
1

• Daniel Komaromy @kutyacica

• Founder and Head of Research, TASZK Security Labs

• Pwn2Own, Black Hat, Recon, Ekoparty, QCSS, Hardwear.io, etc.

• Working on baseband since 2010, RCE and Pivot CVEs in:
Qualcomm (as QPSI engineer), then Samsung, Huawei, Mediatek

2

#whoami

3

Daniel Komaromy

all image copyrights for stills of There Will Be Blood owned by Paramount Vintage and Miramax Studios

Exploiting Basebands in Radio L2

• Part 1: Background

• Part 2: Finding new bugs

• Part 3: Creating exploitable primitives

• Part 4: Crafting a proof-of-concept

• Part 5: Robust exploitation

4

5

Part 1: I have a string of tools, all ready to work.

Baseband 101

• Cellular communication interface, usually implemented in
standalone firmware inside System-on-Chip architectures

• Originally, closely matches 3GPP specifications

• physical access, radio link, “actual services” (Calls, Texts, Mobility
Mgmt, Session Mgmt, Data Traffic itself, etc)

• Nowadays, increasingly contains other services over TCP/IP as well
as other connectivity technologies like GPS/WiFi

6

Prior Art / Re-Breaking Band
• Summary from my recent Basebanheimer talk [Hardwear.io 2023]

• Shannon: codename of the Baseband RTOS in Exynos chips

• Runs on a Cortex-A ARM, connected to Application Processor by a shared
memory architecture

• Shannon reverse engineering

• firmware format, RTOS internals ~intact since “Breaking Band”

• image extraction, baseband ramdumping, task IDing in disassembled
code “just work” as before

• host of new public tooling for re, emu, fuzzing [Grant H. et al]

7

https://github.com/TaszkSecLabs/presentations/blob/main/hwio_bbheimer.pdf

Prior Art / Re-Breaking Band

• 2015: 1st Samsung baseband pwn [“Breaking Band” Recon 2016]

• Lot of work published on finding RCE vulns in Radio Layer 3 since

• Samsung made progress

• switched to MMU, added SSP, fixed NX and CP dbg access gaps

• Most recent: two talks by Google on Samsung baseband heap
exploitation in Layer 3 & above [Offensivecon, BH 2023]

8

Research Timeline

• 2023 March: dust off / upgrade tools, identify attack surface, find a
chain of RCE vulns, implement over-the-air poc

• 2023 April: report to Samsung

• 2023 November: CVEs published

• 2023 November, 2024 March: additional work on making the
exploit robust for IRL

9

10

Part 2: There’s a whole ocean of bugs under our Layer 3

GPRS 101

11

3GPP: 44.060 (rlc/mac), 44.064 (llc), 44.065 (sndcp), 24.008 (gmm/sm)

• GPRS Protocols, User Plane

• GPRS Protocols, Control Plane

GPRS 101

12

• MS / UE: the mobile phone

GPRS 101

13

• Radio Access Network

GPRS 101

14

• Um aka Air Interface aka
Access Stratum

GPRS 101

15

• Layer 2: RLC/MAC

• one protocol for UP/CP data,
but different details

• rcv and ack individual radio
frames

• manage “flows” of frames
(Traffic Block Flows)

• re-assemble into variable
length LLC PDUs

GPRS 101

16

• Core Network (SGSN, GGSN)
aka GPRS Non-Access Stratum

GPRS 101

17

• LLC

• serves both CP and UP

• multiplexes “SAPIs”

• adds in-order delivery support

• Control Plane: GMM/SM

• the classic NAS protocols: this is the
area of all those TLV parsing bugs

• User Plane: SNDCP, IP, etc

Layer 2 As Attack Surface
• Traditional view: packet sizes in L2 are too small for memory

corruption bug interest

• But: ciphering is applied a layer above, L2 (RLC/LLC) PDUs are not
subject to it!

• the encryption/integrity protection is applied to its SDUs
(SNDCP/GMM/CM/etc)

• also true in evolved access technologies after 2G!

• This way, attacker can not only forego worrying about AKAs, but
faking a Cell Tower altogether! [refs: SigOver KAIST, aLTEr RuB]

18

Layer 2 As Attack Surface
• Our approach:

• flip “too small” on its head, look for vulns in re-assembly itself!

