OpenMP

Enabling HPC since 1997

OpenMP Technical Report 8:
Version 5.1 Preview

This Technical Report is a preview of the OpenMP Application Programming
Specification Version 5.1 that augments the OpenMP API Version 5.0 with full
support for C11 and C++11/14/17, syntax extensions to support C++ attribute
specifiers, the tile, error and assume directives, iterator support for data motion
clauses, the interop directive, extensions to task dependences, extensions to
SIMD constructs and the declare variant directive as well as clarifications and
improvements to existing features. See appendix B.2 for the full list.

EDITORS
Bronis R. de Supinski

Michael Klemm

November 7, 2019
Expires November 11, 2020

We actively solicit comments. Please provide feedback on this document either
to the Editors directly or in the OpenMP Forum at openmp.org

OpenMP Architecture Review Board — www.openmp.org — info@openmp.org
Ravi S. Rao, OpenMP, c/o Intel Corporation, 1300 MoPac Express Way, Austin, TX 78746, USA

This technical report describes possible future directions or extensions to the
OpenMP Specification.

The goal of this technical report is to build more widespread existing practice for
an expanded OpenMP. It gives advice on extensions or future directions to
those vendors who wish to provide them possibly for trial implementation, allows
OpenMP to gather early feedback, support timing and scheduling differences
between official OpenMP releases, and offers a preview to users of the future
directions of OpenMP with the provisions stated in the next paragraph.

This technical report is non-normative. Some of the components in this technical
report may be considered for standardization in a future version of OpenMP, but
they are not currently part of any OpenMP specification. Some of the
components in this technical report may never be standardized, others may be
standardized in a substantially changed form, or it may be standardized as is in
its entirety.

OpenMIP

OpenMP
Application Programming
Interface

Version 5.1 Preview, November 2019

Copyright (©)1997-2019 OpenMP Architecture Review Board.

Permission to copy without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document appear. Notice is
given that copying is by permission of the OpenMP Architecture Review Board.

This is a preview of the OpenMP API Specification Version 5.1 and includes the following internal
GitHub issues (corresponding Trac ticket numbers in parentheses when they exist) applied to the
5.0 LaTeX sources: 1239 (307) 1327 (395), 1438 (506), 1476 (544), 1497 (565), 1725 (793), 1727
(795), 1780 (848) 1783-1785 (851-853), 1793 (861), 1796 (864), 1802 (870), 1804 (872),
1814-1817 (882-885), 1819-1820 (887-888) 1822-1832 (890-900), 1834-1837 (902-905), 1842
(910), 1845 (913), 1847 (915), 1849-1850 (917-918), 1854 (922), 1856 (924), 1859-1867
(927-935), 1871-1876 (939-944), 1878 (946), 1880, 1883, 1887, 1889, 1892-1893, 1896-1898,
1901-1902, 1907, 1909-1911, 1914-1920, 1922-1923, 1925, 1929-1930, 1937-1940, 1947, 1954,
1960-1961, 1970, 2013, 2024

This is a draft; contents will change in official release.

Contents

1 Introduction 1
L1 Scope o o e e 1
1.2 Glossary o . e e e e e e 2

1.2.1 Threading Concepts 2
1.2.2 OpenMP Language Terminology 2
1.23 Loop Terminology 9
1.2.4 Synchronization Terminology 9
1.2.5 Tasking Terminology 11
1.2.6 DataTerminology i 13
1.2.7 Implementation Terminology 17
1.2.8 Tool Terminology it 18
1.3 ExecutionModel L 21
1.4 Memory Model 24
1.4.1 Structure of the OpenMP Memory Model 24
1.4.2 Device Data Environments 25
1.43 Memory Management 25
1.44 TheFlush Operation 26
1.4.5 Flush Synchronization and Happens Before 27
1.4.6 OpenMP Memory Consistency v v v v .. 29
1.5 Toollnterfaces e 30
1.5.1 OMPT e 30
1.52 OMPD 31
1.6 OpenMP Compliance 31
1.7 Normative References 32
1.8 Organization of this Document 33

ii

2 Directives 35

2.1 Directive Format 36
2.1.1 Fixed Source Form Directives 40
2.1.2 Free Source Form Directives 40
2.1.3 Stand-Alone Directives 41
2.1.4 Array Shaping 42
2.1.5 Array Sections 42
2.1.6 Tterators 46

2.2 Conditional Compilation L 48
2.2.1 Fixed Source Form Conditional Compilation Sentinels 49
2.2.2 Free Source Form Conditional Compilation Sentinel 49

2.3 Variant Directives 50
23.1 OpenMPContext. e 50
232 Context Selectors 52
2.3.3 Matching and Scoring Context Selectors 53
2.3.4 Metadirectives Lo e 54
2.3.5 Declare Variant Directive 56

24 requiresDirective 60

25 assumeDirective L 63

2.6 Internal Control Variables 66
2.6.1 ICV Descriptions i 66
2.6.2 ICV Initialization 68
2.6.3 Modifying and Retrieving ICV Values 71
2.64 HowlICVsareScoped 74

2.6.4.1 How the Per-Data Environment ICVs Work 75
2.6.5 ICV Override Relationships 76

2.7 Utility Directives e e 77
27.1 nothingDirective 77
2772 errorDirective. L 78

2.8 parallel COonsStrucCt v v v v v it e et e e e e e 79
2.8.1 Determining the Number of Threads for a parallel Region 84
2.8.2 Controlling OpenMP Thread Affinity 85

2.9 teams Construct e e 87

OpenMP API — Version 5.1 Preview, November 2019

2.10 scope CONStruUCt v v v v e e e e e e e e e e e e e e 91

2.11 Worksharing Constructs o v i 93
2.11.1 sections Construct 93
2.11.2 single Construct. L e e 96
2.11.3 workshare Construct 98

2.12 Loop-Related Directives e 101
2.12.1 Canonical LoopForm L. 101
2.12.2 Worksharing-Loop Construct 106

2.12.2.1 Determining the Schedule of a Worksharing-Loop 114
2.123 SIMD Directives 115
2.123.1 simdConstruct L e 115
2.12.3.2 Worksharing-Loop SIMD Construct 120
2.12.3.3 Declare SIMD Directiveo 121
2.124 distributeLoopConstructs 125
2.12.4.1 distributeConstruct 125
21242 distribute simdConstruct. 129
2.12.4.3 Distribute Parallel Worksharing-Loop Construct 130
2.12.4.4 Distribute Parallel Worksharing-Loop SIMD Construct 131
2.12.5 1oop CONnStruct v v v vt e e e e e e e 133
2.12.6 scanDirective 137
2.12.7 Loop Transformation Constructs 140
2.127.1 tileConstruct 140

2.13 Tasking Constructs o o v i e e e e e e e e 142
2.13.1 task Construct i e e 142
2.13.2 taskloopConstruct 147
2.13.3 taskloop simd Construct v i 152
2.13.4 taskyield Construct i 154
2.13.5 Inmitial Task 155
2.13.6 Task Scheduling 156

2.14 Memory Management Directives 158
2.14.1 Memory SPaces vt i e e e e e e e e e e e e e e e 158
2.142 Memory Allocators 159
2.14.3 allocateDirective 162

Contents iii

iv

2.144 allocateClause 164
2.15 Device Directives e 165
2.15.1 Device Initialization 165
2.15.2 targetdataConstruct 166
2.15.3 target enterdataConstruct. 169
2.154 target exitdataConstruct 172
2.155 targetConstruct. e 174
2.15.6 target update Construct 181
2.15.7 Declare Target Directive 185
2.15.8 interop Construct it e 191
2.16 Combined Constructs e 193
2.16.1 Parallel Worksharing-Loop Construct 193
2.16.2 parallel loop Construct v v v v v v ... 194
2.16.3 parallel sections Construct 195
2.164 parallel workshare Construct 196
2.16.5 Parallel Worksharing-Loop SIMD Construct 197
2.16.6 parallelmasterConstruct 198
2.16.7 master taskloopConstructo 199
2.16.8 master taskloop simd Construct 200
2.16.9 parallel master taskloop Construct 201
2.16.10 parallel master taskloop simd Construct. 202
2.16.11 teamsdistribute Construct 203
2.16.12 teams distribute simd Construct 204
2.16.13 Teams Distribute Parallel Worksharing-Loop Construct 205
2.16.14 Teams Distribute Parallel Worksharing-Loop SIMD Construct 206
2.16.15 teams 1oop CONSIIUCE v v v v vt et e e e e 207
2.16.16 target parallel Construct v vt it 208
2.16.17 Target Parallel Worksharing-Loop Construct 210
2.16.18 Target Parallel Worksharing-Loop SIMD Construct 211
2.16.19 target parallel loop Construct 212
2.16.20 target simd Construct 213
2.16.21 target teams Construct L. 215
2.16.22 target teams distribute Construct 215

OpenMP API — Version 5.1 Preview, November 2019

2.16.23 target teams distribute simd Construct 216

2.16.24 target teams loop Construct 218
2.16.25 Target Teams Distribute Parallel Worksharing-Loop Construct 219
2.16.26 Target Teams Distribute Parallel Worksharing-Loop SIMD Construct 220
2.17 Clauses on Combined and Composite Constructs 222
208 A€ Clause 224
2.19 master Construct. 225
2.20 Synchronization Constructs and Clauses 226
220.1 eritical Construct 226
2202 barrier Construct i 229
2203 Implicit Barriers o 231
2.20.4 Implementation-Specific Barriers 233
220.5 taskwait Construct 233
2.20.6 taskgroup Constructot 235
2207 atomicConstruct. 237
2.20.8 £lush Construct i e 245
2.20.8.1 ImplicitFlushes 249
2209 orderedConstructo 252
2.20.10 Depend Objects i e e 256
2.20.10.1 depobj Constructo 256
2.20.11 depend Clause i i i it e e e e e e 257
2.20.12 Synchronization Hints 262
2.21 Cancellation Constructs o ot 265
221.1 cancel ConsStruct. v v v it e e e e e e 265
2.21.2 cancellationpoint Construct 269
222 DataEnvironment 271
2.22.1 Data-Sharing Attribute Rules 271
2.22.1.1 Variables Referenced in a Construct 271
2.22.1.2 Variables Referenced in a Region but not in a Construct 275
2.22.2 threadprivateDirective, 276
2.22.3 ListItem Privatization 281
2.22.4 Data-Sharing Attribute Clauses, . 284
22241 defaultClause 284

Contents v

22242 sharedClause i i v i 285
22243 privateClause 287
22244 firstprivateClause 288
22245 1lastprivateClause oL 290
22246 linearClause i i 292
2.22.5 Reduction Clauses and Directives 295
2.22.5.1 Properties Common To All Reduction Clauses 295
2.22.5.2 Reduction Scoping Clauses 302
2.22.5.3 Reduction Participating Clauses 302
22254 reductionClause 302
22255 task_reductionClause 305
22256 in_reductionClause 306
2.22.5.7 declare reduction Directive 307
2.22.6 DataCopying Clauses v v v vt it et e e 313
2.22.6.1 copyinClause e 313
2.22.6.2 copyprivateClause 315
2.22.7 Data-Mapping Attribute Rules, Clauses, and Directives 317
22271 mapClause e e 318
2.22.7.2 Pointer Initialization for Device Data Environments 327
22273 defaultmapClause 328
22274 declaremapper Directive. 330

223 Nestingof Regions 332
3 Runtime Library Routines 335
3.1 Runtime Library Definitions 335
3.2 Execution Environment Routines, . 338
321 omp_set_num threads 338
322 omp_get_num threads 339
323 omp_get_max_threads 340
324 omp_get_thread num 341
325 omp_get_num ProCsS it 342
32.6 omp_in_parallel 342
327 omp_set_dynamic 343
328 omp_get_dynamic 344

vi OpenMP API — Version 5.1 Preview, November 2019

329

3.2.10
3.2.11
3.2.12
3.2.13
3.2.14
3.2.15
3.2.16
3.2.17
3.2.18
3.2.19
3.2.20
3.2.21
3.2.22
3.2.23
3.2.24
3.2.25
3.2.26
3.2.27
3.2.28
3.2.29
3.2.30
3.2.31
3.2.32
3.2.33
3.2.34
3.2.35
3.2.36
3.2.37
3.2.38
3.2.39
3.2.40
3.2.41

omp_get_cancellation 345
omp_set_nested e 345
omp_get_nested o e 346
omp_set_schedule 347
omp_get_schedule, 349
omp_get_thread limit 350
omp_get_supported_active_levels 351
omp_set_max_active_levels 352
omp_get_max_active_levels 353
omp_get_level 353
omp_get_ancestor_thread num 354
omp_get_team _size 355
omp_get_active_level 356
omp_in_final 357
omp_get_proc_bind o 357
omp_get_num_places 359
omp_get_place_nNum_ProCS« e v v .. 360
omp_get_place proc_ids 360
omp_get_place num 361
omp_get_partition num places 362
omp_get_partition_place nums 363
omp_set_affinity format 364
omp_get_affinity format 365
omp_display affinity oo 366
omp_capture_affinity 367
omp_set_default_device 369
omp_get_default_device 370
omp_get_num devices oL 370
omp_get_device_num 371
omp_get_num _teams 372
omp_get_team num 372
omp_is_initial device 373
omp_get_initial device, 374

Contents vii

3242 omp_get_max_task priority 374
3243 omp_pausSe_YeSOUXCE« v v v vt et e 375
3244 omp_pause_resource_all 377
3245 omp_set_num teams 378
3246 omp_get_max_teams 379
3247 omp_set_teams_thread limit 380
3248 omp_get teams_thread limit 381
3.3 LockRoutines 382
3.3.1 omp_init_lockand omp_init_nest_lock 384
332 omp_init_lock_with_hint and
omp_init nest_lock with_hint 385
333 omp_destroy_ lock and omp_destroy nest_lock. 387
33.4 omp_set_lockandomp_set_nest_lock 388
3.3.5 omp_unset_lockand omp_unset_nest_lock 389
33.6 omp_test_lockand omp_test_nest_lock 391
34 TimingRoutineso 393
3.4.1 omp_get_wtime 393
342 omp_get_wtick 394
3.5 EventRoutine 395
3.5.1 omp_fulfill event 395
3.6 Device Memory Routines o 396
3.6.1 omp_target_alloc 396
362 omp_target_free 397
363 omp_target_is_ present 398
3,64 omp_target _MemCPY v vt i e e e 399
3.6.5 omp_target_memcpy_rect 400
3.6.6 omp_target_memcpy_asyncC o.oitiiu 402
3.6.7 omp_target_memcpy_rect_async 404
3.6.8 omp_target_associate ptr...................... 406
369 omp_get_mapped ptr 408
3.6.10 omp_target_disassociate ptr 409
3.7 Interoperability Routines oL 410
371 omp_get_num_interop_properties 410

viii OpenMP API — Version 5.1 Preview, November 2019

372 omp_get_interop_property 410

3.7.3 omp_get_interop_property name. 412
3.8 Memory Management Routines 0., 413
3.8.1 Memory Management Types 413
382 omp_init_allocator 415
3.83 omp_destroy allocator 417
3.84 omp_set_default_allocator 417
3.8.5 omp_get_default_allocator 418
38.6 omp_alloCt e e e e e e e 419
387 omp_free e e 420
39 ToolControlRoutine. 421
4 OMPT Interface 425
4.1 OMPT Interfaces Definitions 425
4.2 Activating a First-Party Tool 425
4.2.1 ompt_start_tool 425
4.2.2 Determining Whether a First-Party Tool Should be Initialized 427
4.2.3 Initializing a First-Party Tool 428
4.23.1 Binding Entry Points in the OMPT Callback Interface 429
4.2.4 Monitoring Activity on the Host withOMPT 430
4.2.5 Tracing Activity on Target Devices with OMPT 432
4.3 Finalizing a First-Party Tool 437
44 OMPTDataTypes e e 437
44.1 Tool Initialization and Finalization 438
442 Callbacks oo 438
443 Tracing e e e e 439
4431 RecordType 440
4432 NativeRecordKindo oL 440
4433 Native Record Abstract Type 440
4434 RecordType e 441
444 Miscellaneous Type Definitions 442
4441 ompt_callback_t 442
4442 ompt_set_result_t, 443
4443 ompt_id_t 444

Contents ix

X

4444 ompt_data_t 444

4445 ompt_device_t 445
4446 ompt_device_time_t 445
4447 ompt_buffer_ t 446
4448 ompt_buffer cursor_t 446
4449 ompt_dependence_t 446
44410 ompt_thread t 447
44411 ompt_scope_endpoint_t 447
44412 ompt_dispatch_t., 447
44413 ompt_sync_region_t, 448
44414 ompt_target_data op_t 448
44415 ompt_work t 449
44416 ompt_mutex_t 449
44417 ompt_native mon_flag t 449
44418 ompt_task_flag t 450
44419 ompt_task status_t, 451
44420 ompt_target_t 451
44421 ompt_parallel flag t 452
44422 ompt_target map_flag t 453
44423 ompt_dependence_type_ t 453
44424 ompt_cancel_flag t 453
44425 ompt_hwid t 454
44426 ompt_state_t 454
44427 ompt_frame t 457
44428 ompt_frame_flag t 458
44429 ompt_wait_did t 459
4.5 OMPT Tool Callback Signatures and Trace Records 459
4.5.1 Initialization and Finalization Callback Signature 460
45.1.1 ompt_initialize t, 460
4512 ompt_finalize t 461
4.5.2 Event Callback Signatures and Trace Records 461
45.2.1 ompt_callback thread begin t 462
4522 ompt_callback thread end t 462

OpenMP API - Version 5.1 Preview, November 2019

4523

4524

45.2.5

45.2.6

4527

4528

45.2.9

4.5.2.10
45211
452.12
45213
4.5.2.14
452.15
45.2.16
45.2.17
4.5.2.18
4.5.2.19
4.5.2.20
45221
4.5.2.22
4.5.2.23
45224
45225
4.5.2.26
4.5.2.27
4.5.2.28
4.5.2.29

ompt_callback_parallel begin t.
ompt_callback_parallel end t
ompt_callback work t.
ompt_callback_dispatch_t
ompt_callback_task create_ t
ompt_callback_dependences_t
ompt_callback_task dependence_t
ompt_callback_task _schedule t
ompt_callback_implicit_task t
ompt_callback master_ t
ompt_callback_sync region t
ompt_callback mutex acquire t
ompt_callback mutex t,
ompt_callback _nest_lock t.
ompt_callback_flush t
ompt_callback_cancel_t
ompt_callback_device_initialize_t
ompt_callback_device_finalize t
ompt_callback_device_load t
ompt_callback_device unload t
ompt_callback_buffer request_ t.
ompt_callback_buffer complete_t
ompt_callback_target_data op t.
ompt_callback target_t
ompt_callback_target map t
ompt_callback_target_submit_t
ompt_callback_control tool t

4.6 OMPT Runtime Entry Points for Tools
4.6.1 Entry Points in the OMPT Callback Interface

4.6.1.1
4.6.1.2
4.6.1.3
4.6.14

ompt_enumerate states_t 0000
ompt_enumerate mutex impls t
ompt_set_callback t
ompt_get_callback t,

Contents

xi

4.6.1.5 ompt_get_thread data_t 501

4.6.1.6 ompt_get num procs_t., 502
4.6.17 ompt_get num places_t 503
4.6.1.8 ompt_get_place proc_ids_ t................... 503
4.6.1.9 ompt_get_place_ num t 504
4.6.1.10 ompt_get_partition_place nums_t 505
4.6.1.11 ompt_get_proc_id t 506
4.6.1.12 ompt_get_state_t 506
4.6.1.13 ompt_get_parallel_info_t 508
4.6.1.14 ompt_get_task info_t., 509
4.6.1.15 ompt_get_task memory t 511
4.6.1.16 ompt_get_target_info t 512
4.6.1.17 ompt_get_num devices_t 513
4.6.1.18 ompt_get_unique_id_t............ 514
4.6.1.19 ompt_finalize tool_t 514
4.6.2 Entry Points in the OMPT Device Tracing Interface 515
4.6.2.1 ompt_get_device_num procs_t 515
4.6.2.2 ompt_get_device_time_t 515
4.6.2.3 ompt_translate_time_t 516
4624 ompt_set_trace_ ompt_t 517
4.6.2.5 ompt_set_trace_native t 518
4.6.2.6 ompt_start_trace t 519
4.6.277 ompt_pause trace_ t 520
4.6.2.8 ompt_flush trace .t 521
4629 ompt_stop trace_t 521
4.6.2.10 ompt_advance_buffer cursor_t 522
4.6.2.11 ompt_get_record type t, 523
4.6.2.12 ompt_get_record ompt_t 524
4.6.2.13 ompt_get_record native_t 525
4.6.2.14 ompt_get_record_ abstract_t 526
4.6.3 Lookup Entry Points: ompt_function_lookup_t 526
5 OMPD Interface 529
5.1 OMPD Interfaces Definitions 530

xii OpenMP API — Version 5.1 Preview, November 2019

5.2 ActivatinganOMPD Tool 530

5.2.1 Enabling the Runtime for OMPD 530
522 ompd_dll_locations 530
5.2.3 ompd_dll_locations_wvalid. 531
53 OMPDDataTypes o v v v i it e 532
531 SizeType o e e e 532
532 WaitIDType o o e e 532
5.33 BasicValueTypes 532
534 AddressType. e 533
5.3.5 Frame Information Type 533
5.3.6 System Device Identifiers 534
5.3.7 Native Thread Identifiers 534
5.3.8 OMPDHandle Types 535
5.3.9 OMPD Scope TYPeS v v v v i i e e e e e e e e 535
53.10 ICVIDTyYpe oo oo e e e e e 536
5.3.11 Tool Context Types o i i it ittt e 536
53.12 ReturnCode Types o o it i 537
5.3.13 Primitive Type Sizes e 538
5.4 OMPD Tool Callback Interface 538
5.4.1 Memory Management of OMPD Library 539
54.1.1 ompd_callback _memory alloc_fn t 539
54.1.2 ompd_callback _memory free_fn_ t............... 540
5.4.2 Context Management and Navigation 540
5.4.2.1 ompd_callback_get_thread context_for_ thread_id_ fn_t541
5422 ompd_callback _sizeof fn_t. 542
54.3 Accessing Memory in the OpenMP Program or Runtime 543
543.1 ompd_callback _symbol _addr_fn_ t. 543
5432 ompd callback memory read fn t. 544
5433 ompd _callback _memory write fn t 546
5.4.4 Data Format Conversion: ompd_callback_device_host_fn_t ... 547
54.5 Output: ompd_callback_print_string fn t. 548
5.4.6 The Callback Interface 548

Contents xiii

5.5 OMPD Tool Interface Routines 550

5.5.1 Per OMPD Library Initialization and Finalization 550
55.1.1 ompd_initialize. 550
5512 ompd get_api_version. 551
5.5.1.3 ompd_get_version_string 552
5.5.14 ompd_finalize 552

5.5.2 Per OpenMP Process Initialization and Finalization 553
5.5.2.1 ompd_process_initialize 553
5.52.2 ompd_device_initialize 554
5.5.23 ompd_rel_ address_space_handle 555

5.5.3 Thread and Signal Safety 556

5.54 Address Space Information 556
5541 ompd get_omp version. 556
5542 ompd _get_omp_version_string 556

5.5.5 ThreadHandles 557
5551 ompd_get_thread in parallel 557
5.552 ompd get_thread handle 558
5553 ompd rel thread handle 559
5.554 ompd_thread _handle compare 560
5555 ompd get_thread id 560

5.5.6 Parallel RegionHandles 561
5.5.6.1 ompd_get_curr_ parallel_handle 561
5.5.6.2 ompd_get_enclosing parallel_handle 562
5.5.6.3 ompd _get_task_parallel_handle 563
5.5.64 ompd_rel parallel_handle 564
5.5.6.5 ompd _parallel_handle_compare 564

5,57 TaskHandles 565
5,571 ompd_get_curr task handle. 565
5.5.72 ompd_get_generating task_handle 566
5.5.7.3 ompd_get_scheduling task_handle 567
5574 ompd_get_task_in_parallel. 567
5575 ompd rel task_handle. 568
5,576 ompd_task_handle_compare 569

xiv OpenMP API — Version 5.1 Preview, November 2019

5.5.77 ompd_get_task_function 570

5578 ompd_get_task _frame 570
5579 ompd_enumerate_states 571
55710 ompd get_state 573
5.5.8 Display Control Variables 573
5.5.8.1 ompd_get_display control_vars 573
5.5.8.2 ompd_rel _display control_vars 574
5.59 Accessing Scope-Specific Information 575
5.59.1 ompd_enumerate_icvs 575
5592 ompd_get_icv_from scope 576
5593 ompd_get_icv_string from scope. 577
5594 ompd get_tool data 579

5.6 Runtime Entry Points for OMPD 580
5.6.1 Beginning Parallel Regions 580
5.6.2 Ending Parallel Regions 580
5.6.3 Beginning Task Regions L. 581
5.64 Ending TaskRegions, . 582
5.6.5 BeginningOpenMP Threads. 582
5.6.6 Ending OpenMP Threads 583
5.6.7 Initializing OpenMP Devices 583
5.6.8 Finalizing OpenMP Devices 584
6 Environment Variables 585
6.1 OMP_SCHEDULE ' v v ittt et e e e e e 585
6.2 OMP_NUM THREADS vt ittt ettt e e e e 586
6.3 OMP_DYNAMIC i vttt it et e e e e e e e e e 587
6.4 OMP_PROC_BIND it ittt it e e 588
6.5 OMP_PLACES i i ittt e et e e e e e e e e 588
6.6 OMP_STACKSIZE v v v v vttt et e e e e e e e 591
6.7 OMP_WAIT POLICY i vt ittt e e e e e e e e s e e e 592
6.8 OMP_MAX ACTIVE_LEVELS ot v vttt 592
6.9 OMP_NESTED vt vttt et e e e e e e e e e e e e e e 593
6.10 OMP_THREAD_LIMIT« o v vttt ittt et e e 593
6.11 OMP_CANCELLATION\ v it ittt et e e e e e e 594

Contents XV

xvi

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23

OMP_DISPLAY ENV ettt i d i
OMP_DISPLAY AFFINITY,
OMP_AFFINITY FORMAT i ittt ittt e e
OMP_DEFAULT DEVICE
OMP_MAX TASK PRIORITY,
OMP_TARGET OFFLOAD,
OMP_TOOL ittt ittt e e e e e
OMP_TOOL_LIBRARIES,
OMP_DEBUG o e
OMP_ALLOCATOR o i ittt e e e e
OMP_NUM TEAMS ittt ittt e e e
OMP_TEAMS THREAD LIMIT

A OpenMP Implementation-Defined Behaviors

B Features History

B.1
B.2
B.3
B4
B.5
B.6
B.7

Index

Deprecated Features
Version 5.0to 5.1 Differences L.
Version4.5to 5.0 Differences L.
Version4.0to 4.5 Differences L oL,
Version 3.1to 4.0 Differences
Version 3.0to 3.1 Differences

Version 2.5to 3.0 Differences

OpenMP API — Version 5.1 Preview, November 2019

603

611
611
611
613
617
618
619
620

623

List of Figures

2.1 Determining the schedule for a Worksharing-Loop 115

4.1 First-Party Tool Activation Flow Chart 427

Xvii

List of Tables

1.1

2.1
2.2
23
24
25
2.6
2.7
2.8
29
2.10
2.11
2.12

3.1
3.2

4.1
4.2
4.3

5.1

6.1
6.2

Xviii

Map-Type Decay of Map Type Combinations

ICV Initial Values e
Ways to Modify and to Retrieve ICV Values
Scopes of ICVs o e
ICV Override Relationships
schedule Clause kind Values
schedule Clause modifier Values
ompt_callback_task_create callback flags evaluation
Predefined Memory Spaces
Allocator Traits
Predefined Allocators
Implicitly Declared C/C++ reduction-identifiers
Implicitly Declared Fortran reduction-identifiers

Required values of the omp_interop_propertyenum
Standard Tool Control Commands

OMPT Callback Interface Runtime Entry Point Names and Their Type Signatures .
Valid Return Codes of ompt_set_callback for Each Callback
OMPT Tracing Interface Runtime Entry Point Names and Their Type Signatures . .

