
Successfully Fuzzing High Value

Targets With Low Tech Strategies

Marc Schönefeld

CanSecWest 2024

Successfully Fuzzing High Value

Targets With Low Tech Strategies

Marc Schönefeld

CanSecWest 2024

Low Tech
Fuzzing

Marc Schönefeld

CanSecWest 2024

Agenda • Intro

• Motivation for Low Tech Fuzzing
• Examples
• Lessons Learned

• Closing Thoughts

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

4

The Speaker • Infosec since +20y
• Starting at Blackhat 2002 with

“Security Aspects of Java Bytecode
Engineering”

• Chromium Hall of Fame, etc.
• Former Red Hat Security Team, found

numerous Linux and JDK issues
(“B0rken Fonts” at CSW 2011)

• Now working for Oracle Java Team,
hunting/handling bugs in JDK and
related products

• Hobbyist reversing/hunting bugs,
latest: CVE-2024-23300 (GarageBand)

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

5

Low Tech Fuzzing • In this context fuzzing without
instrumentation
•Prefer just bit/byte mutation as
major fuzzing method (less
splice/trim)
•Typical example is the zzuf
fuzzer, or AFL in dumb mode
• Scale with CPU speed and
throughput instead of tool
complexity
•Have minimal setup time,
don’t worry about
configurations Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

6

Motivation, why
Low Tech Fuzzing?

• Not every platform allows sophisticated
runtime instrumentation to achieve coverage

• Coverage can be provided ahead-of time due
to diversity within a corpus

• PoC testing strategies (with advanced tech
level):
� Enumerating files

� from a previous fuzzing campaign
� A downloaded corpus

� For-loop over seed
� Mutating each file of a corpus

� Nested For-loop over seed and density
� Nested For-loops over seed, density and

ranges

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

7

Focus
Focus mainly on common crypto formats:
X509, PKCS
• Many fuzzing corpora available
� OpenSSL, BoringSSL, GnuTLS

• More sources to edge case files
� Frankencerts

� creating synthetic SSL certificates, by
random mutation of parts of real
certificates

� Project Wycheproof (Google)
� Test collection for many crypto anomalies,

artifacts can be reused

• Similar applies to media formats Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

8

OpenSSL • OpenSSL is a software library that provides
secure communications over computer
networks. It contains an open-source
implementation of the TLS protocols.

• The core library, written in C programming
language, implements basic cryptographic
functions and provides various utility
functions. OpenSSL is widely used by server
applications, including the majority of HTTPS
websites.

• OpenSSL also includes a rich variety of
command-line utilities. The “openssl” tool is a
cryptography library that implements the TLS
network protocols. It contains different
subcommands for any TLS communications
needs.

• OpenSSL often embedded in other software
products (NodeJS, Android apps,…), problems
been discussed in CSW 2018 “Grandma” talk Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

9

Fuzzing at scale
with OSS-Fuzz

� OSS-Fuzz
� is a continuous fuzzing service for

open-source software, aimed at
making common open-source
software more secure and stable.

� uncovers programming errors in
software, many of which, like buffer
overflow, can have serious security
implications.

� has, since its launch, become a
critical service for the open-source
community, detecting problems in
memory-safe languages such as Go,
Rust, and Python

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

10

Fuzzing OpenSSL
in OSS-Fuzz

• OpenSSL repo contains various
harnesses and corpora for fuzzing
various functionality:

� CMS (message signing)
� X509 (certificates)
� ASN1 (DER/PEM)
� …

• OSSFuzz uses these corpora when
fuzzing OpenSSL directly

• Unfortunately, OSSFuzz does not fuzz
embedded OpenSSL use
� as in Node.js Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

11

Fuzzing OpenSSL
� According to GPT:

� OSS-Fuzz is a continuous fuzzing service for open-source software, aimed at making common
open-source software more secure and stable.

� It uncovers programming errors in software, many of which, like buffer overflow, can have
serious security implications.