• rich history from TCP/IP world of such bugs … same concept

• Results:

• Basebanheimer talk: CVE-2022-21744 Mediatek GPRS RLC PNCD
fragment re-assembly buffer overflow

• this talk: CVE-2023-41111/CVE-2023-41112 Samsung GPRS RLC
Data Block re-assembly buffer overflow

19

RLC to LLC

• RLC data block max size: 22/32/38/52 (Coding Scheme 1/2/3/4)

• LLC PDU max size: 1560 bytes

• Therefore, re-assembly must be supported

• GPRS RLC Re-assembly procedure (44.060 9.1.11, 9.1.12)

• GPRS and E-GPRS differ (more on that later), our focus is GPRS

20

RLC Data Blocks

21

• Traffic Flow Identifier (TFI), Block
Sequence Number (BSN): IDs

• FBI: Final Block Indicator (of the TBF
not the LLC PDU!)

• More Bit (M) | Extension Bit (E)

• E: is this BSN_E/LI_M_E octet not
followed by any more “LI_M_E” header
octet

• M: is there another PDU fragment
following the one matched to this
LI_M_E octe

RLC Data Re-Assembly
• The idea was to support all scenarios, RLC Data block containing:

• one complete LLC PDU or first fragment of one LLC PDU

• Nth or final fragment of ongoing LLC PDU

• final or only fragment on one LLC PDU plus first fragment of
next LLC PDU

• multiple small size LLC PDUs all fit in one block

• etc

22

• The spec allows ONLY ONE fragment per LLC PDU to have an LI
field

• makes sense: all except the last should “fill out” the current
block, so it saves one byte to use M(ore): YES and E(xtension): NO
in the previous fragment’s LI_M_E

• To provide maximum “efficiency”, a corner case is allowed: LI == 0

• this is supposed to be present for max 1 fragment per LLC PDU, if
the final fragment of the LLC PDU WOULD fit an RLC data block
without an LI octet for it

Optimized to Death

TFI_FBI | BSN_E | LI(0)_M(0)_E(1) | fragm N-1: 19 bytes

is more efficient storage (by 2 bytes ….) than:

TFI_FBI | BSN_E | fragm N: 20 bytes

TFI_FBI | BSN_E | LI(19)_M(0)_E(1) | fragm N-1: 19 bytes

TFI_FBI | BSN_E | LI(19)_M(0)_E(1) | fragm N: 19 bytes

TFI_FBI | BSN_E | LI(1)_M(1)_E(0) | LI_M_E xyz | fragm N+1: 1 byte | xyz

Optimized to Death

• So if no fragments of an LLC PDU can have less than
block_size-3 bytes except for final

• Then this equation holds:

• max_fragm_count = (max_concat_size / min_block_size) + 1

• 79 = 1560/20 + 1

• … as long as you enforce max_concat_size AND min_block_size!

Optimized to Death

• Samsung’s code processing RLC data blocks parsed headers
twice:

• first to read all LI_M_E headers and calculate the number of
actual RLC data bytes in the PDU

• then to process the fragment(s) in the RLC Data block,
triggering re-assembly when necessary, saving fragments away
of current accumulating TBF when last not arrived yet

Samsung RLC Re-Assembly

CVE-2023-41111
• Bug #1: The first loop eats arbitrary number of LI_M_E headers with LI
== 0, without sanity checking for their combination, therefore the
calc’d data size can become < 20

• Bug #2: whet the current state is “LLC PDU fragment N>0 arrived”
and the second loop encounters an LI == 0, it doesn’t check for
further LI_M_E headers, simply saves the fragment with the
previously calc’d data size and ends processing of the data block

• The fragment saving function assumes from 79 = 1560/20 + 1 that
the fixed size 79 long array holding saved fragments will never
overflow as long as the 1560 maximum cumulative size is verified
before each fragment addition

28

Part 3: I’ve abandoned my Boundary Checking!

CVE-2023-41112

• We have an array OOB write, we can write way beyond

• But it’s not an obvious win

• Array in BSS: what are we corrupting? Side-effects?

• We write pointers to controlled data chunks, not controlled bytes

• Luckily, through a series of breaks and an additional vuln, we can
turn this into a perfectly controllable heap overflow

29

CVE-2023-41112

• But only if things go exactly right: many OOB write variations
result in crashes like negative size memcpy or free(0x1)

• This was to me the most interesting part of the entire chain, but
had cut some of the details here for time

• look out for the upcoming advisory post on labs.taszk.io with
extra info about the code flow

30

http://labs.taszk.io

CVE-2023-41112
• Remember EGPRS and differing RLC Data block format?

• in that path of 44.064, there can be a second set of fragments - and the struct and
concatenation function are shared in the Shannon code!