Mapping of Scope Type and OMPD Handles

Defined Abstract Names for OMP_ PLACES o v v v v v ii i
Available Field Types for Formatting OpenMP Thread Affinity Information

17

18
19
20
21
22
23
24
25

1 Introduction

The collection of compiler directives, library routines, and environment variables described in this
document collectively define the specification of the OpenMP Application Program Interface
(OpenMP API) for parallelism in C, C++ and Fortran programs.

This specification provides a model for parallel programming that is portable across architectures
from different vendors. Compilers from numerous vendors support the OpenMP API. More
information about the OpenMP API can be found at the following web site

http://www.openmp.org

The directives, library routines, environment variables, and tool support defined in this document
allow users to create, to manage, to debug and to analyze parallel programs while permitting
portability. The directives extend the C, C++ and Fortran base languages with single program
multiple data (SPMD) constructs, tasking constructs, device constructs, worksharing constructs,
and synchronization constructs, and they provide support for sharing, mapping and privatizing data.
The functionality to control the runtime environment is provided by library routines and
environment variables. Compilers that support the OpenMP API often include command line
options to enable or to disable interpretation of OpenMP directives.

1.1 Scope

The OpenMP API covers only user-directed parallelization, wherein the programmer explicitly
specifies the actions to be taken by the compiler and runtime system in order to execute the program
in parallel. OpenMP-compliant implementations are not required to check for data dependencies,
data conflicts, race conditions, or deadlocks, any of which may occur in conforming programs. In
addition, compliant implementations are not required to check for code sequences that cause a
program to be classified as non-conforming. Application developers are responsible for correctly
using the OpenMP API to produce a conforming program. The OpenMP API does not cover
compiler-generated automatic parallelization.

- O © oOo~NoO O MW

—_

- a4 a4 a4 a4
N o o~ WO

—_
©

N
o

21

22
23

24

25
26

27
28
29

2

1.2 Glossary

1.2.1 Threading Concepts

thread

OpenMP thread

thread number

idle thread

thread-safe routine

processor

device

host device
target device

parent device

An execution entity with a stack and associated static memory, called threadprivate
memory.

A thread that is managed by the OpenMP implementation.

A number that the OpenMP implementation assigns to an OpenMP thread. For
threads within the same team, zero identifies the master thread and consecutive
numbers identify the other threads of this team.

An OpenMP thread that is not currently part of any parallel region.

A routine that performs the intended function even when executed concurrently (by
more than one thread).

Implementation-defined hardware unit on which one or more OpenMP threads can
execute.

An implementation-defined logical execution engine.
COMMENT: A device could have one or more processors.
The device on which the OpenMP program begins execution.
A device onto which code and data may be offloaded from the host device.

For a given target region, the device on which the corresponding target
construct was encountered.

1.2.2 OpenMP Language Terminology

base language

base program

program order

A programming language that serves as the foundation of the OpenMP specification.

COMMENT: See Section 1.7 on page 32 for a listing of current base
languages for the OpenMP API.

A program written in a base language.

An ordering of operations performed by the same thread as determined by the
execution sequence of operations specified by the base language.

COMMENT: For C11 and C++11, program order corresponds to the
sequenced before relation between operations performed by the same
thread.

OpenMP API — Version 5.1 Preview, November 2019

o © ooN OO H @ N =

- a4
[AS

— 4
A~ W

-
o O,

—_ .
©

19
20

21
22

23
24
25
26
27
28
29
30

31
32

33
34

structured block

structured block
sequence

compilation unit

enclosing context

directive

metadirective
white space

OpenMP program

conforming program

declarative directive

executable directive

stand-alone directive

For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.

For Fortran, a block of executable statements with a single entry at the top and a
single exit at the bottom, or an OpenMP construct.

COMMENT: See Section 2.1 on page 36 for restrictions on structured
blocks.

A structured block, or, for C/C++, a sequence of two or more executable statements
that together have a single entry at the top and a single exit at the bottom.

For C/C++, a translation unit.

For Fortran, a program unit.

For C/C++, the innermost scope enclosing an OpenMP directive.

For Fortran, the innermost scoping unit enclosing an OpenMP directive.

For C/C++, a #pragma, for C++, an attribute specifier and, for Fortran, a comment,
that specifies OpenMP program behavior.

COMMENT: See Section 2.1 on page 36 for a description of OpenMP
directive syntax.

A directive that conditionally resolves to another directive at compile time.
A non-empty sequence of space and/or horizontal tab characters.

A program that consists of a base program that is annotated with OpenMP directives
or that calls OpenMP API runtime library routines

An OpenMP program that follows all rules and restrictions of the OpenMP
specification.

An OpenMP directive that may only be placed in a declarative context. A declarative
directive results in one or more declarations only; it is not associated with the
immediate execution of any user code. For C++, if a declarative directive applies to a
function declaration or definition and it is specified with one or more C++ attribute
specifiers, the specified attributes must be applied to a function as permitted by the
base language. For Fortran, a declarative directive must appear after any USE
statement, any IMPORT statement and any IMPLICIT statement in a declarative
context.

An OpenMP directive that is not declarative. That is, it may be placed in an
executable context.

An OpenMP executable directive that has no associated user code except for that
which appears in clauses in the directive.

CHAPTER 1. INTRODUCTION 3

- O OWow N~ WON =

—_

—_
w N

—_ 1
© 0N oM

N NN
N = O

\S]
w

N N
a

NN
N O

N
oo

29

30
31

32
33

construct

combined construct

composite construct

combined target
construct

region

active parallel region

inactive parallel region

active target region

inactive target region

An OpenMP executable directive (and for Fortran, the paired end directive, if any)
and the associated statement, loop or structured block, if any, not including the code
in any called routines. That is, the lexical extent of an executable directive.

A construct that is a shortcut for specifying one construct immediately nested inside
another construct. A combined construct is semantically identical to that of explicitly
specifying the first construct containing one instance of the second construct and no
other statements.

A construct that is composed of two constructs but does not have identical semantics
to specifying one of the constructs immediately nested inside the other. A composite
construct either adds semantics not included in the constructs from which it is
composed or the nesting of the one construct inside the other is not conforming.

A combined construct that is composed of a target construct along with another
construct.

All code encountered during a specific instance of the execution of a given construct
or of an OpenMP library routine. A region includes any code in called routines as
well as any implicit code introduced by the OpenMP implementation. The generation
of a task at the point where a task generating construct is encountered is a part of the
region of the encountering thread. However, an explicit task region corresponding to
a task generating construct is not part of the region of the encountering thread unless
it is an included task region. The point where a target or teams directive is
encountered is a part of the region of the encountering thread, but the region
corresponding to the target or teams directive is not.

COMMENTS:

A region may also be thought of as the dynamic or runtime extent of a
construct or of an OpenMP library routine.

During the execution of an OpenMP program, a construct may give rise to
many regions.

A parallel region that is executed by a team consisting of more than one thread.

A parallel region that is executed by a team of only one thread.

A target region that is executed on a device other than the device that encountered
the target construct.

A target region that is executed on the same device that encountered the target
construct.

4 OpenMP API — Version 5.1 Preview, November 2019

oONOO OO A WODN =

11
12

13
14
15
16

17
18
19
20

21

22
23

24
25

26
27

28
29
30

31
32
33

34

sequential part

master thread

parent thread

child thread

ancestor thread

descendent thread

team

league
contention group

implicit parallel region

initial thread

All code encountered during the execution of an initial task region that is not part of
aparallel region corresponding to a parallel construct or a task region
corresponding to a task construct.

COMMENTS:
A sequential part is enclosed by an implicit parallel region.

Executable statements in called routines may be in both a sequential part
and any number of explicit parallel regions at different points in the
program execution.

An OpenMP thread that has thread number 0. A master thread may be an initial
thread or the thread that encounters a parallel construct, creates a team,
generates a set of implicit tasks, and then executes one of those tasks as thread
number 0.

The thread that encountered the parallel construct and generated a parallel
region is the parent thread of each of the threads in the team of that parallel
region. The master thread of a parallel region is the same thread as its parent
thread with respect to any resources associated with an OpenMP thread.

When a thread encounters a parallel construct, each of the threads in the
generated parallel region’s team are child threads of the encountering thread.
The target or teams region’s initial thread is not a child thread of the thread that
encountered the target or teams construct.

For a given thread, its parent thread or one of its parent thread’s ancestor threads.

For a given thread, one of its child threads or one of its child threads’ descendent
threads.

A set of one or more threads participating in the execution of a parallel region.
COMMENTS:

For an active parallel region, the team comprises the master thread and at
least one additional thread.

For an inactive parallel region, the team comprises only the master thread.
The set of teams created by a teams construct.
An initial thread and its descendent threads.

An inactive parallel region that is not generated from a parallel construct.
Implicit parallel regions surround the whole OpenMP program, all target regions,
and all teams regions.

The thread that executes an implicit parallel region.

CHAPTER 1. INTRODUCTION 5

initial team

nested construct

closely nested construct

explicit region

nested region

closely nested region

strictly nested region

all threads

current team
encountering thread
all tasks

current team tasks

generating task

binding thread set

binding task set

The team that comprises an initial thread executing an implicit parallel region.
A construct (lexically) enclosed by another construct.

A construct nested inside another construct with no other construct nested between
them.

A region that corresponds to either a construct of the same name or a library routine
call that explicitly appears in the program.

A region (dynamically) enclosed by another region. That is, a region generated from
the execution of another region or one of its nested regions.

COMMENT: Some nestings are conforming and some are not. See
Section 2.23 on page 332 for the restrictions on nesting.

A region nested inside another region with no parallel region nested between
them.

A region nested inside another region with no other explicit region nested between
them.

All OpenMP threads participating in the OpenMP program.

All threads in the team executing the innermost enclosing parallel region.
For a given region, the thread that encounters the corresponding construct.
All tasks participating in the OpenMP program.

All tasks encountered by the corresponding tfeam. The implicit tasks constituting the
parallel region and any descendent tasks encountered during the execution of
these implicit tasks are included in this set of tasks.

For a given region, the task for which execution by a thread generated the region.

The set of threads that are affected by, or provide the context for, the execution of a
region.

The binding thread set for a given region can be all threads on a device, all threads
in a contention group, all master threads executing an enclosing teams region, the
current team, or the encountering thread.

COMMENT: The binding thread set for a particular region is described in
its corresponding subsection of this specification.

The set of tasks that are affected by, or provide the context for, the execution of a
region.

6 OpenMP API — Version 5.1 Preview, November 2019

o O NOoO ok W=

—_ .
—_

—a a
w N

_ -
o~

- —a
(o TN o))

DN =
—- O ©

NN NN
A WN

N N
o O

nN N
[oc N

N
O

W w
- O

W w
W N

34

w
(&)}

binding region

orphaned construct

worksharing construct

The binding task set for a given region can be all tasks, the current team tasks, all
tasks of the current team that are generated in the region, the binding implicit task, or
the generating task.

COMMENT: The binding task set for a particular region (if applicable) is
described in its corresponding subsection of this specification.

The enclosing region that determines the execution context and limits the scope of
the effects of the bound region is called the binding region.

Binding region is not defined for regions for which the binding thread set is all
threads or the encountering thread, nor is it defined for regions for which the binding
task set is all tasks.

COMMENTS:

The binding region for an ordered region is the innermost enclosing
loop region.

The binding region for a taskwait region is the innermost enclosing

task region.

The binding region for a cancel region is the innermost enclosing
region corresponding to the construct-type-clause of the cancel
construct.

The binding region for a cancellation point region is the
innermost enclosing region corresponding to the construct-type-clause of
the cancellation point construct.

For all other regions for which the binding thread set is the current team
or the binding task set is the current team tasks, the binding region is the
innermost enclosing parallel region.

For regions for which the binding task set is the generating task, the
binding region is the region of the generating task.

A parallel region need not be active nor explicit to be a binding
region.

A task region need not be explicit to be a binding region.

A region never binds to any region outside of the innermost enclosing
parallel region.

A construct that gives rise to a region for which the binding thread set is the current
team, but is not nested within another construct giving rise to the binding region.

A construct that defines units of work, each of which is executed exactly once by one
of the threads in the team executing the construct.

CHAPTER 1. INTRODUCTION 7

—_

OOW oOo~N OO0 A WN

—_
—_

—_
A WN

-
¢

—_
N O

N = —
o ©

N NN
W N =

NS TN \V)
[N N

NN
N o

N N
©

w
o

W w
N —

w W
A~

8

device construct

device routine

foreign runtime
environment

foreign execution
context

foreign task

indirect device
invocation

place

place list

place partition

place number

thread affinity
SIMD instruction
SIMD lane

SIMD chunk

memory

memory space

memory allocator

For C/C++, worksharing constructs are for, sections, and single.

For Fortran, worksharing constructs are do, sections, single and
workshare.

An OpenMP construct that accepts the device clause.

A function (for C/C++ and Fortran) or subroutine (for Fortran) that can be executed
on a target device, as part of a target region.

A runtime environment that exists outside the OpenMP runtime with which the
OpenMP implementation may interoperate.

A context that is instantiated from a foreign runtime environment in order to facilitate
execution on a given device.

A unit of work executed in a foreign execution context.

An indirect call to the device version of a procedure on a device other than the host
device, through a function pointer (C/C++), a pointer to a member function (C++) or
a procedure pointer (Fortran) that refers to the host version of the procedure.

An unordered set of processors on a device.

The ordered list that describes all OpenMP places available to the execution
environment.

An ordered list that corresponds to a contiguous interval in the OpenMP place list. It
describes the places currently available to the execution environment for a given
parallel region.

A number that uniquely identifies a place in the place list, with zero identifying the
first place in the place list, and each consecutive whole number identifying the next
place in the place list.

A binding of threads to places within the current place partition.
A single machine instruction that can operate on multiple data elements.

A software or hardware mechanism capable of processing one data element from a
SIMD instruction.

A set of iterations executed concurrently, each by a SIMD lane, by a single thread by
means of SIMD instructions.

A storage resource to store and to retrieve variables accessible by OpenMP threads.

A representation of storage resources from which memory can be allocated or
deallocated. More than one memory space may exist.

An OpenMP object that fulfills requests to allocate and to deallocate memory for
program variables from the storage resources of its associated memory space.

OpenMP API — Version 5.1 Preview, November 2019

—
- O © 0 (23N é) ! A~ W

a4 a4
A WM

-
o O,

—_
o

N —
o ©

21

22
23
24
25
26

27
28

handle

An opaque reference that uniquely identifies an abstraction.

1.2.3 Loop Terminology

loop-associated
directive

associated loop(s)

loop transformation
construct

generated loop(s)

SIMD loop

non-rectangular loop
nest

doacross loop nest

An OpenMP executable directive for which the associated user code must be a loop
nest that is a structured block.

The loop(s) controlled by a loop-associated directive of which some may be the
generated loop(s) of enclosed loop transformation constructs.

COMMENT: Loop transformation constructs and other loop-associated
directives that contain a collapse or an ordered (1) clause may have
more than one associated loop.

A construct that is replaced by the loop(s) that result from applying the
transformation as defined by its directive to its associated loop(s).

The loop(s) that result from a loop transformation construct and replace the
construct.

A loop that includes at least one SIMD chunk.

A loop nest for which the iteration count of a loop inside the loop nest is the not same
for all occurrences of the loop in the loop nest.

A loop nest that has cross-iteration dependence. An iteration is dependent on one or
more lexicographically earlier iterations.

COMMENT: The ordered clause parameter on a worksharing-loop
directive identifies the loop(s) associated with the doacross loop nest.

1.2.4 Synchronization Terminology

barrier

cancellation

A point in the execution of a program encountered by a team of threads, beyond
which no thread in the team may execute until all threads in the team have reached
the barrier and all explicit tasks generated by the feam have executed to completion.
If cancellation has been requested, threads may proceed to the end of the canceled
region even if some threads in the team have not reached the barrier.

An action that cancels (that is, aborts) an OpenMP region and causes executing
implicit or explicit tasks to proceed to the end of the canceled region.

CHAPTER 1. INTRODUCTION 9

AW N =

o OO,

11
12

13
14

15
16
17
18

19
20
21

22
23

24
25

26
27

28
29

30

31
32

cancellation point

flush

flush property

strong flush
release flush
acquire flush

atomic operation

atomic read

atomic write

atomic update

atomic captured

update

read-modify-write

10 OpenMP API —

A point at which implicit and explicit tasks check if cancellation has been requested.
If cancellation has been observed, they perform the cancellation.

COMMENT: For a list of cancellation points, see Section 2.21.1 on
page 265.

An operation that a thread performs to enforce consistency between its view and
other threads’ view of memory.

Properties that determine the manner in which a flush operation enforces memory
consistency. These properties are:

o strong: flushes a set of variables from the current thread’s temporary view of the
memory to the memory;

e release: orders memory operations that precede the flush before memory
operations performed by a different thread with which it synchronizes;

e acquire: orders memory operations that follow the flush after memory operations
performed by a different thread that synchronizes with it.

COMMENT: Any flush operation has one or more flush properties.
A flush operation that has the strong flush property.
A flush operation that has the release flush property.
A flush operation that has the acquire flush property.

An operation that is specified by an atomic construct or is implicitly performed by
the implementation and that atomically accesses and/or modifies a specific storage
location.

An atomic operation that is specified by an atomic construct on which the read
clause is present.

An atomic operation that is specified by an atomic construct on which the write
clause is present.

An atomic operation that is specified by an atomic construct on which the
update clause is present.

An atomic operation that is specified by an atomic construct on which the
capture clause is present.

An atomic operation that reads and writes to a given storage location.

COMMENT: All atomic update and atomic captured update operations
are read-modify-write operations.

Version 5.1 Preview, November 2019

— O O© 0o N O O,

—_ -

13
14
15

16
17

18
19

20
21
22

23
24

sequentially consistent
atomic construct

non-sequentially
consistent atomic
construct

sequentially consistent
atomic operation

An atomic construct for which the seq_cst clause is specified.

An atomic construct for which the seq_cst clause is not specified

An atomic operation that is specified by a sequentially consistent atomic construct.

1.2.5 Tasking Terminology

task

task region

implicit task

binding implicit task
explicit task

initial task

current task

child task

sibling tasks
descendent task

task completion

A specific instance of executable code and its data environment that the OpenMP
implementation can schedule for execution by threads.

A region consisting of all code encountered during the execution of a task.

COMMENT: A parallel region consists of one or more implicit task
regions.

A task generated by an implicit parallel region or generated when a parallel
construct is encountered during execution.

The implicit task of the current thread team assigned to the encountering thread.

A task that is not an implicit task.

An implicit task associated with an implicit parallel region.

For a given thread, the task corresponding to the task region in which it is executing.

A task is a child task of its generating task region. A child task region is not part of
its generating task region.

Tasks that are child tasks of the same task region.
A task that is the child task of a task region or of one of its descendent task regions.

A condition that is satisfied when a thread reaches the end of the executable code that
is associated with the task and any allow-completion-event that is created for the task
is fulfilled.

COMMENT: Completion of the initial task that is generated when the
program begins occurs at program exit.

CHAPTER 1. INTRODUCTION 11

o~N O OO WON =

11
12
13

14
15

16
17

18
19

20
21
22

23
24

25

26
27

28

29
30

31

task scheduling point

task switching

tied task

untied task

undeferred task

included task

merged task

mergeable task
final task

task dependence

dependent task

mutually exclusive
tasks

predecessor task
task synchronization
construct

task generating
construct

target task

taskgroup set

12 OpenMP API —

A point during the execution of the current task region at which it can be suspended
to be resumed later; or the point of task completion, after which the executing thread
may switch to a different task region.

COMMENT: For a list of task scheduling points, see Section 2.13.6 on
page 156.

The act of a thread switching from the execution of one task to another rask.

A task that, when its task region is suspended, can be resumed only by the same
thread that suspended it. That is, the task is tied to that thread.

A task that, when its task region is suspended, can be resumed by any thread in the
team. That is, the task is not tied to any thread.

A task for which execution is not deferred with respect to its generating task region.
That is, its generating task region is suspended until execution of the structured block
associated with the undeferred task is completed.

A task for which execution is sequentially included in the generating task region.
That is, an included task is undeferred and executed by the encountering thread.

A task for which the data environment, inclusive of ICVs, is the same as that of its
generating task region.

A task that may be a merged task if it is an undeferred task or an included task.
A task that forces all of its child tasks to become final and included tasks.

An ordering relation between two sibling tasks: the dependent task and a previously
generated predecessor task. The task dependence is fulfilled when the predecessor
task has completed.

A task that because of a task dependence cannot be executed until its predecessor
tasks have completed.

Tasks that may be executed in any order, but not at the same time.

A task that must complete before its dependent tasks can be executed.

A taskwait, taskgroup, or a barrier construct.
A construct that generates one or more explicit tasks.

A mergeable and untied task that is generated by a target, target enter
data, target exit data, or target update construct.

A set of tasks that are logically grouped by a taskgroup region.

Version 5.1 Preview, November 2019

- O O oo~N O o~ Wb

- a a4
AW N

-
N O O

—_
(oo}

N —
o ©

NN NN
W N =

N NN
(o2 Ié) IS

WNDNDN
O © 00 N

W w
N —

w W
H @

1.2.6 Data Terminology

variable

scalar variable

aggregate variable

array section

array item

shape-operator

implicit array

base pointer

named pointer

A named data storage block, for which the value can be defined and redefined during
the execution of a program.

COMMENT: An array element or structure element is a variable that is
part of another variable.

For C/C++, a scalar variable, as defined by the base language.

For Fortran, a scalar variable with intrinsic type, as defined by the base language,
excluding character type.

A variable, such as an array or structure, composed of other variables.

A designated subset of the elements of an array that is specified using a subscript
notation that can select more than one element.

An array, an array section, or an array element.

For C/C++, an array shaping operator that reinterprets a pointer expression as an
array with one or more specified dimensions.

For C/C++, the set of array elements of non-array type 7 that may be accessed by
applying a sequence of [] operators to a given pointer that is either a pointer to type T
or a pointer to a multidimensional array of elements of type 7.

For Fortran, the set of array elements for a given array pointer.

COMMENT: For C/C++, the implicit array for pointer p with type T
(*)[10] consists of all accessible elements p[Z][/], for all i and j=0..9.

For C/C++, an Ivalue pointer expression that is used by a given lvalue expression or
array section to refer indirectly to its storage, where the lvalue expression or array
section is part of the implicit array for that lvalue pointer expression.

For Fortran, a data pointer that appears last in the designator for a given variable or
array section, where the variable or array section is part of the pointer target for that
data pointer.

COMMENT: For the array section
(*p0).x0[k1].pl->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base pointer is: (*p0).x0[k1].pl->p2.

For C/C++, the base pointer of a given lvalue expression or array section, or the base
pointer of one of its named pointers.

For Fortran, the base pointer of a given variable or array section, or the base pointer
of one of its named pointers.

CHAPTER 1. INTRODUCTION 13

0 No o MO N =

-
o ©

—_ a4 g
a b~ wOwN =

—_
N o

—_
©

NN NN
w NN —=Oo

N N
o

NN
N O

WwWwwnN
N = O ©

w w
)

W www
0N O

14

containing array

base array

named array

base expression

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the named pointers are: p0, (*p0).x0[k1].p1, and (*p0).x0[k1].p1->p2.

For C/C++, a non-subscripted array (a containing array) that appears in a given
Ivalue expression or array section, where the lvalue expression or array section is part
of that containing array.

For Fortran, an array (a containing array) without the POINTER attribute and
without a subscript list that appears in the designator of a given variable or array
section, where the variable or array section is part of that containing array.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the containing arrays are: (*p0).x0[k1].p1->p2[k2].x1 and
(*p0).x0[k1].pl->p2[k2].x1[k3].x2.

For C/C++, a containing array of a given lvalue expression or array section that does
not appear in the expression of any of its other containing arrays.

For Fortran, a containing array of a given variable or array section that does not
appear in the designator of any of its other containing arrays.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base array is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.

For C/C++, a containing array of a given lvalue expression or array section, or a
containing array of one of its named pointers.

For Fortran, a containing array of a given variable or array section, or a containing
array of one of its named pointers.

COMMENT: For the array section
(*p0).x0[k1].pl->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the named arrays are: (*p0).x0, (*p0).x0[k1].p1->p2[k2].x1, and
(*p0).x0[k1].p1->p2[k2].x1[k3].x2.

The base array of a given array section or array element, if it exists; otherwise, the
base pointer of the array section or array element.

COMMENT: For the array section
(*p0).x0[k1].p1->p2[k2].x1[k3].x2[4][0:n], where identifiers pi have a
pointer type declaration and identifiers xi have an array type declaration,
the base expression is: (*p0).x0[k1].p1->p2[k2].x1[k3].x2.

OpenMP API — Version 5.1 Preview, November 2019

13
14

15
16
17
18

19
20
21

22
23

24
25
26

27
28
29

30
31
32

attached pointer

simply contiguous
array section

structure

private variable

shared variable

threadprivate variable

More examples for C/C++:
e The base expression for x[i] and for x[i:n] is x, if x is an array or pointer.

e The base expression for x[5][i] and for x[S][i:n] is x, if X is a pointer to
an array or X is 2-dimensional array.

e The base expression for y[5][i] and for y[5][i:n] is y[5], if y is an array
of pointers or y is a pointer to a pointer.

