
Armored Witness
Building a Trusted Notary unikernel

Kick-starting a cross-ecosystem
witness network

Andrea Barisani

@AndreaBarisani - https://andrea.bio

andrea@inversepath.com | andrea@withsecure.com

mailto:andrea.barisani@f-secure.com


$ whoami                     Andrea Barisani

Information Security Engineer and Researcher 

Founder:                                  (acquired in 2017) 

Head of Hardware Security: 

USB armory                      and TamaGo

Spoke at too many conferences...

Background focused on security auditing and security engineering
on safety critical systems in the automotive, avionics, industrial domains.

@AndreaBarisani https://andrea.bio



Google Transparency Project

An open-source append only ledger designed to 
discourage insider threats.

Based on Trillian, an open-source verifiable log.

Merkle trees are used, a log record cannot be modified 
without cascading the change to the tree head hash.

https://transparency.dev/ https://transparency.dev/verifiable-data-structures/



Certificate Transparency

Certificate Transparency allows to see which CAs have issued 
which certificates, when, and for which domains.

Detect maliciously or mistakenly issued certificates.

https://certificate.transparency.dev/



Tamper checking: package managers

A transparent log is hosted on a server and made accessible to 
clients which are able to verify that a particular log record really is 
in the log and also that the server never removes any log record 
from the log.

The log server is not trusted to store the log properly, nor is it 
trusted to put the right records into the log.

Instead, clients and auditors interact skeptically with the server, 
able to verify for themselves in each interaction that the server 
really is behaving correctly.

The go command performs “inclusion” proofs (that a specific 
record exists in the log) and “consistency” proofs (that the tree 
hasn’t been tampered with) before adding new go.sum lines to the 
main module’s go.sum file.

https://go.googlesource.com/proposal/+/master/design/25530-sumdb.md

module github.com/usbarmory/GoTEE                                go.mod

go 1.22.0

require github.com/usbarmory/tamago v0.0.0-20240104082716-7fdd041b36ef

go.sum

github.com/usbarmory/tamago v0.0.0-20240104082716-7fdd041b36ef h1:/4FEy+WnOsA06twAR0UWFLEBU2KRhYzkh+jmvlsI4f4=

github.com/usbarmory/tamago v0.0.0-20240104082716-7fdd041b36ef/go.mod h1:uCPXcPo8SZulhZPz8irfVqzwVlPZ45w7CTJxkfxueGA=

https://go.dev/ref/mod#authenticating



Binary Transparency

A software supply chain can be protected by an immutable 
and tamper-evident record which can be viewed and 
verified by others.

https:/binary.transparency.dev
https://github.com/usbarmory/armory-drive/wiki/Firmware-Transparency

Build reproducibility, in combination with tamper evident 
records, allows verification of opaque firmware binaries 
required for third party locked down hardware (e.g. secure 
booted systems).

https://binary.transparency.dev


USB armory

 https://github.com/usbarmory/usbarmory/wiki

The USB armory targets the following primary applications:

• Encrypted storage solutions
• Hardware Security Module (HSM)
• Enhanced smart cards
• Electronic vaults (e.g. cryptocurrency wallets) and key escrow services
• Authentication, provisioning, licensing tokens
• USB firewall

The USB armory is a tiny, but powerful, embedded 
platform for personal security applications.

Designed to fit in a pocket, laptops, PCs, server
and networks.



Armory Drive - Encrypted USB Mass Storage

 https://github.com/usbarmory/armory-drive

Armory Drive implements the easiest to use encrypted drive 
solution allowing secure access to any microSD card.

Unlike existing encrypted drive solutions the key is unlocked 
with 3 factors (user + mobile phone + armory) and over 
Bluetooth. No trust (or driver requirements) are delegated to 
the host. 

It consists of ~3000 LOC of pure TamaGo (more on this later) 
code and an iOS app.

https://www.youtube.com/watch?v=Sv2wdVkp03A



Armory Drive - Encrypted USB Mass Storage

 https://github.com/usbarmory/armory-drive/wiki/Firmware-Transparency

Armory Drive leverages on Firmware Transparency to 
enable advanced firmware update authentication on 
the installer as well as the device itself.

The installer and firmware work together through a 
combination of Secure Boot and Firmware 
Transparency frameworks to authenticate firmware 
updates.

Secure boot allows firmware authentication with 
burned in read-only public keys, as well as confidential 
configuration storage with device specific hardware 
keys.

Users can choose Secure Boot with own keys, 
manufacturer keys or none at all (with reduced 
security).

https://github.com/usbarmory/armory-drive/wiki/Secure-Boot


$ armory-drive-install -I

Welcome to the Armory Drive installer!

For more information or support on Armory Drive see:
  https://github.com/usbarmory/armory-drive/wiki

This program will install or upgrade Armory Drive on your USB armory.

████████████████████████████████████████████████████████████████████████████████

This installer supports installation of unsigned or signed Armory Drive
releases on the USB armory.

                 ***     Option #1: signed releases     ***

The installation of signed releases activates Secure Boot on the target USB
armory, fully converting the device to exclusive operation with signed
executables.

If the signed releases option is chosen you will be given the option of using
F-Secure signing keys or your own.

                 ***    Option #2: unsigned releases    ***

The installation of unsigned releases does not leverage on Secure Boot and does
not permanently modify the USB armory security state.

Unsigned releases however cannot guarantee device security as hardware bound
key material will use default test keys, lacking protection for stored armory
communication keys and leaving data encryption key freshness only to the mobile
application.

Unsigned releases are recommended only for test/evaluation purposes and are not
recommended for protection of sensitive data where device tampering is a risk.

████████████████████████████████████████████████████████████████████████████████

Would you like to use unsigned releases, *without enabling* Secure Boot on the USB armory? (y/N): N

Would you like to *permanently enable* Secure Boot on the USB armory? (y/N): y

Would you like to use F-Secure signed releases, enabling Secure Boot on the USB armory with permanent fusing of F-Secure public keys? (y/N): y



Found HAB signature
  Tag:    v2021.10.08
  Author: andrejro
  Date:   2021-10-08 12:27:18 +0000 UTC
  URL:    https://github.com/usbarmory/armory-drive/releases/download/v2021.10.08/armory-drive.csf

Found binary release
  Tag:    v2021.10.08
  Author: andrejro
  Date:   2021-10-08 12:27:20 +0000 UTC
  URL:    https://github.com/usbarmory/armory-drive/releases/download/v2021.10.08/armory-drive.imx

Found proof bundle
  Tag:    v2021.10.08
  Author: andrejro
  Date:   2021-10-08 12:27:32 +0000 UTC
  URL:    https://github.com/usbarmory/armory-drive/releases/download/v2021.10.08/armory-drive.proofbundle

Found recovery signature
  Tag:    v2021.10.08
  Author: andrejro
  Date:   2021-10-08 12:27:32 +0000 UTC
  URL:    https://github.com/usbarmory/armory-drive/releases/download/v2021.10.08/armory-drive.sdp

Found SRK table hash
  Tag:    v2021.10.08
  Author: andrejro
  Date:   2021-10-08 12:27:33 +0000 UTC
  URL:    https://github.com/usbarmory/armory-drive/releases/download/v2021.10.08/armory-drive.srk

Downloaded verified release assets
Downloading manifest authentication key from usbarmory/armory-drive-log/keys/armory-drive.pub
Downloading transparency log authentication key from usbarmory/armory-drive-log/keys/armory-drive-log.pub

████████████████████████████████████████████████████████████████████████████████

                 ***  Armory Drive Programming Utility  ***
                 ***           READ CAREFULLY           ***

This will provision F-Secure signed Armory Drive firmware on your USB armory. By
doing so, secure boot will be activated on the USB armory with permanent OTP
fusing of F-Secure public secure boot keys.

Fusing OTP's is an **irreversible** action that permanently fuses values on the
device. This means that your USB armory will be able to only execute F-Secure
signed Armory Drive firmware after programming is completed.

In other words your USB armory will stop acting as a generic purpose device and
will be converted to *exclusive use of F-Secure signed Armory Drive releases*.

████████████████████████████████████████████████████████████████████████████████



Armory Drive - device verification of previous checkpoint

https://github.com/usbarmory/armory-drive/blob/master/internal/ota/ota.go

imx, csf, proof, err := extract(buf)

if err != nil {

return fmt.Errorf("could not extract archive, %v", err)

}

if len(proof) > 0 {

var pb *api.ProofBundle

pb, err = verifyProof(imx, csf, proof, keyring.Conf.ProofBundle)

if err != nil {

err = fmt.Errorf("could not verify proof, %v", err)

return

}

keyring.Conf.ProofBundle = pb

keyring.Save()

}

// append HAB signature

imx = append(imx, csf...)

if err = usbarmory.MMC.WriteBlocks(2, imx); err != nil {

return fmt.Errorf("could not write to MMC, %v", err)

}

log.Println("firmware update complete")

To ensure the firmware is valid, clients must verify that 
it is present in the transparency log. The inclusion 
verification is performed by both the Armory Drive 
installer and the Armory Drive firmware itself.

