
Glitching in 3D: Low
Cost EMFI Attacks

Matthew Alt

VoidStar Security LLC

Glitching in 3D | CSW 2024 | VoidStar Security LLC 1

https://voidstarsec.com/

Outline
Introduction / Goals
Target Overview / Attack(s) Overview
Replicating Voltage Glitching Attacks

SAD Triggering
EMFI Introduction

Instrumentation
RDP2 Bypass
Bootloader Review
RDP1 Bypass

Conclusion

Glitching in 3D | CSW 2024 | VoidStar Security LLC 2

Intro / whoami

whoami?

Matthew Alt/@wrongbaud

Security researcher/instructor for VoidStar Security LLC

Previously @ MIT Lincoln Laboratory, Revo Technik/STASIS Engineering

Offer training/consulting through VoidStar Security LLC

Hardware Hacking Bootcamp
Firmware Analysis Fundamentals

Glitching in 3D | CSW 2024 | VoidStar Security LLC 3

https://www.linkedin.com/in/matthew-t-alt/
https://twitter.com/wrongbaud
https://voidstarsec.com/
https://voidstarsec.com/syllabi/VSS_HHB_Syllabus.pdf
https://voidstarsec.com/syllabi/VSS_FAF_Syllabus.pdf

Presentation Goals
Provide fault injection overview and beginner guide
Review steps taken to replicate public fault injection attacks

Hardware/Software components
Problems encountered along the way

Demonstrate workflow for dialing in low-cost EMFI attacks
Utilize EMFI for RDP2 and RDP1 bypass on STM32F4

Glitching in 3D | CSW 2024 | VoidStar Security LLC 4

https://chip.fail/

Fault Injection Overview

By causing momentary voltage modulations, we can force a target system to
enter a realm of undefined behavior.

A targeted fault can bypass various security checks or other features

There are a few different types of fault injection attacks:

Clock glitching
Voltage glitching
Electromagnetic Fault Injection

Glitching in 3D | CSW 2024 | VoidStar Security LLC 5

Target Overview
The target for this work is the
STM32F4 microcontroller.
Commonly used in robotics
applications
Used in multiple IoT/home
automation devices

Glitching in 3D | CSW 2024 | VoidStar Security LLC 6

https://www.st.com/en/microcontrollers-microprocessors/stm32f4-series.html

STM32FX Security Overview
The STM32 has multiple levels of "Read-out protection" (RDP)
RDP 0: Flash unlocked, all-flash/ram is accessible via the debug interface
RDP 1: Flash locked; you can connect a debugger and read out
RAM/peripherals, but not flash.
RDP 2: Flash locked, RAM reads locked, debug interface locked

Note: ST has issued bulletins/advisories for attacks requiring physical access

Glitching in 3D | CSW 2024 | VoidStar Security LLC 7

https://www.st.com/resource/en/technical_note/tn1489-security-bulletin-tn1489stpsirt-physical-attacks-on-stm32-and-stm32cube-firmware-stmicroelectronics.pdfke

STM32FX: Previous Work
Research has shown that RDP2 to RDP1 can be performed by glitching during
the bootrom

chip.fail
Joe Grand's Trezor Hack
Replicant

Other work has been done researching the security of the SYSTEM MEMORY
bootloader

Kraken Blog
All of these also utilize traditional voltage glitching, not EMFI

They also target the STM32F2, not the F4

Glitching in 3D | CSW 2024 | VoidStar Security LLC 8

https://chip.fail/
https://www.youtube.com/watch?v=dT9y-KQbqi4
https://voidstarsec.com/blog/replicant-part-1
https://blog.kraken.com/product/security/kraken-identifies-critical-flaw-in-trezor-hardware-wallets

STM32 Power Management/ Regulation
Within any microcontroller, there are multiple power domains

Power Domain: Shared power source
Used for powering various chip peripherals and components
Typically targeted via the internal voltage regulator.