Examples for Fortran:
e The base expression for x(i) and for x(i:j) is x.

A pointer variable in a device data environment to which the effect of a map clause
assigns the address of an object, minus some offset, that is created in the device data
environment. The pointer is an attached pointer for the remainder of its lifetime in
the device data environment.

An array section that statically can be determined to have contiguous storage or that,
in Fortran, has the CONTIGUOQUS attribute.

A structure is a variable that contains one or more variables.
For C/C++: Implemented using struct types.

For C++: Implemented using class types.

For Fortran: Implemented using derived types.

With respect to a given set of task regions or SIMD lanes that bind to the same
parallel region, a variable for which the name provides access to a different
block of storage for each rask region or SIMD lane.

A variable that is part of another variable (as an array or structure element) cannot be
made private independently of other components.

With respect to a given set of fask regions that bind to the same parallel region, a
variable for which the name provides access to the same block of storage for each
task region.

A variable that is part of another variable (as an array or structure element) cannot be
shared independently of the other components, except for static data members of
C++ classes.

A variable that is replicated, one instance per thread, by the OpenMP
implementation. Its name then provides access to a different block of storage for each
thread.

CHAPTER 1. INTRODUCTION 15

D 0~ WON =

~

threadprivate memory

data environment

device data
environment

device address
device pointer

mapped variable

map-type decay

mappable type

A variable that is part of another variable (as an array or structure element) cannot be
made threadprivate independently of the other components, except for static data
members of C++ classes.

The set of threadprivate variables associated with each thread.
The variables associated with the execution of a given region.

The initial data environment associated with a device.

An implementation-defined reference to an address in a device data environment.
A variable that contains a device address.

An original variable in a data environment with a corresponding variable in a device
data environment.

COMMENT: The original and corresponding variables may share storage.

The process used to determine the final map type when mapping a variable with a
user defined mapper. Table 1.1 shows the final map type that the combination of the
two map types determines.

A type that is valid for a mapped variable. If a type is composed from other types
(such as the type of an array or structure element) and any of the other types are not
mappable then the type is not mappable.

COMMENT: Pointer types are mappable but the memory block to which
the pointer refers is not mapped.

For C, the type must be a complete type.
For C++, the type must be a complete type.
In addition, for class types:

o All member functions accessed in any target region must appear in a declare
target directive.

For Fortran, no restrictions on the type except that for derived types:

TABLE 1.1: Map-Type Decay of Map Type Combinations

‘ alloc ‘ to ‘ from ‘ tofrom | release | delete
alloc alloc | alloc | alloc | alloc | release | delete
to alloc to alloc to release | delete
from alloc | alloc | from from release | delete
tofrom | alloc to from | tofrom | release | delete

16 OpenMP API — Version 5.1 Preview, November 2019

oN OO A W N =

11
12

13

14

15
16

17

18

19
20

21
22

23
24

25
26

27
28

29

defined

class type

o All type-bound procedures accessed in any target region must appear in a
declare target directive.

For variables, the property of having a valid value.
For C, for the contents of variables, the property of having a valid value.

For C++, for the contents of variables of POD (plain old data) type, the property of
having a valid value.

For variables of non-POD class type, the property of having been constructed but not
subsequently destructed.

For Fortran, for the contents of variables, the property of having a valid value. For
the allocation or association status of variables, the property of having a valid status.

COMMENT: Programs that rely upon variables that are not defined are
non-conforming programs.

For C++, variables declared with one of the class, struct, or union keywords.

1.2.7 Implementation Terminology

supporting n active
levels of parallelism

supporting the
OpenMP API

supporting nested
parallelism

internal control
variable

compliant
implementation

unspecified behavior

Implies allowing an active parallel region to be enclosed by n-1 active parallel
regions.

Supporting at least one active level of parallelism.

Supporting more than one active level of parallelism.

A conceptual variable that specifies runtime behavior of a set of threads or tasks in
an OpenMP program.

COMMENT: The acronym ICV is used interchangeably with the term
internal control variable in the remainder of this specification.

An implementation of the OpenMP specification that compiles and executes any
conforming program as defined by the specification.

COMMENT: A compliant implementation may exhibit unspecified
behavior when compiling or executing a non-conforming program.

A behavior or result that is not specified by the OpenMP specification or not known
prior to the compilation or execution of an OpenMP program.

Such unspecified behavior may result from:

CHAPTER 1. INTRODUCTION 17

—_

W oOo~N OO0~ W N

—_

11

12
13

14
15

16
17
18

19
20

21

22
23

24
25

26
27
28

29
30
31

implementation defined

deprecated

e Issues documented by the OpenMP specification as having unspecified behavior.
o A non-conforming program.
o A conforming program exhibiting an implementation-defined behavior.

Behavior that must be documented by the implementation, and is allowed to vary
among different compliant implementations. An implementation is allowed to define
this behavior as unspecified.

COMMENT: All features that have implementation-defined behavior are
documented in Appendix A.

For a construct, clause, or other feature, the property that it is normative in the
current specification but is considered obsolescent and will be removed in the future.

1.2.8 Tool Terminology

tool
first-party tool
third-party tool

activated tool
event
native thread

tool callback
registering a callback
dispatching a callback
at an event

thread state

wait identifier

frame

18

OpenMP API -

Code that can observe and/or modify the execution of an application.
A tool that executes in the address space of the program that it is monitoring.

A tool that executes as a separate process from the process that it is monitoring and
potentially controlling.

A first-party tool that successfully completed its initialization.
A point of interest in the execution of a thread.
A thread defined by an underlying thread implementation.

A function that a tool provides to an OpenMP implementation to invoke when an
associated event occurs.

Providing a fool callback to an OpenMP implementation.

Processing a callback when an associated event occurs in a manner consistent with
the return code provided when a first-party tool registered the callback.

An enumeration type that describes the current OpenMP activity of a thread. A
thread can be in only one state at any time.

A unique opaque handle associated with each data object (for example, a lock) used
by the OpenMP runtime to enforce mutual exclusion that may cause a thread to wait
actively or passively.

A storage area on a thread’s stack associated with a procedure invocation. A frame
includes space for one or more saved registers and often also includes space for saved
arguments, local variables, and padding for alignment.

Version 5.1 Preview, November 2019

oo N o a s~ O =

-
o ©

-
w N =

—_ -
o b~

—_
~N O

-
O 0o

N NN
N = O

NN NN N
[6) B U(¢V)

NN
)]

N N
O o

w W
- O

W W w
SO B V]

canonical frame
address

runtime entry point

trace record

native trace record
signal

signal handler
async signal safe
code block

OMPT

OMPT interface state

OMPT active

OMPT pending

OMPT inactive

OMPD

OMPD library
image file

address space

An address associated with a procedure frame on a call stack that was the value of the
stack pointer immediately prior to calling the procedure for which the invocation is
represented by the frame.

A function interface provided by an OpenMP runtime for use by a tool. A runtime
entry point is typically not associated with a global function symbol.

A data structure in which to store information associated with an occurrence of an
event.

A trace record for an OpenMP device that is in a device-specific format.
A software interrupt delivered to a thread.
A function called asynchronously when a signal is delivered to a thread.

The guarantee that interruption by signal delivery will not interfere with a set of
operations. An async signal safe runtime entry point is safe to call from a signal
handler.

A contiguous region of memory that contains code of an OpenMP program to be
executed on a device.

An interface that helps a first-party tool monitor the execution of an OpenMP
program.

A state that indicates the permitted interactions between a first-party tool and the
OpenMP implementation.

An OMPT interface state in which the OpenMP implementation is prepared to accept
runtime calls from a first party tool and it dispatches any registered callbacks and in
which a first-party tool can invoke runtime entry points if not otherwise restricted.

An OMPT interface state in which the OpenMP implementation can only call
functions to initialize a first party tool and in which a first-party tool cannot invoke
runtime entry points.

An OMPT interface state in which the OpenMP implementation will not make any
callbacks and in which a first-party tool cannot invoke runtime entry points.

An interface that helps a third-party tool inspect the OpenMP state of a program that
has begun execution.

A dynamically loadable library that implements the OMPD interface.
An executable or shared library.

A collection of logical, virtual, or physical memory address ranges that contain code,
stack, and/or data. Address ranges within an address space need not be contiguous.
An address space consists of one or more segments.

CHAPTER 1. INTRODUCTION 19

segment
OpenMP architecture
tool architecture

OpenMP process

address space handle
thread handle
parallel handle

task handle

descendent handle

ancestor handle

tool context

address space context
thread context
native thread identifier

preprocessed code

A portion of an address space associated with a set of address ranges.
The architecture on which an OpenMP region executes.
The architecture on which an OMPD tool executes.

A collection of one or more threads and address spaces. A process may contain
threads and address spaces for multiple OpenMP architectures. At least one thread
in an OpenMP process is an OpenMP thread. A process may be live or a core file.

A handle that refers to an address space within an OpenMP process.
A handle that refers to an OpenMP thread.

A handle that refers to an OpenMP parallel region.

A handle that refers to an OpenMP task region.

An output handle that is returned from the OMPD library in a function that accepts
an input handle: the output handle is a descendent of the input handle.

An input handle that is passed to the OMPD library in a function that returns an
output handle: the input handle is an ancestor of the output handle. For a given
handle, the ancestors of the handle are also the ancestors of the handle’s descendent.

COMMENT: A handle cannot be used by the tool in an OMPD call if any
ancestor of the handle has been released, except for OMPD calls that
release the handle.

An opaque reference provided by a tool to an OMPD library. A tool context uniquely
identifies an abstraction.

A tool context that refers to an address space within a process.
A tool context that refers to a native thread.
An identifier for a native thread defined by a thread implementation.

For C/C++, a sequence of preprocessing tokens that result from the first six phases of
translation, as defined by the base language.

20 OpenMP API — Version 5.1 Preview, November 2019

1.3 Execution Model

The OpenMP API uses the fork-join model of parallel execution. Multiple threads of execution
perform tasks defined implicitly or explicitly by OpenMP directives. The OpenMP API is intended
to support programs that will execute correctly both as parallel programs (multiple threads of
execution and a full OpenMP support library) and as sequential programs (directives ignored and a
simple OpenMP stubs library). However, it is possible and permitted to develop a program that
executes correctly as a parallel program but not as a sequential program, or that produces different
results when executed as a parallel program compared to when it is executed as a sequential
program. Furthermore, using different numbers of threads may result in different numeric results
because of changes in the association of numeric operations. For example, a serial addition
reduction may have a different pattern of addition associations than a parallel reduction. These
different associations may change the results of floating-point addition.

An OpenMP program begins as a single thread of execution, called an initial thread. An initial
thread executes sequentially, as if the code encountered is part of an implicit task region, called an
initial task region, that is generated by the implicit parallel region surrounding the whole program.

The thread that executes the implicit parallel region that surrounds the whole program executes on
the host device. An implementation may support other target devices. If supported, one or more
devices are available to the host device for offloading code and data. Each device has its own
threads that are distinct from threads that execute on another device. Threads cannot migrate from
one device to another device. The execution model is host-centric such that the host device offloads
target regions to target devices.

When a target construct is encountered, a new target task is generated. The rarget task region
encloses the target region. The farget task is complete after the execution of the target region
is complete.

When a target task executes, the enclosed target region is executed by an initial thread. The
initial thread may execute on a target device. The initial thread executes sequentially, as if the target
region is part of an initial task region that is generated by an implicit parallel region. If the target
device does not exist or the implementation does not support the target device, all target regions
associated with that device execute on the host device.

The implementation must ensure that the target region executes as if it were executed in the data
environment of the target device unless an i1 £ clause is present and the i £ clause expression
evaluates to false.

The teams construct creates a league of teams, where each team is an initial team that comprises
an initial thread that executes the teams region. Each initial thread executes sequentially, as if the
code encountered is part of an initial task region that is generated by an implicit parallel region
associated with each team. Whether the initial threads concurrently execute the teams region is
unspecified, and a program that relies on their concurrent execution for the purposes of
synchronization may deadlock.

If a construct creates a data environment, the data environment is created at the time the construct is

CHAPTER 1. INTRODUCTION 21

Y GGy
NOoO OO A WN —OCQO0WOONOODOGOBROLOND =

NN = =
N = O O

WWWWWNNDMNDNDDNDDNDN
A WON—-O0OO©0ONOOPA~W

W w
[o)INé,}

AW WW
o © 0o N

22

encountered. The description of a construct defines whether it creates a data environment.

When any thread encounters a parallel construct, the thread creates a team of itself and zero or
more additional threads and becomes the master of the new team. A set of implicit tasks, one per
thread, is generated. The code for each task is defined by the code inside the parallel construct.
Each task is assigned to a different thread in the team and becomes tied; that is, it is always
executed by the thread to which it is initially assigned. The task region of the task being executed
by the encountering thread is suspended, and each member of the new team executes its implicit
task. There is an implicit barrier at the end of the parallel construct. Only the master thread
resumes execution beyond the end of the parallel construct, resuming the task region that was
suspended upon encountering the parallel construct. Any number of parallel constructs
can be specified in a single program.

parallel regions may be arbitrarily nested inside each other. If nested parallelism is disabled, or
is not supported by the OpenMP implementation, then the new team that is created by a thread
encountering a parallel construct inside a parallel region will consist only of the
encountering thread. However, if nested parallelism is supported and enabled, then the new team
can consist of more than one thread. A parallel construct may include a proc_bind clause to
specify the places to use for the threads in the team within the parallel region.

When any team encounters a worksharing construct, the work inside the construct is divided among
the members of the team, and executed cooperatively instead of being executed by every thread.
There is a default barrier at the end of each worksharing construct unless the nowait clause is
present. Redundant execution of code by every thread in the team resumes after the end of the
worksharing construct.

When any thread encounters a task generating construct, one or more explicit tasks are generated.
Execution of explicitly generated tasks is assigned to one of the threads in the current team, subject
to the thread’s availability to execute work. Thus, execution of the new task could be immediate, or
deferred until later according to task scheduling constraints and thread availability. Threads are
allowed to suspend the current task region at a task scheduling point in order to execute a different
task. If the suspended task region is for a tied task, the initially assigned thread later resumes
execution of the suspended task region. If the suspended task region is for an untied task, then any
thread may resume its execution. Completion of all explicit tasks bound to a given parallel region is
guaranteed before the master thread leaves the implicit barrier at the end of the region. Completion
of a subset of all explicit tasks bound to a given parallel region may be specified through the use of
task synchronization constructs. Completion of all explicit tasks bound to the implicit parallel
region is guaranteed by the time the program exits.

When any thread encounters a simd construct, the iterations of the loop associated with the
construct may be executed concurrently using the SIMD lanes that are available to the thread.

When a 1loop construct is encountered, the iterations of the loop associated with the construct are
executed in the context of its encountering thread(s), as determined according to its binding region.
If the 1oop region binds to a teams region, the region is encountered by the set of master threads
that execute the teams region. If the 1oop region binds to a parallel region, the region is

OpenMP API — Version 5.1 Preview, November 2019

0N Ok~ W N =

11
12
13
14
15
16

17
18
19
20

21
22
23
24

25
26
27

28
29
30
31
32

33
34

encountered by the team of threads executing the parallel region. Otherwise, the region is
encountered by a single thread.

If the 1oop region binds to a teams region, the encountering threads may continue execution
after the loop region without waiting for all iterations to complete; the iterations are guaranteed to
complete before the end of the teams region. Otherwise, all iterations must complete before the
encountering thread(s) continue execution after the 1oop region. All threads that encounter the
loop construct may participate in the execution of the iterations. Only one of these threads may
execute any given iteration.

The cancel construct can alter the previously described flow of execution in an OpenMP region.
The effect of the cancel construct depends on its construct-type-clause. If a task encounters a
cancel construct with a taskgroup construct-type-clause, then the task activates cancellation
and continues execution at the end of its task region, which implies completion of that task. Any
other task in that taskgroup that has begun executing completes execution unless it encounters a
cancellation point construct, in which case it continues execution at the end of its task
region, which implies its completion. Other tasks in that taskgroup region that have not begun
execution are aborted, which implies their completion.

For all other construct-type-clause values, if a thread encounters a cancel construct, it activates
cancellation of the innermost enclosing region of the type specified and the thread continues
execution at the end of that region. Threads check if cancellation has been activated for their region
at cancellation points and, if so, also resume execution at the end of the canceled region.

If cancellation has been activated regardless of construct-type-clause, threads that are waiting
inside a barrier other than an implicit barrier at the end of the canceled region exit the barrier and
resume execution at the end of the canceled region. This action can occur before the other threads
reach that barrier.

Synchronization constructs and library routines are available in the OpenMP API to coordinate
tasks and data access in parallel regions. In addition, library routines and environment
variables are available to control or to query the runtime environment of OpenMP programs.

The OpenMP specification makes no guarantee that input or output to the same file is synchronous
when executed in parallel. In this case, the programmer is responsible for synchronizing input and
output processing with the assistance of OpenMP synchronization constructs or library routines.
For the case where each thread accesses a different file, no synchronization by the programmer is
necessary.

All concurrency semantics defined by the base language with respect to threads of execution apply
to OpenMP threads, unless specified otherwise.

CHAPTER 1. INTRODUCTION 23

24

1.4 Memory Model

1.4.1 Structure of the OpenMP Memory Model

The OpenMP API provides a relaxed-consistency, shared-memory model. All OpenMP threads
have access to a place to store and to retrieve variables, called the memory. In addition, each thread
is allowed to have its own temporary view of the memory. The temporary view of memory for each
thread is not a required part of the OpenMP memory model, but can represent any kind of
intervening structure, such as machine registers, cache, or other local storage, between the thread
and the memory. The temporary view of memory allows the thread to cache variables and thereby
to avoid going to memory for every reference to a variable. Each thread also has access to another
type of memory that must not be accessed by other threads, called threadprivate memory.

A directive that accepts data-sharing attribute clauses determines two kinds of access to variables
used in the directive’s associated structured block: shared and private. Each variable referenced in
the structured block has an original variable, which is the variable by the same name that exists in
the program immediately outside the construct. Each reference to a shared variable in the structured
block becomes a reference to the original variable. For each private variable referenced in the
structured block, a new version of the original variable (of the same type and size) is created in
memory for each task or SIMD lane that contains code associated with the directive. Creation of
the new version does not alter the value of the original variable. However, the impact of attempts to
access the original variable during the region corresponding to the directive is unspecified; see
Section 2.22.4.3 on page 287 for additional details. References to a private variable in the
structured block refer to the private version of the original variable for the current task or SIMD
lane. The relationship between the value of the original variable and the initial or final value of the
private version depends on the exact clause that specifies it. Details of this issue, as well as other
issues with privatization, are provided in Section 2.22 on page 271.

The minimum size at which a memory update may also read and write back adjacent variables that
are part of another variable (as array or structure elements) is implementation defined but is no
larger than required by the base language.

A single access to a variable may be implemented with multiple load or store instructions and, thus,
is not guaranteed to be atomic with respect to other accesses to the same variable. Accesses to
variables smaller than the implementation defined minimum size or to C or C++ bit-fields may be
implemented by reading, modifying, and rewriting a larger unit of memory, and may thus interfere
with updates of variables or fields in the same unit of memory.

If multiple threads write without synchronization to the same memory unit, including cases due to
atomicity considerations as described above, then a data race occurs. Similarly, if at least one
thread reads from a memory unit and at least one thread writes without synchronization to that
same memory unit, including cases due to atomicity considerations as described above, then a data
race occurs. If a data race occurs then the result of the program is unspecified.

A private variable in a task region that subsequently generates an inner nested parallel region is
permitted to be made shared by implicit tasks in the inner parallel region. A private variable in

OpenMP API — Version 5.1 Preview, November 2019

A OWND =

0 N O (&)}

11
12
13
14
15

16
17
18
19
20
21
22
23

24
25
26

27
28

29
30
31

32

33
34
35
36

a task region can also be shared by an explicit task region generated during its execution. However,
it is the programmer’s responsibility to ensure through synchronization that the lifetime of the
variable does not end before completion of the explicit task region sharing it. Any other access by
one task to the private variables of another task results in unspecified behavior.

1.4.2 Device Data Environments

When an OpenMP program begins, an implicit target data region for each device surrounds
the whole program. Each device has a device data environment that is defined by its implicit
target data region. Any declare target directives and directives that accept data-mapping
attribute clauses determine how an original variable in a data environment is mapped to a
corresponding variable in a device data environment.

When an original variable is mapped to a device data environment and a corresponding variable is
not present in the device data environment, a new corresponding variable (of the same type and size
as the original variable) is created in the device data environment. Conversely, the original variable
becomes the new variable’s corresponding variable in the device data environment of the device
that performs the mapping operation.

The corresponding variable in the device data environment may share storage with the original
variable. Writes to the corresponding variable may alter the value of the original variable. The
impact of this possibility on memory consistency is discussed in Section 1.4.6 on page 29. When a
task executes in the context of a device data environment, references to the original variable refer to
the corresponding variable in the device data environment. If an original variable is not currently
mapped and a corresponding variable does not exist in the device data environment then accesses to
the original variable result in unspecified behavior unless the unified_shared_memory
clause is specified on a requires directive for the compilation unit.

The relationship between the value of the original variable and the initial or final value of the
corresponding variable depends on the map-type. Details of this issue, as well as other issues with
mapping a variable, are provided in Section 2.22.7.1 on page 318.

The original variable in a data environment and the corresponding variable(s) in one or more device
data environments may share storage. Without intervening synchronization data races can occur.

If a variable has a corresponding variable with which it does not share storage, a write to a storage
location designated by the variable causes the value at the corresponding storage location to
become undefined.

1.4.3 Memory Management

The host device, and target devices that an implementation may support, have attached storage
resources where program variables are stored. These resources can have different traits. A memory
space in an OpenMP program represents a set of these storage resources. Memory spaces are
defined according to a set of traits, and a single resource may be exposed as multiple memory

CHAPTER 1. INTRODUCTION 25

oNOO O W N =

10
11
12
13
14
15

16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33

34
35
36
37
38

26

spaces with different traits or may be part of multiple memory spaces. In any device, at least one
memory space is guaranteed to exist.

An OpenMP program can use a memory allocator to allocate memory in which to store variables.
This memory will be allocated from the storage resources of the memory space associated with the
memory allocator. Memory allocators are also used to deallocate previously allocated memory.
When an OpenMP memory allocator is not used to allocate memory, OpenMP does not prescribe
the storage resource for the allocation; the memory for the variables may be allocated in any storage
resource.

1.4.4 The Flush Operation

The memory model has relaxed-consistency because a thread’s temporary view of memory is not
required to be consistent with memory at all times. A value written to a variable can remain in the
thread’s temporary view until it is forced to memory at a later time. Likewise, a read from a
variable may retrieve the value from the thread’s temporary view, unless it is forced to read from
memory. OpenMP flush operations are used to enforce consistency between a thread’s temporary
view of memory and memory, or between multiple threads’ view of memory.

If a flush operation is a strong flush, it enforces consistency between a thread’s temporary view and
memory. A strong flush operation is applied to a set of variables called the flush-set. A strong flush
restricts reordering of memory operations that an implementation might otherwise do.
Implementations must not reorder the code for a memory operation for a given variable, or the code
for a flush operation for the variable, with respect to a strong flush operation that refers to the same
variable.

If a thread has performed a write to its temporary view of a shared variable since its last strong flush
of that variable, then when it executes another strong flush of the variable, the strong flush does not
complete until the value of the variable has been written to the variable in memory. If a thread
performs multiple writes to the same variable between two strong flushes of that variable, the strong
flush ensures that the value of the last write is written to the variable in memory. A strong flush of a
variable executed by a thread also causes its temporary view of the variable to be discarded, so that
if its next memory operation for that variable is a read, then the thread will read from memory and
capture the value in its temporary view. When a thread executes a strong flush, no later memory
operation by that thread for a variable involved in that strong flush is allowed to start until the strong
flush completes. The completion of a strong flush executed by a thread is defined as the point at
which all writes to the flush-set performed by the thread before the strong flush are visible in
memory to all other threads, and at which that thread’s temporary view of the flush-set is discarded.

A strong flush operation provides a guarantee of consistency between a thread’s temporary view
and memory. Therefore, a strong flush can be used to guarantee that a value written to a variable by
one thread may be read by a second thread. To accomplish this, the programmer must ensure that
the second thread has not written to the variable since its last strong flush of the variable, and that
the following sequence of events are completed in this specific order:

OpenMP API — Version 5.1 Preview, November 2019

32

33
34
35

1. The value is written to the variable by the first thread;

2. The variable is flushed, with a strong flush, by the first thread;

3. The variable is flushed, with a strong flush, by the second thread; and
4. The value is read from the variable by the second thread.

If a flush operation is a release flush or acquire flush, it can enforce consistency between the views
of memory of two synchronizing threads. A release flush guarantees that any prior operation that
writes or reads a shared variable will appear to be completed before any operation that writes or
reads the same shared variable and follows an acquire flush with which the release flush
synchronizes (see Section 1.4.5 on page 27 for more details on flush synchronization). A release
flush will propagate the values of all shared variables in its temporary view to memory prior to the
thread performing any subsequent atomic operation that may establish a synchronization. An
acquire flush will discard any value of a shared variable in its temporary view to which the thread
has not written since last performing a release flush, so that it may subsequently read a value
propagated by a release flush that synchronizes with it. Therefore, release and acquire flushes may
also be used to guarantee that a value written to a variable by one thread may be read by a second
thread. To accomplish this, the programmer must ensure that the second thread has not written to
the variable since its last acquire flush, and that the following sequence of events happen in this
specific order:

1. The value is written to the variable by the first thread,;
The first thread performs a release flush;

The second thread performs an acquire flush; and

v

The value is read from the variable by the second thread.

v v
Note — OpenMP synchronization operations, described in Section 2.20 on page 226 and in
Section 3.3 on page 382, are recommended for enforcing this order. Synchronization through

variables is possible but is not recommended because the proper timing of flushes is difficult.
A A

The flush properties that define whether a flush operation is a strong flush, a release flush, or an
acquire flush are not mutually disjoint. A flush operation may be a strong flush and a release flush;
it may be a strong flush and an acquire flush; it may be a release flush and an acquire flush; or it
may be all three.

1.4.5 Flush Synchronization and Happens Before

OpenMP supports thread synchronization with the use of release flushes and acquire flushes. For
any such synchronization, a release flush is the source of the synchronization and an acquire flush is
the sink of the synchronization, such that the release flush synchronizes with the acquire flush.