The installer can check the presence of the relevant 
hash directly against the published log.

The firmware, not having network access, is unable 
verify the inclusion directly with the log but instead 
does so via a proof bundle passed from the installer. 

This proof bundle contains a new checkpoint covering 
the new firmware release, the firmware manifest, and 
all the leaf hashes from the log (i.e. HASH_1, HASH_2, … 
, etc.).

The presence of the leaf hashes allows the firmware to 
prove to itself that the checkpoint provided when the 
currently-running firmware was installed is consistent 
with (i.e. an ancestor of) the new one, ensuring that the 
tree history has not been compromised.

https://github.com/usbarmory/armory-drive/tree/master/cmd/armory-drive-install


Witnesses
Transparency works if:

- There is a log at the centre which offers efficient 
cryptographically verifiable proofs of inclusion 
and append-only operation.

- Anyone preparing to rely on an artefact checks 
that it is present in the log before doing so (i.e. 
artefacts must be present in a log before anyone 
will trust them).

- There are one or more entities who are able to 
verify the correctness of artefacts in the log (i.e. 
"bad" artefacts will be spotted).

- Everyone listed above sees the same list of 
entries in the log.

A witness is an entity that:

- Verifies append-only operation of one or more 
logs, countersigning checkpoints if and only if the 
witness is convinced that a given checkpoint is 
consistent with all checkpoints previously issued 
by the same log.

- Makes these countersigned checkpoints publicly 
available.

- Ensures there is only one view of the log.

https://go.dev/blog/module-mirror-launch/

“In addition to verification done by the go 
command, third-party auditors can hold the 
checksum database accountable by iterating over 
the log looking for bad entries. They can work 
together and gossip about the state of the tree 
as it grows to ensure that it remains 
uncompromised, and we hope that the Go 
community will run them.”



Building a hardware witness
The key goal is to build a device for custodians to:

- Help transparency-enabled ecosystems to
further tighten their security properties
(Go’s sum DB, Sigstore, Pixel BT, LVFS, SigSum, 
Amory Drive).

- Allow low-touch and maintenance-free operation.

- Demonstrate and promote how to apply firmware 
transparency.

Device goals:

- Full transparency, open hardware and software.

- Reduced attack surface.

- Plug-and-go.

Combining our skills and projects:

USB armory

TamaGo 

GoTEE

https://github.com/transparency-dev/armored-witness



USB armory Mk II LAN

A new bespoke variant created specifically for 
the Armored Witness project.

● RAM: 512 MB or 1 GB DDR3
● Internal storage: 16 GB eMMC
● External secure element: NXP SE050
● SoC: NXP i.MX6UL/i.MX6ULL

(ARM® Cortex™-A7 528/900 MHz)

● Ethernet: 10/100-Mbps with IEEE 802.3af 
Power over Ethernet

● USB 2.0 over USB-C: DRP plug

It can be powered by either USB or PoE, acts as 
USB host or device depending on power mode.

Provides the same security features of the USB 
only model, full OSS tooling (no NXP blobs).https://github.com/usbarmory/usbarmory/wiki/Mk-II-LAN



Hardware security features
High Assurance Boot (HAB)

SoC Boot ROM authentication of initial bootloader (i.e. Secure Boot).

CAAM (i.MX6UL) / DCP+RNGB (i.MX6ULZ)
SoC cryptographic accelerators and TRNG.

Secure Non-Volatile Storage (SNVS)
Encrypted storage of arbitrary data using unique keys,
voltage, temperature, clock tamper sensors.

Bus Encryption Engine (BEE) 
On i.MX6UL SoC it provides on-the-fly (OTF)
AES-128-CTR RAM encryption/decryption.

NXP SE050
External SE with hardware acceleration for elliptic-curve
cryptography as well as hardware based key storage.

Replay Protected Memory Block (RPMB)
The internal eMMC allows replay protected authenticated
access to flash memory partition areas, using a shared secret
between the host and the eMMC.

https://github.com/usbarmory/usbarmory/wiki/Hardware-security-features-(Mk-II)



TamaGo: Killing C

When security matters software and hardware optimizations matter less.

This means that less constrained hardware (e.g. SoCs in favor of MCUs) and higher level code 
are perfectly acceptable.

However high level programming typically entails several layers (e.g. OS, libraries) to serve 
runtime execution.

TamaGo spawns from the desire of reducing the attack surface of embedded systems 
firmware by removing any runtime dependency on C code and inherently complex Operating 
Systems.

In other words we want to avoid shifting complexity around and run a higher level language, 
such as Go in our effort, directly on the bare metal.



Reducing the attack surface

 https://github.com/usbarmory/usbarmory/wiki/Secure-boot-(Mk-II)

Typical secure booted firmware with authentication and confidentiality on an NXP i.M6UL.

https://github.com/usbarmory/usbarmory/wiki/Secure-boot-(Mk-II)


Speed vs Safety

more hardware control less hardware control

easier (facilitates implementation safety)

harder (hampers implementation safety)

Disclaimer: chart presented for discussion and not to claim that language X is better than language Y, also scale is subjective.



Unikernels / library OS

Unikernels¹ are a single address space image to executed a “library operating system”, typically 
running under bare metal.

The focus is reducing the attack surface, carrying only strictly necessary code.

“True” unikernels are mostly unicorns, as a good chunk of available ones do not fit in this 
category and represent “fat” unikernels running under hypervisors and/or other (mini) OSes
And just shift around complexity (e.g. the app is PID 1).

Apart for some exceptions there is always still a lot of C/dependencies involved in the 
underlying OS, drivers or hypervisor.

 ¹ https://en.wikipedia.org/wiki/Unikernel   An excellent summary: https://github.com/cetic/unikernels

Running or importing *BSD kernels
Rump kernels (NetBSD based) 

OSv (re-uses code from FreeBSD)

Running under hypervisor
Nanos (Xen/KVM/Qemu) HalVM (Haskell, Xen)

LING (Erlang, Xen) RustyHermit (KVM)

Running under hypervisor and 3rd party kernel
MirageOS (Solo5)
ClickOS (MiniOS)

Bare metal
GRISP (Erlang)

IncludeOS

https://en.wikipedia.org/wiki/Unikernel
https://github.com/cetic/unikernels


TamaGo in a nutshell

TamaGo is made of two main components.

● A minimally¹ patched Go distribution to enable GOOS=tamago  support, which provides 
freestanding execution on GOARCH=arm  and GOARCH=riscv64  bare metal.

● A set of packages² to provide board support (e.g. hardware initialization and drivers).

TamaGo currently provides drivers for SoC families
NXP i.MX6UL (USB armory Mk II), BCM2835
(Raspberry Pi Zero, Pi 1, Pi 2) and SiFive FU540.

On the i.MX6UL we target development of security
applications, TamaGo is fully integrated with our
existing open source tooling for i.MX6 Secure Boot
(HAB) image signing.

TamaGo also provides full hardware initialization
removing the need for intermediate bootloaders. 

 ¹ https://github.com/usbarmory/tamago-go   ² https://github.com/usbarmory/tamago



Enabling trust
TamaGo not only proves that it is possible to have a bare metal Go runtime, but does so 
with clean and minimal modifications against the original Go distribution².

Much of the effort has been placed to understand whether Go bare metal support can be 
achieved without complex re-implementation of memory allocation, threading, ASM/C OS 
primitives that would “pollute” the Go runtime to unacceptable levels.

Less is more. Complexity is the enemy of verifiability.

The acceptance of this (and similar) efforts hinges on maintainability, ease of review, 
clarity, simplicity and trust.

★ Designed to achieve upstream inclusion and with commitment to always sync to latest Go release.
★ ~4500 LOC of changes against Go distribution with clean separation from other GOOS support.
★ Strong emphasis on code reuse from existing architectures of standard Go runtime, see Internals¹.
★ Requires only one import (“library OS”) on the target Go application.
★ Supports unencumbered Go applications with nearly full runtime availability.
★ In addition to the compiler, aims to provide a complete set of peripheral drivers for SoCs.

