R-CNNs

The Region-based CNN (R-CNN) (GIRSHICK et al., 2016) approach performs bounding-
box object detection to attend to a manageable number of candidate object regions and evaluate
convolutional networks independently on each RoI.

R-CNN was extended by Girshick (2015)(Fast R-CNN) to allow attending to RoIs on
feature maps using RoIPool, leading to fast speed and better accuracy. Faster R-CNN (REN et

2.2. Behavior Cloning 33

al., 2015) advanced this stream by learning the attention mechanism with a Region Proposal
Network (RPN). Faster R-CNN is flexible and robust to many follow-up improvements.

Mask R-CNN

The Mask R-CNN method (HE et al., 2017b) detects objects in an image while simulta-
neously generating a high-quality segmentation mask for each instance. This approach extends
Faster R-CNN by adding a branch for predicting an object mask in parallel with the existing
branch for bounding box recognition. Figure 2 shows the final predictions from Mask R-CNN
for a urban scene.

Figure 2 – Predictions using Mask R-CNN

Source: Abdulla (2017).

2.2 Behavior Cloning
Behavior cloning, also known as imitation learning, is a machine learning technique

where an agent (e.g., a robot, game AI, etc.) to learn a task by observing demonstrations from
experts, can be a human or another agent demonstrating that task successfully. Instead of
explicitly programming rules, it involves learning a policy or function that maps observations of
the expert’s actions to the actions the agent should take itself.

34 Chapter 2. Background

One of the key components of behavior cloning is the dataset containing pairs of input
observations and corresponding actions taken by the expert. This dataset is used to train a
supervised learning model, typically a neural network, to map input observations to corresponding
actions. During training, the model learns to generalize from the observed data, allowing it to
make decisions in new, unseen situations similar to those encountered during training.

Behavior cloning has been applied in various domains, including autonomous driving,
robotic manipulation, and video game playing. In autonomous driving, for example, behavior
cloning can be used to train a vehicle to mimic the driving behavior of a human driver by
learning from a dataset of human driving demonstrations. The trained model can then navigate
the vehicle autonomously, making decisions based on the learned behavior. Representative
works on behavior cloning for autonomous driving learning from human demonstrations are
(POMERLEAU, 1988), (BOJARSKI et al., 2016),(CODEVILLA et al., 2018)

The foundation of behavior cloning lies in gathering high-quality data showcasing the
desired behavior. This typically involves:

Expert Demonstrations: Recordings of an expert performing the task successfully.
This could include joystick movements, keyboard inputs, or visual/sensor data for autonomous
systems.

Data Preprocessing: The raw data might need filtering, cleaning, and formatting to
match the format required by the learning algorithm.

Based on the expert demonstrations, a learning algorithm is employed to translate
observations into actions. Several options exist, including: Supervised Learning: Techniques like
regression learn the mapping between the observed state and the expert’s action at that moment.

Modern neural networks like convolutional neural networks (CNNs) can capture complex
relationships and patterns in the data, improving imitation accuracy (POMERLEAU, 1988).

2.3 Computer vision

In this section we explain the fundamental concepts and problems of computer vision.
We start with a simple camera model and later we explain what is related to stereo vision and
visual motion.

2.3.1 Perspective camera model

The simplest model of a camera is the pinhole (BRADSKI; KAEHLER, 2013). This
model assume that a ray reflected by a point in the scene enters through the pinhole. That point
is projected onto the image surface. The result of all the projected points is called the projective
plane. The size of the image relative to distant objects is given by the focal length (f).

2.3. Computer vision 35

Figure 3 – Pinhole camera model

Source: Elaborated by the author.

The Figure 3 represents the projective transformation that maps M points in the physical
world with coordinates (Xi, Yi, Zi) to points in the projective plane with coordinates (ui, yi). The
Equation 2.2 represents the projective transformation where we have a 3×3 matrix of intrinsic
parameters (fx, fy, ox, oy) and a 4×3 matrix of extrinsic parameters [R|t] (R: Rotation matrix
r11 to r33 and t: Translations t1 to t3). We can transform 3D data and image frames to other poses
in the space (positions and orientations), manipulating these parameters.

S

ui

vi

1

=

 fx 0 ox

0 fy oy

0 0 1


r11 r12 r13 t1

r21 r22 r23 t2
r31 r32 r33 t3




Xi

Yi

Zi

1

 (2.2)

2.3.2 Stereo vision

Stereo imaging systems are based on the capability that our eyes give us to perceive the
scene depth. A computational system can emulate that capability by finding correspondences
between pixels of two images and computing a three-dimensional image triangulating the
correspondences and the 3D point baseline and a known baseline separation between cameras.

Traditional approaches use correlation-based and feature-based techniques to find the
correspondences between the pixels onto the images, estimating their disparity (displacement of
the pixels that represent the same scene element in each image). Also, it is necessary the:

• Estimation of the fundamental and essential matrix from point correspondences.

36 Chapter 2. Background

• Determination the epipolar geometry and rectify a stereo pair.

• Finally to recover 3D scene from image correspondences using intrinsic and extrinsic
parameters.

In order to build a stereo imaging system with two cameras we need to know the geometry of the
imaging system and to perform four important steps: undistortion, rectification, correspondence
and reprojection.

Epipolar geometry

Epipolar geometry is the basic geometry of a stereo imaging system, this geometry
combine a pinhole camera model (one for each camera) and the epipole points. Each camera
have a center of projection (Ol for left camera and Or for right camera) and a πl and πr projective
planes. A epipole point (el or er) is defined as the image of the center of projection point (Ol or
Or respectively) on the plane. The plane formed by the point P in 3D space and the two epipole
points is called epipolar plane and the lines formed by the intersection of the epipolar plane and
the image planes are called epipolar lines. In this way, for a image feature of one of the cameras
of the stereo rig, its matching view lies along the epipolar line. This fact is known as epipolar
constraint.

Due to the epipolar constraint, searching for matching features across the image plane,
from two-dimensional becomes one-dimensional along the epipolar lines once we know the
epipolar geometry of the stereo rig.

Stereo calibration and rectification

Stereo calibration is the process of determining the geometric relationships between
cameras in space. The stereo calibration finds the rotation matrix R and the translation vector T

between the two cameras.

Stereo rectification is the process of individually correcting each image so that the images
appear as if they were taken by two cameras with aligned rows and aligned image planes. With
the rectification of the optical axes of the two cameras are parallel intersecting at infinity. In the
Open Source Computer Vision Library (OpenCV) (BRADSKI, 2000) we can find the methods
to calibrate and rectify with stereo cameras (HARTLEY, 1999) where the focus is to get the
simplest where the main rays intersect at infinity. The rectification process resides in reprojecting
the image camera planes in the same plane, with the rows of the images perfectly aligned within
a parallel frontal line.

Finally, the result of horizontally aligning rows with a common image plane containing
each image is that the epipoles are located at infinity.

2.3. Computer vision 37

Another result of the calibration is the alignment of the planes, which results in eight
terms, four for each image. Additionally, we get a vector containing the distortion coefficients, a
rotation matrix Rrect , rectified camera matrix Mrec and unrectified camera matrix M.

Stereo correspondence

Stereo correspondence is related to a three-dimensional point projected in two different
cameras. This method finds pixels in the image on the left that correspond to the same 3D object
in the image on the right. Assuming a pair of undeformed and rectified stereo images we can
handle depth from the triangulation using disparity measurements d = xl − xr. In the literature
we can find different algorithms for the calculation of disparity some of the most known are sum
of absolute differences (SAD) and Census (ZABIH; WOODFILL, 1994). Some computer vision
frameworks such as OpenCV implement variations of these algorithms such as Block matching
using SAD and a variation of semi global matching (SGM) (HIRSCHMULLER, 2008) that they
call semi global block matching (SGBM)

Reprojection

To perform the projection process, we assume that perfect distortion, systematic system.
We assume that the planes of the images are coplanar with parallel optical axes and with equal
focal lengths fl = fr. Others assumed that the main points cle f t

x and cright
x have been calibrated

and have their own coordinates in pixels in their respective left and right images.

2.3.3 Visual motion

Optical flow

Optical flow is the estimation of independent motion at each pixel and generally involves
minimizing the brightness or color difference between corresponding pixels summed over the
image. Equation 2.3 is the motion estimation using sum of squared differences (SSD):

SSSF−OF({ui}) = ∑
i
[I1(xi +ui)− I0xi]

2 (2.3)

Since the number of variables {ui} is twice the number of measurements, the problem
is underconstrained. The two classic approaches to this problem are to perform the summa-
tion locally over overlapping regions (the patch-based or window-based approach) or to add
smoothness terms on the {ui} field using regularization or Markov random fields (SZELISKI,
2010).

Some classical methods were implemented and are available at OpenCV tool, as for
example the Lucas-Kanade method and Dense Optical Flow. Also, there are important datasets

38 Chapter 2. Background

that allow us to test, evaluate and compare different algorithms of optical flow, as for example
the Middlebury Optical Flow Dataset 1 and the MPI Sintel Flow Dataset 2.

2.3.4 Disparity estimation using deep learning

Stereo matching aims to estimate the disparity map between a pair of rectified images.
Disparity refers to the horizontal distance between a pair of corresponding pixels in the left
and right images. The disparity (disparity) of a pixel can be converted to depth (Z) by Z =

B f/disparity. In this way, the accuracy of the depth improves with the prediction of the disparity.
Disparity estimation is an essential task for computer vision applications, such as autonomous
driving, 3D reconstruction, and robot navigation.

Significant progress of deep learning in the field of computer vision has been also
extended to geometric problems such as stereo matching. Currently, deep learning based ap-
proaches have reached state of the art performance in most stereo disparity benchmarks, such as
Middlebury (SCHARSTEIN et al., 2014), KITTI (GEIGER; LENZ; URTASUN, 2012), ETH3D
(SCHöPS et al., 2017), and Argoverse (CHANG et al., 2019).

However, scenarios of the real world not only require state of the art algorithms but also
real time inference, and domain adaptation. Argoverse has released a stereo dataset in different
lighting and weather conditions containing images at ten times the resolution relative to images
in the KITTI dataset, and 16 times as many training frames, making it a much larger and more
challenging dataset. The ground-truth depth is derived from LiDAR point cloud accumulation.
The Argoverse team has organized the 2022 stereo challenge to motivate researchers to test
algorithms that work well, run fast, and generalize to new scenes at the same time in the
Argoverse stereo dataset.

2.4 Final Considerations
Convolutional neural networks (CNNs) have enjoyed great success, particularly in com-

puter vision tasks like object classification and detection. This close relationship between CNNs
and computer vision has fostered mutual progress in both fields. In this work, we leverage these
advancements in both computer vision and deep learning to tackle the challenging task of mapless
navigation. In this work, computer vision, computational intelligence, and machine learning,
become our key tools. Subsequent chapters will showcase how we apply these technologies to
address the problem of autonomous driving.

1 Available at: <http://vision.middlebury.edu/flow/>
2 Available at: <http://sintel.is.tue.mpg.de/>

http://vision.middlebury.edu/flow/
http://sintel.is.tue.mpg.de/

39

CHAPTER

3
LITERATURE REVIEW AND RESEARCH

WORK

As mentioned before, there are different approaches to developing autonomous systems,
depending on the technologies used and how the components are structured. This section offers
a brief and critical review of modular, end-to-end, and hybrid software architectures. Table 1
summarizes the related works.

3.1 Modular Navigation Architecture

A modular architecture typically organizes software components in a hierarchical manner
based on specific criteria. Each group, referred to as a layer, operates at a distinct level of
abstraction and provides services to its adjacent layers. This structure follows a descending order
of abstraction, where higher-level layers handle more abstract tasks, while lower-level layers
manage finer controls in the architecture. For example, following the hierarchical navigation
stack proposed by Paden et al. (PADEN et al., 2016), the initial layer is responsible for road
and lane-level route planning, determining the roads and lanes the vehicle must follow to reach
its destination. Subsequently, a behavior layer makes tactical decisions for the vehicle during
navigation, such as interactions with other traffic participants, adherence to traffic rules, and high-
level maneuver choices (e.g., lane following, lane change, U-turn, overtaking, and emergency
stop). In addition to the route, this layer also receives perception information, including obstacle
position and velocity, and traffic light status. Once the behavior is determined, a motion planning
layer calculates short-term, feasible, and collision-free trajectories, that are translated into low-
level commands, such as throttle, brake, and steering, by low-level controllers within the control
layer (KATRAKAZAS et al., 2015).

This design pattern is widely utilized in autonomous systems and has demonstrated
notable success in both industrial and research vehicle applications (TENG et al., 2023). Key

40 Chapter 3. Literature Review and Research Work

Table 1 – Summary of Related Works.

Primary Study Name Type Layers or Methods Sensors or Inputs

(TAŞ et al., 2018) BerthaOne Modular
Sensing, Perception, Planning,
Control, HMI, Communication

Radar, LiDAR, GNSS, IMU,
Cameras, Stereo Camera, V2V, V2I

(FAN et al., 2018) Apollo Modular
Perception, Prediction, Planning,

Control, HMI, Guardian,
Localization, HD-Map, CANBus

Radar, LiDAR, GNSS
IMU, Cameras,

V2X, Untrasonic

(AUTOWARE, 2024) Autoware Modular
Sensing, Perception, Planning,

Control, HMI, Localization, Map
Radar, LiDAR, GNSS, IMU,

Cameras, Ultrasonic

(WEI et al., 2013) CMU Modular
Hardware, Perception,

Mission Planning, Behavior
Generation, Motion Planning

Radar, LiDAR, GNSS
IMU, Cameras, V2V, V2I,

Wheel speed sensor

(JO et al., 2015) A1 Modular
Sensor Interface, Autonomous Driving

Algorithm, Actuator Interface,
Development Interface

Lasers, GNSS
IMU, Cameras

(SHAO et al., 2023) ReasonNet End-to-End
ResNet (2D backbone), Transformer
Encoder, PointPillars (3D backbone),

GAT, CNN, MLP, GRU

Images (left, front,
right and rear),

LiDAR

(SHAO et al., 2022) InterFuser End-to-End
ResNet (2D and 3D backbone),

Transformer, GRU, MLP
Images (left, front,
and right), LiDAR

(WU et al., 2022) TCP End-to-End
ResNet (2D backbone),

MLP, GRU
Image (front), Speed,

High-level command, Goal

(CASAS; SADAT; URTASUN, 2021) MP3 End-to-End
CNN blocks (3D backbone),

CNN (Map decoders),
Probabilistic Reasoning

LiDAR,
High-level command

(XIAO et al., 2022)
Multimodal

CIL
End-to-End

CNN (2D backbone),
MLP

Image (front), speed,
Depth Image (front),
High-level command

(ZHANG et al., 2022) MMFN End-to-End
ResNet (2D and 3D backbone),

VectorNet (3D backbone),
GAT, MLP, GRU

LiDAR, Radar,
Map, Goal

(CAI et al., 2020) PMP-net End-to-End
ResNet (2D and 3D backbones),

Attention Mechanism,
Gaussian Mixtute Model, MLP

Image (front),
LiDAR, Radar, Map,
Position, Goal, Speed

(VITELLI et al., 2022) SafetyNet
Path

Planning
PointNet (trajectory backbone)

Transformer Encoder, MLP
Historical trajectory,

Map, Goal

(SONG et al., 2018)
IVGG
LSTM

Path
Planning

DCNN, CNN
LSTM, MLP, VGG

Image (front, left and
right rear view mirror)

(MORAES et al., 2020) DeepPath
Path

Planning
WideResNet38,

DeepLabV3, MLP
Image (front),

Position

(WANG et al., 2021)
CNN

RawRNN
Path

Planning
ResNet50 (2D backbone)

LSTM, MLP
Image (front)

(HU et al., 2022) ST-P3
Path

Planning

EfficientNet (2D backbone),
DeepLabV3 (head), Attention

Mechanism, GRU, MLP

Image (front - center, left, right;
back - center, left, right),

High-level command

Human-Machine Interface (HMI) ; Vehicle to Vehicle (V2V) ; Vehicle to Infrastructure (V2I); Vehicle to Anything
(V2X) - ; Convolutional Neural Network (CNN); Multi-Layer Perceptron (MLP); Gated Recurrent Unit (GRU);
Graph Attention Network (GAT); Deep Cascaded Neural Network (DCNN); Long Short-Term Memory (LSTM).

Source: Research data.

studies typically adopt similar layers, including sensing, perception, planning, control, and
human-machine interface as fundamental components (TAŞ et al., 2018; FAN et al., 2018; JO
et al., 2015; WEI et al., 2013; AUTOWARE, 2024). However, there are variations, such as
communication between vehicles (e.g., Vehicle-to-Anything - V2X) (TAŞ et al., 2018), Health
Management Systems focusing on hardware and software component monitoring, diagnosis,
prognosis, and fault recovery (FAN et al., 2018; WEI et al., 2013; JO et al., 2015), behavior or
mission planning (WEI et al., 2013; JO et al., 2015; AUTOWARE, 2024), and mapping strategy

3.2. End-to-End Autonomous Driving 41

(TAŞ et al., 2018; JO et al., 2015; AUTOWARE, 2024). In the latter case, Wei et al. proposed
an alternative to the hierarchical navigation stack. This alternative organizes components of
the behavior and control layers in parallel order, based on the functioning of Advanced Driver
Assistance (ADAS) system. According to the authors, this approach enhances the flexibility of
the autonomous system, enabling it to operate at a higher frequency compared to alternative
methods.

Nevertheless, the parallel design faces challenges in coordinating components during
complex tasks and maneuvers due to asynchronous communication. Additionally, both parallel
and hierarchical approaches share issues related to error propagation between components and
the intricate management of components with the increase in vehicle autonomy. This occurs
because, as autonomy increases, the vehicle also performs more tasks (e.g., maneuvers) and
encounters a broader range of traffic scenarios. Therefore, the number of components adversely
affects the system’s performance.

3.2 End-to-End Autonomous Driving

End-to-End is a navigation approach where neural networks and deep learning models
are trained to map sensory input (e.g., images or point clouds) to control outputs (e.g., steering,
throttle, brake) or intermediate outputs (e.g., trajectory segment). This eliminates the need for
manual feature tuning in modular navigation pipelines. The advantage lies in leveraging deep
learning generalization to simplify and enhance the adaptability of navigation stacks across
different traffic scenarios. There are various approaches to classifying end-to-end models, ranging
from the degree of the deep learning model’s involvement in tasks to the technology applied.
In the former category, methods range from pure end-to-end architectures, where the deep
learning models handle the entire mapping and decision-making process, to hybrid approaches
that integrate different algorithms, such as probabilistic models, control theory, fuzzy inference
systems, etc. The latter category divides models based on techniques, such as imitation learning
and reinforcement learning.

In addition to the presented taxonomy, studies on end-to-end navigation also focus on
input representation aspects and the model design. This includes considerations in the number of
cameras (e.g., single or multi-camera setups) (SHAO et al., 2023; SHAO et al., 2022; WU et al.,
2022), methods for 3D data representation (e.g., point cloud or Bird’s Eye View images) (SHAO
et al., 2023; SHAO et al., 2022; CASAS; SADAT; URTASUN, 2021; ZHANG et al., 2022),
sensor fusion and multimodality (e.g., different sensors and feature fusion methods) (XIAO et

al., 2022; ZHANG et al., 2022; CAI et al., 2020), interaction with traffic agents (e.g., interaction
graphs or grid maps) (SHAO et al., 2023; ZHANG et al., 2022), deep learning technologies
(e.g., transformers, graph neural networks, deep reinforcement learning, attention mechanisms,
generative models, etc.) (SHAO et al., 2023; SHAO et al., 2022; ZHANG et al., 2022; CAI et

42 Chapter 3. Literature Review and Research Work

al., 2020), decision-making within the network (e.g., high-level commands input or inference)
(WU et al., 2022; CASAS; SADAT; URTASUN, 2021), and the accuracy or feasibility of the
output (e.g., using standard controllers to estimate final outputs or filtering the output of the deep
learning model) (SHAO et al., 2023; CASAS; SADAT; URTASUN, 2021; CAI et al., 2020).

In summary, end-to-end models primarily rely on RGB images and LiDAR-generated
point clouds, represented in 3D as points, voxels, or Bird’s Eye View (BEV) images. While the
ResNet network is commonly used for feature extraction from images and BEV (SHAO et al.,
2022; WU et al., 2022; CAI et al., 2020; ZHANG et al., 2022; CASAS; SADAT; URTASUN,
2021), some studies also explore the use of specialized deep learning models for 3D data, such
as PointPillars (SHAO et al., 2023) and VectorNet (ZHANG et al., 2022). Two significant
challenges for deep learning models include multimodality fusion and how to handle tactical
decisions within the network (or when incorporating decisions from external sources). In the
former case, early-fusion and middle-fusion approaches are noteworthy (XIAO et al., 2022), they
often involve attention mechanisms or concatenation of feature vectors. In the latter case, tactical
decisions (i.e., high-level commands) can be treated as an input modality (WU et al., 2022) or
a conditional variable (CASAS; SADAT; URTASUN, 2021; XIAO et al., 2022), particularly
in approaches exploring multiple-expert designs. However, both pure and hybrid end-to-end
navigation methods still face challenges related to the lack of transparency and explainability in
decision-making and the requirement for extensive training data.