CHAPTER 1. INTRODUCTION 27

- O©W Oo~N OO~ wWN-—

—_ a4 a
A WON

—_ a4
N o O

—_
©

N NN
N = O

N NN
a B~ W

N NN
© N o

W N
o ©

w
irg

wWw w
w N

w w
[N

w
»

28

A release flush has one or more associated release sequences that define the set of modifications
that may be used to establish a synchronization. A release sequence starts with an atomic operation
that follows the release flush and modifies a shared variable and additionally includes any
read-modify-write atomic operations that read a value taken from some modification in the release
sequence. The following rules determine the atomic operation that starts an associated release
sequence.

o If a release flush is performed on entry to an atomic operation, that atomic operation starts its
release sequence.

o If arelease flush is performed in an implicit £1ush region, an atomic operation that is provided
by the implementation and that modifies an internal synchronization variable, starts its release
sequence.

o If a release flush is performed by an explicit £1ush region, any atomic operation that modifies a
shared variable and follows the £1ush region in its thread’s program order starts an associated
release sequence.

An acquire flush is associated with one or more prior atomic operations that read a shared variable
and that may be used to establish a synchronization. The following rules determine the associated
atomic operation that may establish a synchronization.

e If an acquire flush is performed on exit from an atomic operation, that atomic operation is its
associated atomic operation.

e If an acquire flush is performed in an implicit £1ush region, an atomic operation that is
provided by the implementation and that reads an internal synchronization variable is its
associated atomic operation.

e If an acquire flush is performed by an explicit £1ush region, any atomic operation that reads a
shared variable and precedes the £1ush region in its thread’s program order is an associated
atomic operation.

A release flush synchronizes with an acquire flush if an atomic operation associated with the
acquire flush reads a value written by a modification from a release sequence associated with the
release flush.

An operation X simply happens before an operation Y if any of the following conditions are
satisfied:

1. X and Y are performed by the same thread, and X precedes Y in the thread’s program order;

2. X synchronizes with Y according to the flush synchronization conditions explained above or
according to the base language’s definition of synchronizes with, if such a definition exists; or

3. There exists another operation Z, such that X simply happens before Z and Z simply happens
before Y.

An operation X happens before an operation Y if any of the following conditions are satisfied:

OpenMP API — Version 5.1 Preview, November 2019

o~ W NN =

- O © o N O

—_

13
14

15
16

17
18
19

20
21

22
23

24

25
26
27

28
29

30
31

32

1. X happens before Y according to the base language’s definition of happens before, if such a
definition exists; or

2. X simply happens before Y.

A variable with an initial value is treated as if the value is stored to the variable by an operation that
happens before all operations that access or modify the variable in the program.

1.4.6 OpenMP Memory Consistency

The following rules guarantee the observable completion order of memory operations, as seen by
all threads.

o If two operations performed by different threads are sequentially consistent atomic operations or
they are strong flushes that flush the same variable, then they must be completed as if in some
sequential order, seen by all threads.

e If two operations performed by the same thread are sequentially consistent atomic operations or
they access, modify, or, with a strong flush, flush the same variable, then they must be completed
as if in that thread’s program order, as seen by all threads.

e If two operations are performed by different threads and one happens before the other, then they
must be completed as if in that happens before order, as seen by all threads, if:

— both operations access or modify the same variable;
— both operations are strong flushes that flush the same variable; or
— both operations are sequentially consistent atomic operations.

e Any two atomic memory operations from different atomic regions must be completed as if in
the same order as the strong flushes implied in their respective regions, as seen by all threads.

The flush operation can be specified using the £1ush directive, and is also implied at various
locations in an OpenMP program: see Section 2.20.8 on page 245 for details.

v v
Note — Since flush operations by themselves cannot prevent data races, explicit flush operations are

only useful in combination with non-sequentially consistent atomic directives.
A A

OpenMP programs that:
e Do not use non-sequentially consistent atomic directives;

e Do not rely on the accuracy of a false result from omp_test_lock and
omp_test_nest_lock; and

e Correctly avoid data races as required in Section 1.4.1 on page 24,

CHAPTER 1. INTRODUCTION 29

—_

O W oo NO O,

11
12
13
14
15

16
17

18
19
20

21
22
23
24
25
26
27
28
29

30
31
32
33

30

behave as though operations on shared variables were simply interleaved in an order consistent with
the order in which they are performed by each thread. The relaxed consistency model is invisible
for such programs, and any explicit flush operations in such programs are redundant.

1.5 Tool Interfaces

The OpenMP API includes two tool interfaces, OMPT and OMPD, to enable development of
high-quality, portable, tools that support monitoring, performance, or correctness analysis and
debugging of OpenMP programs developed using any implementation of the OpenMP API,

An implementation of the OpenMP API may differ from the abstract execution model described by
its specification. The ability of tools that use the OMPT or OMPD interfaces to observe such
differences does not constrain implementations of the OpenMP API in any way.

1.5.1 OMPT

The OMPT interface, which is intended for first-party tools, provides the following:

e A mechanism to initialize a first-party tool;

e Routines that enable a tool to determine the capabilities of an OpenMP implementation;

e Routines that enable a tool to examine OpenMP state information associated with a thread;

e Mechanisms that enable a tool to map implementation-level calling contexts back to their
source-level representations;

e A callback interface that enables a tool to receive notification of OpenMP events;
e A tracing interface that enables a tool to trace activity on OpenMP target devices; and
e A runtime library routine that an application can use to control a tool.

OpenMP implementations may differ with respect to the thread states that they support, the mutual
exclusion implementations that they employ, and the OpenMP events for which tool callbacks are
invoked. For some OpenMP events, OpenMP implementations must guarantee that a registered
callback will be invoked for each occurrence of the event. For other OpenMP events, OpenMP
implementations are permitted to invoke a registered callback for some or no occurrences of the
event; for such OpenMP events, however, OpenMP implementations are encouraged to invoke tool
callbacks on as many occurrences of the event as is practical. Section 4.2.4 specifies the subset of
OMPT callbacks that an OpenMP implementation must support for a minimal implementation of
the OMPT interface.

With the exception of the omp_control_tool runtime library routine for tool control, all other
routines in the OMPT interface are intended for use only by tools and are not visible to
applications. For that reason, a Fortran binding is provided only for omp_control_tool; all
other OMPT functionality is described with C syntax only.

OpenMP API — Version 5.1 Preview, November 2019

14

15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30

31
32
33

34
35

1.5.2 OMPD

The OMPD interface is intended for third-party tools, which run as separate processes. An
OpenMP implementation must provide an OMPD library that can be dynamically loaded and used
by a third-party tool. A third-party tool, such as a debugger, uses the OMPD library to access
OpenMP state of a program that has begun execution. OMPD defines the following:

e An interface that an OMPD library exports, which a tool can use to access OpenMP state of a
program that has begun execution;

o A callback interface that a tool provides to the OMPD library so that the library can use it to
access the OpenMP state of a program that has begun execution; and

o A small number of symbols that must be defined by an OpenMP implementation to help the tool
find the correct OMPD library to use for that OpenMP implementation and to facilitate
notification of events.

Section 5 describes OMPD in detail.

1.6 OpenMP Compliance

The OpenMP API defines constructs that operate in the context of the base language that is
supported by an implementation. If the implementation of the base language does not support a
language construct that appears in this document, a compliant OpenMP implementation is not
required to support it, with the exception that for Fortran, the implementation must allow case
insensitivity for directive and API routines names, and must allow identifiers of more than six
characters. An implementation of the OpenMP API is compliant if and only if it compiles and
executes all other conforming programs, and supports the tool interface, according to the syntax
and semantics laid out in Chapters 1, 2, 3,4 and 5. Appendices A, B, C, and D, as well as sections
designated as Notes (see Section 1.8 on page 33) are for information purposes only and are not part
of the specification.

All library, intrinsic and built-in routines provided by the base language must be thread-safe in a
compliant implementation. In addition, the implementation of the base language must also be
thread-safe. For example, ALLOCATE and DEALLOCATE statements must be thread-safe in
Fortran. Unsynchronized concurrent use of such routines by different threads must produce correct
results (although not necessarily the same as serial execution results, as in the case of random
number generation routines).

Starting with Fortran 90, variables with explicit initialization have the SAVE attribute implicitly.
This is not the case in Fortran 77. However, a compliant OpenMP Fortran implementation must
give such a variable the SAVE attribute, regardless of the underlying base language version.

Appendix A lists certain aspects of the OpenMP API that are implementation defined. A compliant
implementation must define and document its behavior for each of the items in Appendix A.

CHAPTER 1. INTRODUCTION 31

—_

o © 0o N o g A W N

D DD NN DD NN NN D 2 a4 a4 a4 a4 A A A
S o A W N -2 O © 0o N O 0o B~ 0N =

N NN
© o N

32

1.7 Normative References

e ISO/IEC 9899:1990, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:1990 as C90.

e ISO/IEC 9899:1999, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:1999 as C99.

e ISO/IEC 9899:2011, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:2011 as C11.

e ISO/IEC 9899:2018, Information Technology - Programming Languages - C.
This OpenMP API specification refers to ISO/IEC 9899:2018 as C18.

o ISO/IEC 14882:1998, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:1998 as C++98.

e ISO/IEC 14882:2011, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2011 as C++11.

o ISO/IEC 14882:2014, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2014 as C++14.

e ISO/IEC 14882:2017, Information Technology - Programming Languages - C++.
This OpenMP API specification refers to ISO/IEC 14882:2017 as C++17.

e ISO/IEC 1539:1980, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539:1980 as Fortran 77.

e ISO/IEC 1539:1991, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539:1991 as Fortran 90.

e ISO/IEC 1539-1:1997, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:1997 as Fortran 95.

e ISO/IEC 1539-1:2004, Information Technology - Programming Languages - Fortran.
This OpenMP API specification refers to ISO/IEC 1539-1:2004 as Fortran 2003.

e ISO/IEC 1539-1:2010, Information Technology - Programming Languages - Fortran.

This OpenMP API specification refers to ISO/IEC 1539-1:2010 as Fortran 2008. While future
versions of the OpenMP specification are expected to address the following features, currently
their use may result in unspecified behavior.

OpenMP API — Version 5.1 Preview, November 2019

—_

© oo N O o H~ W DN

10

11
12
13
14
15
16
17
18
19

20

21

22

23

24

DO CONCURRENT

Allocatable components of recursive type

Polymorphic assignment

Accessing real and imaginary parts

Pointer function reference is a variable

The BLOCK construct

Where this OpenMP API specification refers to C, C++ or Fortran, reference is made to the base

language supported by the implementation.

Simply contiguous arrays rank remapping to rank>1 target

1.8 Organization of this Document

The remainder of this document is structured as follows:
e Chapter 2 “Directives”

e Chapter 3 “Runtime Library Routines”

o Chapter 4 “OMPT Interface”

e Chapter 5 “OMPD Interface”

e Chapter 6 “Environment Variables”

e Appendix A “OpenMP Implementation-Defined Behaviors”

e Appendix B “Features History”

Some sections of this document only apply to programs written in a certain base language. Text that
applies only to programs for which the base language is C or C++ is shown as follows:

C/C++
C/C++ specific text...
C/C++
Text that applies only to programs for which the base language is C only is shown as follows:
C
C specific text...
C

Text that applies only to programs for which the base language is C90 only is shown as follows:

CHAPTER 1. INTRODUCTION

33

10

11
12

13

14
15

34

C90

C90 specific text...
C90
Text that applies only to programs for which the base language is C99 only is shown as follows:
C99
C99 specific text...
C99
Text that applies only to programs for which the base language is C++ only is shown as follows:
C++
C++ specific text...
C++
Text that applies only to programs for which the base language is Fortran is shown as follows:
Fortran
Fortran specific text......
Fortran

Where an entire page consists of base language specific text, a marker is shown at the top of the
page. For Fortran-specific text, the marker is:

Fortran (cont.)
For C/C++-specific text, the marker is:
C/C++ (cont.)

Some text is for information only, and is not part of the normative specification. Such text is
designated as a note, like this:

v

Note — Non-normative text...
A

OpenMP API — Version 5.1 Preview, November 2019

w

»

-
— O © 00

12

13

14
15

16

17
18

19

2 Directives

This chapter describes the syntax and behavior of OpenMP directives.

C/C++

In C/C++, OpenMP directives are specified by using the #pragma mechanism provided by the C
and C++ standards.

C/C++
Fortran

In Fortran, OpenMP directives are specified by using special comments that are identified by
unique sentinels. Also, a special comment form is available for conditional compilation.

Fortran

Compilers can therefore ignore OpenMP directives and conditionally compiled code if support of
the OpenMP API is not provided or enabled. A compliant implementation must provide an option
or interface that ensures that underlying support of all OpenMP directives and OpenMP conditional
compilation mechanisms is enabled. In the remainder of this document, the phrase OpenMP
compilation is used to mean a compilation with these OpenMP features enabled.

Restrictions
C/C++

The following restriction applies to all OpenMP declarative directives:

o A declarative directive may not be used in place of the statement following an if, else,
while, do, for, switch, or a label.

C/C++
Fortran
The following restrictions apply to all OpenMP directives:

e OpenMP directives, except simd and any declarative directive, may not appear in pure
procedures.

e OpenMP directives may not appear in the WHERE and FORALL constructs.
Fortran

CHAPTER 2. DIRECTIVES 35

© oo NO oM

10
11

12
13

14
15
16
17
18

19

20
21

22

36

2.1 Directive Format
C/C++

OpenMP directives for C/C++ may be specified with #pragma directives as follows:

I #pragma omp directive-name [clause[[, | clause] ... | new-line

Each #pragma directive starts with #pragma omp. The remainder of the directive follows the
conventions of the C and C++ standards for compiler directives. In particular, white space can be
used before and after the #, and sometimes white space must be used to separate the words in a
directive. Preprocessing tokens following #pragma omp are subject to macro replacement.

Some OpenMP directives may be composed of consecutive #pragma directives if specified in
their syntax.

C/C++
C++
Some OpenMP directives for C++ may be specified with C++ attribute specifiers as follows:
I [[omp :: directive-name[([clause[, clause]...])] 11
or

I [[using omp : directive-name[([clause[, clause]...])] 11

The above two forms are interchangeable for any OpenMP directives that can be specified with C++
attribute specifiers. Some OpenMP directives may be composed of consecutive attribute specifiers
if specified in their syntax. Any two consecutive attribute specifiers may be reordered or expressed
as a single attribute specifier, as permitted by the base language, without changing the behavior of
the OpenMP directive.

C++
C/C++

Directives are case-sensitive.

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid
assignment-expression of the base language unless otherwise specified.

C/C++
C++

Directives may not appear in constexpr functions or in constant expressions.

C++

OpenMP API — Version 5.1 Preview, November 2019

N

— O © o ~N O o b~ W

—_

12
13
14
15

16
17
18
19

20
21
22

23
24
25

26
27
28
29

30
31

Fortran
OpenMP directives for Fortran are specified as follows:

I sentinel directive-name [clause[[, | clause]...]

All OpenMP compiler directives must begin with a directive sentinel. The format of a sentinel
differs between fixed form and free form source files, as described in Section 2.1.1 on page 40 and
Section 2.1.2 on page 40.

Directives are case insensitive. Directives cannot be embedded within continued statements, and
statements cannot be embedded within directives.

Each of the expressions used in the OpenMP syntax inside of the clauses must be a valid expression
of the base language unless otherwise specified.

In order to simplify the presentation, free form is used for the syntax of OpenMP directives for
Fortran in the remainder of this document, except as noted.

Fortran

Only one directive-name can be specified per directive (note that this includes combined directives,
see Section 2.16 on page 193). The order in which clauses appear on directives is not significant.
Clauses on directives may be repeated as needed, subject to the restrictions listed in the description
of each clause.

Some clauses accept a list, an extended-list, or a locator-list. A list consists of a comma-separated
collection of one or more list items. An extended-list consists of a comma-separated collection of
one or more extended list items. A locator-list consists of a comma-separated collection of one or
more locator list items.

C/C++

A list item is a variable or an array section. An extended list item is a list item or a function name. A
locator list item is any lvalue expression, including variables, an array section, or a reserved locator.

C/C++
Fortran
A list item is a variable that is not coindexed, an array section that is not coindexed, or a common

block name (enclosed in slashes). An extended list item is a list item or a procedure name. A
locator list item is a list item, or a reserved locator.

When a named common block appears in a /ist, it has the same meaning as if every explicit member
of the common block appeared in the list. An explicit member of a common block is a variable that
is named in a COMMON statement that specifies the common block name and is declared in the same
scoping unit in which the clause appears.

Although variables in common blocks can be accessed by use association or host association,
common block names cannot. As a result, a common block name specified in a data-sharing

CHAPTER 2. DIRECTIVES 37

oNoOOOT AW N

10
11

12
13
14
15

16

17
18

19

20
21
22
23

24
25
26

27
28

29
30
31

38

attribute, a data copying or a data-mapping attribute clause must be declared to be a common block
in the same scoping unit in which the clause appears.

If a list item that appears in a directive or clause is an optional dummy argument that is not present,
the directive or clause for that list item is ignored.

If the variable referenced inside a construct is an optional dummy argument that is not present, any
explicitly determined, implicitly determined, or predetermined data-sharing and data-mapping
attribute rules for that variable are ignored. Otherwise, if the variable is an optional dummy
argument that is present, it is present inside the construct.

Fortran

For all base languages, a list item, an extended list item, or a locator list item is subject to the
restrictions specified in Section 2.1.5 on page 42 and in each of the sections describing clauses and
directives for which the list, the extended-list, or the locator-list appears.

Some clauses and directives accept the use of reserved locators as special identifiers representing
system storage not necessarily bound to any base language storage item. Reserved locators may
only appear in clauses and directives where they are explicitly allowed and may not otherwise be
referenced in the program. The list of reserved locators is:

I omp_all memory

The reserved locator omp_all_memory is a reserved identifier that denotes a list item treated as
having storage that corresponds to the storage of all other objects in memory.

Some executable directives include a structured block or a structured block sequence.

C/C++

A structured block sequence that consists of more than one statement may appear only for
executable directives that explicitly allow it. The corresponding compound statement obtained by
enclosing the sequence in { and } must be a structured block and the structured block sequence
then should be considered to be a structured block with all of its restrictions.

C/C++

A structured block:
e may contain infinite loops where the point of exit is never reached;

e may halt due to an IEEE exception;

C/C++
e may contain calls to exit (), _Exit (), quick_exit (), abort () or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);

e may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and

C/C++

OpenMP API — Version 5.1 Preview, November 2019

a WD

»

10
11

Fortran
e may contain STOP or ERROR STOP statements.

Fortran
Restrictions
Restrictions to structured blocks are as follows:
e Entry to a structured block must not be the result of a branch.

e The point of exit cannot be a branch out of the structured block.

C/C++

e The point of entry to a structured block must not be a call to set jmp () .

e longjmp () and throw () must not violate the entry/exit criteria.
C/C++
Fortran
Restrictions to explicit OpenMP regions (that arise from executable directives) are as follows:
e If more than one image is executing the program, any image control statement, ERROR STOP

statement, or access to a coindexed object that appears in an explicit OpenMP region will result
in unspecified behavior.

CHAPTER 2. DIRECTIVES 39

_
- O OW oo NO O N

-
N

—_ a4 a4 a4 a4
© 0o NOoO Ol W

NN
- O

N
\¥]

23

24
25

26
27
28
29
30
31

32
33
34

40

Fortran (cont.)

2.1.1 Fixed Source Form Directives

The following sentinels are recognized in fixed form source files:

|!$omp | cSomp | *$Somp

Sentinels must start in column 1 and appear as a single word with no intervening characters.
Fortran fixed form line length, white space, continuation, and column rules apply to the directive
line. Initial directive lines must have a space or a zero in column 6, and continuation directive lines
must have a character other than a space or a zero in column 6.

Comments may appear on the same line as a directive. The exclamation point initiates a comment

when it appears after column 6. The comment extends to the end of the source line and is ignored.
If the first non-blank character after the directive sentinel of an initial or continuation directive line
is an exclamation point, the line is ignored.

v v
Note — In the following example, the three formats for specifying the directive are equivalent (the
first line represents the position of the first 9 columns):

c23456789
!Somp parallel do shared(a,b,c)

c$omp parallel do
c$omp+shared(a,b, c)

cSomp paralleldoshared(a,b, c)

A A

2.1.2 Free Source Form Directives

The following sentinel is recognized in free form source files:
I ! Somp

The sentinel can appear in any column as long as it is preceded only by white space. It must appear
as a single word with no intervening white space. Fortran free form line length, white space, and
continuation rules apply to the directive line. Initial directive lines must have a space after the
sentinel. Continued directive lines must have an ampersand (&) as the last non-blank character on
the line, prior to any comment placed inside the directive. Continuation directive lines can have an
ampersand after the directive sentinel with optional white space before and after the ampersand.

Comments may appear on the same line as a directive. The exclamation point (!) initiates a
comment. The comment extends to the end of the source line and is ignored. If the first non-blank
character after the directive sentinel is an exclamation point, the line is ignored.

OpenMP API — Version 5.1 Preview, November 2019

oONOO OO W N =

- —a a
(ST \V I e (o]

—_
(620 %

16

17
18

19
20
21
22
23
24

25
26
27

One or more blanks or horizontal tabs are optional to separate adjacent keywords in
directive-names unless otherwise specified.

v v
Note — In the following example the three formats for specifying the directive are equivalent (the
first line represents the position of the first 9 columns):

123456789
!Somp parallel do &
!$omp shared(a,b,c)

!Somp parallel &
!$Somp&do shared(a,b,c)

!Somp paralleldo shared(a,b,c)

A A

Fortran

2.1.3 Stand-Alone Directives

Summary
Stand-alone directives are executable directives that have no associated user code.

Description

Stand-alone directives do not have any associated executable user code. Instead, they represent
executable statements that typically do not have succinct equivalent statements in the base
language. There are some restrictions on the placement of a stand-alone directive within a program.
A stand-alone directive may be placed only at a point where a base language executable statement is
allowed.

C/C++

Restrictions
e A stand-alone directive may not be used in place of the statement following an 1 £, else,
while, do, for, switch, or a label.

C/C++
C/C++

CHAPTER 2. DIRECTIVES 41

—_

» a MWD

o © o N

12
13
14
15
16

17
18

19
20

21
22

42

2.1.4 Array Shaping

If an expression has a type of pointer to 7, then a shape-operator can be used to specify the extent of
that pointer. In other words, the shape-operator is used to reinterpret, as an n-dimensional array, the
region of memory to which that expression points.

Formally, the syntax of the shape-operator is as follows:

I shaped-expression := ([s7]1[s2]...[sn]) cast-expression

The result of applying the shape-operator to an expression is an Ivalue expression with an
n-dimensional array type with dimensions s; X s> ... X s, and element type 7.

The precedence of the shape-operator is the same as a type cast.

Each s; is an integral type expression that must evaluate to a positive integer.
Restrictions

Restrictions to the shape-operator are as follows:

e The type T must be a complete type.

The shape-operator can appear only in clauses where it is explicitly allowed.

e The result of a shape-operator must be a named array of a list item.

The type of the expression upon which a shape-operator is applied must be a pointer type.

C++

If the type T is a reference to a type T~ then the type will be considered to be T~ for all purposes
of the designated array.

C++
C/C++

2.1.5 Array Sections

An array section designates a subset of the elements in an array.

C/C++

To specify an array section in an OpenMP construct, array subscript expressions are extended with
the following syntax:

OpenMP API — Version 5.1 Preview, November 2019

o ©O©W 00 N O 0o A O N =

- a
n =

13

14
15

16
17

18
19

20
21
22
23

24
25

26

27
28

29
30

31
32

C/C++ (cont.)

[lower-bound : length : stride] or
[lower-bound : length : 1 or

[lower-bound : length] or

[lower-bound : : stride] or

[lower-bound : : 1 or

[lower-bound : 1 or

[: length : stride] or

[:length:] or
[:length] or
[: : stride]
[::]

[:1]

The array section must be a subset of the original array.

Array sections are allowed on multidimensional arrays. Base language array subscript expressions
can be used to specify length-one dimensions of multidimensional array sections.

Each of the lower-bound, length, and stride expressions if specified must be an integral type
expression of the base language. When evaluated they represent a set of integer values as follows:

{ lower-bound, lower-bound + stride, lower-bound + 2 * stride,... , lower-bound + ((length - 1) *
stride) }

The length must evaluate to a non-negative integer.

The stride must evaluate to a positive integer.

When the size of the array dimension is not known, the length must be specified explicitly.
When the stride is absent it defaults to 1.

When the length is absent it defaults to [(size — lower-bound) /stride], where size is the size of the
array dimension.

When the lower-bound is absent it defaults to O.

The precedence of a subscript operator that uses the array section syntax is the same as the
precedence of a subscript operator that does not use the array section syntax.

v v
Note — The following are examples of array sections:

af[0:6]
a[0:6:1]

CHAPTER 2. DIRECTIVES 43

0o N o g~ 0N =

11
12
13

14
15

16
17
18

19
20

21
22

23
24
25

26
27
28
29
30

44

af[l:10]

a[l:]
a[:10:2]
b[10][:1[:]

b[10]1[:1[:0]
c[42][0:6][:]
c[42]1[0:6:2][:]
c[1:10][42][0:6]
S.c[:100]
p->y[:10]
this—>a[:N]
(p+10) [:N]

Assume a is declared to be a 1-dimensional array with dimension size 11. The first two examples
are equivalent, and the third and fourth examples are equivalent. The fifth example specifies a stride
of 2 and therefore is not contiguous.

Assume b is declared to be a pointer to a 2-dimensional array with dimension sizes 10 and 10. The
sixth example refers to all elements of the 2-dimensional array given by b[10]. The seventh
example is a zero-length array section.

Assume c is declared to be a 3-dimensional array with dimension sizes 50, 50, and 50. The eighth
example is contiguous, while the ninth and tenth examples are not contiguous.

The final four examples show array sections that are formed from more general base expressions.
The following are examples that are non-conforming array sections:

s[:10] .x

pl:10]—>y

* (xp[:10])

For all three examples, a base language operator is applied in an undefined manner to an array
section. The only operator that may be applied to an array section is a subscript operator for which

the array section appears as the postfix expression.
A A

C/C++

OpenMP API — Version 5.1 Preview, November 2019

o O b~ W

10
11
12

13
14

15

16
17

18
19

20

Fortran

Fortran has built-in support for array sections although some restrictions apply to their use, as
enumerated in the following section.

Fortran

Restrictions
Restrictions to array sections are as follows:

An array section can appear only in clauses where it is explicitly allowed.

A stride expression may not be specified unless otherwise stated.

C/C++

An element of an array section with a non-zero size must have a complete type.
The base expression of an array section must have an array or pointer type.

If a consecutive sequence of array subscript expressions appears in an array section, and the first
subscript expression in the sequence uses the extended array section syntax defined in this
section, then only the last subscript expression in the sequence may select array elements that
have a pointer type.

C/C++
C++

If the type of the base expression of an array section is a reference to a type 7, then the type will
be considered to be T for all purposes of the array section.

An array section cannot be used in an overloaded [] operator.