� Since its launch, OSS-Fuzz has become a critical service for the open-source community,
detecting problems in memory-safe languages such as Go, Rust, and Python

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

12

Fuzzing OpenSSL with OSSFuzz
� According to GPT:

� OSS-Fuzz is a continuous fuzzing service for open-source software, aimed at making common
open-source software more secure and stable.

� It uncovers programming errors in software, many of which, like buffer overflow, can have
serious security implications.

� Since its launch, OSS-Fuzz has become a critical service for the open-source community,
detecting problems in memory-safe languages such as Go, Rust, and Python

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

13

Fuzzing Node.js with OSSFuzz

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

14

Example 1:
CVE-2022-
4450

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

15

CVE-2022-4450
What was the
bug?

• The function PEM_read_bio_ex() reads a
PEM file from a BIO and parses and decodes
the "name" (e.g. "CERTIFICATE").

• In the event of a failure in
PEM_read_bio_ex() OpenSSL frees, but not
clears the pointers stored in *header and
*data.

• Since, on success, the caller is responsible for
freeing these ptrs this can potentially lead to
a double free if the caller frees them even on
failure.

• This could be exploited by an attacker who
can supply malicious PEM files for parsing.

• The OpenSSL asn1parse command line
application is also impacted by this issue.

• OpenSSL was affected since 3.0.0, and fixed
in OpenSSL 3.0.8 Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

16

CVE-2022-4450
What is PEM?

• PEM (Privacy Enhanced Mail) is a widely
used container file format for storing and
sending cryptographic keys, certificates, and
other data (RFC 7468).

• PEM files containing one or more crypto
items in Base64 ASCII encoding, each with
plain-text headers and footers (e.g

-----BEGIN CERTIFICATE-----
and
-----END CERTIFICATE-----
).

• A single PEM file can contain an end-entity
certificate, a private key, or multiple
certificates forming a complete chain of trust
(as with PKCS7).

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

17

CVE-2022-4450:
What is PEM_read_bio_ex good for?
• The PEM_read_bio_ex() function is used to

read PEM formatted data from an input BIO
(Basic Input Output).

• The function takes (among others) the
following parameters:
� BIO *in: A pointer to the input BIO.
� char **name: A pointer to a string where the

name of the type of contained data will be stored.
� char **header: A pointer to a string where the

header information will be stored.

• This function is typically used when reading
PEM structures from files or network
connections. Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

18

CVE-2022-4450
Our low tech fuzzing setup

• Traverse the X509 artifacts in the
corresponding OpenSSL corpus

• This corpus comes with DER and PEM
artifacts, so convert entries to both formats

• Bit-Mutate each file without instrumentation
using afl-fuzz (-n –D), could also use zzuf

• Feed the result to the verify command of the
‘openssl’ tool (optionally use an ASAN build)

• Run in an endless loop and wait for crashes Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

19

CVE-2022-4450
Running dumb with AFL

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

20

CVE-2022-4450
In the debugger • Starting program:

openssl verify -CAfile Starting program:
/home/user/cert_verify/ec/openssl-3.0.7/apps/openssl verify -CAfile
crashes/id:000000,sig:06,src:000000,time:23165,execs:10514,op:flip2,p
os:28
free(): double free detected in tcache 2

• Program received signal SIGABRT, Aborted.

