Developing Secure
Sofiware in 2024

[©CanSecWest =

CanSecWest

Agenda

e |nfroduclion

e Hislory Lesson
e Where we are

e Recenl Evenls
e (all fo Aclion

e Conclusions

e Q& A

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Aboul me

e Vulnerabilily research and exploil development career
e Most recently Sr. Securily Engineer at Amazon Lab 126
e Boolslrapping a8 security starfup

e Peveloping slralegic Rust implemenialions

Previouslu:
\ [/N Andriid TRl
& amazon A M
o SECUIITY

iDEFEI‘IEE

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

Moalivalions

|. Improve global securily maximally through computer
science and engineering.

2. Raise awareness o build cross-industry momenfium
ond standardizalion.

3. Evangelize safer development methods and
lechnologies

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Disclaimer

This presentalion is my besl efforf fo show the stalte of the
arf and share my experiences, thoughls, and opinions.

Please [ake lime to think aboul the conltent and formulale
your own ideas/response.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Trust and Guaraniee

e Trust
= "belief in relability, truth, abilily or strength of”
= N this 3alk, of the securily of soffware humans build
e Guarantee
= "3 formal promise or assurance thal cerfain
condilions will be fulfilled”
= SoK Paper by Marcel Bohme is @ must read.

Bolth of these concepls are crucial fo understanding

soffware securily.
l.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://arxiv.org/html/2402.01944v1

Hislory Lesson

How did we gel herer?

oping Secure Soflware in 2024
([@JCanSecWest est 2024 — Joshua "jduck” Drake

Muy Journey

e Mischievious since birth

e Programming since age ||

e |nternel user since age |3

e Learned C programming in 1995
e Studied Math + CS in universily

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Muy Journey

 Modified client based on on ircll

= Abandoned! Do not use! [FreeBSD ports??)
e Found formal skring bugs sfter reading Teso paper.
e Realized securing soffware written in C is very hard.
e Decided fo pursue securifly as @ career palh.

G Stumble, Foowan, Prym F
Idle Mayhem, Bunk, Zurky, Lynch sabout
ninja nu) 1997

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://packetstormsecurity.com/files/25349/formatstring-1.2.tar.gz.html

Microsoft's Example
Microsoft had big securily problems in early 2000’s.

e Windows was around 96% markel share
e Several worms altacking various bugs

e Bill Gales took aclion

e Led lhe industry o many improvements

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://www.nbcnews.com/id/wbna4641234
https://www.microsoft.com/en-us/security/blog/2022/01/21/celebrating-20-years-of-trustworthy-computing/

RCE in Microsoft ATL

CVE-2008-2483

e Research by Ryan Smith
e Esftimated industry cost: 10-100 million

e |ncorrect characlters in source code: one

l.
c.

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://learn.microsoft.com/en-us/security-updates/securitybulletins/2009/ms09-037
https://learn.microsoft.com/en-us/security-updates/securitybulletins/2009/ms09-060

Undefined Behavior

e |ntentional ambiquily in the C Ianguage specificalion

= The C99 specificalion confains 193 mentions of UB.
o Do newer standards have more or less?
= Leaves compiler engineers withoul requirements

e Birfhed many securily issues, bugs, and even loss of
human life

e Ambiquily is the inverse of guaraniee

.
c.

3.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://gist.github.com/Earnestly/7c903f481ff9d29a3dd1
https://www.youtube.com/watch?v=k9N8OrhrSZw
https://www.safetyresearch.net/toyota-unintended-acceleration-and-the-big-bowl-of-spaghetti-code/

(@)CanSecwest

Assumplions, Realily, and Evolulion

The reaslity is thal most humans make assumplions when
developing software.

For example, DJB assumed thal fype sizes wouldn’t
change in the fulure.

This evenluaslly led to a securily issue in his gmall
soffware when 64-bil started o emerge.

The reaslity is thal most developers make far more

assumplions.
l.

oping Secure Soflware in 2024
est 2024 — Joshua "jduck” Drake

https://lwn.net/Articles/820969/

Where we are

Where does all thal lead?

oping Secure Soflware in 2024
([@JCanSecWest est 2024 — Joshua "jduck” Drake

We Are In a Bad PlacelM

Problems:

e People problems...

e Securily indusiry fails
e Government fails

e Soffware vendor fails

Polenlial solulions coming lafer in the talk

NOTE: Please forgive the impending rant...