C++
Fortran
If a stride expression is specified, it must be positive.

The upper bound for the last dimension of an assumed-size dummy array must be specified.

If a list item is an array section with vector subscripts, the first array element must be the lowest
in the array element order of the array section.

If a list item is an array section, the last parz-ref of the list item must have a section subscript list.
Fortran

CHAPTER 2. DIRECTIVES 45

o (&) A WO DD =

11

12

13
14

15
16

17
18

19

20
21

22
23

2.1.6 Iterators

Iterators are identifiers that expand to multiple values in the clause on which they appear.

The syntax of the iterator modifier is as follows:

I iterator (iterators-definition)
where iterators-definition is one of the following:
I iterator-specifier [, iterators-definition |
where iterator-specifier is one of the following:
I [iterator-type | identifier = range-specification
where:

e identifier is a base language identifier.

C/C++
e (terator-type is a type name.

C/C++

Fortran
e iterator-type is a type specifier.

Fortran

e range-specification is of the form begin : end| : step], where begin and end are expressions for
which their types can be converted to iferator-type and step is an integral expression.

C/C++
In an iterator-specifier, if the iterator-type is not specified then the type of that iterator is of int
type.

C/C++

Fortran

In an iterator-specifier, if the iterator-type is not specified then the type of that iterator is default
integer.

Fortran

In a range-specification, if the step is not specified its value is implicitly defined to be 1.

An iterator only exists in the context of the clause in which it appears. An iterator also hides all
accessible symbols with the same name in the context of the clause.

The use of a variable in an expression that appears in the range-specification causes an implicit
reference to the variable in all enclosing constructs.

OpenMP API — Version 5.1 Preview, November 2019

o ©O© 00 N o o b w0 N o=

—_ .
—_

12
13
14
15
16
17
18
19
20
21
22

C/C++

The values of the iterator are the set of values ig, ..., 2y_1 Where:
o iy = (iterator-type) begin,
o i; = (iterator-type) (i;_1 + step), and
e if step > 0,
- ig < (iterator-type) end,

— in_1 < (iterator-type) end, and

(iterator-type) (in—1 + step) > (iterator-type) end,
e if step <0,

ig > (iterator-type) end,
— in_1 > (iterator-type) end, and

— (iterator-type) (in—1 + step) < (iterator-type) end.
C/C++

Fortran
The values of the iterator are the set of values i1, ..., 7y Where:

e i1 = begin,
e i; =1i;_1 + step, and
e if step > 0,

- 41 < end,

iy < end, and

iy + step > end,
e if step <0,
- 41 > end,

— iy > end, and

iN + step < end.
Fortran

CHAPTER 2. DIRECTIVES

47

No g~ =

o)

11

12
13

14

15
16
17

18

19
20
21

22
23

24
25

48

The set of values will be empty if no possible value complies with the conditions above.

For those clauses that contain expressions that contain iterator identifiers, the effect is as if the list
item is instantiated within the clause for each value of the iterator in the set defined above,
substituting each occurrence of the iterator identifier in the expression with the iterator value. If the
set of values of the iterator is empty then the effect is as if the clause was not specified.

The behavior is unspecified if i; + step cannot be represented in iterator-type in any of the
i; + step computations for any 0 < j < N in C/C++ or 0 < j < N in Fortran.

Restrictions
e An expression that contains an iterator identifier can only appear in clauses that explicitly allow
expressions that contain iterators.

e The iterator-type must not declare a new type.

C/C++

e The iterator-type must be an integral or pointer type.

e The iterator-type must not be const qualified.

C/C++

Fortran
e The iterator-type must be an integer type.

Fortran

o If the step expression of a range-specification equals zero, the behavior is unspecified.
e Each iterator identifier can only be defined once in an iterators-definition.

e Iterators cannot appear in the range-specification.

2.2 Conditional Compilation

In implementations that support a preprocessor, the _ OPENMP macro name is defined to have the
decimal value yyyymm where yyyy and mm are the year and month designations of the version of
the OpenMP API that the implementation supports.

If a #define or a #undef preprocessing directive in user code defines or undefines the
_OPENMP macro name, the behavior is unspecified.

Fortran

The OpenMP API requires Fortran lines to be compiled conditionally, as described in the following
sections.

OpenMP API — Version 5.1 Preview, November 2019

25
26
27

28
29

30
31
32

Fortran (cont.)

2.2.1 Fixed Source Form Conditional Compilation Sentinels
The following conditional compilation sentinels are recognized in fixed form source files:

[!$ 1 %8| c$

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the
following criteria:

e The sentinel must start in column 1 and appear as a single word with no intervening white space;

o After the sentinel is replaced with two spaces, initial lines must have a space or zero in column 6
and only white space and numbers in columns 1 through 5;

o After the sentinel is replaced with two spaces, continuation lines must have a character other than
a space or zero in column 6 and only white space in columns 1 through 5.

If these criteria are met, the sentinel is replaced by two spaces. If these criteria are not met, the line
is left unchanged.

v v
Note — In the following example, the two forms for specifying conditional compilation in fixed
source form are equivalent (the first line represents the position of the first 9 columns):

c23456789

!$ 10 iam = omp_get_thread num() +

'$ & index

#ifdef _ OPENMP
10 iam = omp_get_thread num() +
& index
#endif

A A

2.2.2 Free Source Form Conditional Compilation Sentinel

The following conditional compilation sentinel is recognized in free form source files:
| s

To enable conditional compilation, a line with a conditional compilation sentinel must satisfy the
following criteria:

o The sentinel can appear in any column but must be preceded only by white space;
o The sentinel must appear as a single word with no intervening white space;

o Initial lines must have a space after the sentinel;

CHAPTER 2. DIRECTIVES 49

o~N O O W N—=

a4
OO WON = OO

—_
©

19

20

21
22
23
24

25
26
27
28
29
30
31

32
33

50

e Continued lines must have an ampersand as the last non-blank character on the line, prior to any
comment appearing on the conditionally compiled line.

Continuation lines can have an ampersand after the sentinel, with optional white space before and
after the ampersand. If these criteria are met, the sentinel is replaced by two spaces. If these criteria
are not met, the line is left unchanged.

v v
Note — In the following example, the two forms for specifying conditional compilation in free
source form are equivalent (the first line represents the position of the first 9 columns):

c23456789
!$ iam = omp_get_thread num() + &
18 index

#ifdef _OPENMP
iam = omp_get_thread num() + &
index

#endif

A A

Fortran

2.3 Variant Directives
2.3.1 OpenMP Context

At any point in a program, an OpenMP context exists that defines traits that describe the active
OpenMP constructs, the execution devices, and functionality supported by the implementation. The
traits are grouped into trait sets. The following trait sets exist: construct, device and
implementation.

The construct set is composed of the directive names, each being a trait, of all enclosing constructs
at that point in the program up to a target construct. Combined and composite constructs are
added to the set as distinct constructs in the same nesting order specified by the original construct.
The set is ordered by nesting level in ascending order. Specifically, the ordering of the set of
constructs is c1, ..., ¢, where c; is the construct at the outermost nesting level and cy is the
construct at the innermost nesting level. In addition, if the point in the program is not enclosed by a
target construct, the following rules are applied in order:

1. For functions with a declare SIMD directive, the simd trait is added to the beginning of the set as
c; for any generated SIMD versions so the total size of the set is increased by 1.

OpenMP API — Version 5.1 Preview, November 2019

- O © 0 (o2 B &) IEN W N =

—_ -

-4 4a a4
a A~ WD

— -
O 0o N O

NN
— O

N N
W N

NN NN
o 01 B~

N N
©

W N
o ©

W W
N —

W W ww
[e2 3@ B> N

2. For functions that are determined to be function variants by a declare variant directive, the
selectors ¢y, ..., cps of the construct selector set are added in the same order to the
beginning of the set as c1, ..., cjs so the total size of the set is increased by M.

3. For functions within a declare target block, the farget trait is added to the beginning of the set as
c; for any versions of the function that are generated for target regions so the total size of the
set is increased by 1.

The simd trait can be further defined with properties that match the clauses accepted by the declare
SIMD directive with the same name and semantics. The simd trait must define at least the simdlen
property and one of the inbranch or notinbranch properties.

The device set includes traits that define the characteristics of the device being targeted by the
compiler at that point in the program. At least the following traits must be defined:

o The kind(kind-name-list) trait specifies the general kind of the device. The following kind-name
values are defined:

— host, which specifies that the device is the host device;
— nohost, which specifies that the devices is not the host device; and

— the values defined in the “OpenMP Context Definitions” document, which is available at
http://www.openmp.org/.

o The isa(isa-name-list) trait specifies the Instruction Set Architectures supported by the device.
The accepted isa-name values are implementation defined.

e The arch(arch-name-list) trait specifies the architectures supported by the device. The accepted
arch-name values are implementation defined.

The implementation set includes traits that describe the functionality supported by the OpenMP
implementation at that point in the program. At least the following traits can be defined:

e The vendor(vendor-name-list) trait, which specifies the vendor identifiers of the implementation.
OpenMP defined values for vendor-name are defined in the “OpenMP Context Definitions”
document, which is available at http://www.openmp.org/.

o The extension(extension-name-list) trait, which specifies vendor specific extensions to the
OpenMP specification. The accepted extension-name values are implementation defined.

e A trait with a name that is identical to the name of any clause that can be supplied to the
requires directive.

Implementations can define further traits in the device and implementation sets. All implementation
defined traits must follow the following syntax:

identifier[(context-element[, context-element[, ...]])]

context-element :
identifier[(context-element[, context-element[, ...]])]

CHAPTER 2. DIRECTIVES 51

http://www.openmp.org/
http://www.openmp.org/

No ok~ W=

oo

10
11

12

13
14
15
16
17
18
19
20
21
22

23
24
25
26
27

28
29
30
31

32
33

34
35

52

or
context-value

context-value :
constant string
or
constant integer expression

where identifier is a base language identifier.

2.3.2 Context Selectors

Context selectors are used to define the properties of an OpenMP context that a directive or clause
can match. OpenMP defines different sets of selectors, each containing different selectors.

The syntax to define a context-selector-specification is the following:

trait-set-selector(, trait-set-selector|, ...]]

trait-set-selector :
trait-set-selector-name= { trait-selector([, trait-selector[, ...]]}

trait-selector :
trait-selector-name[([trait-score: | trait-property[, trait-property[, ...]J])]

trait-score :
score (score-expression)

The construct selector set defines the construct traits that should be active in the OpenMP
context. The following selectors can be defined in the construct set: target; teams;
parallel; for (in C/C++); do (in Fortran); and simd. The properties of each selector are the
same properties that are defined for the corresponding trait. The construct selector is an
ordered list ¢y, ..., cn.

The device and implementation selector sets define the traits that should be active in the
corresponding trait set of the OpenMP context. The same traits defined in the corresponding traits
sets can be used as selectors with the same properties. The kind selector of the device selector
set can also be set to the value any, which is as if no kind selector was specified.

The user selector set defines the condition selector that provides additional user-defined
conditions.

C

The condition (boolean-expr) selector defines a constant expression that must evaluate to true
for the selector to be true.

C

OpenMP API — Version 5.1 Preview, November 2019

w

12

13
14

15

16
17

18
19

20
21

22

23
24

25
26

27

C++

The condition (boolean-expr) selector defines a constexpr expression that must evaluate to
true for the selector to be true.

C++
Fortran

The condition (logical-expr) selector defines a constant expression that must evaluate to true
for the selector to be true.

Fortran

A score-expression must be an constant integer expression.

Implementations can allow further selectors to be specified. Implementations can ignore specified
selectors that are not those described in this section.

Restrictions
o Each trait-set-selector-name can only be specified once.

e Each trait-selector-name can only be specified once.

e A trait-score cannot be specified in traits from the construct or device trait-selector-sets.

2.3.3 Matching and Scoring Context Selectors

A given context selector is compatible with a given OpenMP context if the following conditions are
satisfied:

o All selectors in the user set of the context selector are true;

e All selectors in the construct, device, and implementation sets of the context selector
appear in the corresponding trait set of the OpenMP context;

e For each selector in the context selector, its properties are a subset of the properties of the
corresponding trait of the OpenMP context; and

e Selectors in the construct set of the context selector appear in the same relative order as their
corresponding traits in the construct trait set of the OpenMP context.

Some properties of the simd selector have special rules to match the properties of the simd trait:

e The simdlen (N) property of the selector matches the simdlen(M) trait of the OpenMP context
if M%N equals zero; and

e The aligned (list:N) property of the selector matches the aligned(list:M) trait of the OpenMP
context if N%M equals zero.

Among compatible context selectors, a score is computed using the following algorithm:

CHAPTER 2. DIRECTIVES 53

o~N OO0 AW N =

11
12
13

14

15
16
17

18

19

20

21

22
23
24

25

26
27

1. Each trait that appears in the construct trait set in the OpenMP context is given the value 27!
where p is the position of the construct trait, ¢, in the set;

2. The kind, arch, and isa selectors are given the values 2!, 2141 and 2442, respectively, where
[is the number of traits in the construct set;

3. Traits for which a trait-score is specified are given the value specified by the trait-score
score-expression;,

4. The values given to any additional selectors allowed by the implementation are implemented
defined;

5. Other selectors are given a value of zero; and

6. A context selector that is a strict subset of another context selector has a score of zero. For other
context selectors, the final score is the sum of the values of all specified selectors plus 1. If the
traits that correspond to the construct selectors appear multiple times in the OpenMP
context, the highest valued subset of traits that contains all selectors in the same order are used.

2.3.4 Metadirectives

Summary
A metadirective is a directive that can specify multiple directive variants of which one may be
conditionally selected to replace the metadirective based on the enclosing OpenMP context.

Syntax
C/C++

The syntax of a metadirective is as follows:

I #pragma omp metadirective [clause[[,]| clause] ... | new-line

or

#pragma omp begin metadirective [clause[[,] clause] ... | new-line
stmt(s)
#pragma omp end metadirective

where clause is one of the following:

when (context-selector-specification : [directive-variant])

default (/directive-variant])

C/C++

54 OpenMP API — Version 5.1 Preview, November 2019

N

(o2 &) IIF - N @0}

10

11
12

13

14
15
16

17
18
19
20
21
22
23
24
25

26
27
28

29
30

31
32

Fortran
The syntax of a metadirective is as follows:

I !Somp metadirective [clause[[,] clause] ... |

or

!Somp begin metadirective [clause[[,] clause] ... |
stmt(s)
!Somp end metadirective

where clause is one of the following:

when (context-selector-specification : [directive-variant])

default (/directive-variant])

Fortran

In the when clause, context-selector-specification specifies a context selector (see Section 2.3.2).

In the when and default clauses, directive-variant has the following form and specifies a
directive variant that specifies an OpenMP directive with clauses that apply to it.

I directive-name [clause([[, | clause] ... |

Description
A metadirective is a directive that behaves as if it is either ignored or replaced by the directive
variant specified in one of the when or default clauses that appears on the metadirective.

The OpenMP context for a given metadirective is defined according to Section 2.3.1. For each
when clause that appears on a metadirective, the specified directive variant, if present, is a
candidate to replace the metadirective if the corresponding context selector is compatible with the
OpenMP context according to the matching rules defined in Section 2.3.3. If only one compatible
context selector specified by a when clause has the highest score and it specifies a directive variant,
the directive variant will replace the metadirective. If more than one when clause specifies a
compatible context selector that has the highest computed score and at least one specifies a
directive variant, the first directive variant specified in the lexical order of those when clauses will
replace the metadirective.

If no context selector from any when clause is compatible with the OpenMP context and a
default clause that specifies a directive variant is present, that directive variant will replace the
metadirective.

If a directive variant is not selected to replace a metadirective according to the above rules, the
metadirective has no effect on the execution of the program.

The begin metadirective directive behaves identically to the metadirective directive,
except that the directive syntax for the specified directive variants must accept a paired

CHAPTER 2. DIRECTIVES 55

a b wNn =

© o NO

11

12
13

14
15

16
17
18
19

20

21

22
23
24
25

26

27

28
29
30
31

32

end directive. For any directive variant that is selected to replace the begin metadirective
directive, the end metadirective directive will be implicitly replaced by its paired

end directive to demarcate the statements that are affected by or are associated with the directive
variant. If no directive variant is selected to replace the begin metadirective directive, its
paired end metadirective directive is ignored.

Restrictions
Restrictions to metadirectives are as follows:

o The directive variant appearing in a when or default clause must not specify a
metadirective, beginmetadirective, or end metadirective directive.

C/C++

e The directive variant that appears in a when or default clause must not specify a
begin declare variant or end declare variant.

C/C++

o The context selector that appears in a when clause must not specify any properties for the simd
selector.

e Any replacement that occurs for a metadirective must not result in a non-conforming OpenMP
program.

e Any directive variant that is specified by a when or default clause on a
begin metadirective directive must be an OpenMP directive that has a paired
end directive, and the begin metadirective directive must have a paired
end metadirective directive.

e The default clause may appear at most once on a metadirective.

2.3.5 Declare Variant Directive

Summary

The declare variant directive declares a specialized variant of a base function and specifies the
context in which that specialized variant is used. The declare variant directive is a declarative
directive.

Syntax
C/C++

The syntax of the declare variant directive is as follows:

#pragma omp declare variant (variant-func-id) clause new-line
[#pragma omp declare variant (variant-func-id) clause new-line]

[..]

function definition or declaration

or

OpenMP API — Version 5.1 Preview, November 2019

—_

»

©

10
11

12

13
14
15

16
17

18
19
20
21

22
23
24
25
26
27
28

29
30
31

#fpragma omp begin declare variant clause new-line
declaration-definition-seq
#pragma omp end declare variant new-line

where clause is one of the following:

I match (context-selector-specification)

and where variant-func-id is the name of a function variant that is either a base language identifier
or, for C++, a template-id.

C/C++
Fortran
The syntax of the declare variant directive is as follows:

I !Somp declare variant ([base-proc-name: Jvariant-proc-name) clause

where clause is one of the following:

I match (context-selector-specification)

and where variant-proc-name is the name of a function variant that is a base language identifier.
Fortran

Description
The declare variant directive declares a base function to have the specified function variant. The
context selector in the match clause is associated with the variant.

C/C++

The begin declare variant directive associates the context selector in the match clause
with each function definition in declaration-definition-seq.

For the purpose of call resolution, each function definition that appears between a

begin declare variant directive and its paired end declare variant directive is a
function variant for an assumed base function, with the same name and a compatible prototype, that
is declared elsewhere without an associated declare variant directive.

If a declare variant directive appears between a begin declare variant directive and its
paired end declare variant directive the effective context selectors of the outer directive are
appended to the context selector of the inner directive to form the effective context selector of the
inner directive. If a trait-set-selector is present on both directives, the trait-selector list of the outer
directive is appended to the trait-selector list of the inner directive after equivalent trait-selectors
have been removed. Restrictions that apply to explicitly specified context selectors also apply to
effective context selectors constructed through this process.

The symbol name of a function definition that appears between a begin declare variant
directive and its paired end declare variant directive shall be determined through the base
language rules after the name of the function has been augmented with a string that shall be

CHAPTER 2. DIRECTIVES 57

No ok~ W=

10
11
12
13
14
15

16
17

18
19

20
21
22

23
24

25
26

27
28

29
30
31

32
33

58

determined according to the effective context selector of the begin declare variant
directive. The symbol names of two definitions of a function shall be equal if and only if their
effective context selectors are equivalent.

If the context selector of a begin declare variant directive contains traits in the device set
that are known never to be compatible with an OpenMP context during the current compilation, the
preprocessed code that follows the begin declare variant directive up to the matching

end declare variant directive shall be elided.

C/C++

The OpenMP context for a call to a given base function is defined according to Section 2.3.1. If the
context selector that is associated with a declared function variant is compatible with the OpenMP
context of a call to a base function according to the matching rules defined in Section 2.3.3 then a
call to the variant is a candidate to replace the base function call. For any call to the base function
for which candidate variants exist, the variant with the highest score is selected from all compatible
variants. If multiple variants have the highest score, the selected variant is implementation defined.
If a compatible variant exists, the call to the base function is replaced with a call to the selected
variant. If no compatible variants exist then the call to the base function is not changed.

Different declare variant directives may be specified for different declarations of the same base
function.

Any differences that the specific OpenMP context requires in the prototype of the variant from the
base function prototype are implementation defined.

C++

The function variant is determined by base language standard name lookup rules ([basic.lookup])
of variant-func-id with arguments that correspond to the argument types in the base function
declaration.

For the declare variant directive, the variant-func-id and any expressions in the match
clause are interpreted as if they appeared at the scope of the trailing return type of the base function.

For the begin declare variant directive, any expressions in the match clause are
interpreted at the location of the directive.

C++

Restrictions
Restrictions to the declare variant directive are as follows:

o Calling functions that a declare variant directive determined to be a function variant directly in
an OpenMP context that is different from the one that the construct selector set of the context
selector specifies is non-conforming.

o If a function is determined to be a function variant through more than one declare variant
directive then the construct selector set of their context selectors must be the same.

OpenMP API — Version 5.1 Preview, November 2019

O ©W o ~N OO A O =

—_

11

12

13
14

15
16

17
18

19
20

21
22
23

24
25

26

C/C++

o If the base function associated with a declare variant directive has any declarations then
the declare variant directives for any declarations that have one must be equivalent. If the
function definition has a declare variant directive, it must also be equivalent. Otherwise,
the result is unspecified.

e The type of the function variant must be compatible with the type of the base function after the
implementation-defined transformation for its OpenMP context.

o The match clause of a begin declare variant directive may not contain a simd
trait-selector-name.

e Matching pairs of begin declare variant and end declare variant directives shall
encompass disjoint source ranges or they shall be nested perfectly.

C/C++
C++

e The declare variant directive cannot be specified for a virtual function.

C++
Fortran
e base-proc-name must not be a generic name, procedure pointer, or entry name.

o If base-proc-name is omitted then the declare variant directive must appear in the
specification part of a subroutine subprogram or a function subprogram.

e Any declare variant directive must appear in the specification part of a subroutine,
subprogram, function subprogram, or interface body to which it applies.

e If a declare variant directive is specified in an interface block for a procedure then it must
match a declare variant directive in the definition of the procedure.

e If a procedure is declared via a procedure declaration statement then the procedure
base-proc-name should appear in the same specification.

e If a declare variant directive is specified for a procedure name with an explicit interface
and a declare variant directive is also specified for the definition of the procedure, the two
declare variant directives must match. Otherwise the result is unspecified.

Fortran

Cross References
o OpenMP Context Specification, see Section 2.3.1 on page 50.

o Context Selectors, see Section 2.3.2 on page 52.

CHAPTER 2. DIRECTIVES 59

©

10
11

12
13
14
15
16

17
18
19
20
21

22
23

60

2.4 requires Directive

Summary
The requires directive specifies the features that an implementation must provide in order for
the code to compile and to execute correctly. The requires directive is a declarative directive.

Syntax
C/C++

The syntax of the requires directive is as follows:
I #fpragma omp requires clause[[[,] clause] ... | new-line
C/C++
Fortran
The syntax of the requires directive is as follows:
I 'Somp requires clausel [[,] clause] ... |
Fortran
Where clause is either one of the requirement clauses listed below or a clause of the form
ext_implementation-defined-requirement for an implementation defined requirement clause.
reverse_offload
unified address
unified shared memory

atomic_default_mem order(seq cst | acqg rel | relaxed)

dynamic_allocators

Description

The requires directive specifies features that an implementation must support for correct
execution. The behavior that a requirement clause specifies may override the normal behavior
specified elsewhere in this document. Whether an implementation supports the feature that a given
requirement clause specifies is implementation defined.

The requires directive specifies requirements for the execution of all code in the current
compilation unit.

OpenMP API — Version 5.1 Preview, November 2019

v v
Note — Use of this directive makes your code less portable. Users should be aware that not all

devices or implementations support all requirements.
A A

When the reverse_offload clause appears on a requires directive, the implementation
guarantees that a target region, for which the target construct specifies a device clause in
which the ancestor modifier appears, can execute on the parent device of an enclosing target
region.

When the unified_address clause appears on a requires directive, the implementation
guarantees that all devices accessible through OpenMP API routines and directives use a unified
address space. In this address space, a pointer will always refer to the same location in memory
from all devices accessible through OpenMP. Any OpenMP mechanism that returns a device
pointer is guaranteed to return a value that can support pointer arithmetic while still being a native
device pointer. The is_device_ptr clause is not necessary for device pointers to be translated
in target regions, and pointers found not present are not set to null but keep their original value.
Memory local to a specific execution context may be exempt from this requirement, following the
restrictions of locality to a given execution context, thread, or contention group. Target devices may
still have discrete memories and dereferencing a device pointer on the host device or host pointer on
a target device remains unspecified behavior.

The unified_shared_memory clause implies the unified_address requirement,
inheriting all of its behaviors. Additionally, memory in the device data environment of any device
visible to OpenMP, including but not limited to the host, is considered part of the device data
environment of all devices accessible through OpenMP except as noted below. Every device address
allocated through OpenMP device memory routines is a valid host pointer. Memory local to an
execution context as defined in unified_address above may remain part of distinct device data
environments as long as the execution context is local to the device containing that environment.

The unified_shared_memory clause makes the map clause optional on target constructs
and the declare target directive optional for static lifetime variables accessed inside functions to
which a declare target directive is applied. Scalar variables are still firstprivate by default when
referenced inside target constructs. Values stored into memory by one device may not be visible
to another device until those two devices synchronize with each other or both devices synchronize
with the host.

The atomic_default_mem_order clause specifies the default memory ordering behavior for
atomic constructs that must be provided by an implementation. If the default memory ordering is
specified as seq_cst, all atomic constructs on which memory-order-clause is not specified
behave as if the seq_ecst clause appears. If the default memory ordering is specified as
relaxed, all atomic constructs on which memory-order-clause is not specified behave as if the
relaxed clause appears.

If the default memory ordering is specified as acq_rel, atomic constructs on which
memory-order-clause is not specified behave as if the release clause appears if the atomic write

CHAPTER 2. DIRECTIVES 61

oNOoO O WN =

©

—_ —a
N = O

13
14

15

16
17

18
19
20

21
22

23
24
25

26
27

28

29

62

or atomic update operation is specified, as if the acquire clause appears if the atomic read
operation is specified, and as if the acq_rel clause appears if the atomic captured update
operation is specified.

The dynamic_allocators clause removes certain restrictions on the use of memory allocators
in target regions. It makes the uses_allocators clause optional on target constructs for
the purpose of using allocators in the corresponding target regions. It allows calls to the
omp_init_allocator and omp_destroy_allocator API routines in target regions.
Finally, it allows default allocators to be used by allocate directives, allocate clauses, and
omp_alloc API routines in target regions.