3.3 Data-driven Path Planning

Autonomous vehicles rely on path planning algorithms to navigate through dynamic
and complex environments. Data-driven approaches have gained prominence in recent years,
representing a shift from traditional rule-based methods (XU et al., 2021). In data-driven path
planning, algorithms leverage machine learning techniques to learn collision-free paths from
large datasets (REDA et al., 2024). These datasets typically include information from various
sensors, historical driving experiences, and diverse environmental conditions. Similar to end-
to-end navigation architectures, data-driven path planning also inherits the adaptability features
from deep learning models, which make them able to plan under diverse road geometry and
traffic scenarios.

Techniques for data-driven path planning typically emphasize the representation of
spatial and temporal features. However, to address the challenges of dynamic driving scenarios,
they also consider the representation of traffic rules, interaction among traffic participants, output
trajectory smoothness and comfort, high-level commands (e.g., maneuvers), and variations in
road geometry. Spatial features are commonly derived from frontal camera images or Bird’s
Eye View (BEV) projections, using CNN-based networks for feature embedding (SONG et al.,
2018; MORAES et al., 2020; WANG et al., 2021; HU et al., 2022). Some works also use the

3.4. LRM Lab - fourteen years of research in Autonomous and Intelligent Vehicles 43

historical trajectory of the ego-vehicle and surrounding agents (VITELLI et al., 2022). Temporal
features are traditionally addressed by recurrent neural networks (e.g., GRU and LSTM) (SONG
et al., 2018; WANG et al., 2021; HU et al., 2022), although recent studies have explored the
application of Transformer networks (VITELLI et al., 2022). Semantic and abstract data, such as
traffic rules and high-level commands, are integrated as feature vectors or conditional variables
(HU et al., 2022). Finally, ensuring trajectory smoothness typically involves the application
of a post-processing algorithm or the penalization term in the loss function (HU et al., 2022).
Nevertheless, methods employing machine learning for path planning face challenges in terms of
transparency and explainability. Moreover, there is room for improvement in addressing global
planning, high-level commands, managing dangerous and unexpected driving scenarios, and
ensuring dynamic and kinematic feasibility of planned trajectories.

3.4 LRM Lab - fourteen years of research in Autonomous
and Intelligent Vehicles

Within the LRM Mobile Robotics Laboratory1 at ICMC/USP, where this work was
conducted, several projects are being developed in the area of autonomous mobile robots, with an
emphasis on projects involving small and medium-sized robots used in indoor environments and
research projects on autonomous vehicles for outdoor environments. The autonomous vehicles
under development are capable of navigating urban environments and even semi-structured
environments, such as those in agricultural applications.

This thesis is directly related to the CaRINA project, Intelligent Robotic Car for Au-
tonomous Navigation, which is under development at LRM-ICMC/USP. This project, initiated
in 2010, aims to develop an intelligent autonomous vehicle capable of navigating urban environ-
ments without the need for a human driver. The CaRINA project currently has two experimental
research platforms, both of which are already automated and capable of performing autonomous
navigation. The objectives of the CaRINA project include reducing the number of accidents on
streets and highways, increasing mobility for the elderly and people with special needs, and
enhancing overall traffic efficiency. In the past, the CaRINA I (KLASER; OSóRIO; WOLF,
2014) electric car was able to travel more than 1.0 km in autonomous mode on the USP campus,
and the CaRINA II (FERNANDES et al., 2014) vehicle traveled more than 20 km without a
driver in urban environments 2.

In addition to the CaRINA project vehicles, the LRM Lab also developed an autonomous
truck in partnership with Scania (LRM-CROB/USP project in partnership with Scania Latin
America)3. The autonomous truck was designed to use radar perception and stereo vision as

1 CaRINA Project – website: <http://www.lrm.icmc.usp.br/carina/>
2 Available at: <http://www.lrm.icmc.usp.br/web/index.php?n=Port.Midia>
3 Available at: <http://www.lrm.icmc.usp.br/web/index.php?n=Port.ProjSTruck>

http://www.lrm.icmc.usp.br/carina/
http://www.lrm.icmc.usp.br/web/index.php?n=Port.Midia
http://www.lrm.icmc.usp.br/web/index.php?n=Port.ProjSTruck

44 Chapter 3. Literature Review and Research Work

its main obstacle detection devices and has been presented on several occasions to various
companies and the media. The obstacle detection system of the Scania truck was developed
during the author’s master’s degree (ROSERO, 2017), which also involved creating a system
for the fusion of LiDAR, radar, and computer vision for use on these platforms (ROSERO;
OSóRIO, 2017). Subsequently, a similar solution was developed together with the Vale company
for mining applications (CALDAS et al., 2023).

Much other research related to machine learning, computer vision, control, decision-
making, and simulation has been developed at LRM Lab, though not all of it has been integrated
and tested in the CaRINA project. Our work aims to contribute to the CaRINA project by provid-
ing a framework that allows for the integration and testing of new algorithms for autonomous
driving in a unified framework, first in simulation using the CARLA simulator and later on the
real platform. Our stack is currently ready to work with the CARLA simulator using ROS for
transparent future use on the CaRINA platforms.

To evaluate the performance of our developments since 2019, we have participated in
challenges related to autonomous driving, particularly the CADCH, where we won the first
edition (ROSERO et al., 2020).

In 2023, four members of our laboratory joined the LRM team, working in different areas:
Iago Gomes (agent architecture and map), Carlos Braile (localization), Junior Silva (control),
and Luis Rosero (architecture, perception, navigation, End-to-End driving). Under the direction
of Prof. Dr. Denis Wolf and Prof. Dr. Fernando Osório, we win first place in the Sensors track
and second place in the Map track.

3.5 Final Considerations

The study of related works on modular architectures, end-to-end learning, and data-driven
path planning presented in this chapter provides us with context and highlights the advantages
and disadvantages of each approach. This understanding allows us to propose a novel hybrid
architecture for autonomous driving that combines the best of each approach. Additionally, the
past experiences of our researchers at the LRM Lab serve as the basis for improving previous
work. We have developed a framework that integrates prior research from the LRM Lab and
incorporates new methods in all areas of autonomous driving. This framework supports new
perception, control, and decision-making modules, as well as modular, end-to-end, and hybrid
architectures.

In this context, we address the three forms of autonomous driving described in this section.
Firstly, we propose a modular pipeline, inspired by previous work, following a hierarchical
structure, similar to others in the literature and also inspired by an earlier architecture proposed
in our group. This serves as baseline and teacher for our learning-based methods

3.5. Final Considerations 45

On the other hand, we implement models using both single and multimodal sensor inputs.
Our approaches differ from others because we integrate tactical decisions (high-level commands)
as graphical information within the input structure.

Additionally, we propose an early multi-sensor fusion structure, transforming point clouds
(LiDAR, stereo) to BEV space and using it as input to a neural network. To our knowledge,
fusion in bird’s-eye view space with that specific structure has not been proposed. Additionally,
we explore multimodal fusion combining camera and bird’s-eye perspectives.

Furthermore, we propose a multitask learning method for autonomous driving that uses a
CNN architecture for disparity estimation. We add a head for path and velocity estimation. To
our knowledge, there is no methods in the literature leveraging disparity as an auxiliary task
for autonomous driving. Considering the above, this research introduces a hybrid autonomous
vehicle architecture that integrates modular pipelines with data-driven path planning, offering
a comprehensive comparison of these approaches. Our modular and hybrid architectures were
developed and evaluated in the 2023 CARLA Autonomous Driving Challenge (CADCH),
securing 1st and 2nd place in the SENSORS and MAP tracks, respectively.

Finally, as evident in the reviewed literature, many algorithms and methods for perception,
decision-making, or full end-to-end autonomous driving do not run in real time with limited
resources, as they use complex neural network architectures that, despite having good accuracy,
may not be applicable to real-time scenarios in many cases. This research aims to use simple and
effective architectures for real-time operation, enabling their implementation in real autonomous
platforms such as CaRINA 2.

47

CHAPTER

4
A MODULAR PIPELINE FOR AUTONOMOUS

DRIVING

An autonomous system requires several components and its architectural design provides
an abstract view of the system operation and organization. In a layered architecture, the com-
ponents have public and well-defined communication interfaces through which they exchange
information with other components. This characteristic enables the definition of a common
architecture for all tracks in this challenge, through adjustments of few components for the
maintenance of the same communication interface. This strategy reduces the time spent on the
development of the agents, and enables the evaluation of the autonomous navigation performance
with different sensors and algorithms for a specific task.

Figure 4 shows the general software architecture designed for all agents of LRM team in
the 2023 CARLA Autonomous Driving Challenge (ROSERO et al., 2024). The name "CaRINA

Agent" is used to refer to this architecture throughout this Thesis. The layers of the architec-
ture are sensing, perception, map, risk assessment, navigation, control, and vehicle. Robotic
Operating System (ROS)1 supported the communication interface between components with
Publish/Subscribe pattern for messages passing (QUIGLEY et al., 2009).

4.1 Map and planning

A map is an essential component enabling the autonomous vehicle to execute its tasks
safely and efficiently, storing diverse information, beneficial for various components of the
autonomous system (BRUMMELEN et al., 2018). This includes the road geometry description
for path planning and the topological representation of roads and intersections, commonly
referred to as the road network, used for route planning. In addition to static object positions,
navigable areas, positions of traffic signs and lights, traffic rules, and semantic information

1 Available at: <https://www.ros.org/>.

https://www.ros.org/

48 Chapter 4. A modular pipeline for autonomous driving

Sensors

Vehicle

Perception

Map

Navigation Control

Risk Assessment

Simulator

Decision

Making

Steering

Brake

Acceleration

OpenDriver

Manager

+

Local Path

Planning
Lateral

Controller

Obstacle

Detection and

Tracking

Tra c Signs

Detection

Tra c Light

Detection

Tra c Scene Evaluation

(Obstacle, Prediction,

Tra c Lights and Signs)

Localization

Vehicle State

HD Map

Stereo

Camera

Camera

LiDAR

GPS

CAN Bus

High-Level

Route

IMU

Longitudinal

Controller

Figure 4 – General design of the proposed Modular architecture.

Source: Elaborated by the author.

related to the road. In this architecture, we employed the OpenDRIVE (OPENDRIVE, 2023;
DIAZ-DIAZ et al., 2022) map standard to assist the navigation and perception components.

4.1. Map and planning 49

Figure 5 – OpenDRIVE Map. The dots represents high-level commands with red (turn left), blue (turn
right), green (keep lane), and white (go-straight).

Source: Elaborated by the author.

4.1.1 OpenDRIVE

The OpenDRIVE is an open format to describe road networks, using XML version 1.0,
which is able to represent the road geometry as well as the context information of roads that may
influence the behavior of vehicles driving in it, such as traffic signs, traffic lights, and the type
of roads and lanes (e.g. highway and sidewalk) (DUPUIS; STROBL; GREZLIKOWSKI, 2010;
DIAZ-DIAZ et al., 2022). The format description is built on a hierarchical structure with four
main elements: header; road; junction; and, controller. Figure 5 shows the visualization of the
OpenDRIVE map after being parsed by the map manager in the architecture.

The header, is the first element of the description and holds metadata of the map, such
as the name or a geographic reference for transformations between the Cartesian and Geodesic
coordinate systems. The road element encompasses geometry description and additional prop-
erties (e.g., elevation profile, lanes, and traffic signs). The properties such as traffic signs are
placed with respect to the distance to the initial point of the lane, using a local coordinate system.
Besides that, roads can connect directly or through intersections using the junction component,
preventing ambiguities in connections. Lastly, a controller is employed for signalized junctions
or other road elements imposing control on the vehicle.

4.1.2 Path Planning

Path planning is responsible for determining a feasible and optimal path from a starting
point to a destination in a given environment. This planned path considers factors such as road

50 Chapter 4. A modular pipeline for autonomous driving

geometry, static and dynamic obstacles, vehicle physical constraints, and criteria like time, speed,
fuel efficiency, or safety. Various algorithms, including rule-based, gradient-based, graph-based,
and optimization methods, can perform these tasks. In addition, recent studies have explored the
integration of machine learning into path planning. Moreover, the task can be divided into two
steps: global planning and local planning. Global planning estimates a reference path, considering
static features (e.g., road geometry and static obstacles) and the intended route. Local planning
adjusts this global reference path based on dynamic variables in the traffic scene, such as dynamic
obstacles.

In the modular navigation pipeline strategy, global reference planning incorporates a
local speed profile based on the dynamic scene, along with local lane-change planning due to
traffic events. The global reference planning involves sparse waypoints representing the intended
route. Subsequently, lane-level localization determines the corresponding lane and road ID for
each waypoint using the OpenDRIVE map manager. This information enables the system to
estimate a lane-level route, identifying the roads and lanes the vehicle must traverse to reach its
destination. Finally, segments of the reference path, each spanning 50 meters, are published in
the ROS ecosystem based on the vehicle’s speed and current position.

4.2 Perception and Sensing

The autonomous driving systems proposed in this thesis relies on two types of sensors
for robust environmental perception: a stereo camera and a light detection and ranging (LiDAR)
sensor. Our proposed perception system, depicted in Figure 6, adopts a multi-sensor fusion
approach to achieve accurate and robust object detection in 2D/3D images and point clouds. This
approach employs distinct detection modules and their fusion, each capitalizing on the strengths
of different sensor modalities:

3

3D Detection
(Point Pillars)

Height Map

3D Detection

(Point Pillars)

Disparity

Depth

(ELAS)

Instance

Segmentation

(Mask-RCNN)

LiDAR

+

Tracking

(SORT)

Stereo

Camera

Figure 6 – Perception module.

Source: Elaborated by the author.

4.2. Perception and Sensing 51

4.2.1 Height maps as obstacle detectors

As a basic obstacle detector, we employ a height map generated from the LiDAR point
cloud, similar to the one presented in (THRUN et al., 2007). This method analyzes height
differences in a grid, identifying obstacles exceeding a threshold. Grid cells with no such
differences are deemed part of a plane. We use a polar grid map and a 20 cm as threshold. This
detection mechanism serves as a backup for emergency situations. The first branch in Figure
6 depicts a height map-based perception process, where points are assigned colors based on
their height to create a visual representation of the surrounding environment’s topography then
grid cells within that contain points exceeding the predetermined vertical distance threshold are
identified. Finally, points situated within these designated grid cells are marked in red to clearly
indicate potential obstacles. Our obstacle detector using height map in a polar grid is open source
and available online2.

4.2.2 Instance segmentation

For object detection, we employ Mask R-CNN (HE et al., 2017a), a powerful instance
segmentation algorithm that extracts coordinates of bounding boxes and masks for each object
instance detected in the image. Our system categorizes these objects into eight categories: car
(including vans, trucks, and buses), bicycle (including motorcycles), pedestrian, red traffic light,
yellow traffic light, green traffic light, stop, and emergency vehicle.

4.2.3 Fusion with stereo camera

Since the image used for instance segmentation is also the left image of the stereo camera,
we leverage this for 3D detection and classification. The bounding box coordinates and pixel mask
of each object instance detected in 2D are mapped to corresponding 3D points in the organized
point cloud. This 3D point cloud inherits the color and the image’s row, column structure but
expands it with 3D/depth information. This fusion process creates an RGBD point cloud with
color and 3D/depth information for each object instance, enabling accurate classification and
positioning.

The third branch, Figure 6, illustrates an example of a point cloud constructed from the
stereo camera, while the fourth branch shows an example of instance segmentation corresponding
to the same scenario. Finally, the fusion of these two branches enables the detected objects to be
mapped onto the RGBD point cloud, providing a comprehensive visualization of their positions
within the 3D environment.

While this method can detect both static and dynamic objects, it is not the primary system
detector in our architecture due to its non-real-time operation with a maximum of 5 frames per
second. Nevertheless, the detailed information it provides on traffic light states, unavailable from

2 Available at: <https://github.com/luis2r/Polar-Height-Map>.

https://github.com/luis2r/Polar-Height-Map

52 Chapter 4. A modular pipeline for autonomous driving

LiDAR, justifies its inclusion despite the latency. Dynamic object detection (cars, bicycles and
pedestrians) in this fusion serves as a backup for emergencies, and we currently do not track
these objects.

4.2.4 3D detection in point clouds (dynamic objects):

For 3D detection in LiDAR point clouds, we leverage the PointPillars algorithm (LANG
et al., 2019). This algorithm provides regression of 3D bounding boxes of objects and their
orientation related to the ego vehicle. PointPillars demonstrates commendable performance in
real-world autonomous driving scenarios. Its pillar representation retains valuable spatial infor-
mation while maintaining computational efficiency, a critical factor for real-time applications.
Moreover, it effectively leverages the strengths of LiDAR data, including its ability in handling
occlusions and performing reliably in diverse lighting conditions.

4.2.5 Tracking

The perception stack (in point clouds) detailed in this section, which supplies inputs to
the risk assessment module responsible for determining Finite State Machine (FSM) graph states,
consists of two integral components: (i) pose estimation (bounding boxes) and (ii) multi-object
tracking (MOT) modules. Having a stable and precise state estimation, both for the ego-vehicle
and dynamic objects in the surroundings, is important to transition across the states.

Regarding the multi-object tracking module, we based on the one proposed by (BE-
WLEY et al., 2016). This approach, known as Simple Online and Realtime Tracking (SORT),
divides the tracking task into three sub-tasks: detection, data association, and state estimation.

As detailed earlier, objects are detected in the LiDAR frame using PointPillars. This
detection model differs from the ones adopted originally by the SORT tracker. The detected
objects’ bounding boxes are projected into the world frame using the ego-vehicle estimated pose,
and their respective poses are matched in the data association step. At this point, we keep the
SORT tracker data association in the 2D space, in which we compute the intersection over union
(IoU) of the top-down projection of the bounding boxes. Our assumption is that two dynamic
objects do not overlap in the X-Y plane.

As for the state estimation, we use a Kalman Filter-based approach, in which our goal is
to estimate the 3D position of the bounding box center (x,y,z), 3D dimensions of the bounding
box (sx,sy,sz), the yaw angle ψ , and the 3D velocities (ẋ, ẏ, ż) of the tracked object in the
International System of Units and in the global reference frame. This state space differs from the
SORT paper state, in which the estimated state is performed in the pixel space. Also, notice that
the vehicle pose estimation is important in this step, as we are tracking in the global reference
frame.

4.2. Perception and Sensing 53

As we represent this state vector as Sob j = (x,y,z,sx,sy,sz,ψ, ẋ, ẏ, ż)T , we need to define
both the state propagation and observation model matrices.

The state propagation we adopted assumes constant linear velocity between detections
so that we can propagate the position using the propagation matrix F from Equation 4.1.

F =

I3x3 03x4 ∆T · I3x3

04x3 I4x4 04x3

03x3 03x4 I3x3

 , (4.1)

where I represents the identity matrix, 0 the zero-filled matrix, and ∆T represents the period
between predictions. The subscripts indicated with MxN represent the matrix number of rows M

and columns N, respectively.

Regarding the observation model matrix, since we obtain directly the 3D position,
dimensions, and yaw angle from our detection module, our observation matrix is defined by
H = I7x10.

The third branch in Figure 6 illustrates detection and tracking in 3D, with LiDAR serving
as input to the 3D detector. In our case, the 3D detections of point pillars are fed into the SORT
algorithm, which we have modified for tracking. Ultimately, for visualization, each tracked
object is assigned a distinct color.

4.2.6 Prediction

4.2.6.1 Linear Prediction

Our system employs a prediction-based approach to ensure safe navigation by anticipating
the movements of surrounding objects. This approach utilizes a simple motion model based on
the object’s current speed, as estimated by the tracking system and this model assumes constant
velocity for each object, providing a first-order approximation of their trajectories.

The prediction formula for a linear motion model is defined by the Equation 4.2.

x(∆t) = xo + v∆t (4.2)

Where xo is the current pose, v the actual velicity of the surrounding object and ∆t

represents the time interval for prediction (5 seconds). Finally x(∆t) is the predicted pose in the
interval ∆t.

While more complex prediction models exist, opting for a simple linear model ensures
computational efficiency. This linear motion model for future pose prediction demands fewer
computational resources, making them suitable for real-time applications in autonomous driving.

54 Chapter 4. A modular pipeline for autonomous driving

... ...

ResNet50

3-channel RGB map
3-channel

HSV lanes direction
10-channel

ego-agent positions
10-channel

other agents positions
10-channel

all agents velocities

+ + + +

Figure 7 – CNN-MultiRegressor architecture.

(a) 3-channel RGB map. (b) 3-channel RGB map.

(c) 3-channel HSV lanes direction.
(d) Agent of interest’s posi-

tion. (e) Other agents position.

(f) Agents velocities.

Figure 8 – ResNet-50 inputs. Each channel is fed with different rasterized images from the data in order
to track the evolution of the scene.

Source: Research data.

