
Developing Secure
Software in 2024

Joshua "jduck" Drake
March 21st, 2024
CanSecWest

1 /  55



Agenda

Introduction
History Lesson
Where we are
Recent Events
Call to Action
Conclusions
Q & A

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 2 /  55



About me

Vulnerability research and exploit development career
Most recently Sr. Security Engineer at Amazon Lab126
Bootstrapping a security startup
Developing strategic Rust implementations

Previously:

   

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 3 /  55



Motivations

1. Improve global security maximally through computer
science and engineering.

2. Raise awareness to build cross-industry momentum
and standardization.

3. Evangelize safer development methods and
technologies

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 4 /  55



Disclaimer

This presentation is my best effort to show the state of the
art and share my experiences, thoughts, and opinions.

Please take time to think about the content and formulate
your own ideas/response.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 5 /  55



Trust and Guarantee

Trust
"belief in relability, truth, ability or strength of"
in this talk, of the security of software humans build

Guarantee
"a formal promise or assurance that certain
conditions will be fulfilled"
SoK Paper by Marcel Bohme is a must read.

Both of these concepts are crucial to understanding
software security.
1. SoK: Guarantees in Software Security

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 6 /  55

https://arxiv.org/html/2402.01944v1


History Lesson

How did we get here?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 7 /  55



My Journey

Mischievious since birth
Programming since age 11
Internet user since age 13
Learned C programming in 1995
Studied Math + CS in university

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 8 /  55



My Journey

Modified client based on on ircII
Abandoned! Do not use! (FreeBSD ports??)

Found format string bugs after reading Teso paper.
Realized securing software written in C is very hard.
Decided to pursue security as a career path.

1. Exploiting Format String Vulnerabilities by scut

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 9 /  55

https://packetstormsecurity.com/files/25349/formatstring-1.2.tar.gz.html


Microsoft's Example

Microsoft had big security problems in early 2000's.

Windows was around 96% market share
Several worms attacking various bugs
Bill Gates took action
Led the industry to many improvements

1. 
2. 

Bill Gates sends security memo to customers
Celebrating 20 Years of Trustworthy Computing

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 10 /  55

https://www.nbcnews.com/id/wbna4641234
https://www.microsoft.com/en-us/security/blog/2022/01/21/celebrating-20-years-of-trustworthy-computing/


RCE in Microsoft ATL

CVE-2009-2493

Research by Ryan Smith
Estimated industry cost: 10-100 million
Incorrect characters in source code: one

1. 
2. 

MS09-037: Microsoft Active Template Library (ATL) RCE
MS09-060: Microsoft ATL ActiveX Controls for Microsoft Office RCE

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 11 /  55

https://learn.microsoft.com/en-us/security-updates/securitybulletins/2009/ms09-037
https://learn.microsoft.com/en-us/security-updates/securitybulletins/2009/ms09-060


Undefined Behavior

Intentional ambiguity in the C language specification

The C99 specification contains 193 mentions of UB.
Do newer standards have more or less?

Leaves compiler engineers without requirements

Birthed many security issues, bugs, and even loss of
human life 😠

Ambiguity is the inverse of guarantee

1. 
2. 
3. 

C99 List of Undefined Behavior
What every programmer should know and fear
Toyota Unintended Acceleration

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 12 /  55

https://gist.github.com/Earnestly/7c903f481ff9d29a3dd1
https://www.youtube.com/watch?v=k9N8OrhrSZw
https://www.safetyresearch.net/toyota-unintended-acceleration-and-the-big-bowl-of-spaghetti-code/


Assumptions, Reality, and Evolution

The reality is that most humans make assumptions when
developing software.

For example, DJB assumed that type sizes wouldn't
change in the future.

This eventually led to a security issue in his qmail
software when 64-bit started to emerge.

The reality is that most developers make far more
assumptions.
1. A remote code execution vulnerability in qmail (LWN)

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 13 /  55

https://lwn.net/Articles/820969/


Where we are

Where does all that lead?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 14 /  55



We Are In a Bad Placetm

Problems:

People problems...
Security industry fails
Government fails
Software vendor fails

Potential solutions coming later in the talk

NOTE: Please forgive the impending rant...