Exposed via VCAP_1 and VCAP_2

Glitching in 3D | CSW 2024 | VoidStar Security LLC 9

Glitching in 3D | CSW 2024 | VoidStar Security LLC 10

Attack Overview: Multiple Glitches
Glitch One: Drop from RDP2 to RDP1

Done during bootrom execution
This allows entry into the SYSTEM MEMORY bootloader

Glitch Two: drop from RDP1 to RDP0
Target specific commands in SYSTEM MEMORY bootloader

Glitching in 3D | CSW 2024 | VoidStar Security LLC 11

Glitch 1: Placement and Shape
We must determine where to place the glitch

ext_offset : How long to wait after triggering before glitching

We also must determine the appropriate shape of the glitch
repeat : The number of clock cycles to repeat the glitch.

We want the target to enter an undefined state but not crash

Glitching in 3D | CSW 2024 | VoidStar Security LLC 12

Glitching: General Workflow

Glitching in 3D | CSW 2024 | VoidStar Security LLC 13

Glitch 1: Placement and Shape
The glitch should occur as the RDP check is being performed
We need a reliable way to determine when the bootr om is executing

The RESET pin works but can have varying rise times
Without debug access, how can we consistently determine when to trigger?

Power analysis!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 14

Power Analysis: CW Husky
Using the reset line as a trigger, we will capture a power trace using the
chipwhisperer

This will sample power fluctuations during boot rom execution
If we can identify a power signature that looks interesting, we can use SAD
triggering

SAD = Sum of Absolute Differences

Glitching in 3D | CSW 2024 | VoidStar Security LLC 15

Power Analysis: SAD Triggering
SAD (Sum of Absolute Differences) triggering allows us to trigger on a specific
reference waveform
The Husky will capture the signal while comparing it with the reference
waveform

If they match, then a trigger event occurs!
A threshold is specified to determine whether the trigger will occur

Glitching in 3D | CSW 2024 | VoidStar Security LLC 16

Power Trace: Capture

STM32F4 baseline power Trace, captured via the CW Husky

Glitching in 3D | CSW 2024 | VoidStar Security LLC 17

Power Trace: Review

If we zoom in on the initial conic shape, we see some interesting patterns

Glitching in 3D | CSW 2024 | VoidStar Security LLC 18

Power Trace: Review

Notice that activity spikes around offset 40000

Glitching in 3D | CSW 2024 | VoidStar Security LLC 19

SAD Triggering
We can use a unique portion of this captured waveform as our SAD trigger

This will be more consistent than the reset line
Waveforms can be saved as ChipWhisperer projects for importing later

Allows others to load and compare waveforms for reproducing work
Example waveforms can be found in our repository

Glitching in 3D | CSW 2024 | VoidStar Security LLC 20

https://github.com/voidstarsec/fi-resources

The left image is the baseline capture (triggered off of the reset line)
The right image is the SAD-triggered capture

SAD Triggering: Example

Glitching in 3D | CSW 2024 | VoidStar Security LLC 21

Power Trace: Review

We will iterate over offsets 40000-48000 ...

Glitching in 3D | CSW 2024 | VoidStar Security LLC 22

RDP2: Glitch Flow
1. Provide power to target
2. Trigger using SAD trigger
3. Countdown (ext_offset)

4.
5. Test for serial bootloader mode

Glitching in 3D | CSW 2024 | VoidStar Security LLC 23

Boot bypass success! -- offset = -45, width = 40, ext_offset = 7701
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7703
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7706
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7731
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7765
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7767
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7769
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7771
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7773
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7774
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7775
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7778
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7779
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7780
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7781
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7783
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7787
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7793
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7795
Boot bypass success! -- offset = -45, width = 40, ext_offset = 7796

Glitching in 3D | CSW 2024 | VoidStar Security LLC 24

Voltage Glitching: Results

Targeting an EXT offset of 7700 to 7900 from the SAD trigger, we could reliably
bypass the RDP check in the bootrom!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 25

Voltage Glitching: Results

The highlighted fluctuation is likely the RDP check occuring

Glitching in 3D | CSW 2024 | VoidStar Security LLC 26

Voltage Glitching: Results
A voltage glitch would potentially (brick) the target!

Occurred when glitching VCAP or VDD

Results confirmed with multiple other researchers
While voltage glitching works on some variants, it is risky on the STM32F4

The external clock isn't used, voltage glitching causes hardware
failure...now what!?