4.2.6.2 Motion Prediction Using Deep Learning and Multimodal Data Fusion

This section presents a novel approach to motion prediction, framing it as a machine
learning (ML) problem where traffic participant (TP) behavior is learned from data. To capture
the diverse behaviors of different TPs (cars, cyclists, pedestrians) and leverage the detailed
structure of the environment (high-definition map), substantial data is required for reliable and
safe navigation. Fortunately, large-scale datasets like the Lyft Level 5 Open Data and the Waymo
Open Motion Dataset facilitate ML application in motion prediction.

We propose a predictor named CNN-MultiRegressor, inspired by previous work (HOUS-
TON et al., 2020), for predicting future trajectories. This pipeline feeds a ResNet-50 backbone
(HE et al., 2016b) with rasterized data from the Waymo Open Motion Dataset (agent states
and semantic map), as shown in Figure 7. It predicts future trajectories for an agent over the
next 8 seconds and employs a loss function to forecast 6 joint trajectories with their respective

4.2. Perception and Sensing 55

probabilities. Our source code and models are publicly available3.

Data Processing and Rasterization: The pipeline, tested in the Motion Prediction
Challenge, includes a module that transforms Waymo dataset data into a raster format suitable
for convolutional networks. The neural network is a customized ResNet-50 for regressing 6
joint trajectories. We utilize a Bird’s Eye View (x and y coordinates only) from the dataset, with
data relative to the world coordinate system and potentially large variations between scenes. To
create rasters, we transform map points, current and past poses of all agent cuboids, to the agent
of interest’s coordinate system. Subsequently, we convert coordinates to the image coordinate
system (Figure 7).

Channel Inputs and Feature Encoding: The map is projected as a 3-channel RGB
image (Figure 8a), including all map features, center lanes, road edges, stop signs, traffic lights,
etc., in their current state. Figure 8c exemplifies a rasterized lane orientation map. Each map
feature point’s orientation is represented by a unit direction vector with its value mapped to an
HSV color map between −π and +π . Figure 8d displays rasters for the agent of interest’s poses.
The current and past 9 poses are drawn on grayscale images (Figure 8e). Ten additional grayscale
images encode the current state and past 9 poses for surrounding agents. Finally, another 10
grayscale images encode agent speeds (Figure 8f), where intensity is proportional to speed at
each time step. Each raster is 256x128, and all are stacked into a single 256x128x36 tensor
representing the scene for feeding into the ResNet-50 backbone.

Network Architecture and Training: We use a ResNet-50 backbone with a 20%
dropout for the last dense layer and no data augmentation during training. We employ the Adam
optimizer with a step learning rate scheduler, starting at 0.01 for the first two epochs and reaching
0.001 by the last epoch.

For training, we randomly select one agent per scene in batches of 32 across 3 epochs,
amounting to 768,000 frames per epoch. The ResNet-50 was trained at three resolutions:
0.5cm/pixel for larger map coverage, 0.125m/pixel for capturing short-range details, and fi-
nally 0.25m/pixel, which was also used for inference.

Evaluation and Metrics: Our implementation was evaluated in the Waymo Prediction
Challenge 2020, which used various metrics like minADE, minFDE, Miss Rate, and Overlap
Rate, with the main metric being mAP (described on the challenge website). mAP defines
precision and recall based on threshold-based predictions as specified in the challenge.

In regression tasks, common loss functions like Mean Squared Error, Mean Squared
Logarithmic Error, and Mean Absolute Error are typically used, but these are suited for unimodal
outputs. For certain tasks and datasets, using the main evaluation metric as the loss function for
training can be beneficial. However, mAP is non-differentiable and cannot be directly optimized
with gradient descent methods (BROWN et al., 2020). Therefore, we adopted the negative

3 CNN-MultiRegressor code: <https://github.com/luis2r/CNN-MultiRegressor.git>.

https://github.com/luis2r/CNN-MultiRegressor.git

56 Chapter 4. A modular pipeline for autonomous driving

Table 2 – Results: Motion Prediction Challenge

Method Name minADE minFDE Miss Rate Overlap Rate mAP
Anonymous610 1.0387 1.5514 0.1573 0.1779 0.3281
CNN-MultiRegressor 0.8257 1.7101 0.2735 0.1640 0.1944
Waymo LSTM baseline 1.0065 2.3553 0.3750 0.1898 0.1756

Source: Research data.

Table 3 – Results: Interaction Prediction Challenge

Method Name minADE minFDE Miss Rate Overlap Rate mAP
Waymo LSTM baseline 1.9056 5.0278 0.7750 0.3407 0.0524
CNN-MultiRegressor 2.5850 6.3697 0.8910 0.3076 0.0341

Source: Research data.

likelihood, which was the main evaluation metric in the Lyft Motion Prediction Challenge4,
represented by Equation 4.3, where we predict c confidences for k hypotheses.

Loss =−log∑
k

elog(ck)− 1
2 ∑t(x̄k

t −xt)
2+(ȳk

t −yt)
2

(4.3)

Exploring Multimodal Feature Fusion with LSTM We further explored a variant
architecture that incorporates Long Short-Term Memory (LSTM) networks for multimodal
feature fusion. This architecture aims to leverage the strengths of both convolutional neural
networks (CNNs) and LSTMs: CNNs efficiently extract spatial features from static elements like
the map and agent locations and LSTMs effectively capture temporal dependencies in sequences
of agent poses, encoding past movements and potentially predicting future behaviors.

The proposed architecture utilizes the same CNN-based pipeline as before to extract
spatial features from static and current data and employs an LSTM network to encode sequences
of past agent poses for each traffic participant (TP), capturing temporal dynamics.

We perform feature fusion by combining the extracted spatial and temporal features
from both encoders. This fusion was achieved using the concatenation method. This conduct
a multimodal prediction using the fused features to predict future trajectories and potentially
interaction probabilities, similar to the original CNN-MultiRegressor structure. for training we
employ the same loss function for multimodal prediction.

Table 2 shows the results obtained in the test set for the Waymo Motion Prediction
Challenge, and Table 3 shows the results obtained for the Waymo Interaction Motion Prediction
Challenge.

Real-time Limitations and Further Development: While conceptually promising, this
architectures currently does not meet real-time requirements for our autonomous driving pipeline

4 Available at: <https://github.com/lyft/l5kit/blob/master/competition.md>

https://github.com/lyft/l5kit/blob/master/competition.md

4.3. Risk assessment 57

due to the computational overhead of rasterization.

By addressing these limitations, we aim to integrate the benefits of multimodal feature fu-
sion with LSTMs into a real-time capable system for enhancing motion prediction and interaction
understanding in future iterations of our autonomous driving approach.

4.3 Risk assessment

Our autonomous driving system employs a dedicated Collision Risk Assessment (CRA)
module to continuously evaluate potential threats posed by both dynamic (cars, pedestrians,
bicycles) and static surrounding objects. This module integrates current and future positions of
surrounding objects, obtained from the previous stage, with the ego vehicle’s planned path for
risk assessment.

• Zoned Risk Evaluation: The planned path is divided into two zones, each reflecting
different risk levels based on distance from the ego vehicle: a High Risk Zone (0-4m) and a
Moderate Risk Zone (4m-40m). For risk evaluation: The path ahead is divided into two zones,
each carrying different risk levels based on Euclidean distance. These zones are corridors created
from the waypoints of the planned path (essentially buffer zones extending 40 meters ahead of
the ego vehicle). The width of these corridors matches the width of the ego car.

Any object (static or dynamic) whose current position intersects either zone is considered
a potential collision threat. The intersection point of predicted trajectories with the ego vehicle’s
path is also considered. We assume that our lateral MPC controller guarantees that the ego car
will pass exactly through these corridors.

The identified potential points of collision and object’s information, including type,
distance, and predicted trajectory, is reported to the decision-making module for determining ap-
propriate speed adaptations. Figure 9 visually illustrates the risk assessment process, showcasing
three points as examples. Note that other surrounding objects and their predicted trajectories are
currently ignored unless they enter the relevant risk zones or directly influence the planned path.

4.4 Decision-Making

The decision-making module utilizes a synchronous Moore Finite State Machine (FSM)
to orchestrate actions based on inputs from the Collision Risk Assessment (CRA) module. The
FSM employs a binary encoding scheme for inputs as shown in Table 4.

The FSM comprises four key states, each governing specific speed control behaviors:

• Drive State (S1): No obstacles impede the vehicle’s progress. Target speed is set to a
maximum of 8.8 m/s (31.68 km/h).

58 Chapter 4. A modular pipeline for autonomous driving

1

23

Figure 9 – Risk assessment. Point 1 - Zone of influence of a red traffic light; Point 2 - The predicted
trajectory of another car intersects the ego vehicle’s path in the yellow zone; Point 3 - A parked
car within the yellow zone is identified as a potential obstacle but receives lower priority
compared to threats in the red zone.

Source: Elaborated by the author.

Table 4 – FSM inputs.

Input Description

00 No obstacles detected, indicating a clear path ahead.

01 An obstacle is being tracked, requiring speed adjustments to maintain safe following
distances.

10 A red traffic light is ahead, necessitating a controlled stop.

11 A stop sign is detected, also demanding a full stop.
Source: Elaborated by the author.

• Follow the Leader State (S2): The CRA reports an obstacle (static or dynamic) ahead
of the ego vehicle, triggering dynamic speed adjustments. Speed is adjusted based on distance
and time to collision (TTC), calculated using the ego vehicle’s current speed and distance to the
obstacle.

• Red Light State (S3) and Stop Sign State (S4): These states mirror the "Follow the
Leader" logic, utilizing TTC to achieve controlled stops at designated locations. The vehicle
decelerates smoothly, ensuring compliance with traffic rules and safety.

4.5. Localization 59

00

S1 S2 S3 S4
Start

00

00

01

00

11

11

11

11

01

01
ST

01

10

10

10

10

DR FL SS

Figure 10 – State transition diagram for the Moore Finite State Machine used in our decision-making
module.

Source: Elaborated by the author.

Table 5 – State transition table (based on hand-crafted rules)

Present State Next State Output / DescriptionInput=00 Input=01 Input=10 Input=11
S1 S1 S2 S3 S4 DR / Drive
S2 S1 S2 S3 S4 FL / Follow the Leader
S3 S1 S2 S3 S4 ST / Stop Red Traffic Light
S4 S1 S2 S3 S4 SS / Stop Sign

Source: Elaborated by the author.

Figure 10 depicts the state transition diagram, visually representing the FSM’s logic.
The decision-making module employs a straightforward yet effective FSM structure for robust
decision-making. Speed control strategies adapt dynamically to varying conditions, ensuring
safe and efficient navigation. The module seamlessly integrates with other components of the
autonomous driving system, including perception and control modules. The FSM operates
synchronously at 10 Hz, aligning with sensory data capture rates.

The current approach uses the actual velocity of the ego vehicle to calculate TTC,
after which velocity adjustments are made to prevent collisions. This method is simple, fast,
suitable for quick estimations, easy to implement, and computationally efficient. -However, it
assumes constant velocity and ignores potential future trajectory changes. The TTC formula is:
T TC = Distance/RelativeVelocity

4.5 Localization

In order to perform the ego-vehicle pose estimation, we fused the relative transforms
obtained using an odometry source (in our case, visual-inertial odometry - VIO), the IMU
orientation, and the GNSS position using an Extended Kalman Filter (EKF) approach, as in
the Figure 11. The inputs of our stack are the camera image, the IMU orientation, the GNSS
coordinates, and the sensor calibration (external reference frames’ relative transformation). The

60 Chapter 4. A modular pipeline for autonomous driving

3

Stereo Camera

IMU

Orientation

GNSS

Coordinates

Visual Inertial

Odometry

Syncronization

Sensor

Calibration

EKF

Estimated

Pose

Uncertainty

Tcam
cam

t-1

t

TW
imut

,

,Σ tvio

tglobalΣ

Figure 11 – The pose estimation stack used in our perception module.

Source: Elaborated by the author.

output elements of the pose estimation stack are estimated pose and its uncertainty.

The VIO estimation is responsible for estimating T camt−1
camt , which represents the pose trans-

formation matrix of the current camera frame w.r.t. the previous, and the estimation uncertainty
covariance matrix, Σviot .

While the GNSS is responsible for providing the global geographic coordinates, the IMU
provides the linear acceleration, angular velocity, and 3D orientation at a higher frequency. We
then synchronize both the 3D orientation and global coordinates in order to provide TW

imut
, which

represents the transformation matrix of the IMU frame w.r.t. the world frame, and its uncertainty,
Σglobalt . In our case, the IMU and the GNSS are represented by the same reference frame, but
we left them illustrated in the diagram for the sake of clarity. Also, the geographic coordinates
provided are then converted to a plane projection coordinate system.

The input poses, T camt−1
camt and TW

imut
, and the sensor calibrated, are then provided to the

EKF and then converted to a common reference frame internally. The goal is to estimate the 6DoF
pose of the agent frame w.r.t. the world frame, Sagent = (x,y,z,qx,qy,qz,qw)

T , where: (x,y,z) are
the global coordinates, easting, northing, and altitude, respectively; and (qx,qy,qz,qw) represents
the four components of the quaternion that represents our agent’s orientation. For each relative
pose received, T camt−1

camt , the EKF performs a system prediction, which implies accumulating drift
until a global pose, TW

imut
, is received and the state update is performed.

We emphasize that this pose estimation module is also modular, so that the back end (in
this case, the EKF), the methods used for estimating the relative transforms, and the source of
the global pose estimation do not need to be the same as the ones we used in this project.

In practice, for estimating the relative pose transformations using VIO, we used the
RTabMap ROS implementation5. RTabMap is known for its estimation robustness and its full

5 Available at: <https://github.com/introlab/rtabmap_ros>.

https://github.com/introlab/rtabmap_ros

4.6. Control Systems 61

functionalities are widely used in SLAM applications. As for the EKF implementation, we used
the GTSAM implementation6. While GTSAM is known for implementing solutions using factor
graphs, it also implements a very convenient interface for representing pose transformations and
implements the 3D pose Extended Kalman filter off-the-shelf. Finally, our localization stack is
open source and available online7.

4.6 Control Systems

The control layer generates steering, throttle, and brake commands to keep the agent on
the planned trajectory. This goal is achieved through two closed-loop control mechanisms that
receive desired vehicle trajectory information from the navigation layer’s decision-making and
local path planning modules. These modules set desired trajectory and velocity into the agent’s
action space. The closed-loop controls translate reference values into actual control actions for
braking, throttle, and steering, which are then sent directly to the simulator for execution.

For longitudinal control, the decision-making module (FSM) calculates the desired
agent’s velocity, which is used to compute the final velocity. A Proportional-Integral-Derivative
(PID) controller then ensures the agent follows this desired reference.

4.6.1 Lateral Control (MPC)

The lateral control, which generates the steering signal, is managed by the Model-Based
Predictive Control (MPC), in which a cost function is optimized along a predefined time horizon
H, thus resulting in a sequence of actions, one for each time step ∆t. The immediate action
is executed and the process is restarted in the next time step, leading to a receding horizon
optimization.

Develop an optimization problem for Model Predictive Control (MPC) aimed at improv-
ing autonomous driving performance. The goal is to minimize the deviation from a desired path
while ensuring smooth and safe vehicle operation under varying road conditions and constraints.

The constraints defining the vehicle’s motion model are essentially non-holonomic. Car-
like robots can assume positions on the 2-D plane, different headings and steering angles, thus
adding up to four degrees of freedom. However, it poses the following two kinematic constraints:
a) the vehicle is allowed to move only forward and backward and b) the steering angle is bounded
(KATRAKAZAS et al., 2015). Therefore, the actual car motion and the planning trajectory can
be different when the planner neglects dynamics factors.

Figure 12 shows a bicycle model used to represent car-like vehicles, which are charac-
terized by Ackerman steering geometry (DUDEK; JENKIN, 2010), moving with longitudinal

6 Available at: <https://gtsam.org/doxygen/4.0.0/a03631.html>.
7 Available at: <https://github.com/cabraile/LRM-Localization-Stack-2023>.

https://gtsam.org/doxygen/4.0.0/a03631.html
https://github.com/cabraile/LRM-Localization-Stack-2023

62 Chapter 4. A modular pipeline for autonomous driving





Dbl


x

ICC

.

R
v

front wheel

rear wheel
P

y

.

Figure 12 – Geometry of a bicycle model. The ICC is determined from the length of the bicycle body Dbl
and the steering angle φ .

Source: Elaborated by the author.

velocity v. The front wheel is able to turn and gives the steering angle φ , whereas the rear wheel
is always aligned with the bicycle body. According to Fig. 12, θ represents the heading of the
vehicle, and P is the guiding point controlled so as to follow the assigned path. The intersection
between the lines that pass through the rear and front wheels axes provides the Instantaneous
Center of Curvature (ICC). The distance between ICC and P represents the radius of curvature R.
The curvature of the vehicle is given by κ = 1/R.

By considering that the wheels roll without slipping, only the kinematic equations can be
considered and the lateral dynamic effects can be neglected (LIMA et al., 2015). Therefore, the
considerations made so far result in the following kinematic model (FRAICHARD; SCHEUER,
2004) 

ẋ

ẏ

θ̇

κ̇

=


cosθ

sinθ

κ

0

v+


0
0
0
1

τ, (4.4)

where τ = φ̇/(Dbl cos2 φ). The motion constraints are added to the optimization problem by
means of the third power of ∆t on the basis of Eq. 4.4 (OBAYASHI; UTO; TAKANO, 2016),
where v is computed by the decision-making module (considered constant in the optimization).
The cost function is defined as the sum of the quadratic differences between the decision variables
and the reference path,

Lre f =Cx
1
2
(x− xre f)

2 +Cy
1
2
(y− yre f)

2 +Cθ

1
2
(θ −θre f)

2 +Cκ

1
2
(κ −κre f)

2, (4.5)

and also, the quadratic of τ

Lτ =Cτ

1
2
(τ)2, (4.6)

where Cx, Cy, Cθ , Cκ and Cτ are cost weights manually tuned. The chosen parameters are shown
in Table 6. The optimization is performed by Python library scypy.optimize.

4.7. Final Considerations 63

Table 6 – Non-linear MPC parameters.

∆t H Cx Cy Cθ Cκ Cτ

1 s 4 s 5 5 10 100 10
Source: Elaborated by the author.

4.7 Final Considerations

In this chapter, we present a modular pipeline for autonomous driving. It’s worth noting
that the prediction module, named CNNMultiRegressor, is not currently integrated into our
architecture. This is because it does not meet the real-time processing requirement we’ve
established for this work (10Hz). However, we include it here as it may inspire future works
utilizing deep learning and rasterized data for prediction. Instead, we employ a simpler prediction
method that may not yield optimal results and can be replaced in the future.

We have used well known methods and proposed others for the different layers and
modules. The advantage of our framework lies in its modular structure, which enables seamless
component replacement in the future, facilitating easy substitution with existing or emerging
techniques in all areas (detection, tracking, localization, decision-making, prediction) to enhance
performance or for new research.

The code developed for this architecture is organized into packages, simplifying the
isolation and adaptation of individual modules for use in other architectures. All code developed
for the modular pipeline is publicly available online8.

It’s important to mention that while this code can potentially be adapted for real au-
tonomous driving platforms in the future, the released version is currently tailored to function
solely with the CARLA simulator and leaderboard for research purposes.

Automatic control systems for autonomous driving represent a broad and dynamic field,
with notable advances but This thesis does not focus on this particular area and not to conduct an
exhaustive study or detailed modeling of the simulated vehicle’s dynamics.

We utilize a simplified vehicle model (bicycle model) and well-established controllers:
an MPC controller for the steering angle and a basic PID for cruise control, both with manually
tuned parameters. We see considerable opportunities to enhance our control by exploring other
techniques, such as nonlinear model predictive control, robust linear quadratic regulators, model-
free control, and quadratic programming.

Additionally, evaluating driving is pertinent, as the current control system likely exhibits
deficiencies in this area. This evaluation can help advance the area establishing a benchmark
metric to assess and develop control systems closer to those real-world implementations, offering
improved efficiency while considering a comfort parameter.

8 Available at: <https://github.com/lrmicmc/CaRINA-agent>.

https://github.com/lrmicmc/CaRINA-agent

64 Chapter 4. A modular pipeline for autonomous driving

A list of videos of our modular pipeline agent going through different scenarios in
simulated environments for the track SENSORS in the CARLA leaderboards in validation routes
is available online9.

9 Available at: <https://www.youtube.com/playlist?list=PLcT95Tv_ZrmJPRu-NhNeIoL56oAjojHOO>

https://www.youtube.com/playlist?list=PLcT95Tv_ZrmJPRu-NhNeIoL56oAjojHOO

65

CHAPTER

5
END-TO-END AUTONOMOUS DRIVING

Many current end-to-end approaches for autonomous vehicle motion planning rely on
behavioral cloning. Figure 13 depicts two modes of end-to-end learning. In the first mode, the
input is directly mapped to actions such as steering, braking, and acceleration. In the second
mode, the inputs are mapped to intermediate affordances, which are then interpreted by a low-
level controller. In this work, we opt for the second option due to its greater adaptability to
different vehicles and its ease of implementation.

Behaviour cloning involves imitating pre-recorded driving behaviors or expert demonstra-

End-to-End Autonomous Driving

Navigation PipelineInputs Actuator

Steering

Brake

Acceleration

Camera

High Level CMD

LiDAR

GPS

Control

Longitudinal

Speed

Steering

 Angle

End-to-End with Affordances

Navigation PipelineInputs Actuator

Steering

Brake

Acceleration

Camera

High Level CMD

LiDAR

GPS

Figure 13 – End-to-end modes.