• the size of that second set of fragments is implicit from block size (see 44.064 for
details, all that matter to us is the behavior)

• With GPRS that array of the struct is always empty… except if we overflow into it

• This can result in a fake pointer, with a fake size, manifesting during the
concatenation

• In addition, the fatal flaw of the re-assembly function is that every iteration is copy-
slot-then-quit-if-size-maxed-out

• end-result: we don’t get N overflows… but we do get 1 ☺

31

CVE-2023-41112

80th fragment (1st overflow)
corrupts not_allocd_frag[0] to non-
zero block_offsets[80] value

This will mean that fragms[0] will
not be attempted to be freed!

32

state | bsn | LI_hdr_offset
pdu length

char[79] block_offsets
char[79] not_allocd_frag
____ | ____ | pad1 | pad 2

int[79] block_sizes
char *[79] fragms

char *[79] e_fragms
n_blks

CVE-2023-41112

80th fragment corrupts pad byte
from here, NOP

33

state | bsn | LI_hdr_offset
pdu length

char[79] block_offsets
char[79] not_allocd_frag
____ | ____ | pad1 | pad 2

int[79] block_sizes
char *[79] fragms

char *[79] e_fragms
n_blks

CVE-2023-41112

80th fragment corrupts fragms[0]
pointer to 0x14 (block_sizes[80])

We survive copying from it because
null page is mapped RO - and
freeing of the invalid ptr is skipped
as just shown!

34

state | bsn | LI_hdr_offset
pdu length

char[79] block_offsets
char[79] not_allocd_frag
____ | ____ | pad1 | pad 2

int[79] block_sizes
char *[79] fragms

char *[79] e_fragms
n_blks

CVE-2023-41112

80th fragment corrupts
e_fragms[0], manifesting a fake
additional copy source

Alloc order: size0 + size1 + …

Copy order: size0 + fake_size + …

If we get the modulo right and
fake_size > size79, we overflow
one time before the assembly loop
quits!

35

state | bsn | LI_hdr_offset
pdu length

char[79] block_offsets
char[79] not_allocd_frag
____ | ____ | pad1 | pad 2

int[79] block_sizes
char *[79] fragms

char *[79] e_fragms
n_blks

CVE-2023-41112

For instance:

Alloc order:

15x17 + 1x7 + 62x3 + 20 + 3 + 1
= 472

Copy order:

1x17 + 1x22 + 14x17 + 1x7 + 62x3
+ 20 = 490

36

state | bsn | LI_hdr_offset
pdu length

char[79] block_offsets
char[79] not_allocd_frag
____ | ____ | pad1 | pad 2

int[79] block_sizes
char *[79] fragms

char *[79] e_fragms
n_blks

CVE-2023-41112

No overflow here: in GPRS, this
array is never written (on purpose)

So n_blks is spared!

37

state | bsn | LI_hdr_offset
pdu length

char[79] block_offsets
char[79] not_allocd_frag
____ | ____ | pad1 | pad 2

int[79] block_sizes
char *[79] fragms

char *[79] e_fragms
n_blks

Crafting an Over-The-Air PoC

• Custom modification of Osmocom (osmo-pcu)

• Injection of arbitrary RLC Control Blocks: Basebanheimer talk

• Same done for RLC Data Blocks

• Code re-uses existing TBF (stealing priority from enqueued LLC
fragments to give it to the injected ones) or opens new if none

38

Crafting an Over-The-Air PoC

39

…

40

Part 4: What’s this? Why don’t I pwn this?

Shannon Heap 101
• Multiple heap implementations with

common:

• 32 byte inline chunk header, 4 byte
footer

• malloc/free API that selects algo
from first header field (“mid”)

• mid4: “front-end allocator”

• mid1: “back-end allocator”

• simple old-school coalescing
dlmalloc

41

size
prev size

is_free
next
prev

mid | refcnt

mid | refcnt
size request + 4

alloc filepath
alloc linenum

task cxt ptr
class

alloc count
guard

(0xAAAAAAAA)

What to overwrite?

• Technique publicized in 2023

• mid1: classic unsafe unlinking
write4

• mid4: corrupt 1st word of
chunk header from 0x04 to
0x01 to trigger the back-end
free algorithm instead

42

Heap Exploitation: Difficulties

• tl;dr: we wouldn’t have to care about mid4 internals for corruption alignment, we will
fake mid1 …

• But (almost all) allocations are in mid4!