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 15 /  55



People Problems

Perceived staffing crisis
Not enough qualified practioners

Insufficient developer and security education
Many developers don't know security
Many security people don't know development

We have a lot to learn from each other

Open your minds and seek to learn!

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 16 /  55



Security Industry Fails

Security products shipping with trivial security bugs
Lack of scientific approach / rigor

Tons of private reporting and silent fixes
Assessments time-boxed and point-in-time
Review scope is too large to deliver quality

Unwilling to jump in to fix the code

I bet you can think of other things too!

NOTE: We should celebrate exceptions and seek to learn from them.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 17 /  55



Government Fails

Lack of regulation on the software industry has led to
forseeable failures.

Zero-day markets removes many talented persons from
the pool of qualified security practitioners.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 18 /  55



Software Vendor Fails

Market incentives undermine security
Good, Fast, Cheap -- Pick two.

No Secure SDLC?
Microsoft SDL was born 20 years ago.

C and C++ widely used, but error prone
Ignore compiler warnings
Ignore static analysis tool output
Testing severely lacking

Fuzz much??
NOTE: We should celebrate exceptions and seek to learn from them.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 19 /  55



Recent Events

What's going on?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 20 /  55



All About Software Safety

People are getting serious about "safety" in coding.

Temporal safety
Spatial safety (bounds)
Type safety
Definite initialization
Thread safety

Check out Saar Amar (Dec 2022) and David Teller (Feb
2023) writings.

1. 
2. 
3. 

Survey of security mitigations and architectures, December 2022
Intro to Memory Unsafety for VPs
About Safety, Security and yes, C++ and Rust

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 21 /  55

https://saaramar.github.io/memory_safety_blogpost_2022/
https://alexgaynor.net/2019/aug/12/introduction-to-memory-unsafety-for-vps-of-engineering/
https://yoric.github.io/post/safety-and-security/


Government Activism

Governments turning Memory Safety into a MEME!

Several papers and Federal Regsiter RFIs (and response
comments on regulations.gov)

2022 - NSA Paper on Memory Safety
2023 - National Cybersecurity Strategy + RFI
2023 - Secure by Design (CISA + 13 other countries)
2024 - Back to the Building Blocks (ONCD) [ ]

Results from 2023 RFI

1. 
2.  ( )
3.  ( )

NSA Paper on Memory Safety, Nov 2022
National Cybersecurity Strategy 107 RFI comments
Secure By Design 83 RFI comments

LINK

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 22 /  55

https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.regulations.gov/docket/ONCD-2023-0002/comments
https://www.cisa.gov/sites/default/files/2023-10/SecureByDesign_1025_508c.pdf
https://www.regulations.gov/docket/CISA-2023-0027/comments
https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf


Industry Activity

Even before the recent federal push, several vendors are
leading by example.

Google - Rust in Android, donated $1 mil
Rust at Microsoft - win32k
Apple investing in Swift in the kernel
Rust in the Linux Kernel

Also, many startups are making smart choices.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 23 /  55



Hardware: MTE

Memory Tagging Extension

64-bit ARM spatial/temporal safety enforcement

Unfortuantely, probalistic (only N-tags)

Present in Google Pixel 8 and 8 Pro and hopefully others

Disabled by default in Pixel OS, but easy to enable
Enabled by default in 
Exposes poor software quality!

1. 
2. 

Arm Memory Tagging Extension AOSP Docs
Collection of MTE related crashes

GrapheneOS

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 24 /  55

https://source.android.com/docs/security/test/memory-safety/arm-mte
https://dustri.org/mte/
https://grapheneos.org/


Hardware: CHERI

Capability Hardware Enhanced RISC Instructions (CHERI)

"joint research project of SRI International and the
University of Cambridge to revisit fundamental design
choices in hardware and software to dramatically
improve system security"

Capabilities are bounded pointers / cannot be forged

Expect silicon in fall 2024 (fingers crossed)

For now: Morello project
1. 
2. 

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.morello-project.org/

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 25 /  55

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/
https://www.morello-project.org/


OpenSSF

Open Source Security Foundation

"seeks to make it easier to sustainably secure the
development, maintenance, and consumption of the
open source software (OSS) we all depend on."