Developing Secure Software in 2024
CanSecWesl 2024 — Joshua "jduck” Drake

(@)CanSecwest

People Problems

e Perceived slaffing crisis
= Nol enough qualified practioners
e |nsufficient developer and security educalion
= Many developers don’t know securify
= Many securily people don’'t know development

We have 3 lol to learn from each ofher

Open your minds and seek o learn!

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Securily Induslry Fails

e Security products shipping with trivial securily bugs
o Lack of scientific approach / rigor

= Tons of privalte reporting and silent fixes

= Assessments lime-boxed and poinf-in-fime

= Review scope is oo |arge fo deliver qualily
e Unwilling fo jump in to fix the code

| bel you can think of other things foo!

NOTE: We should celebrate exceptions and seek to learn from them.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Government Fails

Lack of requlaltion on fhe software indusiry has led o
forseeable failures.

Zero-day markels removes many lalented persons from
the pool of qualified security praclitioners.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Sofiware Vendor Fails

e Markel incentives undermine securify

= (ood, Fasl, Cheap -- Pick two.
e No Secure SDLC?

= Microsoft SDL was born 20 years ago.
e C and C++ widely used, bul error prone
e |gnore compiler warnings
e |gnore slalic analysis ool oulput
e Tesling severely lacking

= Fuzz much??

NOTE: We should celebrate exceptions and seek to learn from them.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Recenl Evenls

Whal’'s going on?

oping Secure Soflware in 2024
([@JCanSecWest est 2024 — Joshua "jduck” Drake

All Aboul Software Safely

People are gelting serious aboul "safely” in codina.

e Temporal safely

e Spalial safely |(bounds])
e Type safely

e Definite inifialization

e Thread safely

Check oul Saar Amar [Dec 2022) and David Teller [Feb
2023] wrilings.

.
c.

3.
oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://saaramar.github.io/memory_safety_blogpost_2022/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://yoric.github.io/post/safety-and-security/

Government Aclivism
Governments turning Memory Safely into a MEME!

Several papers and Federal Regsiter RFls (and response
comments on regulalions.gov)

e 2022 - NSA Paper on Memory Safely
e 2023 - Nalional Cybersecurity Strategy + RFI
e 2023 - Secure by Design (CISA + 13 other countries)
e 2024 - Back to the Building Blocks [ONCD) []
= Resulls from 2023 RFI

.
2. | |
3. [J

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.regulations.gov/docket/ONCD-2023-0002/comments
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://www.regulations.gov/docket/CISA-2023-0027/comments
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

Indusliry Aclivily

Even before the recent federal push, several vendors are
leading by example.

e Google - Rust in Android, donated $1 mil
e Rusl al Microsoff - win32k

e Apple invesling in Swift in the kernel

e Rustin the Linux Kernel

Also, many slarfups are making smarl choices.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Hardware: MTE

Memory Tagging Exfension

64-bit ARM spalial/temporal safely enforcement

e Unfortuantely, probalistic (only N-fags)

Present in Google Pixel 8 and 8 Pro and hopefully ofhers

e [Disabled by defaull in Pixel OS5, bul easy o enable
e Enabled by defaull in
e EXposes poor soffware qualily!

l.
c.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://source.android.com/docs/security/test/memory-safety/arm-mte
https://dustri.org/mte/
https://grapheneos.org/

Hardware: CHERI

Capabilily Hardware Enhanced RISC Instructions (CHERI)

7

e "joinlt research project of SRI Infernalional and the

Universitly of Cambridge fo revisit fundam

improve sysltem securily”

Capabilities are bounded pointers / canno

enltal design

choices in hardware and soffware o dramalically

' be forged

Expect silicon in fall 2024 (fingers crossed

I|=0r now: Morello project
c.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.morello-project.org/

OpenSSF

Open Source Securily Foundalion

e "seeks o make it easier [o susltainably secure the
developmeni, maintenance, and consumplion of the
open source soffware (0SS] we all depend on.”

Funded by the Linux Foundalion

Many efforls: Training, Scorecard, Alpha-0mega, Memory
Safely WG, elc

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://openssf.org/

(@)CanSecwest

C++ Communily

The C++ communily is faking safely seriously, but
unclear whal will be slandardized and when.