• So for good heap feng shui we need to understand it still …

• … unless you have a “just works” allocation pattern (i.e. you don’t care about reliability/
repeatability of precise overwrites)

43

Heap Exploitation: Difficulties

• Visualization

• painful to develop without real-time tracing

• Shaping

• overlapping, non side-effect free allocations

• race conditions (timers etc)

44

Shannon mid4 Heap

45

pools_start
pools_end

pool_descrs

pool_bitmaps

pool count
pool bitmap count

next
prev
class

first chunk
bitmap

next
prev
class

first chunk
bitmap

next
prev
class

first chunk
bitmap

X | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | XX | X | X | … … … | X64 | 64 | 64 | … | 64

pool 32 freelist
pool 64 freelist
pool 128 freelist
pool 256 freelist

…

next
prev
class

first chunk
bitmap

next
prev
class

first chunk
bitmap

| 1 | 0 | 1 | 1 | 0 | … | 1 |

• 2048 bytes per pool, 2^N
pool classes

• all of it 1 allocation out of
the back-end

• pools are not pre-assigned
to classes

• empty pool goes back to
un-assigned

• allocator is first-pool-first-
slot-first

• only if a full pool has a
freed slot freed, does it
move to the head of the
class lookaside list

Heap Visualization

• Challenge: how to analyze, iterate heap shaping techniques

• Debug High Mode generates heap event trace in memory

• we get type (alloc/free), alloc size, callsite filepath/linenum

• CP Ramdump feature gives memory view (includes heap, heap cxt structs in BSS,
heap trace ringbuff in BSS)

• We have written our own sm_shadow (see: https://github.com/CENSUS/shadow,
pwndbg) for Ghidra

46

https://github.com/CENSUS/shadow

Heap Visualization

47

Heap Visualization

48

Heap Visualization

49

Heap Shaping with LLC

• Turns out, in our case, our target itself
presents great primitives

• Default LLC operation: UA mode
(UnAcknowledged)

• simple: verify CRC checksum, strip
LLC header, forward SDU to correct
SAPI

• LLC PDU types: U(nnumbered) frame,
I(nformation) frame, etc

Heap Shaping
• U frames can contain commands,

including SABM command to request
switching to A(cknowledged) mode

• In this mode, LLC must forward SNDCP
SDUs (sent as LLC I frames) in-order

• Meaning, it must accept them out of
order and wait for next-in-window to
arrive before forwarding any

• Mode only available for SNDCP (SAPIs
3, 5, 9, 11)

Heap Shaping
• U frames can contain commands,

including SABM command to request
switching to A(cknowledged) mode

• In this mode, LLC must forward SNDCP
SDUs (sent as LLC I frames) in-order

• Meaning, it must accept them out of
order and wait for next-in-window to
arrive before forwarding any

• Mode only available for SNDCP (SAPIs
3, 5, 9, 11)

Heap Shaping
• In Shannon, we get a great heap shaping primitive out of this:

• to-be-held I frames (i.e. SNDCP SDUs) stored on heap in linked
lists until next in-order expected has arrived

• controlled lifespan: almost fully (can trigger free of entire
window for SAPI)

• repeatability, patterns: four SAPIs, can interleave

• no side-effects (except for the temporary allocation in RLC:
bump out of the pool by using LLC header+footer size difference)

Exploit Plan
512 1 2

512

512

1 2

2

1

3

4

Spray with SAPI 3 to plug holes on
busy non-full pools of size class

Exploit Plan

512

512

1 2

2

1

3

4

512

2

1

3

6

4

5

Spray with SAPI 3 to plug holes on
busy non-full pools of size class

Spray with SAPI 5/9 alternating

Exploit Plan

512

2

1

3

64 5

Free SAPI 5 by sending idx 0

Exploit Plan

512

2

1

3

64 5

512

2

1

3

64 5

Free SAPI 5 by sending idx 0

Send RLC heap overflowing set of
fragments

Exploit Plan

512

2

1

3

64 5

512

2

1

3

64 5

512

2

1

3

64 5

Free SAPI 5 by sending idx 0

Send RLC heap overflowing set of
fragments

Free SAPI 9 by sending idx 0, to trigger
free on corrupted header preceded by
overflown data

Exploit Plan

Over-The-Air Implementation

• Adding LLC injection support in osmo-sgsn

• SABM support was missing entirely, so bit more involved

• Shannon did spring a few surprises too

• max window sizes allowed differ from spec for all 4 SAPIs

• first SABM response per SAPI always lacks a valid FCS, sending
twice works

Exploit Demo

61

62

Part 5: The Code sometimes challenges us, doesn’t it?

Improving Heap Shaping

• So … does this work?