• 0x000000000079daac in pthread_kill ()

• (gdb) bt

• #0 0x000000000079daac in pthread_kill ()
#1 0x00000000007837d6 in raise ()
#2 0x00000000004022ab in abort ()
#3 0x00000000007977e6 in __libc_message ()
#4 0x000000000079e39c in malloc_printerr ()
#5 0x000000000079fb48 in _int_free ()
#6 0x00000000007a2b11 in free ()
#7 0x00000000005cae1a in PEM_X509_INFO_read_bio_ex ()
#8 0x000000000060f268 in X509_load_cert_crl_file_ex.part.0 ()
#9 0x000000000060f695 in by_file_ctrl_ex ()
#10 0x000000000045ef31 in setup_verify ()
#11 0x0000000000457057 in verify_main ()
#12 0x0000000000427b12 in do_cmd ()
#13 0x000000000040303f in main ()

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

21

CVE-2022-4450
The cause

• A minimal bitflip causes the crash
• xxd orig_ca

• 2d2d 2d2d 2d42 4547 494e 2043 4552 5449 -----BEGIN CERTI
4649 4341 5445 2d2d 2d2d 2d0a 4d49 4944 FICATE-----.MIID
6954 4343 416e 4767 4177 4942 4167 4955 iTCCAnGgAwIBAgIU

• xxd id\:000000\, ..
\:23165\,execs\:10514\,op\:flip2\,pos\:28

• 2d2d 2d2d 2d42 4547 494e 2043 4552 5449 -----BEGIN CERTI
4649 4341 5445 2d2d 2d2d 2d0a 2d49 4944 FICATE-----.-IID
6954 4343 416e 4767 4177 4942 4167 4955 iTCCAnGgAwIBAgIU

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

22

CVE-2022-4450
A minimal bitflip
causes a null
ASN.1 sequence • This causes the ASN.1 representation to

differ in the first sequence set to zero:

• Original:
< 0:d=0 hl=4 l= 905 cons: SEQUENCE
< 4:d=1 hl=4 l= 625 cons: SEQUENCE
< 8:d=2 hl=2 l= 3 cons: cont [0]
< 10:d=3 hl=2 l= 1 prim: INTEGER :02
< 13:d=2 hl=2 l= 20 prim: INTEGER
:6FEB65DFDC5A63FAB80BFC4501ABCAD53C91ABE0

• Fuzzed:
> 0:d=0 hl=2 l= 0 prim: NULL
> 2:d=0 hl=2 l= 84 cons: SEQUENCE
> 4:d=1 hl=2 l= 11 cons: SET
> 6:d=2 hl=2 l= 9 cons: SEQUENCE Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

23

CVE-2022-4450
What was the fix
strategy? • The pointers to store header and data

information were not reset to null
when the buffer they point to was
freed.

• This occurred in several places.

• Fix idea: prior to releasing the buffer,
also clear the internal pointer to the
buffer, which prevents the double-
free.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

24

CVE-2022-4450
What was the fix?

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

25

CVE-2022-4450
Running instrumented with AFL

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

26

CVE-2022-4450
Timeline

• Reported Dec 27,2022
• No confirmation mail

• Unknown when patch was ready
• Fixed in OpenSSL 3.0.8, Feb 7, 2023
• Got added to advisory as of Feb 21, 2023

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

27

Example 2:
CVE-2023-
0216

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

28

CVE-2023-0216
What was the
bug?

• An invalid pointer dereference on read
can be triggered when an application
tries to load malformed PKCS7 data with
the d2i_PKCS7(), d2i_PKCS7_bio() or
d2i_PKCS7_fp() functions.

• The result of the dereference is an
application crash which could lead to a
denial-of-service attack.

• The TLS implementation in OpenSSL
does not call this function however third-
party applications might call these
functions on untrusted data.

• OpenSSL was affected since 3.0.0, and
fixed in OpenSSL 3.0.8

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

29

CVE-2023-0216
What is PKCS7?

• PKCS #7, also known as
Cryptographic Message Syntax
(CMS), is a standard syntax for
storing signed and/or encrypted data.

• It is part of the family of standards
called Public-Key Cryptography
Standards (PKCS), created by RSA
Laboratories.

• A typical use of a PKCS #7 file would
be to store certificates and/or
certificate revocation lists (CRL).

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

30

CVE-2023-0216:
What is d2i_PKCS7 good for?
• PKCS7 *d2i_PKCS7(

 PKCS7 **val_out,
 const unsigned char **der_in,
 long length).