Source: Elaborated by the author.

66 Chapter 5. End-to-end autonomous driving

tions, where the motion planning problem is modeled as a function p = f (z) that takes an input
z and generates a sequence of waypoints p = {p0, ..., pt}. Each point pi comprises coordinates
(xi,yi,vi) representing the future poses and speeds that the vehicle must reach over time. The
velocity vi can also be calculated based on the distance between each waypoint (xi,yi) and the
previous waypoint (xi−1,yi−1). Alternatively, in control cloning, a set of actions a = {a0, ...,an},
where ai represents a value (steering angle, acceleration, brake), is imitated at each future instant
of time i. These approaches rely solely on the present step and make decisions based on current
state information, ignoring potential future interactions with the environment. This can lead to
unsafe or suboptimal behavior, especially in complex scenarios.

These approaches typically wait until the entire planning is executed or new inferences
are available to adjust speeds and trajectory. New paths and velocities are only generated at
specific intervals, potentially causing delayed reactions to obstacles or other agents. This issue is
apparent in datasets like Nuplan, where models employing behavioral planning perform well in
scenarios without interaction with other vehicles but experience decreased performance when
interacting with other agents during execution.

To address these limitations, we propose a behavior cloning approach that models the
motion planning problem as a combination of path planning and decision-making. A function
(w,v0) = f (x) receives sensory information x and outputs a set of n equally spaced waypoints w,
and a single instantaneous velocity value v0, where w = {w0, ...,wn}. This signifies that in each
step, we need a new value of velocity and we have a long path for following, eliminating errors
in navigation.

This path format simplifies navigation and data collection in simulated and real mapped
environments, where paths are pre-determined, and only the current vehicle pose and path
clipping are necessary to collect the dataset (no future car poses are required). Moreover, this
format aligns with traditional pipelines that track paths in a waypoints format equally spaced.

Given these considerations, we prioritize real-time inference, enabling new planning and
speed calculation at each step to allow interaction with other actors and the environment, and
if necessary, the rapid generation of a new plan. We employ shallower network architectures
for improved real-time inference capabilities while maintaining high navigation performance in
mapless scenarios.

5.1 Monocular camera for end-to-end driving

Our first end-to-end model uses a monocular camera as input. The RGB image is then
encoded using a ResNet 18 backbone to extract features, finally a regression head regresses
401 values corresponding to 200 (x,y) points for the path and a v value for the desired vehicle
velocity. For the input we use the RGB image fused with the high-level commands that allow
us to avoid ambiguities at intersections. The high level commands are turn right, turn left, go

5.1. Monocular camera for end-to-end driving 67

Figure 14 – End-to-end driving using only monocular camera and high level commands on intersections
as inputs a CNN for regression of the path and the velocity.

Source: Elaborated by the author.

straight ,or follow the lane, we color code those commands and project them as color points on
the RGB image. This commands have a position in the world coordinate system, we use the ego
vehicle pose and the camera calibration to transform that point to the image. Figure 14 shows the
point transformation process and the proposed architecture for end-to-end driving using a single
monocular camera. For training we use the MSE error (Eq. 5.1).

L = MSE(y, ŷ) =
∑

N−1
i=0 (yi − ŷi)

2

N
(5.1)

Where y is the predicted path or desired speed and ŷ is the ground truth. The final loss
for training is a composed weighted loss as shown in Eq. 5.2.

L f =Ww ×Lw +Wv ×Lv (5.2)

Where Lw is the MSE loss for the path composed of 200 waypoints and Lv is the loss for the
desired speed.

68 Chapter 5. End-to-end autonomous driving

5.2 Stereo for end-to-end driving

This section presents a novel method for disparity estimation using deep learning in the
context of autonomous driving. Our approach leverages the capabilities of the CARLA simulator
to generate diverse and realistic depth and disparity datasets for training.

For end-to-end autonomous driving we build upon this disparity estimation algorithm
and extend it to a multi-task learning framework. This method simultaneously predicts disparity,
vehicle path, and speed. This integration enhances the navigation adding depth information
without the necessity of a modular pipeline for obstacle detection.

This innovative approach has yielded good results, benefiting not only from the advan-
tages of multi-task learning but also from the precise disparity estimation. By generating a
point cloud and identifying hazardous obstacles more explicitly than traditional single-camera
approaches, we have significantly enhanced obstacle detection capabilities.

5.2.1 PWC-Net for stereo disparity estimation

First we describe the proposed method for disparity estimation only. For this task we
adapt a method for optical flow estimation named PWC-Net (SUN et al., 2018). According to
the authors, PWC-Net is a CNN model for optical flow that has been designed according to
simple and well-established principles: pyramidal processing, warping, and the use of a cost
volume. Cast in a learnable feature pyramid, PWC-Net uses the current optical flow estimate to
warp the CNN features of the second image. It then uses the warped features and features of the
first image to construct a cost volume, which is processed by a CNN to estimate the optical flow.
PWC-Net outperforms optical flow methods on the MPI Sintel and KITTI 2015 benchmarks,
running at about 35 fps on Sintel resolution (1024×436) images.

Considering two rectified RGB images coming from a calibrated stereo camera, we can
have an epipolar line across the two images and the stereo matching is the pixel correspondence
between the two images along the epipolar line in the horizontal direction on the x-axis. Thus,
for this challenge we consider stereo matching as a special case of optical flow where disparities
between the stereo pair can be modeled as optical flow on the x-axis of the image. So we can use
models used for optical flow (x and y coordinates) to solve the disparity problem as optical flow
only at the x coordinate along the epipolar line between the left and right image.

Figure 15 summarizes the key components of PWC-Net adapted for stereo estimation.
Feature pyramid 1 and feature pyramid 2 correspond to learnable feature pyramids from a feature
pyramid extractor feeded with the left and right RGB rectified images. A warping operation
from the traditional optical flow approach is used as a layer in the network to estimate large
motion. PWC-Net has a layer to construct a cost volume, which is then processed by CNN
layers to estimate the flow (disparity). The warping and cost volume layers have no learnable
parameters and reduce the model size. Finally PWC-Net uses a context network to exploit

5.2. Stereo for end-to-end driving 69

Figure 15 – PWC-Net for disparity estimation.

Adapted from (SUN et al., 2018)

contextual information and refine the disparity.

5.2.2 Implementation

Our adaptation of PWC-Net for disparity estimation is implemented in the MMFlow
framework (CONTRIBUTORS, 2021). MMFlow is an open source pytorch based toolbox that is
a part of the OpenMMLab project. MMFlow is the first toolbox that provides a framework for
unified implementation and evaluation of optical flow algorithms.

For training disparity estimation we create a dense synthetic stereo dataset from CARLA
simulator (DOSOVITSKIY et al., 2017). Then, we fine-tune the model using the Argoverse
stereo dataset. For evaluation, metrics from the KITTI stereo challenge are adopted.

5.2.3 Synthetic disparity dataset

A dense synthetic stereo dataset was created using the CARLA simulator. We configure
a simulated agent using a setup similar to the one used in the Argoverse stereo dataset for data
collection. We use two RGB cameras at a height of 1.7m on the roof with a baseline (distance
between the two cameras) of 0.2986 m. Each camera has a FOV=30 deg, the images have a size
of 2464×2056 pixels.

In the same pose as the left camera we set a depth camera that provides raw data of the
scene encoding the distance of each pixel to the camera (also known as depth buffer or Z-buffer)
to create a depth map of the elements in the scene.

To create our dense stereo dataset we use the depth (Z) values and the baseline value in
pixels to create disparity maps for each left RGB image as shown below.

70 Chapter 5. End-to-end autonomous driving

(a) Left RGB image: urban, night, rain and fog (b) Dense Disparity map (GT)

(c) Left RGB image: highway, day and rain (d) Dense Disparity map (GT)

Figure 16 – Dense synthetic stereo dataset generated using the CARLA simulator.

Source: Research data.

disparity =
B f
Z

(5.3)

Where B is the baseline and f is the focal length of the camera (calculated from FOV), Z

is depth. We collected approximately one hundred thousand frames.

Our dataset includes urban, residential and highway environments, as well as different
weather and lighting conditions including rain, fog, day, night, etc. Figure 16 shows two examples
of left RGB images and their respective dense disparity map captured from the CARLA simulator.

5.2.4 Training

We use the same parameters used for training in (SUN et al., 2018) and the same loss
proposed in FlowNet (DOSOVITSKIY et al., 2015). We use a search range of 4 pixels to compute
the cost volume at each pyramid level. We first train the model using our synthetic stereo dataset
using the Slong learning rate schedule introduced in (ILG et al., 2017), Starting from 0.0001 and
reducing the learning rate by half at 0.4M, 0.6M, 0.8M, and 1M iterations. Finally, we fine-tune

5.2. Stereo for end-to-end driving 71

the model using Argoverse stereo dataset using the S f ine schedule (ILG et al., 2017). Batch size
4 was used for all the training process.

For data augmentation, we use a random crop (768 x 2432 patches). Inference is per-
formed in full resolution.

5.2.5 Results in the Argoverse stereo benchmark

Figure 17 shows two frames: one for our synthetic dataset and the other taken from the
validation set of the Argoverse stereo dataset. Figure 17a shows the left RGB image, Figure
17b represents the ground-truth (dense for our dataset and sparse for Argoverse stereo dataset)
and then disparity results: first we show inference results for a PWC-Net model trained only
on our synthetic dataset (Figure 17c) and finally inference results for the same model but with
fine-tuning performed on the Argoverse stereo dataset (Figure 17d).

Note that the ground-truth disparity released together with the Argoverse stereo dataset
is sparse (Figure 17b below) and many pixels in the background and foreground do not have
ground-truth, mainly in the upper parts of the image, for example: the tops of buildings, traffic
lights very close to the camera and lamps. However, PWC-Net trained only on our dataset
correctly calculates disparity in the upper parts (Figure 17c above and below). This is because
the disparity ground-truth of our dataset is dense and available at training time for all pixels in
the image. In the same way as testing on the synthetic dataset, inference on the Argoverse stereo
dataset (Figure 17d) also benefited from prior training on the synthetic dataset. Disparity in the
upper parts in the Argoverse dataset is correctly estimated.

An important result of training on our synthetic stereo dataset is domain adaptation. The
model trained only using synthetic data obtains very satisfactory results on the test set of the
Argoverse as shown in Figure 17c. In these figures we can see that the shape of the objects and
their edges are well defined and thin objects are correctly differentiated, for example, we can
clearly see power cables and other thin objects, while when fine-tuning is performed on the
sparse dataset these details tend to disappear.

Argoverse Stereo Competition server computes the percentage of bad pixels averaged
over all ground-truth pixels, similar to the KITTI Stereo 2015 benchmark (MENZE; HEIPKE;
GEIGER, 2015)(MENZE; HEIPKE; GEIGER, 2018) for all 1,094 test disparities from 15 log
sequences.

The disparity of a pixel is considered to be correctly estimated if the absolute disparity
error is less than a threshold or its relative error is less than 10% of its true value. Three disparity
error thresholds are defined: 3, 5, and 10 pixels. The leaderboard ranks all methods according to
the number of bad pixels using a 10 pixels threshold (all:10 is the main metric). We compare our
results in Table 7 using all:10, fg:10, and bg:10.

72 Chapter 5. End-to-end autonomous driving

(a) Left RGB image (b) Ground-Truth

(c) Inference: PWC-Net
trained only using our
CARLA stereo dataset

(d) Inference: PWC-Net
trained using our
CARLA stereo dataset +
fine-tuning in Agoverse
stereo dataset.

Figure 17 – Comparison between two models (PWC-Net) tested in our synthetic stereo dataset (first row)
and Argoverse stereo dataset (second row). The first column is the left RGB image, and the
second column is the ground-truth. The firs model is trained only using our CARLA stereo
dataset (inference results on third column) and the second model is the same model with
further fine-tuning in Argoverse stereo dataset (last column).

Source: Research data.

Table 7 – Result in the Argoverse stereo leaderboard

Participant team all:10 fg:10 bg:10
GMStereo 1.61 1.71 1.56
MSCLab

(DEQ Stereo) 2.39 3.34 2.01

LRM
(PWC-Net disparity) 2.47 2.67 2.38

Odepth 3.78 4.57 3.46
ACVNet

(Baseline) (XU et al., 2022) 4.06 7.77 2.54

Source: Research data.

According to the online leaderboard1, as shown in Table 7 the overall ten-pixel-error
(all:10) for the PWC-Net is 2.47, we occupy the third place for all:10 and bg:10 metrics and
second place for fg:10 metric. We surpassed by a wide margin the results of (XU et al., 2022). For
the 2022 Argoverse stereo competition, methods that run in real time are desired and algorithms
must run faster than 200 ms per disparity prediction (during forward pass). We achieve an average
inference time of 191.60 ms on an Nvidia GeForce RTX 2080Ti GPU.

1 Available at: <https://eval.ai/web/challenges/challenge-page/1704/leaderboard/4066>

https://eval.ai/web/challenges/challenge-page/1704/leaderboard/4066

5.3. Multi-modal end-to-end Driving 73

Speed

Figure 18 – PWC-Net for disparity, path and velocity estimation

Source: Elaborated by the author.

5.2.6 Joint disparity, path and velocity estimation

Building upon the PWC-Net architecture adapted for disparity estimation, we introduce
a new branch dedicated to estimating both the path and the instantaneous speed.

We utilize the embeddings extracted by the backbone which processes the right image,
and incorporate new heads that concurrently estimates a set of 200 waypoints for the path along
with a velocity value. Our architecture for path, velocity and disparity estimation is depicted in
Figure 18.

5.3 Multi-modal end-to-end Driving

This section introduces two end-to-end architectures that leverage multimodal input from
three sensors: LiDAR, stereo camera, and monocular camera. These stand apart from previous
models in this chapter by utilizing a structure that we name BEVSFusion.

5.3.1 BEVSFusion

This structure fuses information from various sensors into a single, informative represen-
tation within birds-eye-view (BEV) space. These implementations directly employ raw sensor
data, bypassing any object detection or segmentation pre-processing. Only necessary coordinate
transformations are performed.

We named this fusion BEVSFusion which is a rich data structure that seamlessly fuses
High-level commands and Point clouds.The BEVSFusion structure receives data from three

74 Chapter 5. End-to-end autonomous driving

sources that are processed in the following way:

• Stereo Camera: We utilize a pair of cameras with specific field of view, resolution, and
baseline. Disparity maps calculated with the ELAS algorithm and projected into point
cloud. Stereo point cloud is transformed from the camera coordinate system to BEV
coordinate system using the transformation matrix T BEV

cam .

• LiDAR: The LiDAR point cloud is directly transformed to the BEV coordinate system
using T BEV

LiDAR transformation matrix. LiDAR points are then rasterized in an RGB image
where a colormap encodes height information (blue for ground, yellow for above sensor).
Empty pixels are filled with black.

• High-Level Commands: Global plan commands are converted from the world frame to
the BEV frame using T BEV

W and rasterized as colored dots in BEV space (blue for turn right,
red for turn left, withe for straight and green for lane follow). High-Level commands are
poses provided by a noisy GPS and are mainly given at intersections to resolve ambiguities
in navigation.

Finally, these three processed elements (rasterized LiDAR, stereo, and high-level com-
mands) are stacked into a single 9-channel image (BEVSFusion). This unified structure integrates
spatial, depth, height, color, and high-level command information for robust path planning.

5.3.2 CNN-Planner: A Convolutional neural network for path regres-
sion

BEVSFusion serves as the input to a Convolutinal Neural Network that we name CNN-
Planner (ROSERO et al., 2022). The CNN-Planner can be represented as a function:

w = CNN-Planner(BEV SFusion), (5.4)

This CNN is a architecture for regression of a sequence w of dense waypoints for the
ego vehicle’s trajectory. Each waypoint in the sequence w = {w1, ...,wn} represents a point with
(x,y) coordinates in the ego-car coordinate system. w1 corresponds to the closest point to the
ego car, while wn denotes the furthest point on the planned trajectory. w is transformed from the
ego coordinate system to the world coordinate system using TW

ego transformation matrix.

Figure 19 visually illustrates the process, highlighting the creation of BEVSFusion
through sensor fusion and its integration as input for the CNN-Planner and generating the planned
trajectory. The path w in the world coordinate system is followed using a MPC controller.

For training the CNN-Planner we use the MSE loss Eq. 5.1.

5.4. Final Considerations 75

LiDAR

Stereo
Camera

ResNet

Path

Path
Steering

AngleLiDAR/
Stereo Camera

End-to-End
Path Planner

Lateral
Controller

Raw Data
Fusion

T
BEV

W

T
BEV

LiDAR

T
BEV

CAM

T
W

BEV

Figure 19 – CNN-Planner: Our neural path planner takes as input BEVSFusion and the output is a list w
(path) that is followed by the MPC controller.

Source: Elaborated by the author.

5.3.3 Separate path and velocity inference

Our first implementation of a multi modal architecture uses a BEVSFusion to feeds a
dedicated end-to-end path planner(CNN-Planner) . Meanwhile, a separate ResNet solely utilizes
the front camera image to infer instantaneous speed. Here, sensor fusion exclusively impacts path
planning, leaving vehicle speed calculation devoid of multi-sensor benefits. Figure 20 depicts
this approach. The end-to-end path planner is a CNN-Planner, and the speed planner is a ResNet
18 trained using the MSE loss (Eq. 5.1).

5.3.4 Intermediate Fusion for Joint Inference

To overcome this limitation, we employ a modal fusion approach, adopting a "medium
fusion" strategy. Features are extracted from the BEV data and concatenate with features extracted
from the RGB front image. This fused feature vector then serves as input to a unified head,
which jointly computes both the path (w) and the instantaneous velocity. Figure 21 illustrates this
fusion. For joint inference we train this architecture using a weighted composed loss as Eq. 5.2.

5.4 Final Considerations

In this section, we presented the methods we implemented to tackle the autonomous
driving problem using only raw sensor data as input, to generate navigation waypoints and

76 Chapter 5. End-to-end autonomous driving

Speed

Path

Figure 20 – End-to-end multi modal driving without fusion.

Source: Elaborated by the author.

vehicle cruising speeds per frame.

Our first proposal introduces a baseline using a single camera. Despite its limitations,
such as the lack of depth perception and limited field of view of the surroundings, it offers
advantages like fast, real-time execution using a lightweight ResNet-18 backbone.

Our second proposal employs a stereo rig and multi-task learning. This approach esti-
mates disparity, path, and velocity simultaneously, improving path/velocity with depth perception
estimations. Additionally, it extracts obstacles from the disparity map for emergency stops. How-
ever, the inference frequency reduces to 3 Hz due to the need for two backbones, including the
more complex ResNet-50.

Our multimodal proposals significantly improve upon single or dual-camera systems.
Incorporating LiDAR sensors offers a 360-degree depth perception, around the vehicle, enhancing
navigation capabilities.The first multimodal proposal, which does not fuse monocular camera
and LiDAR data, has inferior performance compared to the fused approach. This discrepancy
is attributed to the limited influence of monocular camera data on speed inference. The second
multimodal proposal leverages information from both the front camera and the BEVSFusion
structure for path and speed estimation. This approach significantly outperforms our camera-
only methods, demonstrating the effectiveness of our fusion scheme, BEVSFusion, and the
CNN-Planner path planner.

However, despite accurate path estimation, we observed a high collision rate in all cases,

5.4. Final Considerations 77

Steering

Brake

Acceleration

Control

Longitudinal

Lateral

End-to-end

Path planner

Figure 21 – End-to-end multi modal driving with intermediate fusion.

Source: Elaborated by the author.

particularly in interactions with other agents. To address this, we propose a hybrid method that
combines the path estimation from sensor fusion as performed in by CNN-Planner with the
reliable obstacle detection stack developed in the previous section, aiming to enhance navigation
in mapless environments.

A list containing videos of our end-to-end agents going through different scenarios in
simulated environments for the track SENSORS in the CARLA leaderboards in validation routes
is available online2.

2 Available at: <https://www.youtube.com/playlist?list=PLcT95Tv_ZrmJPRu-NhNeIoL56oAjojHOO>

https://www.youtube.com/playlist?list=PLcT95Tv_ZrmJPRu-NhNeIoL56oAjojHOO

79

CHAPTER

6
HYBRID ARCHITECTURE FOR

AUTONOMOUS DRIVING

This section introduces our hybrid architecture for mapless autonomous driving, designed
to navigate challenging scenarios like the CARLA Leaderboard’s SENSORS track. Building
upon our modular pipeline described in Chapter 4, we leverage robust obstacle detection, risk
assessment, and decision-making modules while replacing traditional map-based planning with
our novel end-to-end path planner named CNN-Planner developed in the Chapter 5.

Conventional map-based approaches often struggle in dynamic environments lacking
accurate maps. We overcome this limitation by using the CNN-Planner for mapless situations.
This planner generates a set of waypoints and utilizes sensor fusion in the BEV space as its
primary input.