Maybe C++267

e Bjarne Siroustrup - C++ Safely Profiles elc
e Herb Sutter - cppfront, ISO C++ Chair, blogging
e Sean Baxter (] - "Memory-safe C++”

W

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

https://github.com/bjarneStroustrup/profiles
https://github.com/hsutter/cppfront
https://herbsutter.com/2024/03/11/safety-in-context/
https://twitter.com/seanbax

Defining Undefined Behavior

Shafik Yaghmour (Intel) is working fo drive change
around "undefined behavior’.

| emailed him with encouragement, bul no response :-/

Document behavior in the spec based on empirical
observalions

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://community.intel.com/t5/Blogs/Tech-Innovation/Tools/Why-do-we-need-a-Undefined-Behavior-Annex-for-the-C-standard/post/1574397
https://wg21.link/P1705

Other Interesting SIuff - Fil-C

Fil-C is @ modified compiler o produce memory safe
programs from C source code.

"The Fil-C Manifesto: Garbage In, Memory Safefty Oufl”
by Filip Jerzy Pizlo | |

oping Secure Soflware in 2024

@CanSechst est 2024 — Joshua "jduck” Drake

https://github.com/pizlonator/llvm-project-deluge
https://twitter.com/filpizlo

Call lo Aclion

Whal can we do?

oping Secure Soflware in 2024
([@JCanSecWest est 2024 — Joshua "jduck” Drake

Hol Buzzwords
You should know whal these mean:

o Shift left
= Move lesling earlier in the process
= [Jevelopers lose conftext over lime -- lighter feedback
loops are more efficient
e DevSecOps
= |nlegrale securily processes info development
pipelines
= o block or nol to block? Thal is the question

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Aboul CWE

Common Weaknesses Enumeralion

e CVEs lesser-known little brother

e Huge calalog of ways developers have iniroduced
securily issues into soffware

e |ncludes many real-world code excerpls

e Supporls mulliple languages and views

e Should be sludied by every developer

e See also Top 25 elc

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://cwe.mitre.org/about/index.html

Implement SSDLC

Secure Soffware Development Life Cycle

Software Development Life Cycle (SDLC) Process

‘a "lIrIE'\"
Testing

Image provided as an example only

Developing Secure Software in 2024
@CBHSZCWES' CanSecWest 2024 — Joshua "jduck” Drake 33 / 55

https://codesigningstore.com/secure-software-development-life-cycle-sdlc
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf

Design Phase
Early choices have long-lasling impact.

e 0n securily baselines
e 0On maintenance burden

Every fealure is @ polential altack surface.
e Design with response in mind

Programming Language choices inheril fechnical debt

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Programming Language Choice

Offen viewed as a religious lopic with many faclors to
consider. Some (subjeclive] properlies:

lang perf. gel compiled wesaknesses debug

C high medium high high
C++ high medium high high
Rust high high low low
Go high medium low low
Python Ilow n/a low low

| use and recommend modern Iangauges

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

Thoughts on C

e A |language for compuler wizards
= Literal minefield of inconsistency
= [mmense burden pul on the developer

e Liltle to no improvements for @ long, long lime
= Why nof improve string APIs??

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Thoughts on C++

e Many improvements bul often with new foofguns
= Example: move semanlics in C++ |
e Backward compalibility is @ primary goal
= Leads to "C/C++" code
= Guarantees require breaking changes
e Adoplion rate is VERY slow
= Most C++ teams use C++ 17 al best

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Thoughtls on Rust/Go

|deal languages for the modern world.

e Benefil from decades of learning aboul soffware
construclion.
e Make it easier o write high qualily code
e Comparable performance o C and C++
e Cost is mainly learning curve and memory
= Compulers have never been faster and memory has
never been cheaper

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

(@)CanSecwest

Obligalory Rust Slide

Bias warning: | ¥ Rust

o Safely focus

e Faslt & Efficient

e Mulli platform support
e ECcosysliem

e Empowering

Bul this is nol a Ialk on Rust.

oping Secure Soflware in 2024
est 2024 — Joshua "jduck” Drake

Threal Modeling
Threal Modeling is crucial

o Work with experienced securily personel

e Who uses the software? How?

e Whal assels are involved? How are they proftected?
e |dentify miligalions and implement them

Your threal model is 8 living document

Consider publishing if

l.
c.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://github.com/iriusrisk/OpenThreatModel
https://owasp.org/www-community/Threat_Modeling

Implementalion Phase
While construcling, be diligent and keep learnina.

|. Hopefully you picked @ modern Ianguage

2. Creale and adhere [o coding guidelines / standards
3. Conducl code reviews with qualified colleages

4. Pay close sttention o compiler warnings

5. Use any and all stalic analysis tools

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Tesling
Wirite lols of tesls

e Unil fests, Integralion tests
o Leverage fuzz leslingl

USE SANITIZERS: Address, Thread, UB
e Especially if you're using C or C++
Test your code changes yourself

e (Jbserve your soffware’s behavior first hand
e Who belter to know if iF's working correctly?

