
OpenMP ARB, 2007

11 permanent members: AMD, Cray, Fujitsu, 
HP, IBM, Intel, Microsoft, NEC, PGI, SGI, Sun
5 temporary members: ASC/LLNL, cOMPunity, 
EPCC, NASA, RWTH Aachen
5 directors: Josh Simons, Sun; Rupak Biswas, 
NASA; Sanjiv Shah, Intel; Koh Hotta, Fujitsu; 
Roch Archambault, IBM
3 officers: Larry Meadows, CEO, Intel; Nawal
Copty, Secretary, Sun; Dave Poulsen, CFO, 
Intel



OpenMP 3.0

OpenMP ARB

Mark Bull
SC07, November, 2007, Reno



Tasks

Adding tasking is the biggest addition for 3.0 

Worked on by a separate subcommittee
led by Jay Hoeflinger at Intel

Re-examined issue from ground up 
quite different from Intel taskq’s



General task characteristics

A task has
Code to execute
A data environment (it owns its data)
An assigned thread that executes the code and 
uses the data

Two activities: packaging and execution
Each encountering thread packages a new instance 
of a task (code and data)
Some thread in the team executes the task at some 
(potentially later) time



Definitions
Task construct – task directive plus structured 
block
Task – the package of code and instructions 
for allocating data created when a thread 
encounters a task construct
Task region – the dynamic sequence of 
instructions produced by the execution of a 
task by a thread



Tasks and OpenMP
Tasks have been fully integrated into OpenMP
Key concept: OpenMP has always had tasks, we just 
never called them that.

Thread encountering parallel construct packages 
up a set of implicit tasks, one per thread.
Team of threads is created.
Each thread in team is assigned to one of the tasks 
(and tied to it).
Barrier holds original master thread until all implicit 
tasks are finished.

We have simply added a way to create a task explicitly 
for the team to execute.
Every part of an OpenMP program is part of one task or 
another!



task Construct

#pragma omp task [clause[[,]clause] ...]
structured-block

if (expression) 
untied
shared (list)
private (list) 
firstprivate (list)
default( shared | none )

where clause can be one of:



The if clause on a task construct

When the if clause argument is false
The current task region is suspended.
The new task is executed immediately by the 
encountering thread.
The suspended task region is not resumed until the new 
task is complete.
The data environment is still local to the new task...
...and it’s still a different task with respect to 
synchronization.

It’s a user directed optimization
when the cost of deferring the task is too great 
compared to the cost of executing the task code
to control cache and memory affinity



When/where are tasks complete?

At barriers, explicit or implicit
applies to all tasks generated in the current parallel 
region up to the barrier
matches user expectation

At a taskwait directive
applies only to child tasks of the current task, not to 
further “descendants”



Example – parallel pointer chasing 
using tasks

#pragma omp parallel
{ 

#pragma omp single private(p)
{ 
p = listhead ;
while (p) { 

#pragma omp task
process (p)

p=next (p) ;
} 

} 
}

p is firstprivate by default here



Example – parallel pointer chasing on 
multiple lists using tasks

#pragma omp parallel 
{ 

#pragma omp for private(p)
for ( int i =0; i <numlists ; i++) { 

p = listheads [ i ] ;
while (p ) { 
#pragma omp task

process (p)
p=next (p ) ;
}

}
}



Example: tree traversal, children 
before parents
void traverse(node *p) {

if (p->left)
#pragma omp task

traverse(p->left);
if (p->right)

#pragma omp task
traverse(p->right);

#pragma omp taskwait
process(p->data);

} Parent task suspended until 
child tasks complete



Task switching

Certain constructs have task scheduling points 
at defined locations within them
When a thread encounters a task scheduling 
point, it is allowed to suspend the current task 
and execute another (called task switching)
It can then return to the original task and 
resume 



Task switching example

#pragma omp single
{

for (i=0; i<ONEZILLION; i++)
#pragma omp task

process(item[i]);
}

Too many tasks generated in an eye-blink
Generating task will have to suspend for a while
With task switching, the executing thread can:

execute an already generated task (draining the 
“task pool”)
dive into the encountered task (could be very 
cache-friendly)



Thread switching
#pragma omp single
{

#pragma omp task
for (i=0; i<ONEZILLION; i++)