• The function creates a PKCS#7 structure from DER
formatted data, takes a pointer to a buffer containing the
DER encoded PKCS#7 structure, the length of this
buffer, and a pointer to a PKCS7 structure.

• If the val_out argument is not a NULL pointer, the
PKCS7 structure is written to *val_out. If *val_out is
NULL, a new PKCS7 structure is created and *val_out is
updated to point to it.

• Returns a pointer to the PKCS7 structure on success, or
NULL if an error occurred.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

31

CVE-2023-0216
What was the fix
strategy? • The PKCS7 data element to store the

binary raw data (d.ptr) was not
checked for sanity.

• This occurred in several places.
• Fix idea: prior to further processing

the PKCS7 structure, the value of
d.ptr is validated

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

32

CVE-2023-0216
What was the fix?

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

33

CVE-2023-0216
What was the fix?

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

34

CVE-2023-0216
Our low tech fuzzing setup

• Traverse artifacts in the OpenSSL subcorpora

• Feed each to the pkcs7 command of the ‘openssl’
tool (optionally use an ASAN build)

• Run in an endless loop and wait for crashes

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

35

CVE-2023-0216
Our low tech fuzzing setup
• >find fuzz/corpora/cms/ -type f | xargs -t -n1 apps/openssl pkcs7
-inform der -noout -in

apps/openssl pkcs7 -inform der -noout -in
fuzz/corpora/cms/c1682be3e45f36fc45625d10e9bd21df126a4b1a

• unable to load PKCS7 object
00000000:error:0680007B:asn1 encoding
routines:ASN1_get_object:header too long:crypto/asn1/asn1_lib.c:105

• [..after a few files..]

• apps/openssl pkcs7 -inform der -noout -in
fuzz/corpora/cms/2efd07909f95d84de40ebb8b2bc8f3d734939f2d

• xargs: apps/openssl: terminated by signal 11 Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

36

AFL (in Qemu mode)
no crash, after 30 minutes

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

37

AFL (in Qemu mode)
no crash, even after 60 minutes

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

38

AFL (in Qemu mode)
no crash, even after 60 minutes

$more afl_pkcs7_2/default/fuzzer_setup
environment variables:
AFL_CUSTOM_INFO_PROGRAM=apps/openssl
AFL_CUSTOM_INFO_PROGRAM_ARGV=pkcs7 -in @@ -inform
der
AFL_CUSTOM_INFO_OUT=afl_pkcs7_2/default
AFL_INST_LIBS=1
command line:
'afl-fuzz' '-Q' '-i' 'fuzz/corpora/cms/' '-o’
‘pro2' '--' 'apps/openssl' 'pkcs7' '-in' '@@' '-
inform' 'der'

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

39

CVE-2023-0216
In the debugger
>gdb --args apps/openssl pkcs7 -in
fuzz/corpora/cms/2efd07909f95d84de40ebb8b2bc8f3d734939f2d -
inform der

--

Program received signal SIGSEGV, Segmentation fault.

0x00000000005de43d in ossl_pkcs7_resolve_libctx ()

(gdb) bt

#0 0x00000000005de43d in ossl_pkcs7_resolve_libctx ()
#1 0x0000000000638ee5 in d2i_PKCS7_bio ()
#2 0x000000000042cebe in pkcs7_main ()
#3 0x0000000000427b12 in do_cmd ()
#4 0x000000000040303f in main () Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

40

CVE-2023-0216
In the debugger
(gdb) disass $pc-10,$pc+10

Dump of assembler code from 0x5de433 to 0x5de447:

0x..05de433 <ossl_.._libctx+115>: and BYTE PTR [rbp+0x31],al
0x..05de436 <ossl_.._libctx+118>: in eax,dx
0x..05de437 <ossl_.._libctx+119>: cmp QWORD PTR [rsp+0x8],0x0
0x..05de43d <ossl_.._libctx+125>: mov rbp,QWORD PTR [rax+0x10]
0x..05de441 <ossl_.._libctx+129>: jne 0x5de4dd <ossl.._libctx+285>

(gdb) info register rax
rax 0x0 0

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

41

CVE-2023-0216
Where did the PoC come from?
OpenSSL‘s own CMS corpus included the PoC since 2018, however likely not
tested with PKCS7 functions, despite cms format has PKCS7 under the hood:

$ git log fuzz/corpora/cms/2efd07909f95d84de40ebb8b2bc8f3d734939f2d
commit 0f735011962830ceaa9a7ab0b9d91129d9ba011d
Date: Tue Apr 4 16:15:37 2023 +0200
 Remove fuzz corpora data from the repository

..
commit 0b89db6b2acb6cca36f812ba51119927563b3cac
Date: Wed Aug 22 23:31:01 2018 +0200

Update fuzz corpora
..

$ openssl asn1parse -inform der -in
fuzz/corpora/cms/2efd07909f95d84de40ebb8b2bc8f3d734939f2d

0:d=0 hl=2 l= 11 cons: SEQUENCE
2:d=1 h1=2 l= 9 prim: OBJECT :pkcs7-signedData

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

42

CVE-2023-0216
Timeline

• Reported Dec 23,2022
• Confirmation Dec 24,2022

• Patch ready Jan 10, 2023
• Fixed in OpenSSL 3.0.8, Feb 7, 2023

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

43

Example 3:
CVE-2023-
30588

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

44

CVE-2023-30588
What was the
bug?

• When an invalid public key is used to
create an x509 certificate using the
crypto.X509Certificate() API.

• a non-expect termination occurs making
it susceptible to DoS attacks

• when the attacker could force
interruptions of application processing,

• as the process terminates when accessing
public key info of provided certificates
from user code.

• The current context of users will then be
gone.

• This vulnerability affected all active
Node.js versions v16, v18, and v20. Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

45

CVE-2023-30588
What are X509
certificates?

• RFC 5280 (Request for Comments) defines
X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile.

• These certificates are used in many Internet
protocols, including TLS/SSL, and they are
also used in offline applications

• An X.509 certificate binds an identity (a
hostname, or an organization, or an
individual) to a public key using a digital
signature,

• The X.509 certificate structure is defined
using the ASN.1 (Abstract Syntax Notation
One) standard, and describes rules and
structures for representing, de/encoding, and
transmitting (..).

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

46

CVE-2023-30588:
What is Node.js?
• Node.js is a cross-platform, open-source JavaScript

runtime environment that executes JavaScript
code outside a web browser.

• It’s built on the V8 JavaScript engine and uses an
event-driven, non-blocking I/O model, making it
lightweight and efficient.

• This allows developers to use JavaScript for
server-side scripting, to write command line tools,
and for generating dynamic web page content
before it’s sent to the user’s web browser.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

47

CVE-2023-30588:
What is the x509Cert.. ctor good for?
• The crypto.X509Certificate(str)

constructor in Node.js’s crypto module
creates an instance of the X509Certificate
class.

• The constructor takes a single argument,
which is a buffer or string representing a
PEM-encoded (Privacy Enhanced Mail)
X.509 certificate.

• The X509Certificate instance provides
methods to access information about the
X.509 certificate, such as the subject,
issuer, validity dates, and more.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

48

CVE-2023-30588
What was the fix
strategy?

� OpenSSL parsing of the x509 Certificate
did not crash parsing the PoC certificate,
because the file contains a structurally
sound TBSCertificate (To be signed)
structure.

� However, the SPKI (Simple PKI) field of the
certificate contains the subjectPublicKey as
an ASN.1 BIT STRING

� This bit sequence is not a valid public key,
as assumed by the Node.js glue code to
OpenSSL

� TL;DR: The fix is to add a check that the
X509Certificate.publicKey function uses a
valid public key and does not abort in this
edge case Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

49

CVE-2023-30588
What was the fix
strategy?