Developing Secure Software in 2024
(©JCanSecWest CanSecWest 2024 — Joshua "jduck” Drake

Verificalion
Formal verificalion is @ desirable properlu.
e Coq, Frama-C, CBMC, Kani (for Rusl], efc

Widely considered the ullimate in trust and guaraniees

Butl il's nol @ panacea either

o Verifiers are soffware oo

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

https://news.ycombinator.com/item?id=39191507

Posl-Deplouyment

|. Periodically re-assessing security

e The environment changes, remember gmail?

2. Invilte review - open source / bug bounlies / elc
e Marcel wrole aboul this in his paper, and | agree.
e This kind of adversarial relalionship is virfluous.

Securily is @ process.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Conclusions

Whal | hope you learned

oping Secure Soflware in 2024
([@JCanSecWest est 2024 — Joshua "jduck” Drake

General Tekewaus |

Transparency -- we need more

e How is your feam investing in securitly?
e Whal is your soffware made of? (SBOM]
e Who audited whal?
» Tracked somelimes, butl indirectly (ie. CVE credits])
e Whal had liltle or no review?
e Whatl lesls run in CI?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

General Takeawaus |

Required securily classes

e | | Computler securily 10l
= Core concepls
= History of attacks and defenses
= Modern besl praclices

Modern tools incorporalte learnings from previous failures

e Feed failures back infto securily festing pipeline

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Tekeaways for Managemenl
Management must sel direction appropriately

|. Invest in improving software qualily
2. Security bugs are bugs
e Less bugs means less security bugs

Evidence shows thal belter qualily leads to belter
efficiency AND cosl savings

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://www.linkedin.com/pulse/top-reasons-why-businesses-should-invest-software-quality-8etde/

Tekeawaus for Developers

|. More configurable fealures flags

e Allow users fo loggle fealures

2. Choose modern Ianguages and tools/foolchains!
3. Learn more aboutl securily issues [CWE])

4. Tesl, tesl, fuzz tesl, use sanitizers.

5. Talk to decision makers aboul prioritizing qualily

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

Tekeawauys for Securily Praclilioners
Teach your skills! Take an apprentlice!
Lel's gel scientific!

e Consider your projecls as collections of experiments

e Document them using Hypothesis / Experiment Design
/ Noles / Resulls formal

e |ncrease rigor, especially in security tesling.

Learn more aboul development

e Don’l be afraid o conlribule code

@CanSchesr oping Secure Software in 2024

est 2024 — Joshua "jduck” Drake

All the safely is nol enough
Bugs will slill happen

e Command injection, SQL injection, XSS, all the injections
e Logic errors, crypto fails

o Authenlication missing or poorly implemented

e ..3Nd SO ON

Memory safely issues are reportedly 70% of the
problems thal Microsoft and Google encounter and fix.

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

Conclusion
Developing secure software is hard work.

Development orgs musl lake ownership and make wise
decisisons.

Modern tools and techniques can help o reduce the
burden.

Please Iake these concepls back fo your development
orgs and push for improvements.

e Remember: Securily is @ process and a team sport.

Go read Marcel's paper!!

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

Thanks for your limel
Any queslions or commenlise

Feel free fo reach oul |aler:

Joshua J. Drake
jduck @ Twitter/Discord/Mastadon/elc

oping Secure Soflware in 2024

(@)CanSecwest est 2024 — Joshua "jduck” Drake

Aboul these slides

Slides were crealed in

You can exporf by printing the

oping Secure Soflware in 2024

(@JCanSecWest est 2024 — Joshua "jduck” Drake

https://revealjs.com/markdown/
http://192.168.25.131:8000/?print-pdf

the real end. reallu.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck” Drake

(@)CanSecwest