Glitching in 3D | CSW 2024 | VoidStar Security LLC 27

EMFI: Electromagnetic Fault Injection
EMFI attacks generate an electric field targeted at a specific region of an
integrated circuit
This field can cause hardware to fail, resulting in undefined behavior.
Tools for this include the PicoEMP or chipshouter

Riscure also produces tools for performing such attacks/analysis

Glitching in 3D | CSW 2024 | VoidStar Security LLC 28

https://github.com/newaetech/chipshouter-picoemp
https://www.newae.com/products/NAE-CW520#:~:text=The%20ChipSHOUTER%C2%AE%20(CW520)%20is,%2C%20educators%2C%20and%20embedded%20enthusiasts.
https://www.riscure.com/security-tools/inspector-fi/

Tools: PicoEMP
Low-cost Electromagnetic Fault
Injection (EMFI) tool
Designed for self-study and
hobbyist research
OSS hardware and software
Python class available for
programmatic control

Glitching in 3D | CSW 2024 | VoidStar Security LLC 29

https://github.com/KULeuven-COSIC/SimpleLink-FI/blob/main/notebooks/5_ChipSHOUTER-PicoEMP.ipynb

EMP Positioning
The effectiveness of an EMFI attack is determined by multiple things

Probe placement
Pulse width/shape/duration
Tip shape

We can control pulse width via the PicoEMP firmware
We will use the default PicoEMP parameters

We need a reliable way to consistently position the probe
Requires X/Y/Z dimensions

Glitching in 3D | CSW 2024 | VoidStar Security LLC 30

EMP Positioning: Enter the Ender!
The Creality Ender 3 is a low cost, introductory 3D printer

Often on sale at Microcenter for < $100
The stock firmware allows the print head to be controlled via GCODE

We can send GCODE via USB
Using the Ender 3, we can print a bracket and mount it for our target device

STL files can be found on github

Glitching in 3D | CSW 2024 | VoidStar Security LLC 31

https://www.creality.com/products/ender-3-pro-3d-printer
https://github.com/voidstarsec/fi-resources

EMP: Probes and Brackets

This simple bracket will be used to mount the PicoEMP where the hot end of the
printer is located

Glitching in 3D | CSW 2024 | VoidStar Security LLC 32

Glitching in 3D | CSW 2024 | VoidStar Security LLC 33

EMP: Tip
Construction

To use the PicoEMP, we have to
create an injection tip

Often a ferrite core with
wire wound around it

See the PicoEMP repository for
more examples
We will craft a tip based on this
inductor

Glitching in 3D | CSW 2024 | VoidStar Security LLC 34

https://github.com/newaetech/chipshouter-picoemp?tab=readme-ov-file#building-the-em-injection-tip-probe--coil
https://github.com/newaetech/chipshouter-picoemp/tree/main/hardware/injection_tips#w%C3%BCrth-elektronik

EMP: Positioning
To determine an optimal location, we will add the following variables to the
glitch controller

X Offset

Y Offset

Z Offset

We can use the previously determined SAD trigger
The glitch output, will now be used to trigger the PicoEMP

Glitching in 3D | CSW 2024 | VoidStar Security LLC 35

EMP: Positioning
for glitch_setting in gc.glitch_values():
 scope.glitch.ext_offset = glitch_setting[0]
 x_coord = glitch_setting[1]
 y_coord = glitch_setting[2]
 z_coord = glitch_setting[3]
 tries = glitch_setting[4]
 print_cntrl.write(f"G0 X{x_coord} Y{y_coord} Z{z_coord}\r\n".encode())

Glitching in 3D | CSW 2024 | VoidStar Security LLC 36

Now we wait

Glitching in 3D | CSW 2024 | VoidStar Security LLC 37

RDP2: EMP Results

Glitching in 3D | CSW 2024 | VoidStar Security LLC 38

RDP2 -> RDP1: EMP Results

Glitching in 3D | CSW 2024 | VoidStar Security LLC 39

Glitch: EMP Results
We now can repeatably downgrade from RDP2 to RDP1 using a targeted EMP

This allows us to enter the System Memory bootloader
The System Memory bootloader allows us to send commands to the CPU via
UART

Command reference document
Next, we need to glitch a UART command in the bootloader