#pragma omp task
process(item[i]);

}

Eventually, too many tasks are generated
Generating task is suspended and executing thread switches to a 
long and boring task
Other threads get rid of all already generated tasks, and start 
starving…

With thread switching, the generating task can be resumed by a 
different thread, and starvation is over
Too strange to be the default: the programmer is responsible!

untied



FFT

Performance Results 1

MultisortFloorplan

Alignment

All tests run on SGI Altix 4700 with 128 processors



Performance Results 2

Strassen

SparseLUQueens

All tests run on SGI Altix 4700 with 128 processors



Reference Implementation

URL: 
http://mercurium.pc.ac.upc.edu/nanos

Made by Xavier Teruel, Roger Ferrer,
Alex Duran, Eduard Ayguadé, 
Xavier Martorell



Conclusions on tasks
Enormous amount of work by many people

Tightly integrated into 2.5 spec

Flexible model for irregular parallelism

Provides balanced solution despite often conflicting 
goals

Appears that performance can be reasonable



Better support for nested parallelism
Per-thread internal control variables

Allows, for example, calling omp_set_num_threads() inside a 
parallel region.
Controls the team sizes for next level of parallelism

Library routines to determine depth of nesting, IDs of 
parent/grandparent etc. threads, team sizes of 
parent/grandparent etc. teams

omp_get_level()
omp_get_active_level()
omp_get_ancestor_thread_num(level)
omp_get_team_size(level)

N.B. new defn. of active parallel region: a parallel region 
executed by more than one thread



Parallel loops

Guarantee that this works: 

!$omp do schedule(static)
do i=1,n 

a(i) = ....
end do 
!$omp end do nowait
!$omp do schedule(static)
do i=1,n

.... = a(i) 
end do 



Loops (cont.) 

Allow collapsing of perfectly nested loops

Will form a single loop and then parallelise that

!$omp parallel do collapse(2)
do i=1,n

do j=1,n 
.....

end do 
end do



Loops (cont.)

Made schedule(runtime) more useful
can get/set it with library routines

omp_set_schedule()

omp_get_schedule() 

allow implementations to implement their own schedule kinds 
Added a new schedule kind AUTO which gives full 
freedom to the runtime to determine the scheduling of 
iterations to threads. 
Allowed unsigned ints and C++ 
RandomAccessIterators as loop control variables in 
parallel loops



Portable control of threads

Added environment variable to control the size 
of child threads’ stack 

OMP_STACKSIZE

Added environment variable to hint to runtime 
how to treat idle threads

OMP_WAIT_POLICY
ACTIVE keep threads alive at barriers/locks 
PASSIVE try to release processor at  barriers/locks



Added environment variable and runtime 
routines to get/set the maximum number of 
active levels of nested parallelism

OMP_MAX_NESTED_LEVELS
omp_set_max_nested_levels()
omp_get_max_nested_levels()

Added environment variable to set maximum 
number of threads in use

OMP_THREAD_LIMIT
omp_get_thread_limit()



Odds and ends

Disallowed use of the original variable as 
master thread’s private variable
Made it clearer where/how private objects are 
constructed/destructed
Relaxed some restrictions on allocatable
arrays
Plugged some minor gaps in memory model
Allowed C++ static class members to be 
threadprivate
Minor fixes and clarifications to 2.5



Summary

OpenMP 3.0 is almost ready

Been a lot of hard work by a lot of people

We hope you like it: let us know via the public 
comment process what you think!



Acknowledgements
Bronis de Supinski
Greg Bronevetsky
Dieter an Mey
Christian Terboven
Lei Huang 
Barbara Chapman 
Alex Duran
Eduard Ayguade
Michael Suess
Gabriele Jost 
Mark Bull
Randy Meyer
Kelvin Li 
Guansong Zhang 

Michael Wong
Priya Unnikrishnan
Diana King 
Ernesto Su
Judy Ward
Tim Mattson 
Xinmin Tian 
Grant Haab 
Jay Hoeflinger
Larry Meadows
Sanjiv Shah
Jeff Olivier
Henry Jin
Michael Wolfe

Eric Duncan
Nawal Copty
Yuan Lin
James Beyer
Federico Massaoli
Brian Bliss