 ¹ https://github.com/usbarmory/tamago/wiki/Internals   ² Which by the way is self-hosted and has reproducible builds.

https://github.com/inversepath/tamago/wiki/Internals


Go low level access

Example: BEE initialization

Go’s unsafe can be easily 
identified to spot areas that 
require care (e.g. pointer 
arithmetic), it is currently used 
only in register and DMA memory 
manipulation primitives.

There are overall only 3 
occurrences of unsafe used in dma 
and reg packages.

Applications are never required to 
use any unsafe function.

 https://github.com/usbarmory/tamago-go https://github.com/usbarmory/tamago

func (hw *BEE) Init() {

hw.mu.Lock()

defer hw.mu.Unlock()

hw.ctrl = hw.Base + BEE_CTRL

hw.addr0 = hw.Base + BEE_ADDR_OFFSET0

hw.addr1 = hw.Base + BEE_ADDR_OFFSET1

hw.key = hw.Base + BEE_AES_KEY0_W0

hw.nonce = hw.Base + BEE_AES_KEY1_W0

// enable clock

reg.Set(hw.ctrl, CTRL_CLK_EN)

// disable reset

reg.Set(hw.ctrl, CTRL_SFTRST_N)

// disable

reg.Clear(hw.ctrl, CTRL_BEE_ENABLE)

}

func (hw *BEE) generateKey() (err error) {

// avoid key exposure to external RAM

key, err := dma.NewRegion(uint(hw.key), aes.BlockSize, false)

if err != nil {

return

}

addr, buf := key.Reserve(aes.BlockSize, 0)

if n, err := rand.Read(buf); n != aes.BlockSize || err != nil {

return errors.New("could not set random key")

}

if addr != uint(hw.key) {

return errors.New("invalid key address")

}

return

}

https://github.com/usbarmory/tamago-go
https://github.com/cetic/unikernels


TamaGo

 https://github.com/usbarmory/tamago/wiki/Internals

Traditional OS

TamaGo unikernel

https://github.com/usbarmory/tamago/wiki/Internals


Developing, building and running

The full Go runtime is supported¹ without any specific changes required on the application 
side (Rust on bare metal², for comparison, requires #![no_std]  pragma).

All Go ecosystem features in terms of build
reproducibility, dependency management, profiling,
debugging, remain intact.

Firmware can be compiled just as easily on Linux, Windows, macOS.

 ¹ https://github.com/usbarmory/tamago/wiki/Import-report   ² https://rust-embedded.github.io/book/intro/no-std.html

package main

import (

_ "github.com/usbarmory/tamago/board/usbarmory/mk2"

)

func main() {

// your code

}

GO_EXTLINK_ENABLED=0 CGO_ENABLED=0 GOOS=tamago GOARM=7 GOARCH=arm \

  ${TAMAGO} build -ldflags "-T 0x80010000 -E _rt0_arm_tamago -R 0x1000"

1. The application requires a single 
import for the board package to 
enable necessary initializations.

2. Go code can be written with very 
few limitations and the SoC package
exposes driver APIs.

3. go build can be used as usual
(reproducible builds!) with few linker 
flags to define entry point.

4. The SoC package supports native
loading (no bootloader required!).

https://rust-embedded.github.io/book/intro/no-std.html


Reducing the attack surface
Block LOCs Driver support

ARM 900 CPU MMU, timer, exceptions, IRQ handling
BEE 130 OTF AES RAM encryption/decryption
CAAM 840 accel. AES/ECC/CMAC/SHA/TRNG, HUK derivation
DCP 400 accel. AES/SHA, HUK derivation 
ENET 370 10/100-Mbps Ethernet driver, MII support
RNGB 70 True Random Number Generator
RPMB 230 Replay Protected Memory Block
SNVS 180 tamper proof sensors
USB 1200 USB 2.0 in device mode
USDHC 1100 eMMC (up to HS200 speed) / SD (up to SDR104 speed)

MK2 680 USB armory Mk II board support package

The TamaGo firmware allows creation of true unikernels, incorporating in
a single binary boot code, peripheral drivers, libraries and application code with
Minimal dependencies and all the benefits of the full Go ecosystem, including debugging.

https://github.com/usbarmory/tamago/tree/master/soc/nxp



Improving memory safety



$ make qemu

tamago/arm (go1.22.1) • 5e1f6aa lcars@lambda on 2024-03-20 08:02:11 • i.MX6UL 1188 MHz (emulated)

ble # BLE serial console
date (time in RFC339 format)? # show/change runtime date and time
dcp <size> <sec> # benchmark hardware encryption
dns <fqdn> # resolve domain (requires routing)
exit, quit # close session
help # this help
i2c <n> <hex target> <hex addr> <size> # I²C bus read
info # device information
kem # benchmark post-quantum KEM
led (white|blue) (on|off) # LED control
md <hex offset> <size> # memory display (use with caution)
mmc <n> <hex offset> <size> # MMC/SD card read
mw <hex offset> <hex value> # memory write (use with caution)
ntp                     <host>                              # change runtime date and time w/ NTP
otp <bank> <word> # OTP fuses display
rand # gather 32 random bytes
reboot # reset device
stack # stack trace of current goroutine
stackall # stack trace of all goroutines
test # launch tests

> kem
Kyber1024 89248f2f33f7f4f7051729111f3049c409a933ec904aedadf035f30fa5646cd5 (287.799024ms)
Kyber768  a1e122cad3c24bc51622e4c242d8b8acbcd3f618fee4220400605ca8f9ea02c2 (209.114896ms)
Kyber512  e9c2bd37133fcb40772f81559f14b1f58dccd1c816701be9ba6214d43baf4547 (149.049056ms)

> rand
db7d46647880be1e51731177b6f73645b71ca504242c97758df3a86842d93236

> md 80000000 96
00000000  18 f0 9f e5 18 f0 9f e5  18 f0 9f e5 18 f0 9f e5  |................|
00000010  18 f0 9f e5 18 f0 9f e5  18 f0 9f e5 18 f0 9f e5  |................|
00000020  04 d4 0f 80 38 d4 0f 80  6c d4 0f 80 a0 d4 0f 80  |....8...l.......|
00000030  d4 d4 0f 80 00 00 00 00  08 d5 0f 80 3c d5 0f 80  |............<...|
00000040  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|
00000050  00 00 00 00 00 00 00 00  00 00 00 00 00 00 00 00  |................|

> ntp time.google.com    
2024-03-20T08:02:11Z

> info
Runtime ......: go1.22.1 tamago/arm
RAM ..........: 0x80000000-0x9f600000 (502 MiB)
Board ........: UA-MKII
SoC ..........: i.MX6ULZ 1188 MHz (emulated)

 https://github.com/usbarmory/tamago-example

$ ssh 10.0.0.1

tamago/arm (go1.22.1) • 5e1f6aa lcars@lambda on 2024-03-20 10:00:48 • i.MX6ULL 900 MHz

> otp 0 0
OTP bank:0 word:0 val:0x00324003

 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00  OCOTP_LOCK
┏━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━
━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┳━━┓  Bank:0 Word:0
┃0 ┃0 ┃  ┃  ┃  ┃  ┃0 ┃  ┃0 ┃0 ┃1 ┃1 ┃0  0 ┃1 ┃0 ┃0 ┃1 ┃0  0 ┃0  0 ┃0  0 ┃  ┃0 ┃0  0 ┃0  0 ┃1  1 ┃ R: 
0x00000000
┗━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━╋━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━╋━━┻━━┻━━┻━━┻━━┻━━┻━━┻━
━╋━━┻━━┻━━┻━━┻━━┻━━┻━━┻━━┛  W: 0x00000000
 31 —————————————————————————————————————————————————————————————————————————————————————————————  GP3_RLOCK
    30 ——————————————————————————————————————————————————————————————————————————————————————————  GP4_RLOCK
                   25 ———————————————————————————————————————————————————————————————————————————  PIN_LOCK
                         23 —————————————————————————————————————————————————————————————————————  GP4_LOCK
                            22 ——————————————————————————————————————————————————————————————————  MISC_CONF_LOCK
                               21 ———————————————————————————————————————————————————————————————  ROM_PATCH_LOCK
                                  20 ————————————————————————————————————————————————————————————  OTPMK_CRC_LOCK
                                     19 18 ——————————————————————————————————————————————————————  ANALOG_LOCK
                                           17 ———————————————————————————————————————————————————  OTPMK_LOCK
                                              16 ————————————————————————————————————————————————  SW_GP_LOCK
                                                 15 —————————————————————————————————————————————  GP3_LOCK
                                                    14 ——————————————————————————————————————————  SRK_LOCK
                                                       13 12 ————————————————————————————————————  GP2_LOCK
                                                             11 10 ——————————————————————————————  GP1_LOCK
                                                                   09 08 ————————————————————————  MAC_ADDR_LOCK
                                                                            06 ——————————————————  SJC_RESP_LOCK
                                                                               05 04 ————————————  MEM_TRIM_LOCK
                                                                                     03 02 ——————  BOOT_CFG_LOCK
                                                                                           01 00   TESTER_LOCK