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

50

CVE-2023-30588
In the debugger
$gdb --args node loadcert_poc.js

…

#5 0xf1 in node::Abort() ()
#6 0x..5e in node::Assert(..) ()
#7 0x..52 in node::crypto::KeyObjectData::CreateAsymmetric(..) ()
#8 0x..46 in node::crypto::X509Certificate::PublicKey(..) ()
#9 0x..f0 in v8::internal.. >(..) ()
#10 0x..2f in v8::internal::Builtin_HandleApiCall(..) ()
#11 0x..79 in Builtins_CEntry_Return1_DontSaveFPRegs.. ()
#12 0x..d0 in Builtins_InterpreterEntryTrampoline ()

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

51

CVE-2023-30588
The fuzzing harness
$ find openssl/fuzz/corpora/x509/ -type f | xargs -I III -t node loadcert_poc_var.js III

node loadcert_poc_var.js openssl/fuzz/corpora/x509/c757bd1adb0e098ea74310bffe005eae2022ab7

v18.15.0
valid:Mar 17 11:00:02 2018 GMT
node[3602761]: ../src/crypto/crypto_keys.cc:869:static shared_ptr<KeyObjectData>
KeyObjectData::CreateAsymmetric(KeyType, const ManagedEVPPKey&): Assertion `pkey' failed.

1: 0xb7b3e0 node::Abort()
2: 0xb7b45e
3: 0xd16c52 node::crypto::KeyObjectData::CreateAsymmetric(crypto::KeyType,

crypto::ManagedEVPPKey const&)
4: 0xd2f246 node::crypto::X509Certificate::PublicKey(v8::FunctionCallbackInfo<v8::Value>

const&)
5: 0xdc71f0
6: 0xdc872f v8::internal::Builtin_HandleApiCall(int, unsigned long*, v8::internal::Isolate*)
7: 0x1707c79

xargs: node: terminated by signal 6

TL; DR: Fuzzing strategy was to use an existing corpus, the first iteration
failed, no further tries necessary. Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

52

CVE-2023-30588
Timeline

� Reported: February 23rd, 2023

� Confirmation: February 23rd, 2023

� Advisory: June 20th, 2023

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

53

Example 4:
CVE-2024-
23300

54

CVE-2024-23300

What was the
bug?

• a use-after-free memory issue that
could lead to “unexpected app
termination or arbitrary code
execution.”

• According to Forbes: “The former is
annoying, but the latter could have
substantial potential security issues
should an attacker exploit this
vulnerability. ”

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

55

CVE-2024-23300

What are
Garageband
project files?

• GarageBand project files are
directories (folders) that are treated
for some purposes by the Mac OS as
single files called a Bundle.

• GarageBand project files can be saved
in the GarageBand subfolder

• located in the Music folder on your
Mac computer, and they can also be
easily.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

56

CVE-2024-23300

What are
Garageband
project files?

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

57

CVE-2024-23300

What are
Garageband
project files?

• Fuzzing candidate was the binary
blob in ProjectData

• The other files are well-tested formats Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

58

CVE-2024-23300
The low-tech fuzzing setup

• The approach was to go into GarageBand
and click some random notes in the GUI

• Then saved the file

• Then the ProjectData file was repeatedly
fuzzed via bit mutation (zzuf) and loaded
into GarageBand

• In this endless loop waited for security-
related crashes, which eventually
happened

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

59

CVE-2024-23300
What was the fix
strategy?

After detecting a crash
the project state was
restarted with
GuardMalloc , which
exposed the heap
corruption.

The vulnerability is
caused by a use-after-
free condition, so the fix
strategy was to improve
memory management.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

60

CVE-2024-23300
What was the fix
strategy?