Glitching in 3D | CSW 2024 | VoidStar Security LLC 40

https://www.st.com/resource/en/application_note/an3155-usart-protocol-used-in-the-stm32-bootloader-stmicroelectronics.pdf

Glitch 2: Analysis
To better understand the second glitch, we will review the STM32 SYSTEM
Bootloader

Extracted via OpenOCD
This image can be loaded into Ghidra at offset: 0x1FFF0000
Peripherals and memory-mapped IO can be generated using svd-loader
For bootloader version 010433 , the UART command handler is at address
0x1fff180c

Glitching in 3D | CSW 2024 | VoidStar Security LLC 41

https://github.com/leveldown-security/SVD-Loader-Ghidra

Glitch 2: Read Command
/* Read command!*/
 cVar11 = cmd_val == 0x11;
if ((bool)cVar11) {
 get_addr();
 check_address();
 FUN_1fff1bd8();
 //... READ INTERNAL MEMORY ...
}

Glitching in 3D | CSW 2024 | VoidStar Security LLC 42

Glitch 2: Analysis
undefined8 get_addr(void)
{
 iVar1 = check_rdp();
 if (iVar1 == 0) {
 sendByte(0x79);
 uVar2 = read_byte();
 uVar3 = read_byte();
 uVar4 = read_byte();
 uVar5 = read_byte();
 uVar6 = read_byte();
 if (uVar6 == (uVar4 ^ uVar2 ^ uVar3 ^ uVar5)) {
 sendByte(0x79);
 return CONCAT44(in_r3,uVar3 << 0x10 | uVar2 << 0x18 | uVar5 | uVar4 << 8);
 }
 }
 return CONCAT44(in_r3,0x55555555);
}

Glitching in 3D | CSW 2024 | VoidStar Security LLC 43

Glitch 2: Analysis
bool check_rdp(void)
{
 return (PTR_FLASH.OPTCR_1fff0c40->ACR & 0xff00) != 0xaa00;
}

This is the check that we want to modify!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 44

Glitch 2: Read Sequence
Send Read Command: 0x11 0xEE

Check ACK/NACK
Send Target Address: 0x08 0x00 0x00 0x80

Check ACK/NACK
Send Read Length: 0xFF 0x00

Glitching in 3D | CSW 2024 | VoidStar Security LLC 45

Glitch 2: Placement and Shape
From our previous tests, we know roughly where to place the glitch

Now we have to determine when to glitch
How much time passes between sending the command and getting the
response?
We are communicating with the STM32 via UART

UART trigger?
Edge trigger?

Glitching in 3D | CSW 2024 | VoidStar Security LLC 46

Glitch 2: Placement

Yellow = Tx, Purple = Rx, Approximately 20uS before response is sent
Glitching in 3D | CSW 2024 | VoidStar Security LLC 47

Combining the Glitches: Workflow
1. Perform RDP2 bypass glitch
2. Enter Bootloader Mode
3. Send Read Memory command
4. Perform RDP1 bypass glitch!
5. Check ACK
6. If positive, provide the address and read the value
7. If Negative, soft reset the target and try step 2

Glitching in 3D | CSW 2024 | VoidStar Security LLC 48

Combining the Glitches: Challenges
Remember - we have to bypass RDP2 to enter the bootloader
If we crash the target via the second glitch, we must hard reset

This means we have to trigger the first glitch again!
We have to scan over a ~20uS range

ext_offset of 0-600

We will target the same physical region of the chip

Glitching in 3D | CSW 2024 | VoidStar Security LLC 49

Combining the Glitches: Reset Behavior
It was determined that performing a "soft" reset caused the RDP check to not
be performed again

Done by briefly pulling the reset line low (~1mS)
This reduces the amount of time we have to hit the first glitch

However, if we crash the target we will need to execute the first glitch

Glitching in 3D | CSW 2024 | VoidStar Security LLC 50

Now we wait ... for two!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 51

Glitch 2: Results
"Successful" ACKs occurred pretty quickly and within a wide range of
ext_offset values!