Funded by the Linux Foundation

Many efforts: Training, Scorecard, Alpha-Omega, Memory
Safety WG, etc

1. https://openssf.org/

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 26 /  55

https://openssf.org/


C++ Community

The C++ community is taking safety seriously, but
unclear what will be standardized and when.

Maybe C++26?

Bjarne Stroustrup - C++ Safety Profiles etc
Herb Sutter - cppfront, ISO C++ Chair, blogging
Sean Baxter ( ) - "Memory-safe C++"

1. 
2. 
3. 

Bjarne's Profiles repo on GitHub
Herb's CPPFront repo on GitHub
C++ safety, in context by Herb

@seanbax

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 27 /  55

https://github.com/bjarneStroustrup/profiles
https://github.com/hsutter/cppfront
https://herbsutter.com/2024/03/11/safety-in-context/
https://twitter.com/seanbax


Defining Undefined Behavior

Shafik Yaghmour (Intel) is working to drive change
around "undefined behavior".

I emailed him with encouragement, but no response :-/

💡 Document behavior in the spec based on empirical
observations

1. 
2. 

P1705R1: Enumerating Core Undefined Behavior in C++
Why do we need a Undefined Behavior Annex for the C++ standard?

https://wg21.link/P1705

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 28 /  55

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://community.intel.com/t5/Blogs/Tech-Innovation/Tools/Why-do-we-need-a-Undefined-Behavior-Annex-for-the-C-standard/post/1574397
https://wg21.link/P1705


Other Interesting Stuff - Fil-C

Fil-C is a modified compiler to produce memory safe
programs from C source code.

"The Fil-C Manifesto: Garbage In, Memory Safety Out!"

by Filip Jerzy Pizlo ( )

1. Fil-C on GitHub

@filpizlo

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 29 /  55

https://github.com/pizlonator/llvm-project-deluge
https://twitter.com/filpizlo


Call to Action

What can we do?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 30 /  55



Hot Buzzwords

You should know what these mean:

Shift left
Move testing earlier in the process
Developers lose context over time -- tighter feedback
loops are more efficient

DevSecOps
Integrate security processes into development
pipelines
To block or not to block? That is the question

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 31 /  55



About CWE

Common Weaknesses Enumeration

CVEs lesser-known little brother
Huge catalog of ways developers have introduced
security issues into software
Includes many real-world code excerpts
Supports multiple languages and views
Should be studied by every developer
See also Top 25 etc

1. CWE About Page - MITRE

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 32 /  55

https://cwe.mitre.org/about/index.html


Implement SSDLC

Secure Software Development Life Cycle

Image provided as an example only

1. 
2. 

Secure SDLC by CodeSigningStore (digicert)
NIST Secure Software Development Framework

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 33 /  55

https://codesigningstore.com/secure-software-development-life-cycle-sdlc
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-218.pdf


Design Phase

Early choices have long-lasting impact.

On security baselines
On maintenance burden

Every feature is a potential attack surface.

Design with response in mind

Programming Language choices inherit technical debt

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 34 /  55



Programming Language Choice

Often viewed as a religious topic with many factors to
consider. Some (subjective) properties:

lang perf. get compiled weaknesses debug

C high medium high high

C++ high medium high high

Rust high high low low

Go high medium low low

Python low n/a low low

I use and recommend modern langauges

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 35 /  55



Thoughts on C

A language for computer wizards
Literal minefield of inconsistency
Immense burden put on the developer

Little to no improvements for a long, long time
Why not improve string APIs??

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 36 /  55



Thoughts on C++

Many improvements but often with new footguns
Example: move semantics in C++11

Backward compatibility is a primary goal
Leads to "C/C++" code
Guarantees require breaking changes

Adoption rate is VERY slow
Most C++ teams use C++17 at best

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 37 /  55



Thoughts on Rust/Go

Ideal languages for the modern world.

Benefit from decades of learning about software
construction.
Make it easier to write high quality code
Comparable performance to C and C++
Cost is mainly learning curve and memory

Computers have never been faster and memory has
never been cheaper

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 38 /  55



Obligatory Rust Slide
Bias warning: I ❤️ Rust

Safety focus
Fast & Efficient
Multi platform support
Ecosystem
Empowering

But this is not a talk on Rust.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 39 /  55



Threat Modeling

Threat Modeling is crucial

Work with experienced security personel
Who uses the software? How?
What assets are involved? How are they protected?
Identify mitigations and implement them

Your threat model is a living document

Consider publishing it

1. 
2. 