Implementers are allowed to include additional implementation defined requirement clauses. All
implementation defined requirements should begin with ext_. Requirement names that do not
start with ext__ are reserved.

Restrictions
The restrictions for the requires directive are as follows:

e Each of the clauses can appear at most once on the directive.

e At most one requires directive with atomic_default_mem_order clause can appear in
a single compilation unit.

e A requires directive with a unified_address,unified_shared_memory, or
reverse_offload clause must appear lexically before any device constructs or device
routines.

e A requires directive with any of the following clauses must appear in all compilation units of
a program that contain device constructs or device routines or in none of them:

— reverse_offload
— unified address
— unified_shared_memory

o The requires directive with atomic_default_mem order clause may not appear
lexically after any atomic construct on which memory-order-clause is not specified.

C
e The requires directive may only appear at file scope.

C
C++

e The requires directive may only appear at file or namespace scope.

C++

OpenMP API — Version 5.1 Preview, November 2019

10
11
12
13
14
15
16

17

18
19
20
21
22
23

24

25

26
27
28

2.5 assume Directive

Summary

The assume directive provides invariants to the implementation that may be used for optimization

purposes. If the invariants do not hold at runtime, the behavior is unspecified.

Syntax

The syntax of the assume directive is as follows:

C/C++

I #pragma omp assumes clause[[[,] clause] ... | new-line

or

#pragma omp begin assumes clause[[[,] clause] ... | new-line
declaration-definition-seq
#pragma omp end assumes new-line

or

#pragma omp assume clause[[[, | clause] ... | new-line
structured-block

Where clause is either assumption-clause or a clause of the form

ext_implementation-defined-assumption for an implementation-defined assumption clause.

Where assumption-clause is one of the following:

absent (directive-name [[, directive-name]...])
contains (directive-name [[, directive-name]...])
holds (scalar-expression)

no_openmp

no_openmp_routines

no_parallelism

C/C++
Fortran
| !$omp assumes clause[[[,] clause] ... |
or

!Somp assume clause[[[,] clause] ... |
structured-block
!Somp end assume

CHAPTER 2. DIRECTIVES

63

© 00 N O o b~ W DN=

10
11
12
13

14
15

16
17
18

19
20

21
22
23
24
25

26
27

28
29
30

31
32
33

64

Where clause is either assumption-clause or a clause of the form
ext_implementation-defined-assumption for an implementation-defined assumption clause.

Where assumption-clause is one of the following:

absent (directive-name [[, directive-name]...])
contains (directive-name [[, directive-name]...[)
holds (scalar-logical-expression)

no_openmp

no_openmp_routines

no_parallelism

Fortran

Description

The assume directive gives the implementation additional information about the expected
properties of the program that can optionally be used to optimize the implementation. An
implementation may ignore this information without altering the behavior of the program.

The assume form is an executable directive while the assumes and begin assumes forms are
declarative directives.

The scope of the assumes directive is the code executed and reached from the current compilation
unit. The scope of the assume construct is the code executed in the corresponding region or in any
region that is nested in the corresponding region.

C/C++

The scope of the begin assumes directive is the code that is executed and reached from any of
the declared functions in declaration-definition-seq.

C/C++

The absent and contains clauses both accept a list of one or more directive names that may
match a construct that is encountered within the scope of the directive. An encountered construct
matches the directive name if it has the same name as one of the specified directive names or if it is
a combined or composite construct for which a constituent construct has the same name as one of
the specified directive names.

When the absent clause appears on an assume directive, the application guarantees that no
constructs that match a listed directive name are encountered in the scope of the assume directive.

When the contained clause appears on an assume directive, the application provides a hint that
constructs that match the listed directive names are likely to be encountered in the scope of the
assume directive.

When the holds clause appears on an assume directive, the application guarantees that the listed
expression evaluates to true in the scope of the directive. The effect of the clause does not include
an evaluation of the expression that is observable.

OpenMP API — Version 5.1 Preview, November 2019

© 0 [e22Né, ! A W N =

11

12
13

14

15
16

17
18
19

20

21

The no_openmp clause guarantees that no OpenMP related code is executed in the scope of the
directive.

The no_openmp_routines clause guarantees that no explicit OpenMP runtime library calls are
executed in the scope of the directive.

The no_parallelism clause guarantees that no OpenMP tasks (explicit or implicit) will be
generated and that no SIMD constructs will be executed in the scope of the directive.

Implementers are allowed to include additional implementation-defined assumption clauses. All
implementation-defined assumptions should begin with ext_. Assumption names that do not start
with ext__ are reserved.

Restrictions
The restrictions for the assume directive are as follows:

e Each clause except the absent, contains and holds clause can appear at most once on the
directive.

e Each directive-name listed in the clauses can appear at most once on the directive.

o A directive-name that appears in an absent or contains clause may not be a combined or
composite directive name.

o A directive-name that appears in an absent or contains clause may not be a directive that is
not associated with the execution of user or implementation code, i.e., a nothing directive, a
declarative directive, a metadirective, or a loop transformation directive.

C

o The declarative versions of the assume directive may only appear at file scope.

C
C++

e The declarative versions of the assume directive may only appear at file or namespace scope.

C++

CHAPTER 2. DIRECTIVES 65

- O ©W 0O~NOOLH~WNMN -

—_

12
13

14
15

16
17

18
19

20
21

22
23

24
25
26

27
28
29

30
31
32
33

34

66

2.6 Internal Control Variables

An OpenMP implementation must act as if there are internal control variables (ICVs) that control
the behavior of an OpenMP program. These ICVs store information such as the number of threads
to use for future parallel regions, the schedule to use for worksharing loops and whether nested
parallelism is enabled or not. The ICVs are given values at various times (described below) during
the execution of the program. They are initialized by the implementation itself and may be given
values through OpenMP environment variables and through calls to OpenMP API routines. The
program can retrieve the values of these ICVs only through OpenMP API routines.

For purposes of exposition, this document refers to the ICVs by certain names, but an
implementation is not required to use these names or to offer any way to access the variables other
than through the ways shown in Section 2.6.2 on page 68.

2.6.1 ICV Descriptions

The following ICVs store values that affect the operation of parallel regions.

e dyn-var - controls whether dynamic adjustment of the number of threads is enabled for
encountered parallel regions. There is one copy of this ICV per data environment.

e nthreads-var - controls the number of threads requested for encountered parallel regions.
There is one copy of this ICV per data environment.

o thread-limit-var - controls the maximum number of threads participating in the contention
group. There is one copy of this ICV per data environment.

e max-active-levels-var - controls the maximum number of nested active parallel regions.
There is one copy of this ICV per device.

e place-partition-var - controls the place partition available to the execution environment for
encountered parallel regions. There is one copy of this ICV per implicit task.

e active-levels-var - the number of nested active parallel regions that enclose the current task
such that all of the parallel regions are enclosed by the outermost initial task region on the
current device. There is one copy of this ICV per data environment.

e levels-var - the number of nested parallel regions that enclose the current task such that all of the
parallel regions are enclosed by the outermost initial task region on the current device.
There is one copy of this ICV per data environment.

e bind-var - controls the binding of OpenMP threads to places. When binding is requested, the
variable indicates that the execution environment is advised not to move threads between places.
The variable can also provide default thread affinity policies. There is one copy of this ICV per
data environment.

The following ICVs store values that affect the operation of worksharing-loop regions.

OpenMP API — Version 5.1 Preview, November 2019

- O o © NOoO o~ W N =

—_

-4 4 a4
a b~ N

o -
O 0o ~N O

NN
— O

\%
N

NN
A W

N N
o O

N
~

W NN
o © @

w
g

W w
wW N

e run-sched-var - controls the schedule that is used for worksharing-loop regions when the
runtime schedule kind is specified. There is one copy of this ICV per data environment.

o def-sched-var - controls the implementation defined default scheduling of worksharing-loop
regions. There is one copy of this ICV per device.

The following ICVs store values that affect program execution.

o stacksize-var - controls the stack size for threads that the OpenMP implementation creates. There
is one copy of this ICV per device.

e wait-policy-var - controls the desired behavior of waiting threads. There is one copy of this ICV
per device.

e display-affinity-var - controls whether to display thread affinity. There is one copy of this ICV for
the whole program.

o affinity-format-var - controls the thread affinity format when displaying thread affinity. There is
one copy of this ICV per device.

e cancel-var - controls the desired behavior of the cancel construct and cancellation points.
There is one copy of this ICV for the whole program.

o default-device-var - controls the default target device. There is one copy of this ICV per data
environment.

o target-offload-var - controls the offloading behavior. There is one copy of this ICV for the whole
program.

e max-task-priority-var - controls the maximum priority value that can be specified in the
priority clause of the task construct. There is one copy of this ICV for the whole program.

The following ICVs store values that affect the operation of the OMPT tool interface.

e tool-var - controls whether an OpenMP implementation will try to register a tool. There is one
copy of this ICV for the whole program.

e rool-libraries-var - specifies a list of absolute paths to tool libraries for OpenMP devices. There
is one copy of this ICV for the whole program.

The following ICVs store values that affect the operation of the OMPD tool interface.

e debug-var - controls whether an OpenMP implementation will collect information that an
OMPD library can access to satisfy requests from a tool. There is one copy of this ICV for the
whole program.

The following ICVs store values that may be queried by interface routines.

e num-procs-var - the number of processors that are available to the device. There is one copy of
this ICV per device.

CHAPTER 2. DIRECTIVES 67

- O©W 00 N OO0 AW N-—=

—_ a4 a4 a4
AW N

—_
o O

17
18

o thread-num-var - the thread number of an implicit task within its binding team. There is one
copy of this ICV per data environment.

e final-task-var - whether the current task is a final task. There is one copy of this ICV per data
environment.

o implicit-task-var - whether the current task is an implicit task. There is one copy of this ICV per
data environment.

o team-size-var - the size of the team. There is one copy of this ICV per data environment.
The following ICVs store values that affect default memory allocation.

e def-allocator-var - controls the memory allocator to be used by memory allocation routines,
directives and clauses when a memory allocator is not specified by the user. There is one copy of
this ICV per implicit task.

The following ICVs store values that affect the operation of teams regions.

e nteams-var - controls the number of teams requested for encountered teams regions. There is
one copy of this ICV per device.

o teams-thread-limit-var - controls the maximum number of threads participating in each
contention group created by a teams construct. There is one copy of this ICV per device.

2.6.2 ICV Initialization

Table 2.1 shows the ICVs, associated environment variables, and initial values.

TABLE 2.1: ICV Initial Values

ICV Environment Variable Initial value

dyn-var
nthreads-var
run-sched-var
def-sched-var
bind-var
stacksize-var

wait-policy-var

OMP_DYNAMIC
OMP_NUM_THREADS
OMP__ SCHEDULE
(none)
OMP_PROC_BIND
OMP_STACKSIZE

OMP_WAIT POLICY

See description below

Implementation defined
Implementation defined
Implementation defined
Implementation defined
Implementation defined

Implementation defined

table continued on next page

OpenMP API — Version 5.1 Preview, November 2019

table continued from previous page

ICV

Environment Variable

Initial value

thread-limit-var

max-active-levels-var

active-levels-var
levels-var
place-partition-var
cancel-var
display-affinity-var
affinity-format-var
default-device-var
target-offload-var
max-task-priority-var
tool-var
tool-libraries-var
debug-var
num-procs-var
thread-num-var
final-task-var
implicit-task-var
team-size-var
def-allocator-var
nteams-var

teams-thread-limit-var

OMP_THREAD LIMIT

OMP_MAX ACTIVE_LEVELS,

OMP_NESTED,
OMP_NUM_THREADS,
OMP_PROC_BIND

(none)
(none)
OMP_PLACES

OMP_CANCELLATION

OMP_DISPLAY AFFINITY
OMP_AFFINITY_ FORMAT
OMP_DEFAULT_DEVICE
OMP_TARGET_ OFFLOAD

OMP_MAX TASK_PRIORITY

OMP_TOOL

OMP_TOOL_LIBRARIES

OMP_DEBUG
(none)

(none)

(none)

(none)

(none)
OMP_ALLOCATOR

OMP_NUM TEAMS

OMP_TEAMS_THREAD_ LIMIT

Implementation defined

Implementation defined

zero
zero

Implementation defined
false

false

Implementation defined
Implementation defined
DEFAULT

zero

enabled

empty string

disabled
Implementation defined
zero

false

true

one

Implementation defined
zero

zero

CHAPTER 2. DIRECTIVES

69

oo A WON =

18
19

20
21
22
23
24
25
26
27
28
29
30
31
32

Each ICV that does not have global scope (see Table 2.3 on page 74) has a set of device-specific
environment variables that extend the variables defined in Table 2.1 on page 68 with the following
syntax.

<ENVIRONMENT VARIABLE>_DEV [_<device>]

Where <ENVIRONMENT VARIABLE> is one of the variables from Table 2.1 on page 68 and
<device> is the device number as specified in the device clause (see Section 2.15 on page 165).

Description
e Each device has its own ICVs.

e The initial value of dyn-var is implementation defined if the implementation supports dynamic
adjustment of the number of threads; otherwise, the initial value is false.

e The value of the nthreads-var ICV is a list.
e The value of the bind-var ICV is a list.

The host and target device ICVs are initialized before any OpenMP API construct or OpenMP API
routine executes. After the initial values are assigned, the values of any OpenMP environment
variables that were set by the user are read and the associated ICVs are modified accordingly. If no
<device> number is specified on the device-specific environment variable then the value is applied
to all non-host devices.

Cross References
e OMP_SCHEDULE environment variable, see Section 6.1 on page 585.

e OMP_NUM_THREADS environment variable, see Section 6.2 on page 586.

e OMP_DYNAMIC environment variable, see Section 6.3 on page 587.

e OMP_PROC_BIND environment variable, see Section 6.4 on page 588.

e OMP_PLACES environment variable, see Section 6.5 on page 588.

e OMP_STACKSIZE environment variable, see Section 6.6 on page 591.

e OMP_WAIT_ POLICY environment variable, see Section 6.7 on page 592.

e OMP_MAX ACTIVE_LEVELS environment variable, see Section 6.8 on page 592.
e OMP_NESTED environment variable, see Section 6.9 on page 593.

e OMP_THREAD_LIMIT environment variable, see Section 6.10 on page 593.

e OMP_CANCELLATION environment variable, see Section 6.11 on page 594.

e OMP_DISPLAY AFFINITY environment variable, see Section 6.13 on page 595.
e OMP_AFFINITY_ FORMAT environment variable, see Section 6.14 on page 596.

e OMP_DEFAULT_DEVICE environment variable, see Section 6.15 on page 598.

70 OpenMP API — Version 5.1 Preview, November 2019

o N o o A~ W DN

10
11

e OMP_MAX TASK_PRIORITY environment variable, see Section 6.16 on page 598.

e OMP_TARGET_OFFLOAD environment variable, see Section 6.17 on page 599.

e OMP_TOOL environment variable, see Section 6.18 on page 599.

e OMP_TOOL_LIBRARIES environment variable, see Section 6.19 on page 600.

e OMP_DEBUG environment variable, see Section 6.20 on page 600.

e OMP_ALLOCATOR environment variable, see Section 6.21 on page 601.

e OMP_NUM_TEAMS environment variable, see Section 6.22 on page 601.

e OMP_TEAMS_THREAD_LIMIT environment variable, see Section 6.23 on page 601.

2.6.3 Modifying and Retrieving ICV Values

Table 2.2 shows the method for modifying and retrieving the values of ICVs through OpenMP API
routines. If an ICV is not listed in this table, no OpenMP API routine modifies or retrieves this ICV.

TABLE 2.2: Ways to Modify and to Retrieve ICV Values

ICV

Ways to Modify Value

Ways to Retrieve Value

dyn-var
nthreads-var
run-sched-var
bind-var
thread-limit-var

max-active-levels-var

active-levels-var
levels-var
place-partition-var
cancel-var
affinity-format-var

default-device-var

omp_set_dynamic ()
omp_set_num_ threads ()
omp_set_schedule()
(none)

teams construct

omp_set_max_ active_levels(),
omp_set_nested()

(none)
(none)
(none)
(none)
omp_set_affinity format ()

omp_set_default_device()

omp_get_dynamic ()
omp_get_max_threads ()
omp_get_schedule()
omp_get_proc_bind()
omp_get_thread limit ()

omp_get_max_active_levels ()

omp_get_active_level ()
omp_get_level ()

See description below
omp_get_cancellation ()
omp_get_affinity_ format ()
omp_get_default_device ()

table continued on next page

CHAPTER 2. DIRECTIVES 71

© oo~N OO0 ~AWN =

11
12
13
14
15
16
17
18
19
20
21

table continued from previous page

ICV Ways to Modify Value Ways to Retrieve Value
max-task-priority-var (none) omp_get_max_task_priority()
num-procs-var (none) omp_get_num_procs ()
thread-num-var (none) omp_get_thread_ num()
final-task-var (none) omp_in_final ()
team-size-var (none) omp_get_num_threads ()
def-allocator-var omp_set_default_allocator() omp_get_default_allocator()
nteams-var omp_set_num_ teams () omp_get_max teams ()
teams-thread-limit-var omp_set_teams_thread limit () omp_get_teams_thread_limit ()
Description

The value of the nthreads-var ICV is a list. The runtime call omp_set_num_threads sets
the value of the first element of this list, and omp_get_max_threads retrieves the value of
the first element of this list.

The value of the bind-var ICV is a list. The runtime call omp_get_proc_bind retrieves the
value of the first element of this list.

Detailed values in the place-partition-var ICV are retrieved using the runtime calls
omp_get_partition num places,omp_get_partition_place_ nums,
omp_get_place_num_procs, and omp_get_place_proc_ids.

Cross References

thread_limit clause of the teams construct, see Section 2.9 on page 87.
omp_set_num_threads routine, see Section 3.2.1 on page 338.
omp_get_num_threads routine, see Section 3.2.2 on page 339.
omp_get_max_threads routine, see Section 3.2.3 on page 340.
omp_get_thread_num routine, see Section 3.2.4 on page 341.
omp_get_num_procs routine, see Section 3.2.5 on page 342.
omp_set_dynamic routine, see Section 3.2.7 on page 343.
omp_get_dynamic routine, see Section 3.2.8 on page 344.
omp_get_cancellation routine, see Section 3.2.9 on page 345.
omp_set_nested routine, see Section 3.2.10 on page 345.

omp_set_schedule routine, see Section 3.2.12 on page 347.

72 OpenMP API — Version 5.1 Preview, November 2019

o © 0o N o o A W N =

N DD NN ND N = a4 A
A WO D =2 O © 00 N o o » W N =

omp_get_schedule routine, see Section 3.2.13 on page 349.
omp_get_thread limit routine, see Section 3.2.14 on page 350.
omp_get_supported_active_levels, see Section 3.2.15 on page 351.
omp_set_max_active_levels routine, see Section 3.2.16 on page 352.
omp_get_max_active_levels routine, see Section 3.2.17 on page 353.
omp_get_level routine, see Section 3.2.18 on page 353.
omp_get_active_level routine, see Section 3.2.21 on page 356.
omp_in_final routine, see Section 3.2.22 on page 357.
omp_get_proc_bind routine, see Section 3.2.23 on page 357.
omp_get_place_num_procs routine, see Section 3.2.25 on page 360.
omp_get_place_proc_ids routine, see Section 3.2.26 on page 360.
omp_get_partition_num_places routine, see Section 3.2.28 on page 362.
omp_get_partition_place_nums routine, see Section 3.2.29 on page 363.
omp_set_affinity format routine, see Section 3.2.30 on page 364.
omp_get_affinity format routine, see Section 3.2.31 on page 365.
omp_set_default_device routine, see Section 3.2.34 on page 369.
omp_get_default_device routine, see Section 3.2.35 on page 370.
omp_get_max_task_priority routine, see Section 3.2.42 on page 374.
omp_set_num_teams routine, see Section 3.2.45 on page 378.
omp_get_max_teams routine, see Section 3.2.46 on page 379.
omp_set_teams_thread limit routine, see Section 3.2.47 on page 380.
omp_get_teams_thread_limit routine, see Section 3.2.48 on page 381.
omp_set_default_allocator routine, see Section 3.8.4 on page 417.

omp_get_default_allocator routine, see Section 3.8.5 on page 418.

CHAPTER 2. DIRECTIVES

73

2.6.4 How ICVs are Scoped
Table 2.3 shows the ICVs and their scope.

TABLE 2.3: Scopes of ICVs

ICV

Scope

dyn-var

nthreads-var
run-sched-var
def-sched-var
bind-var
stacksize-var
wait-policy-var
thread-limit-var
max-active-levels-var
active-levels-var
levels-var
place-partition-var
cancel-var
display-affinity-var
affinity-format-var
default-device-var
target-offload-var
max-task-priority-var
tool-var
tool-libraries-var

debug-var

data environment
data environment
data environment
device

data environment
device

device

data environment
device

data environment
data environment
implicit task
global

global

device

data environment
global

global

global

global

global

table continued on next page

OpenMP API — Version 5.1 Preview, November 2019

(o226 BRI @1 N =

10

11
12
13

14
15
16
17
18
19
20

table continued from previous page

ICV Scope
num-procs-var device
thread-num-var implicit task
final-task-var data environment
implicit-task-var data environment
team-size-var team
def-allocator-var implicit task
nteams-var device
teams-thread-limit-var device
Description

e There is one copy per device of each ICV with device scope.
e Each data environment has its own copies of ICVs with data environment scope.
e Each implicit task has its own copy of ICVs with implicit task scope.

Calls to OpenMP API routines retrieve or modify data environment scoped ICVs in the data
environment of their binding tasks.

2.6.4.1 How the Per-Data Environment ICVs Work

When a task construct, a parallel construct or a teams construct is encountered, each
generated task inherits the values of the data environment scoped ICVs from each generating task’s
ICV values.

When a parallel construct is encountered, the value of each ICV with implicit task scope is
inherited, unless otherwise specified, from the implicit binding task of the generating task unless
otherwise specified.

When a task construct is encountered, the generated task inherits the value of nthreads-var from
the generating task’s nthreads-var value. When a parallel construct is encountered, and the
generating task’s nthreads-var list contains a single element, the generated task(s) inherit that list as
the value of nthreads-var. When a parallel construct is encountered, and the generating task’s
nthreads-var list contains multiple elements, the generated task(s) inherit the value of nthreads-var
as the list obtained by deletion of the first element from the generating task’s nthreads-var value.
The bind-var ICV is handled in the same way as the nthreads-var ICV.

CHAPTER 2. DIRECTIVES 75

o~N OO WON =

©

_
wnNn = O

- a a
o OB

17

18
19

20
21

22
23

When a target task executes an active target region, the generated initial task uses the values of
the data environment scoped ICVs from the device data environment ICV values of the device that
will execute the region.

When a target task executes an inactive target region, the generated initial task uses the values
of the data environment scoped ICVs from the data environment of the task that encountered the
target construct.

If a teams construct with a thread limit clause is encountered, the thread-limit-var ICV
from the data environment of the initial task for each team is instead set to an implementation
defined value between one and the value specified in the clause.

If a teams construct with no thread_1limit clause is encountered, the thread-limit-var ICV
from the data environment of the initial task of each team is set to an implementation defined value
that is greater than zero and does not exceed teams-thread-limit-var, if teams-thread-limit-var is
greater than zero.

When encountering a worksharing-loop region for which the runt ime schedule kind is specified,
all implicit task regions that constitute the binding parallel region must have the same value for
run-sched-var in their data environments. Otherwise, the behavior is unspecified.

2.6.5 ICV Override Relationships

Table 2.4 shows the override relationships among construct clauses and ICVs. The table only lists
ICV that can be overwritten by a clause.

TABLE 2.4: ICV Override Relationships

ICV construct clause, if used
nthreads-var num_threads
run-sched-var schedule

def-sched-var schedule

bind-var proc_bind
def-allocator-var allocator

nteams-var num_teams

teams-thread-limit-var ~ thread_limit

Description
e The num_threads clause overrides the value of the first element of the nthreads-var ICV.

e If a schedule clause specifies a modifier then that modifier overrides any modifier that is
specified in the run-sched-var ICV.

OpenMP API — Version 5.1 Preview, November 2019

N —

o © 0o N o o MO

—_

11

12

13

14
15
16

17

18
19

20
21

22
23

24
25

e If bind-var is not set to false then the proc_bind clause overrides the value of the first element
of the bind-var ICV; otherwise, the proc_bind clause has no effect.

Cross References

e parallel construct, see Section 2.8 on page 79.

e proc_bind clause, Section 2.8 on page 79.

e num_threads clause, see Section 2.8.1 on page 84.

e num_teams clause, see Section 2.9 on page 87.

e thread_limit clause, see Section 2.9 on page 87.

e Worksharing-Loop construct, see Section 2.12.2 on page 106.

e schedule clause, see Section 2.12.2.1 on page 114.

2.7 Utility Directives

Utility directives facilitate interactions with the compiler and support code readability.

2.7.1 nothing Directive

Summary
The nothing directive has no effect. It can be used in a metadirective and other contexts to
indicate explicitly that the intent is no effect on the execution of the OpenMP program.

Syntax
C/C++

The syntax of the nothing directive is as follows:
I #pragma omp nothing new-line
C/C++
Fortran
The syntax of the nothing directive is as follows:
| !$omp nothing
Fortran

Description
The nothing directive has no effect on the execution of the OpenMP program.

Cross References
e Metadirectives, see Section 2.3.4 on page 54.

CHAPTER 2. DIRECTIVES 77

—_

a B~ WD

10
11
12

13

14
15

16

17
18
19

20

78

2.7.2 error Directive
Summary

The error directive instructs the compiler or runtime to display a message and to perform an error
action. If the at clause is specified with the runt ime value then the error directive is a

stand-alone directive.

Syntax
C/C++

The syntax of the error directive is as follows:

I #pragma omp error [clause[[,] clause] ... | new-line
where clause is one of the following:

at (compile | runtime)

severity (fatal | warning)

message (msg-string)

where msg-string is a string of const char * type.

C/C++
Fortran
The syntax of the error directive is as follows:

I '$omp error [clause[[,] clause] ... |

where clause is one of the following:

at (compile | runtime)
severity (fatal | warning)

message (msg-string)

where msg-string is a character string of character(len="*) type
Fortran

OpenMP API — Version 5.1 Preview, November 2019

0 N O O A ODND =

-
N = O ©

- 4 a4
© O NO O~ W

NN
- O

22
23

24
25
26

27
28

29

30
31

Description

The error directive performs an error action. The error action includes the display of an
implementation defined message. The severity clause determines if the error action includes
anything other than the message display.

The at clause determines when the implementation performs the error action. When the at clause
specifies compile, the error action is performed during compilation if the error directive
appears in a declarative context or in an executable context that is reachable at runtime. When the
at clause specifies compile and the error directive appears in an executable context that is not
reachable at runtime, the error action may or may not be performed. When the at clause specifies
runtime, the error action is performed during program execution when a thread encounters the
directive. If the at clause is not specified then the error directive behaves as if the at clause
specifies compile.