Not all positive responses resulted in good memory reads
Multiple positive ACKs can be glitched in different offset ranges

Glitching in 3D | CSW 2024 | VoidStar Security LLC 52

Glitch 2: Results...?
POSTIVE ACK! Offset: 58 CMD: b'\x11\xee' Resp: b'\x11y'
POSTIVE ACK! Offset: 58 CMD: b'\x08\x00\x00\x00\x08' Resp: b'Uy'
POSTIVE ACK! Offset: 58 CMD: b'\xff\x00' Resp: b'Uy\xffy'
POSTIVE ACK! Offset: 60 CMD: b'\xff\x00' Resp: b'\x8f\x85\x84\x83\x82\x81\x80\x7f~}|{zyxwvutsrqponmlkjihgfedcb'

While this might look good at first - the read out data is not valid!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 53

Glitch 2: Results...?
POSTIVE ACK! Offset: 169 CMD: b'\x11\xee' Resp: b'yy'
POSTIVE ACK! Offset: 169 CMD: b'\x08\x00\x10\x00\x18' Resp: b'yy'
POSTIVE ACK! Offset: 169 CMD: b'\x10\xef' Resp: b'yyyyyyyyyyyyyyyyyyy'

This is not quite right either ...

Glitching in 3D | CSW 2024 | VoidStar Security LLC 54

Glitch 2: Results!
POSTIVE ACK! Offset: 481 CMD: b'\x11\xee' Resp: b'y'
POSTIVE ACK! Offset: 481 CMD: b'\x08\x00\x10\x00\x18' Resp: b'y'
POSTIVE ACK! Offset: 481 CMD: b'\x10\xef' Resp: b'y\x00\xf0p\xf9\x00\xf0>\xf9\x8d\xf8\x04\x00\x9d\xf8\x04\x00\x00'

Finally! Something that makes more sense and matches the target address!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 55

Glitch 2: Quirks and Characteristics
Successful flash reads were performed at offset ranges 400-560

Not every successful glitch resulted in good flash data
Some flash offsets required multiple glitches

More offset ranges may be vulnerable with different probe parameters
Offsets may be different if performing a traditional voltage glitch

Glitching in 3D | CSW 2024 | VoidStar Security LLC 56

Flash Readout: EMP Positioning

Glitching in 3D | CSW 2024 | VoidStar Security LLC 57

Flash Readout: EMP Positioning

The left image was provided by @Phil_BARR3T on twitter targeting an STM32F2

Glitching in 3D | CSW 2024 | VoidStar Security LLC 58

https://twitter.com/Phil_BARR3TT/

Flash Readout: Setbacks
While flash pages can be read out, we can only read 256 bytes at a time

Crashing the target requires both glitches to be hit again
There may be other ways to extract the flash memory with only two glitches

Maybe other commands use a similar RDP check?
The check_rdp function is called 22 times!

SRAM is preserved on soft resets!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 59

GO Command - An Overview
The GO command allows the user to jump to a specific location in memory

Only certain address ranges are allowed
Cannot jump back into SYSTEM MEMORY

Cannot jump to certain SRAM regions
Recall that RDP1 allows for SRAM access
Also recall that we can re-enter the bootloader with a quick reset

Glitching in 3D | CSW 2024 | VoidStar Security LLC 60

GO Command - Challenges
The GO command was not as straightforward as we initially thought

Some documentation exists online
It expects a full Cortex image
Stack pointer, vector table, etc

How does the GO command determine RDP level?
Where is the check performed?

Glitching in 3D | CSW 2024 | VoidStar Security LLC 61

Go Command Vs Read Command
/* Go Command */
if (cmd_val == 0x21) {
 get_addr();
 check_address();
 resetPeripherals(local_41c);
 enableIrqInterrupts();
 pcVar10 = (code *)local_410[1];
 setMainStackPointer(*local_410);
 (*pcVar10)();
 goto LAB_1fff1858;
}

/* Read command!*/
 cVar11 = cmd_val == 0x11;
if ((bool)cVar11) {
 get_addr();
 check_address();
 FUN_1fff1bd8();
 //... READ INTERNAL MEMORY ...
}

Remember - get_addr calls the RDP check!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 62