Figure 22 displays a summary of our hybrid architecture, leveraging all available sensors
as input. The bottom of the figure depicts the perception, prediction, and decision-making layers,
operating as described in Chapter 4. Here, various sensors feed information to interconnected
modules, collaborating to determine the desired speed for each frame.

6.1 Taking advantage of the modular pipeline

Our hybrid architecture leverages the development from the modular pipeline, starting
with the perception module. Similar to the modular architecture, the perception section utilizes a
module that calculates a height map for emergency situation detection. This offers an advantage
over the purely end-to-end implementations discussed in the previous chapter.

For traffic light detection, the behavior mirrors the modular pipeline. A 3D detection
algorithm applied to point clouds identifies three distinct object classes: vehicles, pedestrians,
and bicycles. This is followed by a 3D-adapted SORT tracking algorithm, detailed in Section 4.2.

80 Chapter 6. Hybrid architecture for autonomous driving

Longitudinal

Control

Steering

Brake

Acceleration

Camera

LiDAR

GPS

End-to-end Path Planner

Lateral

Prediction
Decision

Making
s

0

s
1

s
2

s
3

Finite-State

Machine

X

X

Trajectory

Prediction

Path

Figure 22 – Hybrid architecture for autonomous driving in unmaped scenarios.

Source: Elaborated by the author.

Prediction relies on a simple linear prediction algorithm based on vehicle speed.

The hybrid architecture additionally employs a collision risk assessment (CRA) module,
akin to the one presented in Section 4.3. This module plays a crucial role in determining the
significance of surrounding obstacles and is crucial to the success of the decision-making module.
In section 4.1, a 40-meter map path length in front of the vehicle was utilized. Here, the CNN-
Planner provides this 40-meter length by performing a regression on 200 points spaced 20 cm
apart, as previously described in Section 5.3.1. Consequently, the decision-making process and
the core of this architecture are also impacted by the effectiveness of the data-driven path planner.

For decision-making, the same Moore Finite State Machine, powered by obstacle detec-
tion and the CRA, is employed as in the modular pipeline. This finite state machine makes a
decision on cruising speed, as detailed in Section 4.4.

Furthermore, as in the modular architecture, speed reference value and path waypoints
are transmitted each frame to low-level controllers, such as those described in section 4.6 to be
followed.

6.2 CNN-Planner for a Hybrid architecture

As mentioned earlier, the planning layer utilizes our CNN-Planner from Section 4.2,
taking the BEVSFusion structure as input.

Using the 3D object detection information provided by the perception module, hybrid
architecture incorporates in the BEVSFusion structure an additional channel compared to the
BEVSFusion presented in the previous section. The new channel construction proceeds as

6.2. CNN-Planner for a Hybrid architecture 81

Figure 23 – Rasterized inputs for the BEVSFusion structure: footprints (orientation angle maped to hsv
color), LiDAR point cloud, high level commands, and stereo point cloud

Source: Elaborated by the author.

Table 8 – Time execution for main modules in hybrid and modular architectures

Module Module/Algorthm Inputs Outputs Architecture Average Execution Time (ms) Device

Perception/3D detection PointPillars Point cloud obstacles 3D Modular/Hybrid 95 GPU

Perception/2D detection Mask-RCNN RGB image detections 2D Modular/Hybrid 198 GPU

Perception/tracking SORT Obstacles Tracked Obstacles Modular/Hybrid 0.23 CPU

Perception/Depth ELAS RGB Images obstacles 3D Modular/Hybrid 210 CPU

Planning/Path planning CNN-Planner BEVSFusion local waypoints Hybrid 5.3 GPU

Planning/local planner map global waypoints local waypoints Modular 0.61 CPU

Control/Lateral MPC local waypoints, pose steering angle Modular/Hybrid 0.5 CPU

Control/Longitudinal PID speed reference break, throttle Modular/Hybrid 0.1 CPU

Decision-Making FSM Obstacles in the path speed reference Modular/Hybrid 0.4 CPU

Source: Research data.

follows: we utilize the detections of 3D objects conducted by our detection module (details in
Section 4.2) to obtain the position and orientation of all detected objects surrounding the ego
vehicle. These poses are then transformed into bird’s-eye view space. We maintain a historical
record of these detections and their orientations for 200 frames, enabling the rasterization of the
route traces (footprints) of surrounding vehicles. This new input gives additional information to
our trajectory planner to learn from other agents in its vicinity. Footprints’ points are encoded
using a HSV color map to represent the rotation angle of each footprint.

Figure 23 showcases an example of the new footprint raster alongside the rasters of
LiDAR, high-level commands, and stereo camera, elements already employed in the previous
chapter for the BEVSFusion structure.

6.2.1 Time Execution

One of the objectives of this Thesis is to achieve soft real-time performance for our stack.
Therefore, this section provides a comprehensive analysis of the execution time for each module
in our framework.

Our tests were conducted locally on a high-performance computer equipped with a
16-core Intel Core i9-9900KS processor, 64 GB of RAM, and two Nvidia RTX GeForce 2080Ti
graphics cards.

82 Chapter 6. Hybrid architecture for autonomous driving

Table 8 presents the time taken by each module to perform its respective tasks, offering
insights into the efficiency of our approach. Tasks requiring only CPU show very short execution
times, all below 1 ms, except for the disparity/depth module (210 ms). While not ideal, this
module is not our primary option for obstacle detection, as it is only used for traffic lights and
long-range pedestrian detection.

Among the GPU modules, instance detection is the most time-consuming, taking 198
ms. Its output is merged with the disparity/depth module’s output (as described in Section 8) for
3D detection of traffic lights and long-range people. Our core obstacle detection module, the 3D
PointPillars detector, runs at an average of 95 ms, that is a processing rate close to 10 Hz, similar
to the frequency of current LiDAR sensors.

Finally, the CNN-Planner module, leveraging a lightweight ResNet-18 for path generation
in each frame, is the fastest module executing in GPU, requiring only 5 ms. Moreover, these
results fulfill the soft real time execution demands of our agents, while also highlighting areas
for potential optimization to further improve overall system performance.

6.2.2 Soft Real-Time System

In a soft real-time system, tasks are expected to be completed within a certain timeframe.
However, unlike hard real-time systems, where missing a deadline could lead to failures, soft
real-time systems can tolerate occasional delays and misses without causing system failures.

Our system is designed to process sensor data and make driving decisions quickly. While
it is important to respond in a timely manner, our system can tolerate occasional delays. The goal
is to maintain a balance between performance and the ability to handle these occasional delays.

We use Ubuntu 22.04.4 LTS as the operating system to deploy and run our software.
Since we do not use a real-time operating system (RTOS) and due to hardware constraints, it is
possible that complex and hardware-demanding algorithms may not execute quickly. For this
reason, we adopt a soft real-time approach. In this work, we consider soft real-time for all our
tasks, aiming to ensure that all processes can execute data processing at a minimum of 10 Hz.
Despite setting this operating frequency, we are tolerant of processes that do not consistently
reach that frequency. For instance, our stereo camera, together with the disparity algorithm,
operates at an average of 5 Hz.

It is important to note that our CNN-Planner, used in our hybrid architecture, has an
average execution time of 5.3 ms. However, it is limited by the slowest module (ELAS, with an
average execution time of 198 ms). This means that although the trajectory planner is capable
of running at a high frequency, it is reduced to approximately 5 Hz. Although this is a lower
frequency than expected, it does not affect the navigation of our autonomous vehicle because the
generated path length is 40 meters, and the maximum speed allowed for our agent is 30 m/s.

The build time of the BeVFusion structure depends on the speed of the ELAS algorithm,

6.3. Final Considerations 83

3D point cloud detection (PointPillars), and tracking (SORT). The choice of the ELAS algorithm
is based on the trade-off between disparity estimation quality and execution time. Although faster
algorithms like BlockMatching are available, we prefer to sacrifice speed in exchange for better
disparity estimation quality. Despite the availability of other algorithms, such as Semi-Global
Matching (SGM), which estimate disparity with high quality, we chose ELAS because it was
developed with a focus on external environmental scenarios, such as those used in autonomous
driving. Additionally, we selected the PointPillars algorithm because it is designed to work in
real-time and offers the best trade-off between speed and accuracy compared to other approaches
that achieve top values in major datasets. Similarly, the SORT algorithm was developed for
real-time applications and provides the best trade-off between accuracy and speed, as the speed
of the most accurate trackers is often too slow for real-time applications.

6.3 Final Considerations
This section proposes a hybrid architecture that merges the strengths of modular pipelines

and end-to-end learning for autonomous driving in map-less environments. This architecture
utilizes the BeVSFusion structure and the CNN-Planner, a data-driven module trained to generate
waypoints for navigation without map dependence.

Building upon the previous chapter’s BeVSFusion structure, which incorporates stereo,
LiDAR, and high-level command data, this chapter introduces a new channel leveraging 3D
object detection from the perception module. Despite not featuring this new channel in the
CADCH 2023 competition, our hybrid architecture still achieved first place. Nonetheless, the
additional channel significantly enhances navigation in map-less environments by incorporating
valuable information from surrounding agents about potential travel paths. This enhancement is
expected to yield improved results on leaderboard 2 upon its reopening.

After CADCH, we developed the aforementioned additional channel incorporating
surrounding agent footprints. This new information improves our navigation results to state-of-
the-art performance on the RC (route completion) metric of leaderboard 1, as detailed in the next
Chapter.

A list of videos of our hybrid agent going through different scenarios in simulated
environments for the track SENSORS in the CARLA leaderboards in validation routes is
available online1.

1 Available at: <https://www.youtube.com/playlist?list=PLcT95Tv_ZrmJPRu-NhNeIoL56oAjojHOO>

https://www.youtube.com/playlist?list=PLcT95Tv_ZrmJPRu-NhNeIoL56oAjojHOO

85

CHAPTER

7
EVALUATION AND VALIDATION

7.1 Experimental setup

Our research adopts the Robot Operating System (ROS) as the unifying framework for
our modular, end-to-end, and hybrid driving architectures. ROS’s publisher-subscriber communi-
cation paradigm (ZHU, 2005) facilitates efficient data exchange between components, enabling a
flexible and scalable system design. The ROS master node indexes and coordinates components,
while peer-to-peer messaging enables direct communication between nodes (QUIGLEY et al.,
2009). This structure streamlines the development and integration of multi-component systems,
particularly in applications like autonomous driving and robotics.

Our autonomous driving agents implements all modules described, for the perception
layer we have:

• Two monocular cameras with 71° field of view (FOV) each are combined to form a
stereo camera for 3D perception, producing a pair of rectified images with dimensions of
1200× 1200 pixels. The baseline of our stereo camera is 0.24 m. We utilize the ELAS
algorithm (GEIGER; ROSER; URTASUN, 2010) to generate 3D point clouds from the
stereo images.

• LiDAR sensor: 64 channels, 45° vertical field of view, 180° horizontal field of view, 100m
range. Our system utilizes a simulated LiDAR collecting around one million data points
per scan across 64 vertical layers.

LiDAR and stereo camera are centered in the x-y plane of the ego car and mounted at 1.8m
height.

• GPS and IMU: For localization and ego-motion estimation.

• CANBus: Provides vehicle internal state information such as speed and steering angle.

86 Chapter 7. Evaluation and Validation

Our modular architecture additionally utilizes an OpenDrive map pseudo-sensor for route
planning and a ObjectFinder pseudo-sensor, used exclusively for dataset creation, provides
ground-truth information about dynamic and static objects within the CARLA simulator.

7.2 Metrics
Autonomous vehicles are heterogeneous and complex systems, orchestrating sensing,

perception, decision-making, planning, control, and health management. Evaluating the perfor-
mance of these complex systems requires a holistic approach, going beyond individual evaluation
to assess the harmony of the entire system.

Traditionally, unit tests analyze individual components, seeking malfunctions and quanti-
fying their performance with metrics like accuracy, recall, and precision (e.g., for classification
algorithms (HOSSIN; SULAIMAN, 2015; THARWAT, 2018)). Integration tests take a broader
perspective, examining the interplay between two or more components (e.g., obstacle detection
and avoidance). Finally, system tests encompass the entire system, evaluating the harmonious col-
laboration of all its components (JORGENSEN, 2018; LEWIS, 2017). However, a standardized
methodology for comprehensively assessing and comparing the complete performance of au-
tonomous driving systems remains a challenge. The CARLA Leaderboards offer a standardized
benchmark for evaluating autonomous driving systems, providing diverse sensor configurations
and software architectures.

These leaderboards immerse the autonomous system, or "agent," in simulated urban
environments. Each scenario throws diverse challenges, varying in cityscapes, traffic areas
(highways, urban roads, residential areas, roundabouts, unmarked intersections), route lengths,
traffic density, and weather conditions. Moreover, each route incorporates traffic situations
inspired by the pre-crash typology (STATES, 2007) provided by the made haNational Highway
Traffic Safety Administration of the United States (NHTSA), encompassing diverse scenarios
like:

• Control loss without prior action.

• Obstacle avoidance for unexpected obstacles.

• Negotiation at roundabouts and unmarked intersections.

• Following the lead vehicle’s sudden braking.

• Crossing intersections with a traffic-light-disobeying vehicle.

Leaderboard 2 expands this scenarios, adding:

• Lane changes to avoid obstacles blocking lanes.

7.2. Metrics 87

• Yielding to emergency vehicles.

• Door obstacles (e.g. opened car door).

• Avoiding vehicles invading lanes on bends.

• Maneuvering parking cut-ins and exits.

To evaluate agent performance in each simulated scenario, CARLA Leaderboards employ a set
of quantitative metrics that captures not only route completion but also adherence to traffic rules
and safe driving practices. This metrics assesses the entire system’s performance, transcending
mere point-to-destination navigation. It factors in traffic rules, passenger and pedestrian safety,
and the ability to handle both common and unexpected situations (e.g., occluded obstacles and
vehicle control loss).

Key Metrics:

Driving Score (DS): The main metric of the leaderboards, calculated as the product of
route completion percentage (Ri) and the infraction penalty (Pi) of the i-th route, (RiPi). This
metric rewards both efficient navigation and adherence to safety regulations.

Route Completion (RC): Percentage of the route distance successfully completed by
the agent of the i-th route, (Ri).

Infraction Penalty (IP): (∏ped,veh,...,stop
j (pi

j)
#in f ractions j). Aggregates all types of infrac-

tions triggered by the agent as a geometric series. Each infraction reduces the agent’s score,
starting from an ideal base of 1.0. Specific infraction types their penalty coefficients include:

• Collisions with pedestrians (CP) - 0.50.

• Collisions with other vehicles (CV) - 0.60.

• Collisions layout (CL) - 0.65.

• Running a red light (RLI) - 0.70.

• Stop sign infraction (SSI) - 0.80.

• Off-road infraction (ORI) - percentage of the route will not be considered.

Additional Leaderboard 2 Metrics:

• Scenario timeout (ST) - 0.70.

• Failure to maintain minimum speed (MinSI) - 0.70.

• Failure to yield to emergency vehicle (YEI) - 0.70.

88 Chapter 7. Evaluation and Validation

Under certain circumstances, the simulation will be automatically terminated, preventing the
agent from further progress on the current route. These events include:

• Route deviations (RD)

• Route timeouts (RT)

• Agent blocked (AB)

After all routes are completed, global metrics are calculated as the average of individual route met-
rics. The global driving score remains the primary metric for ranking agents against competitors.
By employing comprehensive evaluation frameworks like CARLA Leaderboards, researchers
and developers can gain valuable insights into the strengths and weaknesses of their autonomous
driving systems, ultimately paving the way for safer and more robust vehicles that perform
harmoniously as a whole, not just as a collection of individual components. For further details
on the evaluation and metrics, visit the leaderboard website1.

The CARLA Team offers a series of routes for training and validation for both leader-
boards 1 and 2 that are available online2 3.

To evaluate an agent’s performance, it must be submitted to the online evaluator4. The
specific routes and the cities used are confidential. For Leaderboard 1, 10 routes are chosen
and each is evaluated 10 times under varying lighting and weather conditions. Each route is
roughly 1 km long, meaning an agent completing all routes at 100% would cover approximately
100 kilometers in total. Leaderboard 2 features increased difficulty compared to Leaderboard 1,
with routes 10 times longer and presenting more complex scenarios. Agents must navigate these
scenarios, including overtaking obstacles or yielding to emergency vehicles.

7.3 Datasets
To train the diverse components of our autonomous driving agents, we generated three

comprehensive datasets running a privileged version of the our modular pipeline5.

These datasets were created using CARLA simulator version 0.9.13 under a range of
lighting and weather conditions (day, night, rain, fog) and across distinct urban environments
in the CARLA towns: Town01, Town3, Town4, Town06, and Town12. These environments
encompass downtown areas, residential neighborhoods, rural landscapes, and diverse vegetation.
1 Available at: <https://leaderboard.carla.org/#evaluation-and-metrics>.
2 Available at: <https://github.com/carla-simulator/leaderboard/tree/leaderboard-1.0/data>.
3 Available at: <https://github.com/carla-simulator/leaderboard/tree/leaderboard-2.0/data>.
4 Available at: <https://eval.ai/web/challenges/challenge-page/2098/overview>.
5 The privileged version of our agent refers to an agent that has the same architecture as our modular

pipeline but has access to privileged information about the simulation state, including detailed routes,
maps, and precise positions (without noise) of the ego vehicle, other vehicles, and pedestrians. This
privileged agent is also called the expert.

https://leaderboard.carla.org/#evaluation-and-metrics
https://github.com/carla-simulator/leaderboard/tree/leaderboard-1.0/data
https://github.com/carla-simulator/leaderboard/tree/leaderboard-2.0/data
https://eval.ai/web/challenges/challenge-page/2098/overview

7.3. Datasets 89

Figure 24 – Our instance detection dataset includes annotations of eight classes: Car, pedestrian, bicycle,
stop sign, red traffic light, yellow traffic light, green traffic light and emergency vehicle in
different urban environments and weather conditions

Source: Elaborated by the author.

• Instance Segmentation Dataset: We constructed a dataset of 20,000 RGB images with
variable resolutions ranging from 800×800 to 1400×1400 pixels. These images encom-
pass seven object classes: car, bicycle, pedestrian, red traffic light, yellow traffic light,
green traffic light, and stop sign.

For labeling, we employed a semi-automatic approach for cars, bicycles, pedestrians, and
stop signs, leveraging sensor instances provided by the CARLA simulator. Traffic lights
and stencil stop signs, however, required manual annotation for greater accuracy. All
annotations were stored in the COCO format. Finally, we trained a Mask-RCNN model
implemented in mmdetection6. for object detection and segmentation. Figure 24 showcases
examples of detections achieved with our trained model. Our Instance Segmentation
Dataset is available online7.

• 3D Object Detection Dataset: This dataset comprises 5,000 point clouds annotated
with pose (relative to the ego car), height, length, width, and orientation for all cars,
bicycles, and pedestrians. We leveraged the privileged sensor objects within the simulator
to perform this automatic annotation. The data was subsequently saved in the KITTI format
for compatibility with popular object detection algorithms. Using this dataset, we trained
a PointPillars model adapted for our specific needs, implemented in the mmdetection3d
framework8.

• Path Planner Training Dataset: To train the path planner, we leveraged a privileged

6 Available at: <https://github.com/open-mmlab/mmdetection>
7 Available at: <https://github.com/luis2r/Instance-segmentatio-CARLA>
8 Available at: <https://github.com/open-mmlab/mmdetection3d>

https://github.com/open-mmlab/mmdetection
https://github.com/luis2r/Instance-segmentatio-CARLA
https://github.com/open-mmlab/mmdetection3d

90 Chapter 7. Evaluation and Validation

agent and the previously described sensors to collect approximately 300,000 frames. This
agent granted access to ground-truth path information and provided error-free GPS and
IMU data facilitating precise navigation. The point clouds from the LiDAR and stereo
cameras were then projected and rasterized into 700x700 RGB images in the bird’s-eye
view space. High-level commands like "left," "right," "straight," and "lane follow" were
transformed to the ego coordinate system using the command pose, then rasterized within
the bird’s-eye image in the same way than pointclouds but with color-coded points for
commands (red for left, blue for right, white for straight, and green for lane follow). The
ground-truth road path consisted of 200 waypoints spaced 20 cm apart, originating at the
center of the ego car.

To simulate potential navigation errors and enhance error recovery learning, we introduced
Gaussian noise to the steering wheel inputs in 50% of the routes used for dataset collection.

7.4 Results

In this section, we present the results of evaluating our agents implementing the modular,
end-to-end, and hybrid architectures described earlier. All evaluations were conducted using the
CARLA leaderboards.

The CARLA team offers an online benchmark with two leaderboards, each running 100
routes under various lighting and weather conditions. The specific routes and cities are secret.

For the end-to-end and hybrid architectures designed for mapless environments, we first
conducted an ablation study to determine the best performer. This evaluation is carried out on
a local server using the validation routes from leaderboard 1, which comprises 26 routes, each
approximately 1 km long.

We present an evaluation to select the most suitable method for autonomous driving
without maps among our proposed approaches. Our hybrid architecture proposal got best perfor-
mance and is evaluated online in the SENSORS category. For map-based navigation, we only
have one architecture, described in Chapter 4. Consequently, this agent is evaluated in the MAP
category.