The severity clause determines the action that the implementation performs. When the
severity clause specifies warning, the implementation takes no action besides displaying the
message. When the severity clause specifies fatal and the at clause specifies compile
then the message is displayed and compilation of the current compilation unit is aborted. When the
severity clause specifies fatal and the at clause specifies runt ime then the message is
displayed and program execution is aborted. If no severity clause is specified then the error
directive behaves as if the severity clause specifies fatal.

If the message clause is specified then msg-string is included in the implementation defined
message.

Restrictions
Restrictions to the error directive are as follows:
e At most one at clause can appear on the directive.

e At most one severity clause can appear on the directive.

e At most one message clause can appear on the directive.

Cross References
e Stand-Alone Directives, see Section 2.1.3 on page 41.

2.8 parallel Construct

Summary
The parallel construct creates a team of OpenMP threads that execute the region.

CHAPTER 2. DIRECTIVES 79

A~ W

o N oo O

11
12
13
14
15

16

17
18
19

20

21
22
23
24
25
26
27
28
29
30

80

Syntax
C/C++

The syntax of the parallel construct is as follows:

#pragma omp parallel [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:

if (/[parallel :] scalar-expression)

num_threads (infeger-expression)

default (data-sharing-attribute)

private (list)

firstprivate (list)

shared (list)

copyin (list)

reduction ([reduction-modifier , | reduction-identifier : list)
proc_bind (master | close | spread)

allocate ([allocator :] list)

C/C++
Fortran
The syntax of the parallel construct is as follows:

'Somp parallel [clause[[,] clause] ...]
structured-block
!Somp end parallel

where clause is one of the following:

if ([parallel :]scalar-logical-expression)
num_threads (scalar-integer-expression)

default (data-sharing-attribute)

private (list)

firstprivate (list)

shared (list)

copyin (list)

reduction ([reduction-modifier , | reduction-identifier : list)

proc_bind (master | close | spread)

allocate ([allocator :] list)

OpenMP API — Version 5.1 Preview, November 2019

w

-
- O ©W 0N O

N
A WOWN

-
0 N O O

NDNDNDNDDN =
A WODMN-—=+OO0

NN NN
0 N o O

W N
o ©

W w w
W N =

W W ww
N O O A~

Fortran

Binding
The binding thread set for a parallel region is the encountering thread. The encountering thread
becomes the master thread of the new team.

Description

When a thread encounters a parallel construct, a team of threads is created to execute the
parallel region (see Section 2.8.1 on page 84 for more information about how the number of
threads in the team is determined, including the evaluation of the 1 £ and num_threads clauses).
The thread that encountered the parallel construct becomes the master thread of the new team,
with a thread number of zero for the duration of the new parallel region. All threads in the new
team, including the master thread, execute the region. Once the team is created, the number of
threads in the team remains constant for the duration of that parallel region.

The optional proc_bind clause, described in Section 2.8.2 on page 85, specifies the mapping of
OpenMP threads to places within the current place partition, that is, within the places listed in the
place-partition-var ICV for the implicit task of the encountering thread.

Within a parallel region, thread numbers uniquely identify each thread. Thread numbers are
consecutive whole numbers ranging from zero for the master thread up to one less than the number
of threads in the team. A thread may obtain its own thread number by a call to the
omp_get_thread_num library routine.

A set of implicit tasks, equal in number to the number of threads in the team, is generated by the
encountering thread. The structured block of the parallel construct determines the code that
will be executed in each implicit task. Each task is assigned to a different thread in the team and
becomes tied. The task region of the task being executed by the encountering thread is suspended
and each thread in the team executes its implicit task. Each thread can execute a path of statements
that is different from that of the other threads.

The implementation may cause any thread to suspend execution of its implicit task at a task
scheduling point, and to switch to execution of any explicit task generated by any of the threads in
the team, before eventually resuming execution of the implicit task (for more details see

Section 2.13 on page 142).

There is an implied barrier at the end of a parallel region. After the end of a parallel
region, only the master thread of the team resumes execution of the enclosing task region.

If a thread in a team executing a parallel region encounters another parallel directive, it
creates a new team, according to the rules in Section 2.8.1 on page 84, and it becomes the master of
that new team.

If execution of a thread terminates while inside a parallel region, execution of all threads in all
teams terminates. The order of termination of threads is unspecified. All work done by a team prior
to any barrier that the team has passed in the program is guaranteed to be complete. The amount of
work done by each thread after the last barrier that it passed and before it terminates is unspecified.

CHAPTER 2. DIRECTIVES 81

o~N OO0 WON =

11
12

13
14
15

16
17

18
19
20
21
22
23

24
25
26
27
28
29
30

31
32
33
34

35
36
37

82

Execution Model Events
The parallel-begin event occurs in a thread that encounters a parallel construct before any
implicit task is created for the corresponding parallel region.

Upon creation of each implicit task, an implicit-task-begin event occurs in the thread that executes
the implicit task after the implicit task is fully initialized but before the thread begins to execute the
structured block of the parallel construct.

If the parallel region creates a native thread, a native-thread-begin event occurs as the first
event in the context of the new thread prior to the implicit-task-begin event.

Events associated with implicit barriers occur at the end of a parallel region. Section 2.20.3
describes events associated with implicit barriers.

When a thread finishes an implicit task, an implicit-task-end event occurs in the thread after events
associated with implicit barrier synchronization in the implicit task.

The parallel-end event occurs in the thread that encounters the parallel construct after the
thread executes its implicit-task-end event but before the thread resumes execution of the
encountering task.

If a native thread is destroyed at the end of a parallel region, a native thread-end event occurs
in the thread as the last event prior to destruction of the thread.

Tool Callbacks

A thread dispatches a registered ompt_callback_parallel_begin callback for each
occurrence of a parallel-begin event in that thread. The callback occurs in the task that encounters
the parallel construct. This callback has the type signature
ompt_callback_parallel_begin_t. In the dispatched callback,

(flags & ompt_parallel_ team) evaluates to true.

A thread dispatches a registered ompt_callback_implicit_task callback with
ompt_scope_begin as its endpoint argument for each occurrence of an implicit-task-begin
event in that thread. Similarly, a thread dispatches a registered
ompt_callback_implicit_task callback with ompt_scope_end as its endpoint
argument for each occurrence of an implicit-task-end event in that thread. The callbacks occur in
the context of the implicit task and have type signature ompt_callback_implicit_task_t.
In the dispatched callback, (flags & ompt_task_implicit) evaluates to frue.

A thread dispatches a registered ompt_callback_parallel_end callback for each
occurrence of a parallel-end event in that thread. The callback occurs in the task that encounters
the parallel construct. This callback has the type signature
ompt_callback_parallel_end t.

A thread dispatches a registered ompt_callback_thread_begin callback for the
native-thread-begin event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_ thread begin_t.

OpenMP API — Version 5.1 Preview, November 2019

—_

w

o~N o oA

10

11
12

13
14

15
16

17
18
19
20

21
22

23
24
25
26
27
28
29
30

A thread dispatches a registered ompt_callback_thread_end callback for the
native-thread-end event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread_end_t.

Restrictions
Restrictions to the parallel construct are as follows:
e A program that branches into or out of a parallel region is non-conforming.

e A program must not depend on any ordering of the evaluations of the clauses of the parallel
directive, or on any side effects of the evaluations of the clauses.

e At most one if clause can appear on the directive.
e At most one proc_bind clause can appear on the directive.

e At most one num_threads clause can appear on the directive. The num_threads
expression must evaluate to a positive integer value.

C++

e A throw executed inside a parallel region must cause execution to resume within the same
parallel region, and the same thread that threw the exception must catch it.

C++

Cross References
e OpenMP execution model, see Section 1.3 on page 21.

e num_threads clause, see Section 2.8 on page 79.
e proc_bind clause, see Section 2.8.2 on page 85.
e allocate clause, see Section 2.14.4 on page 164.
e if clause, see Section 2.18 on page 224.

e default, shared, private, firstprivate, and reduction clauses, see
Section 2.22.4 on page 284.

e copyin clause, see Section 2.22.6 on page 313.

e omp_get_thread_num routine, see Section 3.2.4 on page 341.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 462.

e ompt_callback_thread_end_t, see Section 4.5.2.2 on page 462.

e ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 463.

e ompt_callback parallel_end_t, see Section 4.5.2.4 on page 465.

e ompt_callback implicit_task_t, see Section 4.5.2.11 on page 473.

CHAPTER 2. DIRECTIVES 83

- OOV oo~N OO0~ N =

—_

—_
w N

—_
[e2Né -8

W W W W NN NN DD N DD DD NN ==
W N = O ©W 00 N O o b~ WO N =+ O ©Oo 0

2.8.1 Determining the Number of Threads for a parallel
Region

When execution encounters a parallel directive, the value of the i £ clause or num_threads
clause (if any) on the directive, the current parallel context, and the values of the nthreads-var,
dyn-var, thread-limit-var, and max-active-levels-var ICVs are used to determine the number of
threads to use in the region.

Using a variable in an i £ or num_threads clause expression of a parallel construct causes
an implicit reference to the variable in all enclosing constructs. The i £ clause expression and the
num_threads clause expression are evaluated in the context outside of the parallel construct,
and no ordering of those evaluations is specified. In what order or how many times any side effects
of the evaluation of the num_threads or if clause expressions occur is also unspecified.

When a thread encounters a parallel construct, the number of threads is determined according
to Algorithm 2.1.

Algorithm 2.1

let ThreadsBusy be the number of OpenMP threads currently executing in this contention group;
let ActiveParRegions be the number of enclosing active parallel regions;

if an if clause exists

then let [fClauseValue be the value of the if clause expression;

else let [fClauseValue = true;

if a num_threads clause exists

then let ThreadsRequested be the value of the num_threads clause expression;
else let ThreadsRequested = value of the first element of nthreads-var;

let ThreadsAvailable = (thread-limit-var - ThreadsBusy + 1);

if (IfClauseValue = false)

then number of threads = 1;

else if (ActiveParRegions = max-active-levels-var)

then number of threads = 1;

else if (dyn-var = true) and (ThreadsRequested < ThreadsAvailable)

then 1 < number of threads < ThreadsRequested,

else if (dyn-var = true) and (ThreadsRequested > ThreadsAvailable)

then 1 < number of threads < ThreadsAvailable;

OpenMP API — Version 5.1 Preview, November 2019

o0 A W DN

10
11

12
13
14

15
16
17

18

19
20
21
22
23
24
25

26
27
28

29
30
31
32
33

else if (dyn-var = false) and (ThreadsRequested < ThreadsAvailable)
then number of threads = ThreadsRequested;
else if (dyn-var = false) and (ThreadsRequested > ThreadsAvailable)

then behavior is implementation defined;

v v
Note — Since the initial value of the dyn-var ICV is implementation defined, programs that depend
on a specific number of threads for correct execution should explicitly disable dynamic adjustment

of the number of threads.
A A

Cross References
e nthreads-var, dyn-var, thread-limit-var, and max-active-levels-var ICVs, see Section 2.6 on
page 66.

e parallel construct, see Section 2.8 on page 79.
e num_threads clause, see Section 2.8 on page 79.

e if clause, see Section 2.18 on page 224.

2.8.2 Controlling OpenMP Thread Affinity

When a thread encounters a parallel directive without a proc_bind clause, the bind-var ICV
is used to determine the policy for assigning OpenMP threads to places within the current place
partition, that is, within the places listed in the place-partition-var ICV for the implicit task of the
encountering thread. If the parallel directive has a proc_bind clause then the binding policy
specified by the proc_bind clause overrides the policy specified by the first element of the
bind-var ICV. Once a thread in the team is assigned to a place, the OpenMP implementation should
not move it to another place.

The master thread affinity policy instructs the execution environment to assign every thread in the
team to the same place as the master thread. The place partition is not changed by this policy, and
each implicit task inherits the place-partition-var ICV of the parent implicit task.

The close thread affinity policy instructs the execution environment to assign the threads in the
team to places close to the place of the parent thread. The place partition is not changed by this
policy, and each implicit task inherits the place-partition-var ICV of the parent implicit task. If T’
is the number of threads in the team, and P is the number of places in the parent’s place partition,
then the assignment of threads in the team to places is as follows:

CHAPTER 2. DIRECTIVES 85

oNOO O WN =

©

[Gy
OO~ WN—=O

NMDMNON 2 =
N = O © 0o N

NDNDMNDNDDNDDNDDN
© o NOoO O~ W

w w
- O

w
\V]

WWwWwwowowow
© 0N O~ W

86

e T' < P: The master thread executes on the place of the parent thread. The thread with the next
smallest thread number executes on the next place in the place partition, and so on, with wrap
around with respect to the place partition of the master thread.

e T > P: Each place p will contain S), threads with consecutive thread numbers where
LT/P] < S, < [T/P]. The first Sy threads (including the master thread) are assigned to the
place of the parent thread. The next S; threads are assigned to the next place in the place
partition, and so on, with wrap around with respect to the place partition of the master thread.
When P does not divide T" evenly, the exact number of threads in a particular place is
implementation defined.

The purpose of the spread thread affinity policy is to create a sparse distribution for a team of T’
threads among the P places of the parent’s place partition. A sparse distribution is achieved by first
subdividing the parent partition into 7" subpartitions if 7" < P, or P subpartitions if 7" > P. Then
one thread (1" < P) or a set of threads (17" > P) is assigned to each subpartition. The
place-partition-var ICV of each implicit task is set to its subpartition. The subpartitioning is not
only a mechanism for achieving a sparse distribution, it also defines a subset of places for a thread
to use when creating a nested parallel region. The assignment of threads to places is as follows:

e T' < P: The parent thread’s place partition is split into 7" subpartitions, where each subpartition
contains | P/T'| or [P/T] consecutive places. A single thread is assigned to each subpartition.
The master thread executes on the place of the parent thread and is assigned to the subpartition
that includes that place. The thread with the next smallest thread number is assigned to the first
place in the next subpartition, and so on, with wrap around with respect to the original place
partition of the master thread.

e T > P: The parent thread’s place partition is split into P subpartitions, each consisting of a
single place. Each subpartition is assigned S, threads with consecutive thread numbers, where
LT/P] < S, < [T/P]. The first Sy threads (including the master thread) are assigned to the
subpartition containing the place of the parent thread. The next S; threads are assigned to the
next subpartition, and so on, with wrap around with respect to the original place partition of the
master thread. When P does not divide 7" evenly, the exact number of threads in a particular
subpartition is implementation defined.

The determination of whether the affinity request can be fulfilled is implementation defined. If the
affinity request cannot be fulfilled, then the affinity of threads in the team is implementation defined.

v v
Note — Wrap around is needed if the end of a place partition is reached before all thread
assignments are done. For example, wrap around may be needed in the case of close and T' < P,
if the master thread is assigned to a place other than the first place in the place partition. In this
case, thread 1 is assigned to the place after the place of the master place, thread 2 is assigned to the
place after that, and so on. The end of the place partition may be reached before all threads are

assigned. In this case, assignment of threads is resumed with the first place in the place partition.
A A

OpenMP API — Version 5.1 Preview, November 2019

10
11
12
13
14
15
16
17

18

19

20
21
22

23

24
25
26
27
28
29

2.9 teams Construct

Summary

The teams construct creates a league of initial teams and the initial thread in each team executes

the region.

Syntax
C/C++

The syntax of the teams construct is as follows:

#fpragma omp teams [clause[[, | clause] ... | new-line
structured-block

where clause is one of the following:

num_teams ([lower-bound : 1 upper-bound)

thread_ limit (integer-expression)

default (data-sharing-attribute)

private (list)

firstprivate (list)

shared (/ist)

reduction ([default ,] reduction-identifier : list)

allocate ([allocator :] list)

and where lower-bound and upper-bound are scalar integer expressions.

C/C++
Fortran
The syntax of the teams construct is as follows:

!Somp teams [clause[[,] clause] ... |
structured-block
!Somp end teams

where clause is one of the following:

num_teams ([lower-bound : 1 upper-bound)
thread_ limit (scalar-integer-expression)
default (data-sharing-attribute)
private (list)

firstprivate (list)

shared (list)

CHAPTER 2. DIRECTIVES

87

N

o

oo BN e}

11
12
13

14
15
16

17
18

19
20
21
22
23
24

25
26
27

28
29

30
31
32
33
34
35

88

reduction ([default |, | reduction-identifier : list)

allocate ([allocator :] list)

and where lower-bound and upper-bound are scalar integer expressions.
Fortran

Binding

The binding thread set for a teams region is the encountering thread.

Description
When a thread encounters a teams construct, a league of teams is created. Each team is an initial
team, and the initial thread in each team executes the teams region.

If the num_teams clause is present, lower-bound is the specified lower bound and upper-bound is
the specified upper bound on the number of teams requested. If a lower bound is not specified, the
lower bound is set to the specified upper bound. The number of teams created is implementation
defined, but it will be greater than or equal to the lower bound and less than or equal to the upper
bound.

If the num_teams clause is not specified and the value of the nteams-var ICV is greater than zero,
the number of teams created is less or equal to the value of the nteams-var ICV. Otherwise, the
number of teams created is implementation defined, but it will be greater than or equal to 1.

A thread may obtain the number of teams created by the construct with a call to the
omp_get_num_teams routine.

As described in Section 2.6.4.1, the teams construct limits the number of threads that may
participate in a contention group initiated by each team by setting the value of the thread-limit-var
ICV for the initial task to an implementation defined value greater than zero. If the
thread_1limit clause is specified, the number of threads will be less than or equal to the value
specified in the clause. Otherwise, if the teams-thread-limit-var ICV is greater than zero, the
number of threads will be less than or equal to that value.

On a combined or composite construct that includes target and teams constructs, the
expressions in num_teams and thread_1limit clauses are evaluated on the host device on
entry to the target construct.

Once the teams are created, the number of initial teams remains constant for the duration of the
teams region.

Within a teams region, initial tteam numbers uniquely identify each initial team. Initial team
numbers are consecutive whole numbers ranging from zero to one less than the number of initial
teams. A thread may obtain its own initial team number by a call to the omp_get_team_num
library routine. The policy for assigning the initial threads to places is implementation defined. The
teams construct sets the place-partition-var and default-device-var ICVs for each initial thread to
an implementation-defined value.

OpenMP API - Version 5.1 Preview, November 2019

N —

O W ONOO O~ W®

—_
—_

— A
w N

RGN
o~

16
17
18
19
20
21

22
23
24
25
26
27
28

29
30
31

32
33
34

35
36
37

After the teams have completed execution of the teams region, the encountering task resumes
execution of the enclosing task region.

Execution Model Events
The teams-begin event occurs in a thread that encounters a teams construct before any initial task
is created for the corresponding teams region.

Upon creation of each initial task, an initial-task-begin event occurs in the thread that executes the
initial task after the initial task is fully initialized but before the thread begins to execute the
structured block of the teams construct.

If the teams region creates a native thread, a native-thread-begin event occurs as the first event in
the context of the new thread prior to the initial-task-begin event.

When a thread finishes an initial task, an initial-task-end event occurs in the thread.

The teams-end event occurs in the thread that encounters the teams construct after the thread
executes its initial-task-end event but before it resumes execution of the encountering task.

If a native thread is destroyed at the end of a teams region, a native-thread-end event occurs in the
thread as the last event prior to destruction of the thread.

Tool Callbacks

A thread dispatches a registered ompt_callback_parallel_begin callback for each
occurrence of a teams-begin event in that thread. The callback occurs in the task that encounters the
teams construct. This callback has the type signature
ompt_callback_parallel_begin_t. In the dispatched callback,

(flags & ompt_parallel_league) evaluates to true.

A thread dispatches a registered ompt_callback_implicit_task callback with
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task
callback with ompt_scope_end as its endpoint argument for each occurrence of an
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have
type signature ompt_callback_implicit_task_t. In the dispatched callback,

(flags & ompt_task_initial) evaluates to true.

A thread dispatches a registered ompt_callback_parallel_end callback for each
occurrence of a reams-end event in that thread. The callback occurs in the task that encounters the
teams construct. This callback has the type signature ompt_callback_parallel_end_t.

A thread dispatches a registered ompt__callback_thread begin callback for the
native-thread-begin event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread _begin_t.

A thread dispatches a registered ompt_callback_thread_end callback for the
native-thread-end event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback_thread end t.

CHAPTER 2. DIRECTIVES 89

o NOoO o~ W N =

©

—_ a4
w NN = O

—_ a4
NOoO O bh

18
19

20
21
22
23

24
25

26
27
28
29
30
31
32

920

Restrictions
Restrictions to the teams construct are as follows:

A program that branches into or out of a teams region is non-conforming.

A program must not depend on any ordering of the evaluations of the clauses of the teams
directive, or on any side effects of the evaluation of the clauses.

At most one thread_limit clause can appear on the directive. The thread_limit
expression must evaluate to a positive integer value.

At most one num_teams clause can appear on the directive. The lower-bound and upper-bound
specified in the num_teams clause must evaluate to positive integer values.

A teams region must be strictly nested within the implicit parallel region that surrounds the
whole OpenMP program or a target region. If a teams region is nested inside a target
region, the corresponding target construct must contain no statements, declarations or
directives outside of the corresponding teams construct.

distribute, distribute simd, distribute parallel worksharing-loop, distribute parallel
worksharing-loop SIMD, parallel regions, including any parallel regions arising from
combined constructs, omp_get_num_teams () regions, and omp_get_team_num ()
regions are the only OpenMP regions that may be strictly nested inside the teams region.

Cross References

parallel construct, see Section 2.8 on page 79.

distribute construct, see Section 2.12.4.1 on page 125.
distribute simd construct, see Section 2.12.4.2 on page 129.
allocate clause, see Section 2.14.4 on page 164.

target construct, see Section 2.15.5 on page 174.

default, shared, private, firstprivate, and reduction clauses, see
Section 2.22.4 on page 284.

omp_get_num_teams routine, see Section 3.2.38 on page 372.
omp_get_team_num routine, see Section 3.2.39 on page 372.
ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 462.
ompt_callback_thread end t, see Section 4.5.2.2 on page 462.
ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 463.
ompt_callback_parallel_end_t, see Section 4.5.2.4 on page 465.
ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 473.

OpenMP API — Version 5.1 Preview, November 2019

10
11
12

13

14
15
16

17

18
19

20
21
22
23
24

25
26
27

2.10 scope Construct

Summary
The scope construct defines a structured block that is executed by all threads in a team but where
additional OpenMP operations can be specified.

Syntax
C/C++

The syntax of the scope construct is as follows:
#fpragma omp scope [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:

private (list)
reduction ([reduction-modifier , | reduction-identifier : list)

nowait

C/C++
Fortran
The syntax of the scope construct is as follows:

'Somp scope [clause[[,] clause] ... |
structured-block
!Somp end scope [nowait]

where clause is one of the following:
private (list)
reduction ([reduction-modifier , | reduction-identifier : list)
Fortran
Binding
The binding thread set for a scope region is the current team. A scope region binds to the
innermost enclosing parallel region. Only the threads of the team that executes the binding parallel

region participate in the execution of the structured block and the implied barrier of the scope
region if the barrier is not eliminated by a nowait clause.

Description

All encountering threads will execute the structured block associated with the scope construct.
There is an implicit barrier at the end of a scope construct unless a nowait clause is specified.

CHAPTER 2. DIRECTIVES 91

a s~ ON =

o N o

11
12
13

14
15

16
17

18
19

20

21
22

23
24

25
26
27

92

Execution Model Events
The scope-begin event occurs after an implicit task encounters a scope construct but
before the task starts to execute the structured block of the scope region.

The scope-end event occurs after an implicit task finishes execution of a scope region but before it
resumes execution of the enclosing region.

Tool Callbacks

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_scope as its wstype argument for each occurrence of a
scope-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_scope as its wstype argument for each occurrence of a scope-end event in that
thread. The callbacks occur in the context of the implicit task. The callbacks have type signature
ompt_callback_work_t.

Restrictions
Restrictions to the scope construct are as follows:

e Each scope region must be encountered by all threads in a team or by none at all, unless
cancellation has been requested for the innermost enclosing parallel region.

e The sequence of worksharing regions, scope regions and barrier regions encountered must
be the same for every thread in a team.

e At most one nowait clause can appear on a scope construct.

C++

o A throw executed inside a scope region must cause execution to resume within the same
scope region, and the same thread that threw the exception must catch it.

C++
Cross References
e reduction clause, see Section 2.22.4 on page 284.
e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_work_scope, see Section 4.4.4.15 on page 449.

e ompt_callback_work_t, see Section 4.5.2.5 on page 466.

OpenMP API — Version 5.1 Preview, November 2019

—_

- O VWO NOO OO wWN

—_

— A
w N

14
15

16
17

18
19

20

21
22
23
24

25

26

27
28
29
30
31
32
33
34

2.11 Worksharing Constructs

A worksharing construct distributes the execution of the corresponding region among the members
of the team that encounters it. Threads execute portions of the region in the context of the implicit
tasks that each one is executing. If the team consists of only one thread then the worksharing region
is not executed in parallel.

A worksharing region has no barrier on entry; however, an implied barrier exists at the end of the
worksharing region, unless a nowait clause is specified. If a nowait clause is present, an
implementation may omit the barrier at the end of the worksharing region. In this case, threads that
finish early may proceed straight to the instructions that follow the worksharing region without
waiting for the other members of the team to finish the worksharing region, and without performing
a flush operation.

The OpenMP API defines the worksharing constructs that are described in this section as well as
the worksharing-loop construct, which is described in Section 2.12.2 on page 106.

Restrictions
The following restrictions apply to worksharing constructs:

e Each worksharing region must be encountered by all threads in a team or by none at all, unless
cancellation has been requested for the innermost enclosing parallel region.

o The sequence of worksharing regions, scope regions and barrier regions encountered must
be the same for every thread in a team.

2.11.1 sections Construct

Summary

The sections construct is a non-iterative worksharing construct that contains a set of structured
blocks that are to be distributed among and executed by the threads in a team. Each structured
block is executed once by one of the threads in the team in the context of its implicit task.