> dns www.golang.org
[142.251.215.238 2607:f8b0:400a:805::200e]

> dcp 65536 10
Doing aes-128 cbc for 10s on 65536 blocks
6201 aes-128 cbc's in 10.00086575s

> info
Runtime ......: go1.22.1 tamago/arm
RAM ..........: 0x80000000-0x9f600000 (502 MiB)
Board ........: UA-MKII-γ
SoC ..........: i.MX6ULZ 900 MHz
SSM Status ...: state:0b1101 clk:false tmp:false vcc:false hac:4294967295
Boot ROM hash : 1727a0f46dbde555b583e9a138ae359389974b7be4369ffd4a252a8730f7e59b
Secure boot ..: true
Unique ID ....: FE186D5AB312430B
SDP ..........: true
Temperature ..: 48.333332

https://github.com/usbarmory/tamago-example


> tailscale $YOURKEY
tsnet --- [v1] using fake (no-op) tun device
tsnet --- [v1] using fake (no-op) OS network configurator
tsnet --- [v1] using fake (no-op) DNS configurator
tsnet --- dns: using dns.noopManager
tsnet --- link state: interfaces.State{defaultRoute= ifs={} v4=false v6=false}
tsnet --- magicsock: disco key = d:xxxxxxxxxxxxxxxx
tsnet --- Creating WireGuard device...
tsnet --- Bringing WireGuard device up...
tsnet --- wg: [v2] UDP bind has been updated
tsnet --- wg: [v2] Interface state was Down, requested Up, now Up
tsnet --- Bringing router up...
tsnet --- [v1] warning: fakeRouter.Up: not implemented.
tsnet --- Clearing router settings...
tsnet --- [v1] warning: fakeRouter.Set: not implemented.
tsnet --- Starting network monitor...
tsnet --- Engine created.
tsnet --- tsnet running state path /tsnet-tamago/tailscaled.state
tsnet --- pm: migrating "_daemon" profile to new format
tsnet --- [vJSON]1{"Hostinfo":{"IPNVersion":"1.49.0-dev20230906-t7a0be7f2c-dirty","OS":"tamago","Package":"tsnet","Hostname":"tamago","GoArch":"arm","GoArchVar":"7","GoVersion":"go1.21.0"}}
tsnet --- logpolicy: using UserCacheDir, "/Tailscale"
tsnet --- [v1] netmap packet filter: (not ready yet)
tsnet --- tsnet starting with hostname "tamago", varRoot "/tsnet-tamago"
tsnet --- Start
tsnet --- generating new machine key
…
netmap: self: [0xGGm] auth=machine-authorized u=xxxxxxxxx@gmail.com [100.xxx.xx.82/32 fd7a:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/128]
tsnet --- control: [v1] mapRoutine: netmap received: state:synchronized
tsnet --- control: [v1] sendStatus: mapRoutine-got-netmap: state:synchronized
tsnet --- active login: xxxxxxxxx@gmail.com
tsnet --- [v1] netmap packet filter: 1 filters
tsnet --- [v1] magicsock: got updated network map; 3 peers
tsnet --- [v2] netstack: registered IP 100.xxx.xx.82/32
tsnet --- [v2] netstack: registered IP fd7a:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx/128
…
tsnet --- peerapi: serving on http://100.xxx.xx.82:63151
tsnet --- peerapi: serving on http://[fd7a:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx:xxxx]:63151
tsnet --- netcheck: UDP is blocked, trying ICMP
tsnet --- control: [v1] HostInfo: 
{"IPNVersion":"1.49.0-dev20230906-t7a0be7f2c-dirty","BackendLogID":"xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx9b2efd","OS":"tamago","Package":"tsnet","Hostname":"tamago","GoArch":"a
rm","GoArchVar":"7","GoVersion":"go1.21.0","Services":[{"Proto":"peerapi4","Port":63151},{"Proto":"peerapi6","Port":63151}],"Userspace":true,"UserspaceRouter":true}
tsnet --- control: [v1] PollNetMap: stream=false ep=[]

starting web server at 100.117.90.82:80
tsnet --- control: [v1] successful lite map update in 316ms
starting ssh server (SHA256:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx) at :22

$ ping 100.xxx.xx.82

PING 100.xxx.xx.82 (100.xxx.xx.82) 56(84) bytes of data.
64 bytes from 100.xxx.xx.82: icmp_seq=1 ttl=64 time=170 ms
64 bytes from 100.xxx.xx.82: icmp_seq=2 ttl=64 time=161 ms
64 bytes from 100.xxx.xx.82: icmp_seq=3 ttl=64 time=126 ms

https://github.com/usbarmory/tamago-example/blob/master/cmd/tailscale.go

https://github.com/usbarmory/tamago-example/blob/master/cmd/tailscale.go


GoKey - The bare metal Go smart card

 https://github.com/usbarmory/gokey

The GoKey application implements a composite USB 
OpenPGP 3.4 smartcard and FIDO U2F token, written 
in pure Go (~2500¹ LOC).

It allows to implement a radically different security 
model for smartcards, taking advantage of TamaGo 
to safely mix layers and protocols not easy to 
combine.

For instance authentication can happen over SSH 
instead of plaintext PIN transmission over USB.

  ¹ CCID: ~220 ICC: ~1000 U2F: 200

https://gnupg.org/ftp/specs/OpenPGP-smart-card-application-3.4.pdf
https://fidoalliance.org/specs/fido-u2f-v1.2-ps-20170411/fido-u2f-overview-v1.2-ps-20170411.pdf


armory-boot - USB armory boot loader

 https://github.com/usbarmory/armory-boot

A primary signed boot loader (~300 LOC) to launch authenticated Linux kernel images on 
secure booted¹ USB armory boards, replacing U-Boot.

func verifySignature(buf []byte, s []byte) (valid bool, err error) {

sig, err := DecodeSignature(string(s))

if err != nil {

return false, fmt.Errorf("invalid signature, %v", err)

}

pub, err := NewPublicKey(PublicKeyStr)

if err != nil {

return false, fmt.Errorf("invalid public key, %v", err)

}

return pub.Verify(buf, sig)

}

func verifyHash(buf []byte, s string) bool {

// use hardware acceleration

sum, _ := imx6ul.DCP.Sum256(buf) {

if hash, err := hex.DecodeString(s); err != nil {

return false

}

return bytes.Equal(sum[:], hash)

}

func boot(kernel []byte, dtb []byte, cmdline string) {

dma.Init(dmaStart, dmaSize)

mem, _ := dma.Reserve(dmaSize, 0)

dma.Write(mem, kernel, kernelOffset)

dma.Write(mem, dtb, dtbOffset)

image := mem + kernelOffset

params := mem + dtbOffset

arm.ExceptionHandler = func(n int) {

if n != arm.SUPERVISOR {

panic("unhandled exception")

}

usbarmory.LED("blue", false)

usbarmory.LED("white", false)

imx6ul.ARM.DisableInterrupts()

imx6ul.ARM.FlushDataCache()

imx6ul.ARM.Disable()

exec(image, params)

})

svc()

}

  ¹ https://github.com/usbarmory/usbarmory/wiki/Secure-boot-(Mk-II)

https://github.com/usbarmory/usbarmory/wiki/Secure-boot-(Mk-II)


GoTEE - Trusted Execution Environment

 https://github.com/usbarmory/GoTEE

The GoTEE framework implements concurrent 
instantiation of TamaGo based unikernels in 
privileged and unprivileged modes, interacting with 
each other through monitor mode and custom 
system calls.

With these capabilities GoTEE implements a pure Go
Trusted Execution Environment (TEE) bringing Go 
memory safety, convenience and capabilities to bare 
metal execution within TrustZone Secure World.