The complete evaluation process is presented below.

7.4.1 Evaluating End-to-End and hybrid architectures for mapless AD

To assess the performance of our end-to-end implementations across various sensor
configurations, as detailed in Chapter 5, we conducted a comprehensive series of tests on a
local server using leaderboard 1 validation routes9. Our primary objective was to understand

9 Available at: <https://github.com/carla-simulator/leaderboard/blob/leaderboard-1.0/data/routes_testing.
xml>.

https://github.com/carla-simulator/leaderboard/blob/leaderboard-1.0/data/routes_testing.xml
https://github.com/carla-simulator/leaderboard/blob/leaderboard-1.0/data/routes_testing.xml

7.4. Results 91

Table 9 – Results: Ablation studies on both end-to-end methods and the hybrid architecture for mapless
autonomous driving using the local validation routes of Leaderboard 1.

Method DS RC IP CP CV CL RLI SSI ORI RD RT AB
Monocular camera 8.24 25.38 0.40 0.22 0.68 0.75 0.18 0.00 3.40 2.86 1.09 7.56
Stereo camera 12.45 32.15 0.57 0.16 0.36 0.31 0.32 0.00 1.52 1.47 1.23 5.46
Multimodal no fusion 33.80 64.22 0.43 0.22 0.30 0.25 1.01 0.00 1.05 0.99 0.60 1.20
Multimodal fusion 35.87 67.1 0.51 0.19 0.29 0.22 0.91 0.00 0.18 0.60 0.57 0.94
Hybrid 52.55 96.70 0.61 0.28 0.12 0.03 0.86 0.00 0.10 0.02 0.00 0.12

Source: Research data.

the impact of using specific sensors and methods. We initiated our evaluation by comparing the
performance scores of different implementations across diverse sensor setups.

Running locally compare all of our end-to-end implementations with our hybrid imple-
mentation, all designed for navigation in unmapped environments. A similar assessment was
conducted prior to CADCH 2023 to determine the optimal architecture for participating in the
SENSORS track of the challenge, as the current leaderboard only permits one entry per team.
Table 9 shows the results obtained from this evaluation.

For local evaluation, we utilized routes provided by the Carla team for validation of
their leaderboard 1 on GitHub. These routes differ from those used for official leaderboard 1
evaluation, which remain confidential and are exclusively assessed online.

The hybrid architecture exhibited significantly superior performance compared to the
end-to-end implementations in both main metrics, with RC at 96.70% and DS at 52.55%. Notably,
the route completion approached 100%.

Conversely, the end-to-end architectures yielded lower performance, primarily due to
a high frequency of obstructions or blockages (high AB metric). This limited their ability to
navigate a substantial portion of the route, consequently impacting their DS score. As anticipated,
the limited field of view offered by their single camera setup was a major factor in their
underperformance.

Future implementations could explore the use of multiple cameras or a 360-degree
camera to enhance their performance. Based on this evaluation, our best agent for the SENSORS
track is the hybrid architecture, which has been submitted to the leaderboards as will be shown
later.

Additionally, both the hybrid and end-to-end architectures used the same CNN-Planner.
However, the end-to-end versions lacked access to the perception module, preventing them from
utilizing surrounding agent footprints as used in the hybrid version. This motivates us to analyze
the individual impact of each sensor within the BEVSFusion structure and its influence on agent
performance.

92 Chapter 7. Evaluation and Validation

Table 10 – Results: Ablation study about influence of sensor fusion on data driven planner on hybrid
implementation (local evaluation)

Sensor in BEV DS RC IP CP CV CL RLI SSI ORI RD RT AB
All rasters fusion (+footprints) 52.55 96.70 0.61 0.18 0.12 0.03 0.86 0.00 0.10 0.02 0.00 0.12
Without footprints 41.17 81.81 0.56 0.28 0.19 0.00 0.08 0.00 0.12 0.04 0.10 0.25
Without stereo BEV 47.80 90.22 0.43 0.30 0.67 0.05 1.07 0.00 0.45 0.03 0.55 0.16
Without high-level-commands 10.85 22.81 0.51 1.80 0.59 1.80 0.51 0.00 4.10 5.10 6.62 8.06
Only LiDAR BEV 5.75 20.11 0.28 1.52 2.37 1.27 0.52 0.00 0.59 3.17 5.01 4.54

Source: Research data.

7.4.2 Influence of sensor fusion in the data driven planner

We delved into the structure of our BEVSFusion module, responsible for fusing diverse
sensors. Our tests were conducted using CNN-planner as path regressor in our hybrid implemen-
tation. Our aim was to evaluate the influence of different types of information within this fusion
structure on path planning generation.

We conducted a ablation studie by systematically omitting specific data elements from
the BEVSFusion module. These omissions included high-level commands, stereo information
within the BEV space, and footprints of other actors. Throughout all tests, we consistently
maintained the LiDAR point cloud in the BEV space. Table 10 show the results.

From the results we can see that removing high-level commands at intersections demon-
strably hinders performance. These commands play a crucial role in resolving navigational
ambiguities. Without them, the agent is likely to become disoriented and struggle even at the
first intersection.

On the other hand, we can note that all the rasters contributed to the BEVSFusion
structure have an influence on the final result, although some have a greater impact than others.

It can also be seen that the addition of the footprint of the other surrounding agents
significantly contributed to the fulfillment of the route. This is because this information covers
360 degrees, and the position and orientation of the other objects provide an idea of where viable
trajectories can be generated, thus avoiding trajectories opposite to the direction of the road or
away from the routes commonly traveled by other vehicles.

7.4.3 Results on CARLA Leaderboards (online)

This section presents the performance of our modular and hybrid and modular agent
architectures on the CARLA Leaderboards (Track SENSORS and Track MAP respectively),
demonstrating their effectiveness in both map-based and mapless navigation tasks. To validate
our models, we utilized the leaderboards provided online by the CARLA team (Leaderboard
1 and Leaderboard 2). We employed the Track MAP from the two benchmarks to assess our
modular architecture, and the Track SENSORS were used to evaluate our hybrid architecture,
which was chosen after comparison with end-to-end implementations

7.4. Results 93

Table 11 – Results: CARLA Leaderboard 1, Track MAP

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB
Anonymous Map TF++ 61.17 81.81 0.70 0.01 0.99 0.00 0.08 0.00 0.00 0.00 0.00 0.55
mmfn MMFN+ (TPlanner)10 (no paper) 59.85 82.81 0.71 0.01 0.59 0.00 0.51 0.00 0.00 0.00 0.62 0.06
LRM 2023 CaRINA agent 41.56 86.03 0.52 0.075 0.38 0.13 1.6 0.03 0.01 0.04 0.05 1.29
RaphaeL GRI-based DRL (CHEKROUN et al., 2023) 33.78 57.44 0.57 0.00 3.36 0.50 0.52 0.00 1.52 1.47 0.23 0.80
mmfn MMFN (ZHANG et al., 2022) 22.80 47.22 0.63 0.09 0.67 0.05 1.07 0.00 0.45 0.00 0.00 1003.88
RobeSafe research group Techs4AgeCar+ (GÓMEZ-HUÉLAMO et al., 2022) 18.75 75.11 0.28 1.52 2.37 1.27 1.22 0.00 0.59 0.17 0.01 1.28
ERDOS Pylot (GOG et al., 2021) 16.70 48.63 0.50 1.18 0.79 0.01 0.95 0.00 0.01 0.44 0.10 3.30
LRM 2019 CaRINA 15.55 40.63 0.47 1.06 3.35 1.79 0.28 0.00 3.28 0.34 0.00 7.26

Source: CARLA (2024).

Table 12 – Results: CARLA challenge 2023. CARLA leaderboard 2, Track MAP

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB YEI ST MinSI
Kyber-E2E ” 3.11 5.28 0.67 0.36 0.63 0.27 0.09 0.09 0.01 0.00 0.09 0.09 0.00 0.54 0.00
LRM 2023 CaRINA agent 1.14 3.65 0.46 0.00 2.89 1.31 0.00 0.53 0.00 0.13 1.31 1.18 0.00 2.10 0.00

Source: CARLA (2024).

Navigation using Map (Leaderboard 1 and 2: Track MAP)

We employed our modular CaRINA stack for map-based navigation using OpenDRIVE
format as mentioned in previous sections.

Table 11 illustrates the results for Leaderboard 1 on the track MAP. On the Track
MAP, we secured third place in driving score metric (DS=41.56) and the highest score in route
completion (RC=86.03) among all competitors using our modular pipeline. These achievements
highlight the combined strength of our CaRINA modules.

Table 12 shows the evaluation in the track MAP of Leaderboard 2. We achieved second
place in driving score (DS=1.14) and route completion (RC=3.65%), only narrowly surpassed by
another modular architecture. Importantly, our off-road infraction penalty in this track (ORI=0.0)
emphasizes the seamless navigation facilitated by the map. This compares favorably to all
methods on both Leaderboard 1 and 2 Track MAP, where some map-based approaches based on
TF++ (JAEGER; CHITTA; GEIGER, 2023) and MMFN (ZHANG et al., 2022) also achieve an
ORI=0.0.

Mapless Navigation (Leaderboard 1 and 2: Track SENSORS)

We evaluated our hybrid CaRINA stack for mapless navigation.

Table 13 illustrates the results for leaderboard 1 in the Track SENSORS, our hybrid
CaRINA agent achieved the second place on route completion score RC=93.13%, surpassing
other autonomous driving methods primarily based on end-to-end learning. We also obtained a
high driving score (DS=42.09) compared to similar approaches.

Table 14 presents the results for Leaderboard 2 on Track SENSORS, where our perfor-
mance dominated the new leaderboard with a driving score (DS) of 1.232 and a route completion
(RC) of 9.55%, showcasing a significant difference, more than twice that of the second place’s
performance. This highlights the effectiveness and competitive of our hybrid architecture for

94 Chapter 7. Evaluation and Validation

Table 13 – Results: CARLA Leaderboard 1, Track SENSORS

Method DS RC IP CP CV CL RLI SSI ORI RD RT AB
ReasonNet (SHAO et al., 2023) 79.95 89.89 0.89 0.02 0.13 0.01 0.08 0.00 0.04 0.00 0.01 0.33
InterFuser (SHAO et al., 2022) 76.18 88.23 0.84 0.04 0.37 0.14 0.22 0.00 0.13 0.00 0.01 0.43
TCP (WU et al., 2022) 75.14 85.63 0.87 0.00 0.32 0.00 0.09 0.00 0.04 0.00 0.00 0.54
TF++ WP Ensemble (JAEGER; CHITTA; GEIGER, 2023) 66.32 78.57 0.84 0.00 0.50 0.00 0.01 0.00 0.12 0.00 0.00 0.71
LAV (CHEN; KRÄHENBÜHL, 2022) 61.85 94.46 0.64 0.04 0.70 0.02 0.17 0.00 0.25 0.09 0.04 0.10
TF++ WP (JAEGER; CHITTA; GEIGER, 2023) 61.57 77.66 0.81 0.02 0.41 0.00 0.03 0.00 0.08 0.00 0.00 0.71
TransFuser (CHITTA et al., 2023)(PRAKASH; CHITTA; GEIGER, 2021a) 61.18 86.69 0.71 0.04 0.81 0.01 0.05 0.00 0.23 0.00 0.01 0.43
Latent TransFuser (CHITTA et al., 2023) 45.20 66.31 0.72 0.02 1.11 0.02 0.05 0.00 0.16 0.00 0.04 1.82
CaRINA hybrid 42.09 93.13 0.45 0.71 0.53 0.15 1.80 0.11 0.28 0.06 0.00 0.24
GRIAD (CHEKROUN et al., 2021) 36.79 61.85 0.60 0.00 2.77 0.41 0.48 0.00 1.39 1.11 0.34 0.84
World on Rails (CHEN; KOLTUN; KRÄHENBÜHL, 2021) 31.37 57.65 0.56 0.61 1.35 1.02 0.79 0.00 0.96 1.69 0.00 0.47
MaRLn (TOROMANOFF; WIRBEL; MOUTARDE, 2020) 24.98 46.97 0.52 0.00 2.33 2.47 0.55 0.00 1.82 1.44 0.79 0.94
NEAT (CHITTA; PRAKASH; GEIGER, 2021) 21.83 41.71 0.65 0.04 0.74 0.62 0.70 0.00 2.68 0.00 0.00 5.22
AIM-MT (CHITTA; PRAKASH; GEIGER, 2021) 19.38 67.02 0.39 0.18 1.53 0.12 1.55 0.00 0.35 0.00 0.01 2.11
TransFuser (CVPR 2021) (PRAKASH; CHITTA; GEIGER, 2021b) 16.93 51.82 0.42 0.91 1.09 0.19 1.26 0.00 0.57 0.00 0.01 1.96
CNN-Planner 2019 (ROSERO et al., 2022) 15.40 50.05 0.41 0.08 4.67 0.42 0.35 0.00 2.78 0.12 0.00 4.63
Learning by Cheating(CHEN et al., 2020) 8.94 17.54 0.73 0.00 0.40 1.16 0.71 0.00 1.52 0.03 0.00 4.69
MaRLn (TOROMANOFF; WIRBEL; MOUTARDE, 2020) 5.56 24.72 0.36 0.77 3.25 13.23 0.85 0.00 10.73 2.97 0.06 11.41
CILRS (CODEVILLA et al., 2019) 5.37 14.40 0.55 2.69 1.48 2.35 1.62 0.00 4.55 4.14 0.00 4.28
CaRINA 2019 (ROSERO et al., 2020) 4.56 23.80 0.41 0.01 7.56 51.52 20.64 0.00 14.32 0.00 0.00 10055.99

Source: CARLA (2024).

Table 14 – Results: CARLA challenge 2023. CARLA leaderboard 2, Track SENSORS

Team Method DS RC IP CP CV CL RLI SSI ORI RD RT AB YEI ST MinSI
LRM 2023 CaRINA hybrid 1.23 9.55 0.31 0.25 1.64 0.25 0.25 0.40 0.43 0.10 0.30 0.60 0.10 1.20 0.15
Tuebingen_AI Zero-shot TF++ (JAEGER; CHITTA; GEIGER, 2023) 0.58 8.53 0.38 0.17 1.80 0.51 0.00 3.76 0.35 0.06 0.56 0.51 0.00 2.19 0.17
CARLA baseline 0.25 15.20 0.10 1.23 2.49 0.79 0.03 0.94 0.47 0.50 0.00 0.13 0.13 0.69 0.19

Source: CARLA (2024).

mapless navigation, surpassing the state-of-the-art end-to-end learning method Zero-shot TF++
(variation of the TF++ method (JAEGER; CHITTA; GEIGER, 2023)).

Leaderboard 2 was used for the 2023 CARLA Challenge. We achieved first place in the
Track SENSORS and second place in the Track MAP categories of the 2023 CARLA Challenge
with our modular and hybrid CaRINA agent versions, respectively.

7.5 Analysis and Discussion
The results in the previous section were obtained from the official CARLA Leaderboards.

However, it is important to note that we only have access to the final scores for each metric,
lacking additional details regarding the vehicle’s performance in individual traffic scenarios and
their respective impacts on the overall score. In this section, we analyze the results based on
on both leaderboard scores and offline experiments conducted on a local machine. Through the
insights gained from these offline experiments, we can draw conclusions about the performance
of the modular, end-to-end and hybrid autonomous driving architectures.

7.5.0.1 Modular Architecture

We assessed the modular navigation architecture on the MAP track in Leaderboards 1
and 2. In both cases, our RC (Route Completion) scores surpassed those of any other technique,
indicating that our vehicles completed more trajectory segments than competing agents. Nev-
ertheless, our agent incurred a lower IP (Infraction Penalty) than the top two agents with the

7.5. Analysis and Discussion 95

highest DS (Driving Score). This outcome is primarily influenced by two types of infractions,
namely RLI (Running Red Light) and AB (Agent Blocked), as the remaining infraction metrics
show no significant difference from the top two agents in Leaderboard 1.

In the first case (RLI), the complexity of the road network layout (especially the intersec-
tions) poses a significant challenge in correctly associating the traffic light with the vehicle’s
current trajectory. Consequently, as the vehicle approaches the intersection, it may either pass the
location where it should stop and wait for the traffic light or fail to detect it through its cameras. In
the second scenario, the vehicle struggles to pass an obstacle (e.g., object or another vehicle) that
is stationary in its lane. Both situations concerns the scene understanding within the perceptual
system and decision-making. Specifically, the second scenario presents an additional challenge
when there is oncoming traffic in the opposite lane. In this case, in addition to recognizing the
need for a lane change, the vehicle must also identify a gap in the traffic and promptly react
to enter the gap. In offline experiments, we observed that due to the conservative driving style
adopted, the vehicle is not always swift enough to enter a gap before the next approaching vehicle
arrives.

Finally, it is worth noting that, despite having the highest RC among the agents on
the leaderboard, the CV (collision with vehicles) is significantly lower than that of the other
agents. This result emphasizes the effectiveness of the perception and decision-making systems
in detecting and avoiding collisions with other vehicles.

7.5.0.2 Hybrid Architecture

We assessed the hybrid architecture on the SENSORS track of Leaderboards 1 and 2. The
"CaRINA hybrid" agent achieved significant Route Completion (RC), securing the 6th and 1st
positions in Leaderboards 1 and 2, respectively. These outcomes are similar to those on the MAP
track. However, in this track, the vehicle operates without access to map information, relying
entirely on data-driven path planning. However, the considerable number of collisions with other
vehicles (CV) significantly impacted the performance of the navigation architecture.

Based on offline experiments, we listed two scenarios that potentially affected the per-
ception and navigation system, increasing the number of collisions with other vehicles. In the
first scenario, lane changes were initiated due to potential obstructions in the current driving lane,
such as other vehicles or objects. We observed that the data-driven path planning demonstrated su-
perior adaptability, estimating lane-change trajectories in a broader range of scenarios compared
to the modular navigation pipeline. However, the execution of these maneuvers resulted in more
collisions with oncoming traffic in the opposite lane. This behavior manifested in two additional
metrics, apart from CV: AB (agent blocked), which is lower than the modular architecture due
to the vehicle executing more lane-change and overtake maneuvers; and RD (route deviation),
which occurs because the vehicle struggles to return to its trajectory after some collisions.

In the second scenario, the focus is on intersections, particularly when the vehicle fails

96 Chapter 7. Evaluation and Validation

to adhere to a red light signal. The vehicle approaches the intersection and attempts to cross it,
but in most instances, it fails to avoid collisions with oncoming traffic. In certain situations, the
vehicle stops midway through the intersection while trying to evade collisions and complete the
maneuver. However, this behavior also results in the blockage of the vehicle (AB), contributing
to intersection deadlock, or the vehicle running over road layouts (CL) and incurring off-road
infractions (ORI).

7.5.0.3 Comparison and Final Remarks

The results in the previous sections provided a comprehensive assessment of the perfor-
mance of modular, end-to-end and hybrid architectures for autonomous navigation. The use of
the CARLA simulator and Leaderboards 1 and 2 enabled a quantitative and qualitative evaluation
of this approaches, providing valuable insights into their strengths and weaknesses. Accordingly,
this section presents a brief overview of the results and observations related to both navigation
strategies proposed in this work.

The primary distinction between both approaches lies in their methodology. While the
modular architecture relies on parsing the OpenDrive map to estimate trajectories and navigate,
the end-to-end and hybrid approaches employ a mapless data-driven path planning technique to
guide the vehicle to its destination. Furthermore, the Route Completion (RC) of both approaches
showed similarities across both leaderboards. This suggests the efficacy of the data-driven method
in estimating trajectories in diverse urban scenarios, a notable challenge given the unfamiliarity
of testing cities within the CARLA simulator. These cities feature different road network layouts
and city landscapes. Additionally, the evaluation involved navigating under varying weather and
light conditions, significantly impacting the performance of vision-based algorithms. The sensor
fusion adopted in the data-driven approach, using images and point cloud, contributes to making
the method more robust to adverse conditions, improving its adaptability and generalization.

Another important observation concerning the three approaches and the CARLA chal-
lenge is the complexity of the diverse driving scenarios. Apart from requiring effective perception,
decision-making, and planning systems, the challenge demands swift responses from the vehicle.
For instance, when the vehicle needs to change lanes with traffic in the adjacent lane, it must
identify a gap and react promptly. The offline experiments demonstrated various scenarios where
the system’s components correctly identified these situations. However, the vehicle was not quick
enough to execute maneuvers safely, resulting in collisions and other traffic infractions. We
adopted a conservative driving style, which demands more time to react to scenarios involving
interactions with other traffic participants. The smooth acceleration change curve led to danger-
ous situations, given that the behavior of other vehicles was designed to present complex and
challenging scenarios for the autonomous agent. For example, in certain situations, due to lane
changes or sudden brakes of the ego-vehicle (CaRINA agent), the surrounding vehicles collide
with the rear of the ego-vehicle, as they were not designed to stop in such scenarios.