OpenThreatModel on GitHub
Threat Modeling on OWASP

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 40 /  55

https://github.com/iriusrisk/OpenThreatModel
https://owasp.org/www-community/Threat_Modeling


Implementation Phase

While constructing, be diligent and keep learning.

1. Hopefully you picked a modern language
2. Create and adhere to coding guidelines / standards
3. Conduct code reviews with qualified colleages
4. Pay close attention to compiler warnings
5. Use any and all static analysis tools

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 41 /  55



Testing

Write lots of tests

Unit tests, Integration tests
Leverage fuzz testing!

USE SANITIZERS: Address, Thread, UB

Especially if you're using C or C++

Test your code changes yourself

Observe your software's behavior first hand
Who better to know if it's working correctly?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 42 /  55



Verification

Formal verification is a desirable property.

Coq, Frama-C, CBMC, Kani (for Rust), etc

Widely considered the ultimate in trust and guarantees

But it's not a panacea either

Verifiers are software too

1. The C bounded model checker: criminally underused

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 43 /  55

https://news.ycombinator.com/item?id=39191507


Post-Deployment

1. Periodically re-assessing security
The environment changes, remember qmail?

2. Invite review - open source / bug bounties / etc
Marcel wrote about this in his paper, and I agree.
This kind of adversarial relationship is virtuous.

Security is a process.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 44 /  55



Conclusions

What I hope you learned

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 45 /  55



General Takeways I

Transparency -- we need more

How is your team investing in security?
What is your software made of? (SBOM)
Who audited what?

Tracked sometimes, but indirectly (ie. CVE credits)
What had little or no review?
What tests run in CI?

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 46 /  55



General Takeaways II

Required security classes

💡 Computer security 101
Core concepts
History of attacks and defenses
Modern best practices

Modern tools incorporate learnings from previous failures

Feed failures back into security testing pipeline

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 47 /  55



Takeaways for Management

Management must set direction appropriately

1. Invest in improving software quality
2. Security bugs are bugs

Less bugs means less security bugs

Evidence shows that better quality leads to better
efficiency AND cost savings

1. Top reasons why businesses should invest in software quality

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 48 /  55

https://www.linkedin.com/pulse/top-reasons-why-businesses-should-invest-software-quality-8etde/


Takeaways for Developers

1. More configurable features flags
Allow users to toggle features

2. Choose modern languages and tools/toolchains!
3. Learn more about security issues (CWE)
4. Test, test, fuzz test, use sanitizers.
5. Talk to decision makers about prioritizing quality

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 49 /  55



Takeaways for Security Practitioners

Teach your skills! Take an apprentice!

Let's get scientific!

Consider your projects as collections of experiments
Document them using Hypothesis / Experiment Design
/ Notes / Results format
Increase rigor, especially in security testing.

Learn more about development

Don't be afraid to contribute code

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 50 /  55



All the safety is not enough

Bugs will still happen

Command injection, SQL injection, XSS, all the injections
Logic errors, crypto fails
Authentication missing or poorly implemented
...and so on

Memory safety issues are reportedly 70% of the
problems that Microsoft and Google encounter and fix.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 51 /  55



Conclusion

Developing secure software is hard work.

Development orgs must take ownership and make wise
decisisons.

Modern tools and techniques can help to reduce the
burden.

Please take these concepts back to your development
orgs and push for improvements.

Remember: Security is a process and a team sport.

Go read Marcel's paper!!
Developing Secure Software in 2024

CanSecWest 2024 — Joshua "jduck" Drake 52 /  55



Thanks for your time!
Any questions or comments?
Feel free to reach out later:

Joshua J. Drake
jduck @ Twitter/Discord/Mastadon/etc

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 53 /  55



About these slides
Slides were created in 

You can export by printing the 

markdown with nreveal.js

PDF

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 54 /  55

https://revealjs.com/markdown/
http://192.168.25.131:8000/?print-pdf


the real end. really.

Developing Secure Software in 2024
CanSecWest 2024 — Joshua "jduck" Drake 55 /  55