It supports any freestanding user mode applets
(e.g. TamaGo, C, Rust) and any “rich” OS running in 
NonSecure World (e.g. Linux).

https://github.com/usbarmory/GoTEE/wiki/

https://github.com/cetic/unikernels


> gotee

PL1 tamago/arm (go1.18.3) • TEE system/monitor (Secure World)

PL1 loaded applet addr:0x9c000000 size:4719809 entry:0x9c06f188

PL1 loaded kernel addr:0x80000000 size:4384184 entry:0x8006db70

PL1 starting mode:SYS ns:true sp:0x00000000 pc:0x8006db70

PL1 starting mode:USR ns:false sp:0x9e000000 pc:0x9c06f188

PL1 tamago/arm (go1.18.4) • system/supervisor (Normal World)

PL1 in Normal World is about to perform DCP key derivation

PL1 in Normal World successfully used DCP (df3eed2a50c9dd22daf7cf864f27bb90)

PL1 in Normal World is about to yield back

   r0:00000000  r1:814243f0  r2:00000001  r3:00000000

   r4:00000000  r5:00000000  r6:00000000  r7:8146bf14

   r8:00000007  r9:00000034 r10:814040f0 r11:802e9b21 cpsr:600001d6 (MON)

  r12:00000000  sp:8146bf54  lr:80185518  pc:80185648 spsr:600001df (SYS)

PL1 stopped mode:SYS ns:true sp:0x8146bf54 lr:0x80185518 pc:0x80185648 err:exit

PL0 tamago/arm (go1.18.4) • TEE user applet (Secure World)

PL0 obtained 16 random bytes from PL1: 10e742f0dad15db3f00aea14ee4a5acc

PL1 loaded kernel addr:0x80000000 size:4384184 entry:0x8006db70

PL1 re-launching kernel with TrustZone restrictions

PL1 starting mode:SYS ns:true sp:0x00000000 pc:0x8006db70

PL1 tamago/arm (go1.18.4) • system/supervisor (Normal World)

PL1 in Normal World is about to perform DCP key derivation

   r0:02280000  r1:814683a0  r2:8143c588  r3:00000001

   r4:00000000  r5:00000000  r6:00000000  r7:8146bf14

   r8:00000007  r9:00000044 r10:814040f0 r11:802e9b21 cpsr:200001d6 (MON)

  r12:00000000  sp:8146bf28  lr:80180398  pc:80011340 spsr:200001df (SYS)

PL1 stopped mode:SYS ns:true sp:0x8146bf28 lr:0x80180398 pc:0x80011340 err:DATA_ABORT

PL1 in Secure World is about to perform DCP key derivation

PL1 in Secure World World successfully used DCP (df3eed2a50c9dd22daf7cf864f27bb90)

$ ssh 10.0.0.1

PL1 tamago/arm (go1.18.3) • TEE system/monitor (Secure World)

  help                                   # this help
  reboot                                 # reset the SoC/board
  stack                                  # stack trace of current goroutine
  stackall                               # stack trace of all goroutines
  md  <hex offset> <size>                # memory display (use with caution)
  mw  <hex offset> <hex value>           # memory write   (use with caution)

  gotee                                  # TrustZone test w/ TamaGo unikernels
  linux <uSD|eMMC>                       # boot NonSecure USB armory Debian image

  dbg                                    # show ARM debug permissions
  csl                                    # show config security levels (CSL)
  csl <periph> <slave> <hex csl>         #  set config security level  (CSL)
  sa                                     # show security access (SA)
  sa  <id> <secure|nonsecure>            #  set security access (SA)

> dbg
| type                    | implemented | enabled |
|-------------------------|-------------|---------|
| Secure non-invasive     |           1 |       0 |
| Secure invasive         |           1 |       0 |
| Non-secure non-invasive |           1 |       1 |
| Non-secure invasive     |           1 |       0 |

> linux eMMC
armory-boot: loading configuration at /boot/armory-boot-nonsecure.conf
PL1 loaded kernel addr:0x80000000 size:7603616 entry:0x80800000 
PL1 launching Linux                                                                 
PL1 starting mode:SVC ns:true sp:0x00000000 pc:0x80800000
Booting Linux on physical CPU 0x0                                                                     
Linux version 5.15.52-0 (usbarmory@usbarmory) arm-linux-gnueabihf-gcc (Ubuntu 9.4.0-1ubuntu1~20.04.1)

 https://github.com/usbarmory/GoTEE/wiki/TrustZone-configuration https://github.com/usbarmory/GoTEE-example

https://github.com/cetic/unikernels


GoTEE in the wild: space!

 https://www.withsecure.com/en/whats-new/pressroom/usb-armory-post-quantum-encryption-put-to-test-in-space

On May 22nd 2023 (UTC 05:00:32) the
USB armory Mk II got a lift to space!

On February 27th 2024 (UTC 07:27:00)
the same unit went back to space.

GoTEE supervised a TamaGo based unikernel (acting
as Trusted Applet) and a full Linux instance isolated
in NonSecure World to test Post Quantum Key
exchanges.

For this occasion TamaGo and GoTEE have been
updated with full watchdog and interrupt support.

The payload remained operation for the entire flight duration performing exactly 400 PQC key exchanges. As far as we 
know this is the first time bare metal Go executed in space.



Building a hardware witness

Activates RAM encryption with a random key
Loads the OS from the MMC
Verifies its signature and executes it

https://github.com/transparency-dev/armored-witness

armored-witness-boot

armored-witness-os

armored-witness-applet

Supervisor mode, IRQ and FIQ handling
Ethernet, LED, storage access
Loads the Applet from the MMC
Verifies its signature, version (anti rollback w/RPMB) and executes it
Provides RPC-like syscall interface to the Applet

User mode
TCP/IP stack (gVisor) and DHCP client
Requests hardware key derivation to Supervisor
Runs an OmniWitness

All firmware verification past the Boot ROM stage verify, through FT proof bundles, the presence of one or more trusted 
signatures (multi party signing) on the release manifest. The release manifest includes the binary hash, log checkpoint, the 
index of the manifest in the log and its corresponding inclusion proof.

The OS and Applet must be published on the log to be usable on the device.

~400 LOC

~2000 LOC

~2500 LOC

Boot ROM Verifies the bootloader and executes it



Minimising trust

https://github.com/transparency-dev/armored-witness/blob/main/docs/transparency.md

All firmware is open source, written in TamaGo, and is 
build-reproducible by anyone. All firmware is logged to a 
Firmware Transparency log at build and release time.

The provision tool will only use firmware artefacts 
discovered in the FT log in order to program devices. The 
on-device self-update process requires that updated 
firmware is hosted in the FT log.

The verify tool can be used by custodians to inspect the 
device, extract the firmware components from it, and 
verify that they are present in the FT log.

The verify_build command continuously monitors the 
contents of the FT log, and tests that every logged 
firmware is indeed reproducibly built.

Google and WithSecure are able to quickly become aware 
of misuse of their signing identities to release 
unauthorised firmware updates.

Anyone can verify that each firmware can be rebuilt 
consistently with what is running, logged and its source.

{

  "schema_version": 0,

  "component": "TRUSTED_APPLET",

  "git": {

    "tag_name": "0.3.1709910063-incompatible",

    "commit_fingerprint": "9651fc25839d9937acc041057cf3906f26fc1ae5"

  },

  "build": {

    "tamago_version": "1.22.0",

    "envs": [

      "FT_LOG_URL=https://api.transparency.dev/armored-witness-firmware/ci/log/2",

      "FT_BIN_URL=https://api.transparency.dev/armored-witness-firmware/ci/artefacts/2",

      "LOG_ORIGIN=transparency.dev/armored-witness/firmware_transparency/ci/2",

      "LOG_PUBLIC_KEY=transparency.dev-aw-ftlog-ci-2+f77c6276+AZXqiaARpwF4MoNOxx46kuiIRjrML0PDTm+c7BLaAMt6",

      "APPLET_PUBLIC_KEY=transparency.dev-aw-applet-ci+3ff32e2c+AV1fgxtByjXuPjPfi0/7qTbEBlPGGCyxqr6ZlppoLOz3",

      "OS_PUBLIC_KEY1=transparency.dev-aw-os1-ci+7a0eaef3+AcsqvmrcKIbs21H2Bm2fWb6oFWn/9MmLGNc6NLJty2eQ",

      "OS_PUBLIC_KEY2=transparency.dev-aw-os2-ci+af8e4114+AbBJk5MgxRB+68KhGojhUdSt1ts5GAdRIT1Eq9zEkgQh",

      "REST_DISTRIBUTOR_BASE_URL=https://api.transparency.dev/ci",

      "BEE=1",

      "DEBUG=1",

      "SRK_HASH=b8ba457320663bf006accd3c57e06720e63b21ce5351cb91b4650690bb08d85a"

    ]

  },

  "output": {

    "firmware_digest_sha256": "lLPLT5TO2+Ln71cByKhVvNFyAL47IzOOSGoXNKVSCvU="