Go Command: Payload
while (1)
{
 for(int i = 0x8000000; i < 0x8010000;i+=1){
 HAL_SuspendTick();
 HAL_WWDG_Refresh(&hwwdg);
 uint32_t *p = (uint32_t*)i;
 HAL_UART_Transmit(&huart1,p,1,1);
 HAL_SuspendTick();
 HAL_WWDG_Refresh(&hwwdg);
 }
}

Payload binary and source can be found in the github repo
Build to execute at 0x20004000

Glitching in 3D | CSW 2024 | VoidStar Security LLC 63

https://github.com/voidstarsec/fi-resources

Go Command: Workflow
The response time for the GO command is very similar to the READ
command
The new workflow will be:

Perform RDP2 to RDP1 bypass
Write payload to SRAM via SWD and soft reset
Send Go Command

Check ACK/NACK
Send Target Address: 0x20 0x00 0x40 0x00

Check UART for traffic!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 64

Go Command: Results
POSTIVE ACK! Offset: 470 CMD: b'\x21' Resp: b'y'
POSTIVE ACK! Offset: 470 CMD: b'\x20\x00\x40\x00' Resp: b'y'

working offsets for the Go command were between 460-480 with a 30MHz clock

Glitching in 3D | CSW 2024 | VoidStar Security LLC 65

Go Command: Results
Using the Go command, we are able to get execution during the SYSTEM
MEMORY bootloader

Requires enough SRAM for payload to be stored
Allowed entire flash region to be read out via UART

This method relied on a few "features":
SRAM not being completely cleared on "soft" reset
SYSTEM MEMORY bootloader entered on a "soft" reset

Glitching in 3D | CSW 2024 | VoidStar Security LLC 66

Conclusion
Using EMFI we were able to bypass both RDP2 and RDP1 on the STM32F4

Performed using inexpensive tooling
Resulted in far fewer hardware failures

The RDP1 check in the SYSTEM MEMORY bootloader can be consistently
bypassed with a targed EMP

Allows for code execution via the Go command

Glitching in 3D | CSW 2024 | VoidStar Security LLC 67

Additional Targets
Using our identified coordinate ranges, we can test against other STM32s

Trezor One, STM32F2
Using a similar SAD triggering technique on VCAP, RDP2 was bypassed on the
Trezor as well

Glitching in 3D | CSW 2024 | VoidStar Security LLC 68

Additional Targets
SWD access was re-enabled on a
Trezor One using similar EMP
coordinates

Glitching in 3D | CSW 2024 | VoidStar Security LLC 69

Thank You
Cody Gallagher - Research partner
Thomas Roth - Original STM FI work
Colin O'Flynn - Producing awesome products, answering questions
Joe Grand - Troubleshooting power traces, taking time to answer questions
Lennert Wo - PicoEMP integration example

Glitching in 3D | CSW 2024 | VoidStar Security LLC 70

Questions
All tools, models and notebooks can be found here

https://voidstarsec.com
Follow @wrongbaud / @voidstarsec on twitter for slide link

Glitching in 3D | CSW 2024 | VoidStar Security LLC 71

https://github.com/voidstarsec/fi-resources
https://voidstarsec.com/

Appendix / Reference Slides

Glitching in 3D | CSW 2024 | VoidStar Security LLC 72

Power Analysis: SAD Triggering
scope.trigger.module = 'SAD'
trace_offset = 39850
scope.SAD.reference = test.waves[0][trace_offset:trace_offset+32]
scope.SAD.threshold = 40
scope.adc.presamples = 1000

Glitching in 3D | CSW 2024 | VoidStar Security LLC 73

STM32 Power Management/ Regulation
The VCAP_1 and VCAP_2 lines give us a direct path to the internal regulator

The internal regulator affects things like kernel logic, flash memory, and IO
logic.
If we can briefly manipulate this line, we can hopefully affect how these
peripherals behave!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 74

Power Analysis: SAD Triggering

Glitching in 3D | CSW 2024 | VoidStar Security LLC 75

EMP Glitch Controller
gc = cw.GlitchController(groups=["success", "normal"], parameters=["ext_offstet","x","y","z","tries"])
gc.set_range("x",XMIN,XMAX)
gc.set_range("y",YMIN,YMAX)
gc.set_range("z",ZMIN,ZMAX)
gc.set_range("ext_offset", 9,15)
gc.set_step("x", [.1])
gc.set_step("y", [.1])
gc.set_step("z", [.1])