97

CHAPTER

8
CONCLUSION

With the development of this thesis, we were able to verify that we can take advantage
of the advances made so far in the areas of perception, decision-making, and planning for
modular pipelines, in addition to the progress in end-to-end learning for autonomous driving.
We proposed and built a new hybrid approach, leveraging the best of previous methods. With
this, we answered the scientific question initially raised. We obtained comparable results with
the state-of-the-art (SOTA) methods in autonomous driving for navigation with and without a
map in the recognized benchmark provided by the CARLA team. Additionally, the proposed
methods meet the requirements to run in soft real-time, which is of great importance for real
applications, as demonstrated in this work.

Our research has not only proposes a versatile autonomous driving architecture, but
also implements a robust approach to navigation. By blending the strengths of map-based and
mapless paradigms within a unified framework. Integrating modularity with end-to-end path
planning resulted in a holistic system that excels in both navigation styles. Modular simplicity
facilitates transparent debugging and efficient issue identification, fostering continuous perfor-
mance improvement. Our trajectory planning, despite using a minimalistic module compared to
complex competitor models, competes impressively, exemplified by our route completion score
in all tracks.

Through comprehensive experimentation and evaluation, it becomes evident that hybrid
architectures, integrating both modular and end-to-end approaches, are an option to end-to-end
approaches. The fusion of diverse sensor inputs, coupled with robust perception and control
modules, results in reliable and adaptable autonomous driving systems.

The incorporation of information from multiple sensors, including LiDAR and cam-
eras and detections, significantly enhances the perception capabilities of autonomous vehicles.
Multimodal fusion techniques, such as BEVSFusion, offer a holistic view of the surrounding
environment, enabling more accurate path planning and obstacle detection.

98 Chapter 8. Conclusion

Standardized evaluation frameworks, such as the CARLA Leaderboards, play a vital role
in assessing the performance of autonomous driving algorithms. Continual benchmarking and
comparison against state-of-the-art methods are essential for driving innovation and progress in
the field.

The research conducted in this thesis contributes to the broader autonomous driving
community by presenting novel architectures, methodologies, and insights. The developed
algorithms and frameworks have the potential to drive advancements in autonomous vehicle
technology, paving the way for safer, more efficient, and more accessible transportation systems.

Finally, the success of the CaRINA agent, evident in its first-place in CADCH 2023 track
SENSORS and second place in track MAP , testifies to the effectiveness and adaptability of our
proposed architectures.

8.1 Challenges and Future Directions

To define the scope of our system and suggest future work based on this research, it is
important to outline its limitations. First, our system operates under a soft real-time approach
rather than hard real-time. Moreover, it has only been tested in simulated environments. Therefore,
it is crucial to implement the system on real platforms and conduct further testing in real-world
scenarios to validate its performance and effectiveness. Despite the success of our approaches,
we identified areas for improvement:

Our current approach to traffic light detection relies on the position of traffic lights to
determine stopping points. However, there may be unfamiliar traffic light configurations in
hidden cities on the test server that we haven’t accounted for, which could potentially cause
issues with our detection system. This dependence on traffic light position may not be applicable
in all scenarios. To address this limitation, we should consider exploring end-to-end or hybrid
architectures to handle the traffic light problem.

Despite the success of our methods, we observe infractions, related to collision avoidance
especially in the area of collisions with vehicles. This is primarily due to lane changes requested
by high-level commands (lane change left, lane change right), becoming hazardous when other
high-speed vehicles are using the targeted lanes during lane changes. A potential solution could
involve a new model and controller considering the other surrounding vehicle velocities or
training algorithms to adapt the speed during lane changes, particularly when other cars are
traveling at high speeds.

Recognizing the limitations of a simple linear motion model is important. This model may
not accurately reflect complex maneuvers or sudden changes in object’s direction. Therefore, it is
essential to explore more advanced prediction models in future research, potentially integrating
acceleration data or historical movement patterns.

8.1. Challenges and Future Directions 99

While significant progress has been made in mapped environments, navigating in un-
mapped scenarios remains challenging. Future research directions should focus on developing
robust mapless navigation techniques, leveraging advancements in sensor technology and ma-
chine learning algorithms.

The field of autonomous driving presents numerous opportunities for further exploration
and advancement. Future research endeavors could focus on refining existing architectures,
exploring novel sensor modalities, enhancing real-time decision-making capabilities, and ad-
dressing safety and ethical considerations.

In this thesis we use relatively simple MPC and PID controllers. Future work can be
focused on designing and implementing Adaptive Cruise Control (ACC) systems. These ACC
systems will enhance both lateral and longitudinal control aspects of autonomous driving by
considering critical variables such as acceleration, confort, stability and tracking. The develop-
ment of this ACC system will involve extensive simulation and real-world testing to validate
its performance. By integrating these considerations into the design, the ACC system aims to
improve the overall safety, comfort, and reliability of autonomous vehicles.

Future work can also include implementing more sophisticated models than the currently
used bicycle model. These models can approximate the real dynamics of the vehicle by incorpo-
rating additional factors such as the mass of the car and aerodynamic effects. By adopting models
that closely mimic real vehicle dynamics, the control strategies can be optimized for better safety
and performance. This includes smoother transitions and more reliable operation under diverse
driving conditions. The development and integration of these more advanced models will involve
extensive simulation and real-world testing.

In future work, exploring and implementing advanced control techniques to enhance
the performance and reliability of autonomous driving systems can be included. The following
control strategies will be considered: Nonlinear Model Predictive Controller (NMPC), Robust
Linear Quadratic Regulator (RLQR), Model-Free Control, and Quadratic Programming (QP).

101

BIBLIOGRAPHY

ABDULLA, W. Mask R-CNN for object detection and instance segmentation on Keras and
TensorFlow. [S.l.]: Github, 2017. <https://github.com/matterport/Mask_RCNN>. Citation on
page 33.

AUTOWARE. Architecture overview. 2024. Accessed: 2023-01-23. Available: <https:
//autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/>.
Citations on pages 40 and 41.

BEWLEY, A.; GE, Z.; OTT, L.; RAMOS, F.; UPCROFT, B. Simple online and realtime tracking.
CoRR, abs/1602.00763, 2016. Available: <http://arxiv.org/abs/1602.00763>. Citation on page
52.

BOJARSKI, M.; TESTA, D. D.; DWORAKOWSKI, D.; FIRNER, B.; FLEPP, B.; GOYAL,
P.; JACKEL, L. D.; MONFORT, M.; MULLER, U.; ZHANG, J.; ZHANG, X.; ZHAO, J.;
ZIEBA, K. End to end learning for self-driving cars. CoRR, abs/1604.07316, 2016. Available:
<http://arxiv.org/abs/1604.07316>. Citation on page 34.

BRADSKI, G. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000. Citation
on page 36.

BRADSKI, G.; KAEHLER, A. Learning OpenCV: Computer Vision in C++ with
the OpenCV Library. 2nd. ed. [S.l.]: O’Reilly Media, Inc., 2013. ISBN 1449314651,
9781449314651. Citation on page 34.

BROWN, A.; XIE, W.; KALOGEITON, V.; ZISSERMAN, A. Smooth-ap: Smoothing the path
towards large-scale image retrieval. In: European Conference on Computer Vision (ECCV),
2020. [S.l.: s.n.], 2020. Citation on page 55.

BRUMMELEN, J. V.; O’BRIEN, M.; GRUYER, D.; NAJJARAN, H. Autonomous vehicle
perception: The technology of today and tomorrow. Transportation research part C: emerging
technologies, Elsevier, 2018. Citation on page 47.

CAI, P.; WANG, S.; SUN, Y.; LIU, M. Probabilistic end-to-end vehicle navigation in complex
dynamic environments with multimodal sensor fusion. IEEE Robotics and Automation Letters,
IEEE, v. 5, n. 3, p. 4218–4224, 2020. Citations on pages 40, 41, and 42.

CALDAS, K. A.; BARBOSA, F. M.; SILVA, J. A.; SANTOS, T. C.; GOMES, I. P.; ROSERO,
L. A.; WOLF, D. F.; JR, V. G. Autonomous driving of trucks in off-road environment. Journal
of Control, Automation and Electrical Systems, Springer, v. 34, n. 6, p. 1179–1193, 2023.
Citations on pages 26 and 44.

CARLA, T. Leaderboard CARLA. 2024. Accessed: 2024-01-30. Available: <https://
leaderboard.carla.org/leaderboard>. Citations on pages 93 and 94.

CASAS, S.; SADAT, A.; URTASUN, R. Mp3: A unified model to map, perceive, predict and plan.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
[S.l.: s.n.], 2021. p. 14403–14412. Citations on pages 40, 41, and 42.

https://github.com/matterport/Mask_RCNN
https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/
https://autowarefoundation.github.io/autoware-documentation/main/design/autoware-architecture/
http://arxiv.org/abs/1602.00763
http://arxiv.org/abs/1604.07316
https://leaderboard.carla.org/leaderboard
https://leaderboard.carla.org/leaderboard

102 Bibliography

CHANG, M.-F.; LAMBERT, J.; SANGKLOY, P.; SINGH, J.; BAK, S.; HARTNETT, A.; WANG,
D.; CARR, P.; LUCEY, S.; RAMANAN, D.; HAYS, J. Argoverse: 3d tracking and forecasting
with rich maps. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR). [S.l.: s.n.], 2019. p. 8740–8749. Citation on page 38.

CHEKROUN, R.; TOROMANOFF, M.; HORNAUER, S.; MOUTARDE, F. GRI: general rein-
forced imitation and its application to vision-based autonomous driving. CoRR, abs/2111.08575,
2021. Available: <https://arxiv.org/abs/2111.08575>. Citation on page 94.

. Gri: General reinforced imitation and its application to vision-based autonomous driving.
Robotics, v. 12, n. 5, 2023. ISSN 2218-6581. Available: <https://www.mdpi.com/2218-6581/12/
5/127>. Citation on page 93.

CHEN, D.; KOLTUN, V.; KRÄHENBÜHL, P. Learning to drive from a world on rails. In:
Proceedings of the IEEE/CVF International Conference on Computer Vision. [S.l.: s.n.],
2021. p. 15590–15599. Citation on page 94.

CHEN, D.; KRÄHENBÜHL, P. Learning from all vehicles. In: CVPR. [S.l.: s.n.], 2022. Citation
on page 94.

CHEN, D.; ZHOU, B.; KOLTUN, V.; KRÄHENBÜHL, P. Learning by cheating. In: KAEL-
BLING, L. P.; KRAGIC, D.; SUGIURA, K. (Ed.). Proceedings of the Conference on Robot
Learning. PMLR, 2020. (Proceedings of Machine Learning Research, v. 100), p. 66–75. Avail-
able: <https://proceedings.mlr.press/v100/chen20a.html>. Citation on page 94.

CHEN, L.; WU, P.; CHITTA, K.; JAEGER, B.; GEIGER, A.; LI, H. End-to-end autonomous
driving: Challenges and frontiers. arXiv preprint arXiv:2306.16927, 2023. Citation on page
25.

CHITTA, K.; PRAKASH, A.; GEIGER, A. Neat: Neural attention fields for end-to-end au-
tonomous driving. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV). [S.l.: s.n.], 2021. p. 15793–15803. Citation on page 94.

CHITTA, K.; PRAKASH, A.; JAEGER, B.; YU, Z.; RENZ, K.; GEIGER, A. Transfuser:
Imitation with transformer-based sensor fusion for autonomous driving. Pattern Analysis and
Machine Intelligence (PAMI), 2023. Citation on page 94.

CODEVILLA, F.; MüLLER, M.; LóPEZ, A.; KOLTUN, V.; DOSOVITSKIY, A. End-to-end
driving via conditional imitation learning. In: 2018 IEEE International Conference on Robotics
and Automation (ICRA). [S.l.: s.n.], 2018. p. 4693–4700. Citation on page 34.

CODEVILLA, F.; SANTANA, E.; LOPEZ, A. M.; GAIDON, A. Exploring the limitations of
behavior cloning for autonomous driving. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). [S.l.: s.n.], 2019. Citation on page 94.

CONTRIBUTORS, M. MMFlow: OpenMMLab Optical Flow Toolbox and Benchmark.
2021. <https://github.com/open-mmlab/mmflow>. Citation on page 69.

DIAZ-DIAZ, A.; OCAÑA, M.; LLAMAZARES, Á.; GÓMEZ-HUÉLAMO, C.; REVENGA,
P.; BERGASA, L. M. Hd maps: Exploiting opendrive potential for path planning and map
monitoring. In: IEEE. 2022 IEEE Intelligent Vehicles Symposium (IV). [S.l.], 2022. p. 1211–
1217. Citations on pages 48 and 49.

https://arxiv.org/abs/2111.08575
https://www.mdpi.com/2218-6581/12/5/127
https://www.mdpi.com/2218-6581/12/5/127
https://proceedings.mlr.press/v100/chen20a.html
https://github.com/open-mmlab/mmflow

Bibliography 103

DOSOVITSKIY, A.; FISCHER, P.; ILG, E.; HAUSSER, P.; HAZIRBAS, C.; GOLKOV, V.;
SMAGT, P. van der; CREMERS, D.; BROX, T. Flownet: Learning optical flow with convolutional
networks. In: Proceedings of the IEEE International Conference on Computer Vision
(ICCV). [S.l.: s.n.], 2015. Citation on page 70.

DOSOVITSKIY, A.; ROS, G.; CODEVILLA, F.; LOPEZ, A.; KOLTUN, V. CARLA: An open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning.
[S.l.: s.n.], 2017. p. 1–16. Citation on page 69.

DUDEK, G.; JENKIN, M. Computational Principles of Mobile Robotics. 2nd. ed. New York,
NY, USA: Cambridge University Press, 2010. ISBN 0521871573, 9780521871570. Citation on
page 61.

DUPUIS, M.; STROBL, M.; GREZLIKOWSKI, H. Opendrive 2010 and beyond–status and
future of the de facto standard for the description of road networks. In: Proc. of the Driving
Simulation Conference Europe. [S.l.: s.n.], 2010. p. 231–242. Citation on page 49.

FAN, H.; ZHU, F.; LIU, C.; ZHANG, L.; ZHUANG, L.; LI, D.; ZHU, W.; HU, J.; LI, H.; KONG,
Q. Baidu apollo em motion planner. arXiv preprint arXiv:1807.08048, 2018. Citation on page
40.

FERNANDES, L. C.; SOUZA, J. R.; PESSIN, G.; SHINZATO, P. Y.; SALES, D.; MENDES, C.;
PRADO, M.; KLASER, R.; MAGALHãES, A. C.; HATA, A.; PIGATTO, D.; Castelo Branco, K.;
GRASSI, V.; OSORIO, F. S.; WOLF, D. F. Carina intelligent robotic car: Architectural design and
applications. Journal of Systems Architecture, v. 60, n. 4, p. 372–392, 2014. ISSN 1383-7621.
Available: <https://www.sciencedirect.com/science/article/pii/S1383762113002841>. Citations
on pages 26 and 43.

FERNANDES, L. C.; SOUZA, J. R.; SHINZATO, P. Y.; PESSIN, G.; MENDES, C. C. T.;
OSORIO, F. S.; WOLF, D. F. Intelligent robotic car for autonomous navigation: Platform and
system architecture. In: 2012 Second Brazilian Conference on Critical Embedded Systems.
[S.l.: s.n.], 2012. p. 12–17. Citation on page 26.

FRAICHARD, T.; SCHEUER, A. From reeds and shepp’s to continuous-curvature paths. IEEE
Transactions on Robotics, IEEE, v. 20, n. 6, p. 1025–1035, 2004. Citation on page 62.

GEIGER, A.; LENZ, P.; URTASUN, R. Are we ready for autonomous driving? the kitti vision
benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.:
s.n.], 2012. Citation on page 38.

GEIGER, A.; ROSER, M.; URTASUN, R. Efficient large-scale stereo matching. In: Asian
Conference on Computer Vision (ACCV). [S.l.: s.n.], 2010. Citation on page 85.

GIRSHICK, R. Fast r-cnn. In: 2015 IEEE International Conference on Computer Vision
(ICCV). [S.l.: s.n.], 2015. p. 1440–1448. ISSN 2380-7504. Citation on page 32.

GIRSHICK, R.; DONAHUE, J.; DARRELL, T.; MALIK, J. Region-based convolutional net-
works for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, v. 38, n. 1, p. 142–158, Jan 2016. ISSN 0162-8828. Citation on
page 32.

https://www.sciencedirect.com/science/article/pii/S1383762113002841

104 Bibliography

GOG, I.; KALRA, S.; SCHAFHALTER, P.; WRIGHT, M. A.; GONZALEZ, J. E.; STOICA,
I. Pylot: A modular platform for exploring latency-accuracy tradeoffs in autonomous vehicles.
In: IEEE. 2021 IEEE International Conference on Robotics and Automation (ICRA). [S.l.],
2021. p. 8806–8813. Citation on page 93.

GÓMEZ-HUÉLAMO, C.; DIAZ-DIAZ, A.; ARALUCE, J.; ORTIZ, M. E.; GUTIÉRREZ, R.;
ARANGO, F.; LLAMAZARES, Á.; BERGASA, L. M. How to build and validate a safe and
reliable autonomous driving stack? a ros based software modular architecture baseline. In: IEEE.
2022 IEEE Intelligent Vehicles Symposium (IV). [S.l.], 2022. p. 1282–1289. Citation on page
93.

HARTLEY, R. I. Theory and practice of projective rectification. International Journal of
Computer Vision, v. 35, n. 2, p. 115–127, Nov 1999. ISSN 1573-1405. Available: <https:
//doi.org/10.1023/A:1008115206617>. Citation on page 36.

HE, K.; GKIOXARI, G.; DOLLAR, P.; GIRSHICK, R. Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision (ICCV). [S.l.: s.n.], 2017. Citation on
page 51.

HE, K.; GKIOXARI, G.; DOLLáR, P.; GIRSHICK, R. Mask r-cnn. In: 2017 IEEE International
Conference on Computer Vision (ICCV). [S.l.: s.n.], 2017. p. 2980–2988. ISSN 2380-7504.
Citation on page 33.

HE, K.; ZHANG, X.; REN, S.; SUN, J. Deep residual learning for image recognition. In: 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2016. p.
770–778. ISSN 1063-6919. Citation on page 32.

. Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2016. p. 770–778. Citation on page 54.

HIRSCHMULLER, H. Stereo processing by semiglobal matching and mutual information. IEEE
Transactions on Pattern Analysis and Machine Intelligence, v. 30, n. 2, p. 328–341, Feb 2008.
ISSN 0162-8828. Citation on page 37.

HOSSIN, M.; SULAIMAN, M. A review on evaluation metrics for data classification evaluations.
International Journal of Data Mining & Knowledge Management Process, Academy &
Industry Research Collaboration Center (AIRCC), v. 5, n. 2, p. 1, 2015. Citation on page 86.

HOUSTON, J.; ZUIDHOF, G.; BERGAMINI, L.; YE, Y.; CHEN, L.; JAIN, A.; OMARI, S.;
IGLOVIKOV, V.; ONDRUSKA, P. One thousand and one hours: Self-driving motion prediction
dataset. arXiv preprint arXiv:2006.14480, 2020. Citation on page 54.

HU, S.; CHEN, L.; WU, P.; LI, H.; YAN, J.; TAO, D. St-p3: End-to-end vision-based au-
tonomous driving via spatial-temporal feature learning. In: SPRINGER. European Conference
on Computer Vision. [S.l.], 2022. p. 533–549. Citations on pages 40, 42, and 43.

HUANG, W.; WANG, K.; LV, Y.; ZHU, F. Autonomous vehicles testing methods review. In:
IEEE. 2016 IEEE 19th International Conference on Intelligent Transportation Systems
(ITSC). [S.l.], 2016. p. 163–168. Citation on page 27.

ILG, E.; MAYER, N.; SAIKIA, T.; KEUPER, M.; DOSOVITSKIY, A.; BROX, T. Flownet
2.0: Evolution of optical flow estimation with deep networks. In: 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2017. p. 1647–1655. Citations
on pages 70 and 71.

https://doi.org/10.1023/A:1008115206617
https://doi.org/10.1023/A:1008115206617

Bibliography 105

JAEGER, B.; CHITTA, K.; GEIGER, A. Hidden biases of end-to-end driving models. In: Proc.
of the IEEE International Conf. on Computer Vision (ICCV). [S.l.: s.n.], 2023. Citations on
pages 93 and 94.

JO, K.; KIM, J.; KIM, D.; JANG, C.; SUNWOO, M. Development of autonomous car—part
ii: A case study on the implementation of an autonomous driving system based on distributed
architecture. IEEE Transactions on Industrial Electronics, IEEE, v. 62, n. 8, p. 5119–5132,
2015. Citations on pages 25, 40, and 41.

JORGENSEN, P. C. Software testing: a craftsman’s approach. [S.l.]: CRC press, 2018.
Citation on page 86.

KALRA, N.; PADDOCK, S. M. Driving to safety: How many miles of driving would it take
to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and
Practice, Elsevier, v. 94, p. 182–193, 2016. Citation on page 27.

KATRAKAZAS, C.; QUDDUS, M.; CHEN, W.-H.; DEKA, L. Real-time motion planning meth-
ods for autonomous on-road driving: State-of-the-art and future research directions. Transporta-
tion Research Part C: Emerging Technologies, Elsevier, v. 60, p. 416–442, 2015. Citations
on pages 39 and 61.