  }

}

-- transparency.dev-aw-applet-ci 

P/MuLOfW8473+PNMa58SZA2/rw1aEaIaLTw/aNfdawSiyFEcDjGksYqCTFMnHHGAhhbfnITkkktL1…

The entire Software Bill of Materials (SBOM) can be managed with Go 
ecosystem tools (e.g. go.mod + go.sum, go mod graph).

https://github.com/transparency-dev/armored-witness/blob/main/docs/cmd/provision
https://github.com/transparency-dev/armored-witness/blob/main/docs/cmd/verify
https://github.com/transparency-dev/armored-witness/blob/main/docs/cmd/verify_build


Code snippet - bootloader AES OTF RAM activation

https://github.com/transparency-dev/armored-witness-boot/blob/main/mem_bee.go

func init() {

// Encrypt 1GB of external RAM, this is the maximum extent either

// covered by the BEE or available on USB armory Mk II boards.

region0 := uint32(imx6ul.MMDC_BASE)

region1 := region0 + bee.AliasRegionSize

imx6ul.BEE.Init()

defer imx6ul.BEE.Lock()

if err := imx6ul.BEE.Enable(region0, region1); err != nil {

log.Fatalf("could not activate BEE: %v", err)

}

imx6ul.ARM.ConfigureMMU(

bee.AliasRegion0,

bee.AliasRegion1 + bee.AliasRegionSize,

0,

arm.TTE_CACHEABLE | arm.TTE_BUFFERABLE | arm.TTE_SECTION | arm.TTE_AP_001<<10,

)

}



Code snippet - Trusted OS memory map

https://github.com/transparency-dev/armored-witness-os/blob/main/trusted_os/mem_bee.go

// The following memory regions are within an alias of external DDR, required

// when memory encryption is enforced by the i.MX6UL Bus Encryption Engine

// (BEE).

const (

// The Secure Monitor RAM cannot be used as reserved area for

// arm.Init() as the L1/L2 page tables cannot be placed in BEE aliased

// memory due to its caching requirements, we therefore override

// vecTableStart with the alias physical pointer.

physicalStart = 0x80000000 // imx6ul.MMDC_BASE

// Secure Monitor DMA

//

// BEE aliased regions must be accessed either through cache or 16 byte

// accesses, this makes it impractical for peripheral driver DMA use

// and we must therefore keep DMA on a non-aliased region.

secureDMAStart = 0x8e000000

secureDMASize  = 0x02000000 // 32MB

// Secure Monitor

secureStart = 0x10000000 // bee.AliasRegion0

secureSize  = 0x0e000000 // 224MB

// Secure Monitor Applet

appletStart = 0x20000000

appletSize  = 0x10000000 // 256MB

)



Code snippet - Trusted OS RPMB initialization

https://github.com/transparency-dev/armored-witness-os/blob/main/trusted_os/rpmb.go

func (r *RPMB) init() error {

dk := make([]byte, sha256.Size)

if err = imx6ul.CAAM.DeriveKey([]byte(diversifierMAC), dk); err != nil {

return fmt.Errorf("could not derive RPMB key (%v)", err)

}

uid := imx6ul.UniqueID()

card, ok := r.storage.(*usdhc.USDHC)

if !ok {

return errors.New("could not assert type *usdhc.USDHC from Card")

}

isProgrammed, err := r.isProgrammed()

if err != nil {

return err

}

// setup RPMB

r.partition, err = rpmb.Init(

card,

pbkdf2.Key(dk, uid[:], iter, sha256.Size, sha256.New),

dummySector,

isProgrammed,

)

        …



Code snippet - Trusted OS <> Applet RPC

https://github.com/transparency-dev/armored-witness-os/blob/main/trusted_os/rpc.go https://github.com/transparency-dev/armored-witness-applet/blob/main/trusted_applet/key.go

// DeriveKey derives a hardware unique key in a manner equivalent to PKCS#11

// C_DeriveKey with CKM_AES_CBC_ENCRYPT_DATA.

//

// The diversifier is AES-CBC encrypted using the internal OTPMK key.

func (r *RPC) DeriveKey(diversifier [aes.BlockSize]byte, key *[sha256.Size]byte) (err error) {

div := sha256.Sum256(append(r.Diversifier[:], diversifier[:]...))

err = imx6ul.CAAM.DeriveKey(div[:], key[:])

return

}

// WriteRPMB performs an authenticated data transfer to the card RPMB partition

// sector allocated to the Trusted Applet. The input buffer can contain up to

// 256 bytes of data, n can be passed to retrieve the partition write counter.

func (r *RPC) WriteRPMB(buf []byte, n *uint32) (err error) {

return r.RPMB.transfer(taUserSector, buf, n, true)

}

// ReadRPMB performs an authenticated data transfer from the card RPMB

// partition sector allocated to the Trusted Applet. The input buffer can

// contain up to 256 bytes of data, n can be set to retrieve the partition

// write counter.

func (r *RPC) ReadRPMB(buf []byte, n *uint32) error {

return r.RPMB.transfer(taUserSector, buf, n, false)

}

// deriveNoteSigner uses the h/w secret to derive a new note.Signer.

//

// diversifier should uniquely specify the key's intended usage, uniqueID should be the

// device's h/w unique identifier, hab should reflect the device's secure boot status, and keyName

// should be a function which will return the name for the key - it may use the provided Reader as

// a source of entropy while generating the name if needed.

func deriveNoteSigner(diversifier string, uniqueID string, hab bool, keyName func(io.Reader) string) (string, string) {

// We'll use the provided RPC call to do the derivation in h/w, but since this is based on

// AES it expects the diversifier to be 16 bytes long.

// We'll hash our diversifier text and truncate to 16 bytes, and use that:

diversifierHash := sha256.Sum256([]byte(diversifier))

var aesKey [sha256.Size]byte

if err := syscall.Call("RPC.DeriveKey", ([aes.BlockSize]byte)(diversifierHash[:aes.BlockSize]), &aesKey); err != nil {

log.Fatalf("Failed to derive h/w key, %v", err)

}

r := hkdf.New(sha256.New, aesKey[:], []byte(uniqueID), nil)

// And finally generate our note keypair

sec, pub, err := note.GenerateKey(r, keyName(r))

if err != nil {

log.Fatalf("Failed to generate derived note key: %v", err)

}

return sec, pub

}



Code snippet - Trusted OS IRQ/syscall handling

https://github.com/transparency-dev/armored-witness-os/blob/main/trusted_os/handler.go

func handler(ctx *monitor.ExecCtx) (err error) {

switch ctx.ExceptionVector {

case arm.FIQ:

                   // service Ethernet IRQs for incoming packets

return fiqHandler(ctx)

case arm.SUPERVISOR:

                    // service system calls

switch ctx.A0() {

case syscall.SYS_WRITE:

return bufferedStdoutLog(byte(ctx.A1()))

case RX:                           

return rxFromApplet(ctx)

case TX:

imx6ul.WDOG2.Service(watchdogTimeout)

return txFromApplet(ctx)

case FIQ:

                            // re-activate Fast Interrupts

bits.Clear(&ctx.SPSR, CPSR_FIQ)

case FREQ:

return imx6ul.SetARMFreq(uint32(ctx.A1()))

default:

                            // handle RPC

return monitor.SecureHandler(ctx)

}

default:

log.Fatalf("unhandled exception %x", ctx.ExceptionVector)

}

return

}

func eventHandler() {

var handler rpc.Handler

handler.G, handler.P = runtime.GetG()

if err := syscall.Call("RPC.Register", handler, nil); err != nil {

log.Fatalf("TA event handler registration error, %v", err)

}

n := 0

out := make([]byte, enet.MTU)

for {

// To avoid losing interrupts, re-enabling must happen only

// after we are sleeping.

go syscall.Write(FIQ, nil, 0)

// sleep indefinitely until woken up by runtime.WakeG

time.Sleep(math.MaxInt64)

// check for Ethernet RX event

for n = rxFromEth(out); n > 0; n = rxFromEth(out) {

rx(out[0:n])

}

}

}

https://github.com/transparency-dev/armored-witness-applet/blob/main/trusted_applet/handler.go



Putting it all together

https://github.com/transparency-dev/armored-witness

The applet observes public transparency logs verifying that 
they're operating in an append-only fashion, and counter-signing 
those checkpoints which it has determined are consistent with 
all previous checkpoints its seen from the same log.

The counter-signed checkpoints are sent to a distributor, which 
then collates counter-signatures for a given checkpoint from one 
or more Armored Witness devices, and serves them via a public 
API.

The benefit of this system comes through removing trust from 
log operators to behave honestly, and placing some of that trust 
in the witnesses.