After detecting a crash
the project state was
restarted with
GuardMalloc , which
exposed the heap
corruption.

The vulnerability is
caused by a use-after-
free condition, so the fix
strategy was to
“improve memory
management”.

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

61

CVE-2024-23300

What was also
annoying….

• Btw, where is the OK button, so I
could “repair” the file?

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

62

CVE-2024-23300
Timeline • Reported April 20, 2022

• Automated response April 20, 2022

• Time passed, and I forgot about it
• Tried again in 2024 with GB 10.4.8
� still crashed
� Sent a reminder on Feb 11, 2024

• Fixed
� in GarageBand 10.4.11
� on Mar 12, 2024
� But not for Monterey-based MacPro (sigh)

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

63

A typical low-tech fuzzing harness
For $seed in $(seq 1 10 $max) ; do

#Create PoC with $seed using zzuf , radamsa, afl-fuzz, honggfuzz
Run Poc , make sure you know all command line switches (implicit coverage!)
Monitor native memory handling with GuardMalloc, MALLOC_CHECK_, pageheap
cap execution time with the timeout command

If return code

Save PoC , save crash info , update counters, ring bell

fi

done Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

64

Lessons learned
• The complexity of a fuzzer does not necessarily correlate with it‘s bug

finding likelihood, as a simple approach may harvest interesting bugs

• A well documented fuzzing test plan may not always be an efficient test plan

• Low-tech fuzzing can be an essential technique to find bugs in high value
software targets

• If successful for one software product, can additionally find bugs in
dependent programs, especially in glue code

• Fuzzing corpora are a helpful vehicle to achieve sufficient coverage ahead-of-
time , strategy should be good as long as we find bugs , reuse can be your
friend to kickstart bug finding

• Starting with low tech fuzzing and later using advanced instrumented
fuzzing are a great combo in a multi-step campaign workflow Lh

 fu
zz

io
w

-te
cn

g
/ M

ar
c S

ch
ön

ef
el

d
/ C

an
Se

cW
es

t 2
02

4

65

Looking forward
• We likely just scratched the surface of discoverable bugs

• Keep on collecting and discovering fuzzing corpora and reapply it to
potential consumers of these protocols

• Prioritize the blind spots in OSS-Fuzz fuzzing setups and go there (to what
OSS-Fuzz does not exercise)

• Especially when low tech fuzzing has easily identified bugs, it seems
promising to dig deeper with advanced fuzzing tools like AFL++

• TL;DR : Low tech fuzzing still has a place in the toolkit of security
researchers to get a quick impression of the quality / stability of a product

• Therefore, expect more advisories as the ones presented here. Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

66

Q&A
(contact: https://de.linkedin.com/in/marcschoenefeld)

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

67

Finding more API use problems
Find candidates for inadequate use of OpenSSL API

apt-cache showpkg openssl (or rdepends)
Package: openssl
Versions:
3.0.2-0ubuntu1.15..

Reverse Depends:
 openssl-dbgsym,openssl 3.0.2-0ubuntu1.15
 lacme,openssl 1.1.0~
 python3-nova,openssl

• ..

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

68

Finding more API use problems
• … but the current Node.js package in Ubuntu does not appear in that list,

because it uses the shared system library, it has an internal statically copy

• strings /usr/lib/x86_64-linux-gnu/libnode.so.72 | grep
OpenSSL | grep 20

• OpenSSL 1.1.1m 14 Dec 2021

• Fortunately, in the upstream LTS version via nvm (node version manager)
has a current OpenSSL embedded

• $ strings -
/home/user/.nvm/versions/node/v20.11.1/bin/node | grep
OpenSSL | grep 202

• OpenSSL 3.0.13+quic 30 Jan 2024

Lh
 fu

zz
io

w
-te

cn
g

/ M
ar

c S
ch

ön
ef

el
d

/ C
an

Se
cW

es
t 2

02
4

69