Glitching in 3D | CSW 2024 | VoidStar Security LLC 76

Voltage Glitching: Results

Glitching in 3D | CSW 2024 | VoidStar Security LLC 77

Glitching in 3D | CSW 2024 | VoidStar Security LLC 78

Fault Injection Overview

Glitching in 3D | CSW 2024 | VoidStar Security LLC 79

Glitch 2: Analysis
Previous research has shown that RDP1 protections can be bypassed

Done by glitching bootloader commands during SYSTEM MEMORY
bootloader execution

System Memory allows for the STM32 to be interacted with via:
USB
I2C
CAN
UART

We will target the UART command parsing in the bootloader

Glitching in 3D | CSW 2024 | VoidStar Security LLC 80

Glitch 1: Test Firmware
We know that during startup, the bootrom reads the RDP value
Our test firmware will do the same
Using GPIO writes as triggers we can determine roughly how long the RDP
check takes

Glitching in 3D | CSW 2024 | VoidStar Security LLC 81

Glitch 1: Test Firmware
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_RESET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET);
HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET);
while (1)
{
 // Trigger here!
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_SET);
 test_addr = *(uint32_t *)0x1FFFC000 ;
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_6 GPIO_PIN_SET);
 if(test_addr != 0x5510AAeF){
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET);
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_SET);
 }else{
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_7, GPIO_PIN_RESET);
 }
}

Glitching in 3D | CSW 2024 | VoidStar Security LLC 82

Glitch 1: Test Firmware

The flash read operation occurs in this ~2.48uS window

Glitching in 3D | CSW 2024 | VoidStar Security LLC 83

Test Firmware: Placement Results

Glitching in 3D | CSW 2024 | VoidStar Security LLC 84

Test Firmware: EMP Results
Using the test firmware, we were able to dial in optimal probe placement

Z Offset was always ~.1mm from surface of MCU
Next, we can target the bootrom RDP2 check

We can re-use the previously determined SAD trigger
Captured via the VCAP line on the STM32

Glitching in 3D | CSW 2024 | VoidStar Security LLC 85

Test Firmware: Results
Using the test firmware we dialed in the following parameters:

ext_offset : 9-15

repeat : 3-4

With the test firmware we have confirmed that we can alter the result of an
RDP check

Glitching in 3D | CSW 2024 | VoidStar Security LLC 86

Test Firmware: EMP Results

Glitching in 3D | CSW 2024 | VoidStar Security LLC 87

RDP2: EMP Results

Glitching in 3D | CSW 2024 | VoidStar Security LLC 88

Glitch 2 Placement: Edge Trigger
scope. trigger.module = 'edge_counter'
scope.trigger.triggers = "tio1"
scope.trigger.edges = 11
scope.io.glitch_trig_mcx = 'glitch'
scope.glitch.trigger_src = "ext_single" # glitch only after scope.arm() called
scope.glitch.output = "enable_only" # glitch_out = clk ^ glitch
scope.glitch.repeat = 500
scope.glitch.width = 40
scope.glitch.offset = -45
scope.io.hs2 = "glitch"

Glitching in 3D | CSW 2024 | VoidStar Security LLC 89

Power Trace: Review

This unique pattern can be used as our SAD trigger

Glitching in 3D | CSW 2024 | VoidStar Security LLC 90

Glitch 2: Analysis
 cVar11 = cmd_val == 0x11;
 if ((bool)cVar11) {
 get_addr();
 check_address();
 FUN_1fff1bd8();
 if (cVar11 == '\0') {
 read_len = read_byte();
 cmd_val = read_byte();
 if (cmd_val != (byte)~read_len) goto SET_NEG_ACK;
 posAck();
 //... READ INTERNAL MEMORY ...
 goto LAB_1fff1858;
 }
 }

Where is the check for RDP???

cGlitching in 3D | CSW 2024 | VoidStar Security LLC 91

Sneak Peek: PiFex

Interface Explorer for Raspberry Pi - Find me afterwards for a sample PCB!

Glitching in 3D | CSW 2024 | VoidStar Security LLC 92