• Not really :) (unless when lucky)

• With lot of failing and trial-and-error, identify and then fix
problems

• I spent easily more than 50% of the entire effort on this

63

Improving Heap Shaping

• Challenge: the OFing chunk doesn’t remain in memory (this is
always the case even if a copy is kept of the SDNCP SDU, like the
spraying primitive case)

• this means the data where we keep the fake mid1 header is
reclaimed too early

• Intended solution was: more spraying to reclaim spot before we
trigger corrupt free

• Sounds good, except …

64

Improving Heap Shaping

• Challenge: Shannon’s MAC/RLC stack allocates the TBFs from the
heap

• it happens to fall into the same pool class we target

• this RELIABLY ruins the whole thing, by taking exactly the slot of
the OFing chunk

• itself could actually be considered a shaping primitive (multiple
TBFs possible) … but “getting rid" is better!

65

Bad Heap Events

66

Improving Heap Shaping
• Solution: cut everything down to a single alloced TBF

• maintain a single downlink TBF for entire exploit flow: possible by
keeping timers alive

• avoid all uplink TBFs: remove all LLC Acknowledgement requests +
prevent PDP cxt activation

• Alternative could have been: using 1024 slot to avoid

• 1560 size max allows, 79*20 is 1580 … but need to control data till 2048
then

• possible with different Coding Scheme, but that needs more Osmo code
change and I’m lazy :)

67

Improving Heap Shaping

• Challenge: Mid1 technique leaks memory

• layout crafting changes with each iteration

• Solution: just account for change

• goes around in modulo circle, so fairly easy to predict

68

Robust Exploits

• Finally, we have a REPEATABLE write4 primitive

• What can we do with it?

69

Uniform Techniques: Guessing

• Firmware “variance” is not necessarily prohibitively bad

• Baseband crashes may be tolerable for the pwner

• Use the write4 to “spray” guessed locations and reflect back result

• overwrite IMEI stored in memory, send Identity Request

• overwrite flag stored in memory for a feature turned off by
default (e.g. RRLP)

• etc

Uniform Techniques: PTEs

• The address space “randomization” is only a side-effect of
firmware variance

• But not everything moves in firmwares!

• Ideal target: page table itself!

• fixed address (0x40008000), writable

• The end?

Uniform Techniques: PTEs
• Problem: caching

• entire used page table is small enough (2 level, but uses large
pages for almost the entire address space in practice)

• essentially all defined PTE entries (memory starting from
0x40008000) are lines stuck in the cache, so …

• there are practically zero page table walks during runtime! (normal
code would use explicit co-proc instructions following a pte change
to tell the processor to flush entries)

• So is this idea… useless?

Practical Solution: BSMA

• “Baseband Space Mirroring Attack”

• Only the used PTE entries are cached!

• The theoretical VA space is (obviously) much larger

• solution: fake new page table entries, then access memory over
the new (fake) virtual addresses, with whatever Access
Permissions (RWX) you want

BSMA
0x00000000: [2ND LEV] addr=0x40007000 ns=0 pxn=0

0x00000000: [SMALL] addr=0x00000000 ng=0 s=1 ap=101
0x00001000: [SMALL] addr=0x00001000 ng=0 s=1 ap=101
0x00002000: [SMALL] addr=0x00002000 ng=0 s=1 ap=101
0x00003000: [SMALL] addr=0x00003000 ng=0 s=1 ap=101
0x00004000: [SMALL] addr=0x00004000 ng=0 s=1 ap=101
0x00005000: [SMALL] addr=0x00005000 ng=0 s=1 ap=101
0x00006000: [SMALL] addr=0x00006000 ng=0 s=1 ap=101
0x00007000: [SMALL] addr=0x00007000 ng=0 s=1 ap=101
0x00008000: [SMALL] addr=0x00008000 ng=0 s=1 ap=101
0x00009000: [SMALL] addr=0x00009000 ng=0 s=1 ap=101
0x0000a000: [SMALL] addr=0x0000a000 ng=0 s=1 ap=101
0x0000b000: [SMALL] addr=0x0000b000 ng=0 s=1 ap=101
0x0000c000: [SMALL] addr=0x0000c000 ng=0 s=1 ap=101
0x0000d000: [SMALL] addr=0x0000d000 ng=0 s=1 ap=101
0x0000e000: [SMALL] addr=0x0000e000 ng=0 s=1 ap=101
0x0000f000: [SMALL] addr=0x0000f000 ng=0 s=1 ap=101

0x40000000: [2ND LEV] addr=0x40007400 ns=0 pxn=0
0x40000000: [SMALL] addr=0x40000000 ng=0 s=1 ap=011
0x40001000: [SMALL] addr=0x40001000 ng=0 s=1 ap=011
0x40002000: [SMALL] addr=0x40002000 ng=0 s=1 ap=011

Firmware Agnostic RCE

75

76

Questions?