Splitting the trust across multiple parties in this way means that 
a larger number of parties must collude to hide malfeasance, and 
as other witness implementations/networks start to appear, the 
number of parties required to collude increases correspondingly.

However, we can minimise the amount of trust required to be 
placed in the Armored Witness by having it be as transparent as 
possible too.

https://github.com/transparency-dev/distributor


$ ssh armory

tamago/arm (go1.22.1) • 4112c8d lcars@lambda on 2024-03-08 12:06:34 • i.MX6UL 528 MHz

ntp             <host>                                           # change runtime date and time via NTP

tailscale       <auth key> (verbose)?                            # start network servers on Tailscale tailnet

witness                                                          # start/inspect transparency.dev omniwitness

wormhole        (send <path>|recv <code>)                        # transfer file through magic wormhole

> ntp time.google.com

2024-03-08T12:06:58Z

> witness

starting omniwitness on :8080 (tamago-example-ephemeral-witness+599e290c+Afszq5oPlHBvi/cyjEkGGGHS+r96hhedJK4C71BdqPlG)

I0308 12:07:04.123431 Feeder "lvfs" goroutine started

I0308 12:07:04.135195 Feeder "go.sum database tree" goroutine started

I0308 12:07:04.142646 Feeder "Armory Drive Prod 2" goroutine started

I0308 12:07:04.148453 Feeder "rekor.sigstore.dev - 3904496407287907110" goroutine started

I0308 12:07:04.157244 Feeder "developers.google.com/android/binary_transparency/0" goroutine started

> witness

Armory Drive Prod 2 2 AqFMpKcxPYaKTmihsFbQvb758iSzJvvJBX5thVJ7r/k= // log checkpoint root hash

— armory-drive-log FlQbj/vNC0bZUS8GUCMAw4A3GOMRU+ZkhVTPmGXTuFST75f2v92/02ilu6eukoSbFTlzQmCNDT6wor5VB/X5z91bMAA= // log signature

— tamago-example-ephemeral-witness 6SKM5Gj/6mUAAAAALhy5ei/8YVJBYTxZWSP8p2ST+868EDQkXUtz40JRSwtzlYOqQ4W6o4g+vneP9rNkiEAN/gQGXGQd9Jz2HQ5JDw==

rekor.sigstore.dev - 3904496407287907110 4163431 TQBqpG78tgfdUdkAsSE3VMUMySUcNAXGwlYdnWovMjk=

— rekor.sigstore.dev wNI9ajBGAiEA8NoGSE0tPoD0tk5kNKQdM4Sxv4L5551vMsbvavFkD1ICIQDW1QsPAS1jGQAqjwOqpWft0m+Iw5P/Kd2ImoUdMgez4g==

— tamago-example-ephemeral-witness 6SKM5Gj/6mUAAAAApV8+I7roAQgSLMOXxxIJ7jZ32mATtz1mlZfiLyqogUjnij59h478pruCKgJbK5sDzQL9JFeVyGO3G4te5bkHDg==

developers.google.com/android/binary_transparency/0 324 vSoSuFDnfUfaKNJne2AtZjQD1CPORv+BLqnSXJE4phE=

— pixel_transparency_log csh42zBFAiEAk7GYrVxnXVZW9UDGMk3vdEOwbHBi2EMUZ0XQ0zz7e3MCIDHOpuLOuvx3O5pyHWl32jJdlldkClzcS/VUVTbMogsE

— tamago-example-ephemeral-witness 6SKM5Gj/6mUAAAAAodGRDGrZ5UQwnanHsDWhUqpzXY8+6RqTvQczrdMtHr1pJP8nE6G6NvKzWJhcnFcOBkCDITSYWbSAqAaA6EEHDg==

go.sum database tree 23470203 fA/vQxRCMYYyCzwGMoSaYipBC0tT0NEv4IpQgL8yCr8=

— sum.golang.org Az3grl+gARGNedLjWIGz62fX334EBbUFiPdkuoEZIvQgNKWccGOL9GXKzNBUNgK6MAUx4b5/f3ogAfftTCRVO5W54QA=

— tamago-example-ephemeral-witness 6SKM5Gn/6mUAAAAAADpA/9FTe0cuJtPoztsjc+ksmieeezmxhzF+y1+8TMgCbMjBEumBuraML92PLu1OTNriB6ocf/pPkyWbzszIAA==

Lvfs 14770 TVcAhxR0NKIkoKwGAsVSouDSiQ1o2lA9LT1ZPZYMnSY=

— lvfs eQjRQuZh1vVt9r1JRlxYMhTbZz9xtL/0tiRdrOnkakyycwJkKLVooAA2PGUsWi0wuwFXdxTgbll5VijHQX3DdTos2Q4=

— tamago-example-ephemeral-witness 6SKM5Gn/6mUAAAAAZ/uaA9ptWcQKdrt3esieSL9XjAQQmKFVolEomVTKD+gUYXxVQY6GHKOKbuQdeIAGEyBIgGuQF2xJyJih7NvoBA==



boot: tamago/arm • i.MX6UL

boot: starting kernel@1007dee8

os: tamago/arm • TEE security monitor (Secure World system/monitor)

os: loading applet from MMC storage

os: SM applet verification pub:RWQiFth4tAgsVQT5caaZGJGgUzZFnwCdeVHe5XpobGWc9XzCJmjJ56tO

os: SM applet loaded addr:0x20000000 entry:0x20081700 size:15323136

os: SM applet started mode:USR sp:0x30000000 pc:0x20081700 ns:false

ta: tamago/arm • TEE user applet

ta: SM starting network

ta: SNVS - Deriving hardware key

ta: Opening storage - CardInfo: {BlockSize:512 Blocks:8388608}

os: SM registering applet event handler g:0x21803900 p:0x21826000

ta: MAC:26:76:04:d4:4d:db IP:10.0.0.1/24 GW:10.0.0.0/24 DNS:8.8.8.8:53

ta: Starting witness...

ta: TA starting ssh server (SHA256:IH0WyXV66dvixxOPDhtAalAvWg+sQC…) at 10.0.0.1:22

ta: Feeder "go.sum database tree" goroutine started

ta: Feeder "Armory Drive Prod 2" goroutine started

ta: Feeder "rekor.sigstore.dev - 3904496407287907110" goroutine started

ta: Feeder "rekor.sigstore.dev - 2605736670972794746" goroutine started

ta: Feeder "developers.google.com/android/binary_transparency/0" goroutine started

ta: "sum.golang.org: go.sum database tree" grew - @0:  → @19895786: 3c9b8f49f56cb…

ta: "armory-drive-log: Armory Drive Prod 2" grew - @0:  → @2: 02a14ca4a7313d868a4…

ta: "rekor.sigstore.dev: 2605736670972794746" grew - @0:  → @36541297: 0d491271b9…

ta: "pixel_transparency_log: …/binary_transparency/0" grew - @0:  → @235: f98458…

ta: "rekor.sigstore.dev: 3904496407287907110" grew - @0:  → @4163431: 4d006aa46ef…

ta: "lvfs: lvfs" grew - @0:  → @12749: 6ac429c550b8b28b7c65b6e61c99c9c76303d14012…

ta: No checkpoint

$ ssh 10.0.0.1

TA tamago/arm (go1.22.1) • TEE user applet (User Mode)

date            (time in RFC339 format)?                 # show/change runtime date and time
dns             <fqdn>                                   # resolve domain (requires routing)
exit, quit                                               # close session
hab             <hex SRK hash>                           # secure boot activation (*irreversible*)
help                                                     # this help
led             (white|blue|yellow|green) (on|off)       # LED control
mmc             <hex offset> <size>                      # MMC card read
reboot                                                   # reset device
stack                                                    # stack trace of current goroutine
stackall                                                 # stack trace of all goroutines
status                                                   # status information

> status
------------------------------------------------------- Trusted Applet ----
Runtime ................: go1.22.1 tamago/arm
----------------------------------------------------------- Trusted OS ----
Serial number ..........: 3bee6cda358f0c33
Secure Boot ............: false
Revision ...............: 70ffeda
Build ..................: lcars@lambda on 2024-03-21 08:50:01
Version ................: 1696495801 (2024-03-21 08:50:01 +0000 UTC)
Runtime ................: go1.22.1 tamago/arm
Link ...................: true
Witness/Identity .......: DEV:ArmoredWitness-still-tree+e1f17ea8+AZvDSL1C0…
Witness/IP .............: 10.0.0.1



$ sudo ./provision --template=ci

…

Fetching TRUSTED_OS bin from "f2a54c9ff38f27b92afe9f0db6794d528e34cf508e60f90d7399f87f6f8143b1"

Fetching TRUSTED_APPLET bin from "a2012b90c44e8e4e48aa04f41f005813342e9f461cdf9f705e72fa1f4dd0f870"

Fetching BOOTLOADER bin from "1285e82d785723a054e2f43d19af3edf8d7f1092ef5dee58c5010753ec6f039b"

Fetching RECOVERY bin from "8271e2a8ccefb6c4df48889fcbb35343511501e3bcd527317d9e63e2ac7349e3"

🙋 OPERATOR: please ensure boot switch is set to USB, and then connect unprovisioned device

Recovery firmware is 1924096 bytes + 16384 bytes HAB signature

Waiting for device to be detected...

found device 15a2:007d Freescale SemiConductor Inc  SE Blank 6UL

Attempting to SDP boot device /dev/hidraw0

Loading DCD at 0x00910000 (976 bytes)

Loading imx to 0x8000f400 (1940480 bytes)

Serial download on /dev/hidraw0 complete

Witness device booting recovery image

Waiting for block device to appear

Waiting for block device to settle...