KLASER, R. L.; OSóRIO, F. S.; WOLF, D. Vision-based autonomous navigation with a prob-
abilistic occupancy map on unstructured scenarios. In: 2014 Joint Conference on Robotics:
SBR-LARS Robotics Symposium and Robocontrol. [S.l.: s.n.], 2014. p. 146–150. Citations
on pages 26 and 43.

KOOPMAN, P.; WAGNER, M. Challenges in autonomous vehicle testing and validation. SAE
International Journal of Transportation Safety, JSTOR, v. 4, n. 1, p. 15–24, 2016. Citation
on page 27.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. In: PEREIRA, F.; BURGES, C. J. C.; BOTTOU, L.;
WEINBERGER, K. Q. (Ed.). Advances in Neural Information Processing Systems
25. Curran Associates, Inc., 2012. p. 1097–1105. Available: <http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>. Citation on page
31.

LANG, A. H.; VORA, S.; CAESAR, H.; ZHOU, L.; YANG, J.; BEIJBOM, O. Pointpillars: Fast
encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2019. Citation on page 52.

LECUN, Y.; BOSER, B.; DENKER, J. S.; HENDERSON, D.; HOWARD, R. E.; HUBBARD, W.;
JACKEL, L. D. Handwritten digit recognition with a back-propagation network. In: TOURET-
ZKY, D. (Ed.). Advances in Neural Information Processing Systems (NIPS 1989). Denver,
CO: Morgan Kaufman, 1990. v. 2. Citation on page 31.

LEWIS, W. E. Software testing and continuous quality improvement. [S.l.]: CRC press, 2017.
Citation on page 86.

LIMA, P. F.; TRINCAVELLI, M.; MÅRTENSSON, J.; WAHLBERG, B. Clothoid-based model
predictive control for autonomous driving. In: IEEE. Control Conference (ECC), 2015 Euro-
pean. [S.l.], 2015. p. 2983–2990. Citation on page 62.

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

106 Bibliography

LIU, S.; LI, L.; TANG, J.; WU, S.; GAUDIOT, J.-L. Creating Autonomous Vehicle Systems.
[S.l.]: Morgan & Claypool Publishers, 2017. i–186 p. Citation on page 25.

MENZE, M.; HEIPKE, C.; GEIGER, A. Joint 3d estimation of vehicles and scene flow. In:
ISPRS Workshop on Image Sequence Analysis (ISA). [S.l.: s.n.], 2015. Citation on page 71.

. Object scene flow. ISPRS Journal of Photogrammetry and Remote Sensing (JPRS),
2018. Citation on page 71.

MORAES, G.; MOZART, A.; AZEVEDO, P.; PIUMBINI, M.; CARDOSO, V. B.; OLIVEIRA-
SANTOS, T.; SOUZA, A. F. D.; BADUE, C. Image-based real-time path generation using
deep neural networks. In: IEEE. 2020 International Joint Conference on Neural Networks
(IJCNN). [S.l.], 2020. p. 1–8. Citations on pages 40 and 42.

OBAYASHI, M.; UTO, K.; TAKANO, G. Appropriate overtaking motion generating method
using predictive control with suitable car dynamics. In: IEEE. 2016 IEEE 55th Conference on
Decision and Control (CDC). [S.l.], 2016. p. 4992–4997. Citation on page 62.

OPENDRIVE. ASAM OpenDRIVE 1.8.0. 2023. Accessed: 2023-01-27. Available: <https:
//www.asam.net/standards/detail/opendrive/>. Citation on page 48.

PADEN, B.; ČÁP, M.; YONG, S. Z.; YERSHOV, D.; FRAZZOLI, E. A survey of motion planning
and control techniques for self-driving urban vehicles. IEEE Transactions on intelligent
vehicles, IEEE, v. 1, n. 1, p. 33–55, 2016. Citation on page 39.

POMERLEAU, D. A. Alvinn: An autonomous land vehicle in a neural network.
In: TOURETZKY, D. (Ed.). Advances in Neural Information Processing Systems.
Morgan-Kaufmann, 1988. v. 1. Available: <https://proceedings.neurips.cc/paper/1988/file/
812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf>. Citation on page 34.

PRAKASH, A.; CHITTA, K.; GEIGER, A. Multi-modal fusion transformer for end-to-end
autonomous driving. In: Conference on Computer Vision and Pattern Recognition (CVPR).
[S.l.: s.n.], 2021. Citation on page 94.

. Multi-modal fusion transformer for end-to-end autonomous driving. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.:
s.n.], 2021. p. 7077–7087. Citation on page 94.

QUIGLEY, M.; CONLEY, K.; GERKEY, B.; FAUST, J.; FOOTE, T.; LEIBS, J.; WHEELER, R.;
NG, A. Y. Ros: an open-source robot operating system. In: KOBE, JAPAN. ICRA workshop on
open source software. [S.l.], 2009. v. 3, n. 3.2, p. 5. Citations on pages 47 and 85.

REDA, M.; ONSY, A.; GHANBARI, A.; HAIKAL, A. Y. Path planning algorithms in the
autonomous driving system: A comprehensive review. Robotics and Autonomous Systems,
Elsevier, p. 104630, 2024. Citation on page 42.

REDMON, J.; DIVVALA, S. K.; GIRSHICK, R. B.; FARHADI, A. You only look once: Unified,
real-time object detection. CoRR, abs/1506.02640, 2015. Available: <http://arxiv.org/abs/1506.
02640>. Citation on page 32.

REN, S.; HE, K.; GIRSHICK, R.; SUN, J. Faster r-cnn: Towards real-time object detection
with region proposal networks. In: Proceedings of the 28th International Conference on
Neural Information Processing Systems - Volume 1. Cambridge, MA, USA: MIT Press,

https://www.asam.net/standards/detail/opendrive/
https://www.asam.net/standards/detail/opendrive/
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640

Bibliography 107

2015. (NIPS’15), p. 91–99. Available: <http://dl.acm.org/citation.cfm?id=2969239.2969250>.
Citation on page 33.

ROSERO, L. Detecção de obstáculos usando fusão de dados de percepção 3D e radar em
veículos automotivos. Master’s Thesis (mathesis) — University of São Paulo, Instituto de
Ciências Matemáticas e de Computação, 2017. Citation on page 44.

ROSERO, L.; SILVA, J.; WOLF, D.; OSóRIO, F. Cnn-planner: A neural path planner based
on sensor fusion in the bird’s eye view representation space for mapless autonomous driving.
In: 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on
Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE). [S.l.: s.n.], 2022. p.
181–186. Citations on pages 74 and 94.

ROSERO, L. A.; GOMES, I. P.; SILVA, J. A. R. da; SANTOS, T. C. d.; NAKAMURA, A.
T. M.; AMARO, J.; WOLF, D. F.; OSÓRIO, F. S. A software architecture for autonomous
vehicles: Team lrm-b entry in the first carla autonomous driving challenge. arXiv preprint
arXiv:2010.12598, 2020. Citations on pages 29, 44, and 94.

ROSERO, L. A.; GOMES, I. P.; SILVA, J. A. R. da; PRZEWODOWSKI, C. A.; WOLF, D. F.;
OSóRIO, F. S. Integrating modular pipelines with end-to-end learning: A hybrid approach for
robust and reliable autonomous driving systems. Sensors, v. 24, n. 7, 2024. ISSN 1424-8220.
Available: <https://www.mdpi.com/1424-8220/24/7/2097>. Citations on pages 30 and 47.

ROSERO, L. A.; OSóRIO, F. S. Calibration and multi-sensor fusion for on-road obstacle detec-
tion. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium
on Robotics (SBR). [S.l.: s.n.], 2017. p. 1–6. Citation on page 44.

SCHARSTEIN, D.; HIRSCHMÜLLER, H.; KITAJIMA, Y.; KRATHWOHL, G.; NEŠIĆ, N.;
WANG, X.; WESTLING, P. High-resolution stereo datasets with subpixel-accurate ground truth.
In: JIANG, X.; HORNEGGER, J.; KOCH, R. (Ed.). Pattern Recognition. Cham: Springer
International Publishing, 2014. p. 31–42. ISBN 978-3-319-11752-2. Citation on page 38.

SCHöPS, T.; SCHöNBERGER, J. L.; GALLIANI, S.; SATTLER, T.; SCHINDLER, K.; POLLE-
FEYS, M.; GEIGER, A. A multi-view stereo benchmark with high-resolution images and multi-
camera videos. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). [S.l.: s.n.], 2017. p. 2538–2547. Citation on page 38.

SHAO, H.; WANG, L.; CHEN, R.; LI, H.; LIU, Y. Safety-enhanced autonomous driving using
interpretable sensor fusion transformer. arXiv preprint arXiv:2207.14024, 2022. Citations on
pages 40, 41, 42, and 94.

SHAO, H.; WANG, L.; CHEN, R.; WASLANDER, S. L.; LI, H.; LIU, Y. Reasonnet: End-to-end
driving with temporal and global reasoning. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2023. p. 13723–13733.
Citations on pages 40, 41, 42, and 94.

SONG, S.; HU, X.; YU, J.; BAI, L.; CHEN, L. Learning a deep motion planning model for
autonomous driving. In: IEEE. 2018 IEEE Intelligent Vehicles Symposium (IV). [S.l.], 2018.
p. 1137–1142. Citations on pages 40, 42, and 43.

STATES, N. H. T. S. A. of the U. Pre-Crash Scenario Typology for Crash Avoidance Research.
2007. Accessed: 2023-01-30. Available: <https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_
scenario_typology-final_pdf_version_5-2-07.pdf>. Citation on page 86.

http://dl.acm.org/citation.cfm?id=2969239.2969250
https://www.mdpi.com/1424-8220/24/7/2097
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/pre-crash_scenario_typology-final_pdf_version_5-2-07.pdf

108 Bibliography

SUN, D.; YANG, X.; LIU, M.-Y.; KAUTZ, J. Pwc-net: Cnns for optical flow using pyramid,
warping, and cost volume. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. [S.l.: s.n.], 2018. p. 8934–8943. Citations on pages 68, 69, and 70.

SZELISKI, R. Computer vision: algorithms and applications. [S.l.]: Springer Science &
Business Media, 2010. Citation on page 37.

TAMPUU, A.; MATIISEN, T.; SEMIKIN, M.; FISHMAN, D.; MUHAMMAD, N. A survey
of end-to-end driving: Architectures and training methods. IEEE Transactions on Neural
Networks and Learning Systems, IEEE, v. 33, n. 4, p. 1364–1384, 2020. Citation on page 25.

TAŞ, Ö. Ş.; SALSCHEIDER, N. O.; POGGENHANS, F.; WIRGES, S.; BANDERA, C.; ZOFKA,
M. R.; STRAUSS, T.; ZÖLLNER, J. M.; STILLER, C. Making bertha cooperate–team an-
nieway’s entry to the 2016 grand cooperative driving challenge. IEEE Transactions on Intelli-
gent Transportation Systems, IEEE, v. 19, n. 4, p. 1262–1276, 2018. Citations on pages 40
and 41.

TENG, S.; HU, X.; DENG, P.; LI, B.; LI, Y.; AI, Y.; YANG, D.; LI, L.; XUANYUAN, Z.; ZHU,
F. et al. Motion planning for autonomous driving: The state of the art and future perspectives.
IEEE Transactions on Intelligent Vehicles, IEEE, 2023. Citations on pages 25 and 39.

THARWAT, A. Classification assessment methods. Applied Computing and Informatics,
Elsevier, 2018. Citation on page 86.

THRUN, S.; MONTEMERLO, M.; DAHLKAMP, H.; STAVENS, D.; ARON, A.; DIEBEL, J.;
FONG, P.; GALE, J.; HALPENNY, M.; HOFFMANN, G.; LAU, K.; OAKLEY, C.; PALATUCCI,
M.; PRATT, V.; STANG, P.; STROHBAND, S.; DUPONT, C.; JENDROSSEK, L.-E.; KOELEN,
C.; MARKEY, C.; RUMMEL, C.; NIEKERK, J. van; JENSEN, E.; ALESSANDRINI, P.;
BRADSKI, G.; DAVIES, B.; ETTINGER, S.; KAEHLER, A.; NEFIAN, A.; MAHONEY, P.
Stanley: The robot that won the darpa grand challenge. In: . The 2005 DARPA Grand
Challenge: The Great Robot Race. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p.
1–43. ISBN 978-3-540-73429-1. Available: <https://doi.org/10.1007/978-3-540-73429-1_1>.
Citation on page 51.

TOROMANOFF, M.; WIRBEL, E.; MOUTARDE, F. End-to-end model-free reinforcement
learning for urban driving using implicit affordances. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). [S.l.: s.n.], 2020. Citation
on page 94.

VITELLI, M.; CHANG, Y.; YE, Y.; FERREIRA, A.; WOŁCZYK, M.; OSIŃSKI, B.; NIEN-
DORF, M.; GRIMMETT, H.; HUANG, Q.; JAIN, A. et al. Safetynet: Safe planning for real-world
self-driving vehicles using machine-learned policies. In: IEEE. 2022 International Conference
on Robotics and Automation (ICRA). [S.l.], 2022. p. 897–904. Citations on pages 40 and 43.

WANG, D.; WANG, C.; WANG, Y.; WANG, H.; PEI, F. An autonomous driving approach
based on trajectory learning using deep neural networks. International journal of automotive
technology, Springer, v. 22, p. 1517–1528, 2021. Citations on pages 40, 42, and 43.

WEI, J.; SNIDER, J. M.; KIM, J.; DOLAN, J. M.; RAJKUMAR, R.; LITKOUHI, B. Towards a
viable autonomous driving research platform. In: IEEE. Intelligent Vehicles Symposium (IV),
2013 IEEE. [S.l.], 2013. p. 763–770. Citation on page 40.

https://doi.org/10.1007/978-3-540-73429-1_1

Bibliography 109

WU, P.; JIA, X.; CHEN, L.; YAN, J.; LI, H.; QIAO, Y. Trajectory-guided control prediction for
end-to-end autonomous driving: A simple yet strong baseline. In: NeurIPS. [S.l.: s.n.], 2022.
Citations on pages 40, 41, 42, and 94.

XIAO, Y.; CODEVILLA, F.; GURRAM, A.; URFALIOGLU, O.; LóPEZ, A. M. Multimodal
end-to-end autonomous driving. IEEE Transactions on Intelligent Transportation Systems,
v. 23, n. 1, p. 537–547, 2022. Citations on pages 40, 41, and 42.

XU, G.; CHENG, J.; GUO, P.; YANG, X. Attention concatenation volume for accurate and
efficient stereo matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. [S.l.: s.n.], 2022. p. 12981–12990. Citation on page 72.

XU, Z.; XIAO, X.; WARNELL, G.; NAIR, A.; STONE, P. Machine learning methods for
local motion planning: A study of end-to-end vs. parameter learning. In: IEEE. 2021 IEEE
International Symposium on Safety, Security, and Rescue Robotics (SSRR). [S.l.], 2021. p.
217–222. Citation on page 42.

ZABIH, R.; WOODFILL, J. Non-parametric local transforms for computing visual corre-
spondence. In: EKLUNDH, J.-O. (Ed.). Computer Vision — ECCV ’94. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994. p. 151–158. ISBN 978-3-540-48400-4. Citation on page 37.

ZHANG, Q.; TANG, M.; GENG, R.; CHEN, F.; XIN, R.; WANG, L. Mmfn: Multi-modal-fusion-
net for end-to-end driving. In: IEEE. 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). [S.l.], 2022. p. 8638–8643. Citations on pages 40, 41, 42, and 93.

ZHOU; CHELLAPPA. Computation of optical flow using a neural network. In: IEEE 1988
International Conference on Neural Networks. [S.l.: s.n.], 1988. p. 71–78 vol.2. Citation on
page 32.

ZHU, H. Software design methodology: From principles to architectural styles. [S.l.]:
Elsevier, 2005. Citation on page 85.

111

APPENDIX

A
PUBLICATIONS

Published journal articles:

Rosero, L.A.; Gomes, I.P.; da Silva, J.A.R.; Przewodowski, C.A.; Wolf, D.F.; & Osório,
F.S. Integrating Modular Pipelines with End-to-End Learning: A Hybrid Approach for Robust
and Reliable Autonomous Driving Systems. Sensors 2024, 24, 2097. <https://doi.org/10.3390/
s24072097>

Caldas, K. A., Barbosa, F. M., Silva, J. A., Santos, T. C., Gomes, I. P., Rosero, L. A.,
... & Grassi Jr, V. (2023). Autonomous driving of trucks in off-road environment. Journal of
Control, Automation and Electrical Systems, 34(6), 1179-1193.

Published conference papers:

Rosero, L., Silva, J., Wolf, D., & Osório, F. (2022, October). CNN-Planner: A neural
path planner based on sensor fusion in the bird’s eye view representation space for mapless
autonomous driving. In 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian
Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE) (pp.
181-186). IEEE.

Rosero, L. A., & Osório, F. S. (2017, November). Calibration and multi-sensor fusion
for on-road obstacle detection. In 2017 Latin American Robotics Symposium (LARS) and 2017
Brazilian Symposium on Robotics (SBR) (pp. 1-6). IEEE.

Shinzato, P. Y., dos Santos, T. C., Rosero, L. A., Ridel, D. A., Massera, C. M., Alencar,
F., ... & Wolf, D. F. (2016, November). CaRINA dataset: An emerging-country urban scenario
benchmark for road detection systems. In 2016 IEEE 19th international conference on intelligent
transportation systems (ITSC) (pp. 41-46). IEEE.

dos Santos, T. C., Gómez, A. E., Massera Filho, C., Gomes, D., Perafan, J. C., Wolf, D. F.,

https://doi.org/10.3390/s24072097
https://doi.org/10.3390/s24072097

112 APPENDIX A. Publications

... & Rosero, L. A. (2015, October). A simulation framework for multi-vehicle communication.
In 2015 12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on
Robotics (LARS-SBR) (pp. 301-308). IEEE.

Alencar, F. A., Rosero, L. A., Massera Filho, C., Osório, F. S., & Wolf, D. F. (2015,
October). Fast metric tracking by detection system: Radar blob and camera fusion. In 2015
12th Latin American Robotics Symposium and 2015 3rd Brazilian Symposium on Robotics
(LARS-SBR) (pp. 120-125). IEEE.

Preprint articles:
Rosero, L. A., Gomes, I. P., da Silva, J. A. R., Santos, T. C. D., Nakamura, A. T. M.,

Amaro, J., ... & Osório, F. S. (2020). A software architecture for autonomous vehicles: Team
lrm-b entry in the first carla autonomous driving challenge. arXiv preprint arXiv:2010.12598.

U
N

IV
ER

SI
D

A
D

E
D

E
SÃ

O
 P

AU
LO

In
st

itu
to

 d
e

Ci
ên

ci
as

 M
at

em
át

ic
as

 e
 d

e
Co

m
pu

ta
çã

o

	Title page
	Title page
	Dedication
	Acknowledgements
	Epigraph
	Resumo
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	Contents
	Introduction
	Context
	Problem Statement
	Contributions
	Honors and Awards
	Thesis Outline

	Background
	Convolutional Neural Networks
	CNNs for classification and detection

	Behavior Cloning
	Computer vision
	Perspective camera model
	Stereo vision
	Visual motion
	Disparity estimation using deep learning

	Final Considerations

	Literature Review and Research Work
	Modular Navigation Architecture
	End-to-End Autonomous Driving
	Data-driven Path Planning
	LRM Lab - fourteen years of research in Autonomous and Intelligent Vehicles
	Final Considerations

	A modular pipeline for autonomous driving
	Map and planning
	OpenDRIVE
	Path Planning

	Perception and Sensing
	Height maps as obstacle detectors
	Instance segmentation
	Fusion with stereo camera
	3D detection in point clouds (dynamic objects):
	Tracking
	Prediction
	Linear Prediction
	Motion Prediction Using Deep Learning and Multimodal Data Fusion

	Risk assessment
	Decision-Making
	Localization
	Control Systems
	Lateral Control (MPC)

	Final Considerations

	End-to-end autonomous driving
	Monocular camera for end-to-end driving
	Stereo for end-to-end driving
	PWC-Net for stereo disparity estimation
	Implementation
	Synthetic disparity dataset
	Training
	Results in the Argoverse stereo benchmark
	Joint disparity, path and velocity estimation

	Multi-modal end-to-end Driving
	BEVSFusion
	CNN-Planner: A Convolutional neural network for path regression
	Separate path and velocity inference
	Intermediate Fusion for Joint Inference

	Final Considerations

	Hybrid architecture for autonomous driving
	Taking advantage of the modular pipeline
	CNN-Planner for a Hybrid architecture
	Time Execution
	Soft Real-Time System

	Final Considerations

	Evaluation and Validation
	Experimental setup
	Metrics
	Datasets
	Results
	Evaluating End-to-End and hybrid architectures for mapless AD
	Influence of sensor fusion in the data driven planner
	Results on CARLA Leaderboards (online)

	Analysis and Discussion
	Modular Architecture
	Hybrid Architecture
	Comparison and Final Remarks

	Conclusion
	Challenges and Future Directions

	Bibliography
	Publications