✅ Detected device "/dev/hidraw0"

✅ Detected blockdevice /dev/disk/by-id/usb-F-Secure_USB_armory_Mk_II_720A9DEAD439211E-0:0

Bootloader firmware is 2976768 bytes + 16384 bytes HAB signature

Flashing images...

  ✅ os @ 0x5000

  ✅ bootloader @ 0x2

  ✅ boot config @ 0x4fb0

  ✅ applet @ 0x200000

✅ Flashed images

🙋 OPERATOR: please change boot switch to MMC, and then reboot device 🙏
Waiting for device to boot...

Waiting for armored witness device to be detected...

✅ Detected device "/dev/hidraw0"

✅ Witness serial number 720A9DEAD439211E found

✅ Witness serial number 720A9DEAD439211E is not HAB fused

🙋 OPERATOR: please reboot device 🙏
Waiting for device to boot...

✅ Witness ID DEV:ArmoredWitness-nameless-rain+192be1c1+AY5ob1kU0v3w4obdEBXVC0ygvNhco8wDMkOMIk1YGZdv provisioned

✅ Device provisioned!



$ docker run armored-witness-build-verifier continuous \

  --log_origin=transparency.dev/armored-witness/firmware_transparency/ci/3  \

  --log_url=https://api.transparency.dev/armored-witness-firmware/ci/log/3/ \

  --log_pubkey=transparency.dev-aw-ftlog-ci-3+3f689522+Aa1Eifq6rRC8qiK+bya07yV1fXyP156pEMsX7CFBC6gg

No previous checkpoint, starting at 0

Running Monitor.From (0, 5]

Downloading and installing tamago 1.22.0

Installed tamago 1.22.0 at /usr/local/tamago-go/1.22.0

Leaf index 0: ✅ reproduced build TRUSTED_APPLET@0.3.1710338359-incompatible (fc52bc11b0d543de847eed44b285acfe7eabed03) => 4f36a18f64014ee9f7c56568c8aeec3bc07d9b05849d3b96c9ff3ad3e8aa721f

Leaf index 1: ✅ reproduced build TRUSTED_OS@0.3.1710338980-incompatible (90eb1cb61f0981fe1bdcf5b23b00ae8bf44bbbbe) => 7f562e45ac78487679d422ec6a7adffe9e0bbbc8d4d44d3622a4978bf4c68075

Leaf index 2: ✅ reproduced build TRUSTED_APPLET@0.3.1710339913-incompatible (7a5de51228e9299b7185440c73b54c86baefb117) => f226de72b0c56c7f8443fb90112c9d5169165e038f7eb9e7bbe2a21951ce3097

Leaf index 3: ✅ reproduced build RECOVERY@0.3.1710340256-incompatible (850baf54809bd29548d6f817933240043400a4e1) => 8271e2a8ccefb6c4df48889fcbb35343511501e3bcd527317d9e63e2ac7349e3

Leaf index 4: ✅ reproduced build BOOTLOADER@0.0.1710340266-incompatible (86aefd7e97bc3a96814e52b8c01bdd67e26cc837) => 1285e82d785723a054e2f43d19af3edf8d7f1092ef5dee58c5010753ec6f039b

No known backlog, switching mode to poll log for new checkpoints. Current size: 5



$ sudo ./verify --template=ci

…

Fetching RECOVERY bin from "8271e2a8ccefb6c4df48889fcbb35343511501e3bcd527317d9e63e2ac7349e3"

----------------------------------------------------------------------------------------------

🙏 Operator, please ensure boot switch is set to USB, and then connect device 🙏
----------------------------------------------------------------------------------------------

Recovery firmware is 1924096 bytes + 16384 bytes HAB signature

Waiting for device to be detected...

found device 15a2:007d Freescale SemiConductor Inc  SE Blank 6UL

Attempting to SDP boot device /dev/hidraw0

Loading DCD at 0x00910000 (976 bytes)

Loading imx to 0x8000f400 (1940480 bytes)

Sending jump address to 0x8000f400

Serial download on /dev/hidraw0 complete

Witness device booting recovery image

Waiting for block device to appear

Waiting for block device to settle...

✅ Detected device "/dev/hidraw0"

✅ Detected blockdevice /dev/disk/by-id/usb-F-Secure_USB_armory_Mk_II_720A9DEAD4390E1F-0:0

Found config at block 0x4fb0

Reading 0x2d6c00 bytes of firmware from MMC byte offset 0x400

Found config at block 0x5000

Reading 0xdbd965 bytes of firmware from MMC byte offset 0xa0a000

Found config at block 0x200000

Reading 0x102a51a bytes of firmware from MMC byte offset 0x4000a000

  ✅ Bootloader: proof bundle is self-consistent

  ✅ Bootloader: proof bundle checkpoint(@10) is consistent with current view of log(@10)

  ✅ TrustedOS: proof bundle is self-consistent

  ✅ TrustedOS: proof bundle checkpoint(@10) is consistent with current view of log(@10)

  ✅ TrustedApplet: proof bundle is self-consistent

  ✅ TrustedApplet: proof bundle checkpoint(@10) is consistent with current view of log(@10)

✅ Device verified OK!

----------------------------------------------------------------------------------------------

🙏 Operator, please ensure boot switch is set to MMC, and then reboot device 🙏
----------------------------------------------------------------------------------------------



               USB armory
   Repository: https://github.com/usbarmory/usbarmory
Documentation: https://github.com/usbarmory/usbarmory/wiki
 HAB/OTP tool: https://github.com/usbarmory/crucible

               TamaGo
   Repository: https://github.com/usbarmory/tamago
Documentation: https://github.com/usbarmory/tamago/wiki
          API: http://pkg.go.dev/github.com/usbarmory/tamago
      Example: http://pkg.go.dev/github.com/usbarmory/tamago-example

               GoTEE
   Repository: https://github.com/usbarmory/GoTEE
Documentation: https://github.com/usbarmory/GoTEE/wiki
      Example: http://pkg.go.dev/github.com/usbarmory/GoTEE-example

               Armored Witness
   Repository: https://github.com/transparency-dev/armored-witness
   Bootloader: https://github.com/transparency-dev/armored-witness-boot
           OS: https://github.com/transparency-dev/armored-witness-os
       Applet: https://github.com/transparency-dev/armored-witness-applet

https://github.com/usbarmory/usbarmory
https://github.com/usbarmory/usbarmory/wiki
https://github.com/usbarmory/crucible
https://github.com/usbarmory/tamago
https://github.com/usbarmory/tamago/wiki
http://pkg.go.dev/github.com/usbarmory/tamago
http://pkg.go.dev/github.com/usbarmory/tamago-example
https://github.com/usbarmory/GoTEE
https://github.com/usbarmory/GoTEE/wiki
http://pkg.go.dev/github.com/usbarmory/GoTEE-example
https://github.com/transparency-dev/armored-witness
https://github.com/transparency-dev/armored-witness-boot
https://github.com/transparency-dev/armored-witness-os
https://github.com/transparency-dev/armored-witness-applet


Andrea Barisani

@AndreaBarisani - https://andrea.bio

andrea@inversepath.com | andrea@withsecure.com

❤ Thanks!
Andrej Rosano @ WithSecure

Al Cutter, Ryan Hurst, Martin Hutchinson
and the rest of Google TrustFabric Team

Join the transparency-dev Slack!

mailto:andrea.barisani@f-secure.com
https://join.slack.com/t/transparency-dev/shared_invite/zt-27pkqo21d-okUFhur7YZ0rFoJVIOPznQ