Syntax
C/C++

The syntax of the sections construct is as follows:

#pragma omp sections [clause[[,] clause] ... | new-line
{
[#pragma omp section new-line]
structured-block-sequence
[#pragma omp section new-line
structured-block-sequence|

CHAPTER 2. DIRECTIVES 93

—_

N o o0 A WD

10
11
12
13
14
15

16

17
18
19
20
21

22
23
24
25
26

94

where clause is one of the following:

private (list)

firstprivate (list)

lastprivate ([lastprivate-modifier : | list)

reduction ([reduction-modifier , | reduction-identifier : list)
allocate ([allocator :] list)

nowait

C/C++
Fortran
The syntax of the sections construct is as follows:
'Somp sections [clause[[,] clause] ... |
[!$omp section]
structured-block-sequence
[!'$omp section
structured-block-sequence]

!Somp end sections [nowait]

where clause is one of the following:

private (list)

firstprivate (list)

lastprivate ([lastprivate-modifier: | list)

reduction ([reduction-modifier , | reduction-identifier : list)

allocate ([allocator :] list)

Fortran

Binding

The binding thread set for a sections region is the current team. A sections region binds to
the innermost enclosing parallel region. Only the threads of the team that executes the binding
parallel region participate in the execution of the structured block sequences and the implied
barrier of the sections region if the barrier is not eliminated by a nowait clause.

OpenMP API — Version 5.1 Preview, November 2019

No ok~ wNn =

10

11
12

13
14

15
16
17
18
19
20
21
22

23
24
25

26
27

28
29
30

31
32

33
34

Description
Each structured block sequence in the sections construct is preceded by a section directive
except possibly the first sequence, for which a preceding section directive is optional.

The method of scheduling the structured block sequences among the threads in the team is
implementation defined.

There is an implicit barrier at the end of a sections construct unless a nowait clause is
specified.

Execution Model Events
The section-begin event occurs after an implicit task encounters a sections construct but before
the task executes any structured block sequences of the sections region.

The sections-end event occurs after an implicit task finishes execution of a sections region but
before it resumes execution of the enclosing context.

The section-begin event occurs before an implicit task starts to execute a structured block sequence
in the sections construct for each of those structured block sequences that the task executes.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_sections as its wstype argument for each
occurrence of a section-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_sections as its wstype argument for each occurrence of a sections-end event in
that thread. The callbacks occur in the context of the implicit task. The callbacks have type
signature ompt_callback_work_t.

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a
section-begin event in that thread. The callback occurs in the context of the implicit task. The
callback has type signature ompt_callback_dispatch_t.

Restrictions
Restrictions to the sections construct are as follows:

e Orphaned section directives are prohibited. That is, the section directives must appear
within the sections construct and must not be encountered elsewhere in the sections
region.

e The code enclosed in a sections construct must be a structured block sequence.

e Only a single nowait clause can appear on a sections directive.

C++

o A throw executed inside a sections region must cause execution to resume within the same
section of the sections region, and the same thread that threw the exception must catch it.

C++

CHAPTER 2. DIRECTIVES 95

0o N o 0o AW N=

10
11
12
13
14

15

16

17
18

19

20
21
22
23
24

25

26
27
28

29

96

Cross References
e allocate clause, see Section 2.14.4 on page 164.

e private, firstprivate, lastprivate, and reduction clauses, see Section 2.22.4 on
page 284.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_work_sections, see Section 4.4.4.15 on page 449.

e ompt_callback_work_t, see Section 4.5.2.5 on page 466.

e ompt_callback_dispatch_t, see Section 4.5.2.6 on page 467.

2.11.2 single Construct

Summary

The single construct specifies that the associated structured block is executed by only one of the
threads in the team (not necessarily the master thread), in the context of its implicit task. The other
threads in the team, which do not execute the block, wait at an implicit barrier at the end of the
single construct unless a nowait clause is specified.

Syntax
C/C++

The syntax of the single construct is as follows:
#pragma omp single [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:

private (list)
firstprivate (list)
copyprivate (list)

allocate ([allocator :] list)

nowait

C/C++

Fortran
The syntax of the single construct is as follows:

'$Somp single [clause[[, | clause] ... |
structured-block
'Somp end single [end_clause/ [,] end_clause] ... |

where clause is one of the following:

OpenMP API — Version 5.1 Preview, November 2019

w N

— O © 0 N

—_ -

12
13
14
15
16

17
18
19

20
21

22
23
24
25
26
27
28
29

private (list)
firstprivate (list)

allocate ([allocator :] list)

and end_clause is one of the following:

copyprivate (list)
nowait

Fortran

Binding

The binding thread set for a single region is the current team. A single region binds to the
innermost enclosing parallel region. Only the threads of the team that executes the binding
parallel region participate in the execution of the structured block and the implied barrier of the
single region if the barrier is not eliminated by a nowait clause.

Description

Only one of the encountering threads will execute the structured block associated with the single
construct. The method of choosing a thread to execute the structured block each time the team
encounters the construct is implementation defined. There is an implicit barrier at the end of the
single construct unless a nowait clause is specified.

Execution Model Events
The single-begin event occurs after an implicit task encounters a single construct but
before the task starts to execute the structured block of the single region.

The single-end event occurs after an implicit task finishes execution of a single region but before
it resumes execution of the enclosing region.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument for each occurrence of a single-begin event in that thread. Similarly, a
thread dispatches a registered ompt_callback_work callback with ompt_scope_begin as
its endpoint argument for each occurrence of a single-end event in that thread. For each of these
callbacks, the wstype argument is ompt_work_single_executor if the thread executes the
structured block associated with the single region; otherwise, the wstype argument is
ompt_work_single_other. The callback has type signature ompt_callback_work_t.

CHAPTER 2. DIRECTIVES 97

A W N =

(23N,

15

16
17
18
19

20
21

22
23
24

25
26
27
28
29

98

Restrictions
Restrictions to the single construct are as follows:

e The copyprivate clause must not be used with the nowait clause.

e At most one nowait clause can appear on a single construct.

C++

o A throw executed inside a single region must cause execution to resume within the same
single region, and the same thread that threw the exception must catch it.

C++

Cross References
e allocate clause, see Section 2.14.4 on page 164.

e private and firstprivate clauses, see Section 2.22.4 on page 284.
e copyprivate clause, see Section 2.22.6.2 on page 315.
e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.

e ompt_work_single_executor and ompt_work_single_other, see Section 4.4.4.15
on page 449.

e ompt_callback_work_t, Section 4.5.2.5 on page 466.
Fortran

2.11.3 workshare Construct

Summary

The workshare construct divides the execution of the enclosed structured block into separate
units of work, and causes the threads of the team to share the work such that each unit is executed
only once by one thread, in the context of its implicit task.

Syntax

The syntax of the workshare construct is as follows:

!Somp workshare
structured-block
!$Somp end workshare [nowait]

Binding

The binding thread set for a workshare region is the current team. A workshare region binds
to the innermost enclosing parallel region. Only the threads of the team that executes the
binding parallel region participate in the execution of the units of work and the implied barrier
of the workshare region if the barrier is not eliminated by a nowait clause.

OpenMP API — Version 5.1 Preview, November 2019

- O ©O© 00 ~NO O H> W N =

—_ -

-4 4 a4
a s~ WD

— - -
O 0o ~ »

NN NN
N = O

NN
A W

N
(&)}

N NN
oo N Ie)]

W N
o ©

W ww
W N =

w
~

Fortran (cont.)

Description
There is an implicit barrier at the end of a workshare construct unless a nowait clause is
specified.

An implementation of the workshare construct must insert any synchronization that is required
to maintain standard Fortran semantics. For example, the effects of one statement within the
structured block must appear to occur before the execution of succeeding statements, and the
evaluation of the right hand side of an assignment must appear to complete prior to the effects of
assigning to the left hand side.

The statements in the workshare construct are divided into units of work as follows:

e For array expressions within each statement, including transformational array intrinsic functions
that compute scalar values from arrays:

— Evaluation of each element of the array expression, including any references to elemental
functions, is a unit of work.

— Evaluation of transformational array intrinsic functions may be freely subdivided into any
number of units of work.

e For an array assignment statement, the assignment of each element is a unit of work.
e For a scalar assignment statement, the assignment operation is a unit of work.

e For a WHERE statement or construct, the evaluation of the mask expression and the masked
assignments are each a unit of work.

e For a FORALL statement or construct, the evaluation of the mask expression, expressions
occurring in the specification of the iteration space, and the masked assignments are each a unit
of work.

e For an atomic construct, the atomic operation on the storage location designated as x is a unit
of work.

e For a critical construct, the construct is a single unit of work.

e For a parallel construct, the construct is a unit of work with respect to the workshare
construct. The statements contained in the parallel construct are executed by a new thread
team.

o If none of the rules above apply to a portion of a statement in the structured block, then that
portion is a unit of work.

The transformational array intrinsic functions are MATMUL, DOT_PRODUCT, SUM, PRODUCT,
MAXVAL, MINVAL, COUNT, ANY, ALL, SPREAD, PACK, UNPACK, RESHAPE, TRANSPOSE,
EOSHIFT, CSHIFT, MINLOC, and MAXLOC.

It is unspecified how the units of work are assigned to the threads executing a workshare region.

CHAPTER 2. DIRECTIVES 99

No o~ W=

10

11
12

13
14
15
16
17
18
19
20

21
22

23
24

25
26
27

28
29
30
31
32
33

100

Fortran (cont.)

If an array expression in the block references the value, association status, or allocation status of
private variables, the value of the expression is undefined, unless the same value would be
computed by every thread.

If an array assignment, a scalar assignment, a masked array assignment, or a FORALL assignment
assigns to a private variable in the block, the result is unspecified.

The workshare directive causes the sharing of work to occur only in the workshare construct,
and not in the remainder of the workshare region.

Execution Model Events
The workshare-begin event occurs after an implicit task encounters a workshare construct but
before the task starts to execute the structured block of the workshare region.

The workshare-end event occurs after an implicit task finishes execution of a workshare region
but before it resumes execution of the enclosing context.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_workshare as its wstype argument for each
occurrence of a workshare-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_workshare as its wstype argument for each occurrence of a workshare-end event
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type
signature ompt_callback_work_t.

Restrictions
The following restrictions apply to the workshare construct:

e The only OpenMP constructs that may be closely nested inside a workshare construct are the
atomic, critical, and parallel constructs.

e Base language statements that are encountered inside a workshare construct but that are not
enclosed within a parallel construct that is nested inside the workshare construct must
consist of only the following:

array assi gnments

scalar assignments

FORALL statements

— FORALL constructs
— WHERE statements

— WHERE constructs

OpenMP API — Version 5.1 Preview, November 2019

o0, WN =

o © o0 N

12
13

14

15

16
17

All array assignments, scalar assignments, and masked array assignments that are encountered
inside a workshare construct but are not nested inside a parallel construct that is nested
inside the workshare construct must be intrinsic assignments.

The construct must not contain any user defined function calls unless the function is
ELEMENTAL or the function call is contained inside a parallel construct that is nested inside
the workshare construct.

Cross References

parallel construct, see Section 2.8 on page 79.

critical construct, see Section 2.20.1 on page 226.

atomic construct, see Section 2.20.7 on page 237.

ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
ompt_work_workshare, see Section 4.4.4.15 on page 449.

ompt_callback_work_t, see Section 4.5.2.5 on page 466.
Fortran

2.12 Loop-Related Directives

2.12.1 Canonical Loop Form

C/C++

The loops associated with a loop-associated directive have canonical loop form if they conform to
the following:

for (init-expr; test-expr; incr-expr) structured-block

init-expr One of the following:
var = b
integer-type var = Ib
random-access-iterator-type var = lb
pointer-type var = lb

test-expr One of the following:
var relational-op b

b relational-op var

incr-expr One of the following:

continued on next page

CHAPTER 2. DIRECTIVES 101

C/C++ (cont.)

continued from previous page

++var

var++

- -var

var - -

var += incr

var - = incr

var = var + incr
var = incr + var
var = var - incr

var One of the following:
A variable of a signed or unsigned integer type.
For C++, a variable of a random access iterator type.
For C, a variable of a pointer type.
This variable must not be modified during the execution of the for-loop other
than in incr-expr.
relational-op ~ One of the following:

Ib and b Expressions of a type compatible with the type of var that are loop invariant
with respect to the outermost associated loop or are one of the following (where
var-outer, al, and a2 have a type compatible with the type of var, var-outer
is var from an outer associated loop, and al and a2 are loop invariant integer
expressions with respect to the outermost loop):
var-outer
var-outer + a2
a2 + var-outer
var-outer - a2
a2 - var-outer
al * var-outer
al * var-outer + a2
a2 + al * var-outer
al * var-outer - a2
a2 - al * var-outer

continued on next page

102 OpenMP API — Version 5.1 Preview, November 2019

a »rOON =

continued from previous page

incr

var-outer * al

var-outer * al + a2
a2 + var-outer * al
var-outer * al - a2
a2 - var-outer * al

An integer expression that is loop invariant with respect to the outermost

associated loop.

C/C++
Fortran

The loops associated with a loop-associated directive have canonical loop form if each of them is a
do-loop that is a do-construct or an inner-shared-do-construct as defined by the Fortran standard. If
an end do directive follows a do-construct in which several loop statements share a DO termination

statement, then the directive can only be specified for the outermost of these DO statements.

The do-stmt for any do-loop must conform to the following:

DO [label | var=1b , b [, incr]

var

Ib and b

A variable of integer type.

Expressions of a type compatible with the type of var that are loop invariant

with respect to the outermost associated loop or are one of the following (where

var-outer, al, and a2 have a type compatible with the type of var, var-outer

is var from an outer associated loop, and al and a2 are loop invariant integer

expressions with respect to the outermost loop):
var-outer

var-outer + a2

a2 + var-outer
var-outer - a2

a2 - var-outer

al * var-outer

al * var-outer + a2
a2 + al * var-outer
al * var-outer - a2
a2 - al * var-outer
var-outer * al
var-outer * al + a2

continued on next page

CHAPTER 2.

DIRECTIVES

103

0 NOoO O~ WON =

11

12
13

14
15
16

17

18
19
20
21

104

continued from previous page

a2 + var-outer * al
var-outer * al - a2
a2 - var-outer * al

incr An integer expression that is loop invariant with respect to the outermost
associated loop. If it is not explicitly specified, its value is assumed to be 1.

Fortran

The canonical form allows the iteration count of all associated loops to be computed before
executing the outermost loop. The incr and range-expr are evaluated before executing the
loop-associated construct. If b or [b is loop invariant with respect to the outermost associated loop,
it is evaluated before executing the loop-associated construct. If b or Ib is not loop invariant with
respect to the outermost associated loop, al and/or a2 are evaluated before executing the
loop-associated construct. The computation is performed for each loop in an integer type. This type
is derived from the type of var as follows:

e If var is of an integer type, then the type is the type of var.

C++

e If var is of a random access iterator type, then the type is the type that would be used by
std: :distance applied to variables of the type of var.

C++
C
e If var is of a pointer type, then the type is ptrdiff t.

C

The behavior is unspecified if any intermediate result required to compute the iteration count
cannot be represented in the type determined above.

There is no implied synchronization during the evaluation of the Ib, b, or incr expressions. It is
unspecified whether, in what order, or how many times any side effects within the b, b, or incr
expressions occur.

v v
Note — Random access iterators are required to support random access to elements in constant
time. Other iterators are precluded by the restrictions since they can take linear time or offer limited

functionality. The use of tasks to parallelize those cases is therefore advisable.
A A

OpenMP API — Version 5.1 Preview, November 2019

oNOOOT A~ W=

11
12
13
14

15
16
17
18

19
20

21
22

23
24

25
26

27

C++

A range-based for loop that is valid in the base language and has a begin value that satisfies the
random access iterator requirement has canonical loop form. Range-based for loops are of the
following form:

for (range-decl: range-expr) structured-block

The begin-expr and end-expr expressions are derived from range-expr by the base language and
assigned to variables to which this specification refers as __begin and __end respectively. Both
__beginand __end are privatized. For the purpose of the rest of the standard __begin is the
iteration variable of the range-for loop.

C++

Restrictions
The following restrictions also apply:

C/C++

o If test-expr is of the form var relational-op b and relational-op is < or <= then incr-expr must
cause var to increase on each iteration of the loop. If test-expr is of the form var relational-op b
and relational-op is > or >= then incr-expr must cause var to decrease on each iteration of the
loop.

o If test-expr is of the form b relational-op var and relational-op is < or <= then incr-expr must
cause var to decrease on each iteration of the loop. If test-expr is of the form b relational-op var
and relational-op is > or >= then incr-expr must cause var to increase on each iteration of the
loop.

o If test-expr is of the form b != var or var != b then incr-expr must cause var either to increase on
each iteration of the loop or to decrease on each iteration of the loop.

o If relational-op is != and incr-expr is of the form that has incr then incr must be a constant
expression and evaluate to -1 or 1.

C/C++
C++

e In the simd construct the only random access iterator types that are allowed for var are pointer
types.

o The range-expr of a range-for loop must be loop invariant with respect to the outermost
associated loop, and must not reference iteration variables of any associated loops.

o The loops associated with an ordered clause with a parameter may not include range-for loops.

C++

CHAPTER 2. DIRECTIVES 105

© oo NOO OO W N =

11
12
13

14

15
16
17
18
19

20

21

22
23

24

25
26
27
28
29
30
31
32

106

e The b, Ib, incr, and range-expr expressions may not reference any var or member of the
range-decl of any enclosed associated loop.

e For any associated loop where the b or [b expression is not loop invariant with respect to the
outermost loop, the var-outer that appears in the expression may not have a random access
iterator type.

e For any associated loop where b or [b is not loop invariant with respect to the outermost loop, the
expression b — [b will have the form ¢ * var-outer + d, where c and d are loop invariant integer
expressions. Let incr-outer be the incr expression of the outer loop referred to by var-outer. The
value of ¢ * incr-outer mod incr must be 0.

Cross References
e simd construct, see Section 2.12.3.1 on page 115.

e lastprivate clause, see Section 2.22.4.5 on page 290.

e linear clause, see Section 2.22.4.6 on page 292.

2.12.2 Worksharing-Loop Construct

Summary

The worksharing-loop construct specifies that the iterations of one or more associated loops will be
executed in parallel by threads in the team in the context of their implicit tasks. The iterations are
distributed across threads that already exist in the team that is executing the parallel region to
which the worksharing-loop region binds.

Syntax
C/C++

The syntax of the worksharing-loop construct is as follows:

#pragma omp for [clause[[,] clause] ... | new-line
for-loops

where clause is one of the following:

private (list)

firstprivate (list)

lastprivate ([lastprivate-modifier : | list)

linear (list[: linear-step])

reduction ([reduction-modifier, Jreduction-identifier : list)
schedule ([modifier [, modifier]: Jkind[, chunk_size])
collapse (n)

ordered/ (n)]

OpenMP API — Version 5.1 Preview, November 2019

w N

© o N O

11
12
13
14
15
16
17
18
19
20

21

22
23

24
25
26
27
28

nowait
allocate ([allocator :]list)
order (concurrent)

The for directive places restrictions on the structure of all associated for-loops. Specifically, all
associated for-loops must have canonical loop form (see Section 2.12.1 on page 101).

C/C++

Fortran
The syntax of the worksharing-loop construct is as follows:

'$Somp do [clause[[,] clause] ... |
do-loops
[!$omp end do [nowait]]

where clause is one of the following:

private (list)

firstprivate (list)

lastprivate ([lastprivate-modifier: | list)

linear (list[: linear-step])

reduction ([reduction-modifier, [reduction-identifier : list)
schedule ([/modifier [, modifier]: Jkind[, chunk_size])
collapse (n)

ordered/ (n)]

allocate ([allocator :]list)

order (concurrent)

If an end do directive is not specified, an end do directive is assumed at the end of the do-loops.

The do directive places restrictions on the structure of all associated do-loops. Specifically, all
associated do-loops must have canonical loop form (see Section 2.12.1 on page 101).

Fortran

Binding

The binding thread set for a worksharing-loop region is the current team. A worksharing-loop
region binds to the innermost enclosing parallel region. Only the threads of the team executing
the binding parallel region participate in the execution of the loop iterations and the implied
barrier of the worksharing-loop region if the barrier is not eliminated by a nowait clause.

CHAPTER 2. DIRECTIVES 107

o~NO O WON =

—_ 1 a4 a a
a b~ wWND-—= O

DN = =
- O © 0N

NN
w N

WWWWwwWwwwMNmNDNDNDDNDND
OO R WN—=-O0OOVO0oNO O N

AW WW
o © 0o N

108

Description
The worksharing-loop construct is associated with a loop nest that consists of one or more loops
that follow the directive.

There is an implicit barrier at the end of a worksharing-loop construct unless a nowait clause is
specified.

The collapse clause may be used to specify how many loops are associated with the
worksharing-loop construct. The parameter of the collapse clause must be a constant positive
integer expression. If a collapse clause is specified with a parameter value greater than 1, then
the iterations of the associated loops to which the clause applies are collapsed into one larger
iteration space that is then divided according to the schedule clause. The sequential execution of
the iterations in these associated loops determines the order of the iterations in the collapsed
iteration space. If no collapse clause is present or its parameter is 1, the only loop that is
associated with the worksharing-loop construct for the purposes of determining how the iteration
space is divided according to the schedule clause is the one that immediately follows the
worksharing-loop directive.

If more than one loop is associated with the worksharing-loop construct then the number of times
that any intervening code between any two associated loops will be executed is unspecified but will
be at least once per iteration of the loop enclosing the intervening code and at most once per
iteration of the innermost loop associated with the construct. If the iteration count of any loop that
is associated with the worksharing-loop construct is zero and that loop does not enclose the
intervening code, the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

A worksharing-loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if a set of associated loop(s) were executed sequentially. At the beginning of each logical
iteration, the loop iteration variable of each associated loop has the value that it would have if the
set of the associated loop(s) were executed sequentially. The schedule clause specifies how
iterations of these associated loops are divided into contiguous non-empty subsets, called chunks,
and how these chunks are distributed among threads of the team. Each thread executes its assigned
chunk(s) in the context of its implicit task. The iterations of a given chunk are executed in
sequential order by the assigned thread. The chunk_size expression is evaluated using the original
list items of any variables that are made private in the worksharing-loop construct. It is unspecified
whether, in what order, or how many times, any side effects of the evaluation of this expression
occur. The use of a variable in a schedule clause expression of a worksharing-loop construct
causes an implicit reference to the variable in all enclosing constructs.

Different worksharing-loop regions with the same schedule and iteration count, even if they occur
in the same parallel region, can distribute iterations among threads differently. The only exception
is for the static schedule as specified in Table 2.5. Programs that depend on which thread
executes a particular iteration under any other circumstances are non-conforming.

OpenMP API — Version 5.1 Preview, November 2019

- a4 4 a a -
[e2 I &) BEF -GS I \V) - O©0Woo~NO” O MW N =

—_ -
o

DN =
- O ©

If any of the associated loop(s) is a generated loop of a tile directive, the effect of the
schedule clause on the loop schedule is implementation defined.

See Section 2.12.2.1 on page 114 for details of how the schedule for a worksharing-loop region is
determined.

The schedule kind can be one of those specified in Table 2.5.

The schedule modifier can be one of those specified in Table 2.6. If the static schedule kind is
specified or if the ordered clause is specified, and if the nonmonotonic modifier is not
specified, the effect is as if the monotonic modifier is specified. Otherwise, unless the
monotonic modifier is specified, the effect is as if the nonmonotonic modifier is specified. If
a schedule clause specifies a modifier then that modifier overrides any modifier that is specified
in the run-sched-var ICV.

The ordered clause with the parameter may also be used to specify how many loops are
associated with the worksharing-loop construct. The parameter of the ordered clause must be a
constant positive integer expression if specified. The parameter of the ordered clause does not
affect how the logical iteration space is then divided. If an ordered clause with the parameter is
specified for the worksharing-loop construct, then those associated loops form a doacross loop nest.

If the value of the parameter in the collapse or ordered clause is larger than the number of
nested loops following the construct, the behavior is unspecified.

If an order (concurrent) clause is present, then after assigning the iterations of the associated
loops to their respective threads, as specified in Table 2.5, the iterations may be executed in any
order, including concurrently.

CHAPTER 2. DIRECTIVES 109

TABLE 2.5: schedule Clause kind Values

static When kind is static, iterations are divided into chunks of size chunk_size,
and the chunks are assigned to the threads in the team in a round-robin
fashion in the order of the thread number. Each chunk contains chunk_size
iterations, except for the chunk that contains the sequentially last iteration,
which may have fewer iterations.

When no chunk_size is specified, the iteration space is divided into chunks
that are approximately equal in size, and at most one chunk is distributed to
each thread. The size of the chunks is unspecified in this case.

A compliant implementation of the static schedule must ensure that the
same assignment of logical iteration numbers to threads will be used in

two worksharing-loop regions if the following conditions are satisfied: 1)
both worksharing-loop regions have the same number of loop iterations, 2)
both worksharing-loop regions have the same value of chunk_size specified,
or both worksharing-loop regions have no chunk_size specified, 3) both
worksharing-loop regions bind to the same parallel region, and 4) neither
loop is associated with a SIMD construct. A data dependence between

the same logical iterations in two such loops is guaranteed to be satisfied
allowing safe use of the nowait clause.

dynamic When kind is dynamic, the iterations are distributed to threads in the team
in chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be distributed.

Each chunk contains chunk_size iterations, except for the chunk that contains
the sequentially last iteration, which may have fewer iterations.

When no chunk_size is specified, it defaults to 1.

guided When kind is guided, the iterations are assigned to threads in the team in
chunks. Each thread executes a chunk of iterations, then requests another
chunk, until no chunks remain to be assigned.

For a chunk_size of 1, the size of each chunk is proportional to the number
of unassigned iterations divided by the number of threads in the team,
decreasing to 1. For a chunk_size with value k (greater than 1), the size

of each chunk is determined in the same way, with the restriction that

the chunks do not contain fewer than k iterations (except for the chunk
that contains the sequentially last iteration, which may have fewer than k&
iterations).

table continued on next page

110 OpenMP API — Version 5.1 Preview, November 2019

14

table continued from previous page

When no chunk_size is specified, it defaults to 1.

auto When kind is auto, the decision regarding scheduling is delegated to the
compiler and/or runtime system. The programmer gives the implementation
the freedom to choose any possible mapping of iterations to threads in the
team.

runtime When kind is runt ime, the decision regarding scheduling is deferred until
run time, and the schedule and chunk size are taken from the run-sched-var
ICV. If the ICV is set to auto, the schedule is implementation defined.

v v
Note — For a team of p threads and a loop of n iterations, let [n/p] be the integer ¢ that satisfies

n =px*xq—r,with 0 <=r < p. One compliant implementation of the static schedule (with no
specified chunk_size) would behave as though chunk_size had been specified with value g. Another
compliant implementation would assign g iterations to the first p — r threads, and ¢ — 1 iterations to
the remaining r threads. This illustrates why a conforming program must not rely on the details of a
particular implementation.

A compliant implementation of the guided schedule with a chunk_size value of k would assign

g = [n/p] iterations to the first available thread and set n to the larger of n — ¢ and p k. It would
then repeat this process until g is greater than or equal to the number of remaining iterations, at
which time the remaining iterations form the final chunk. Another compliant implementation could

use the same method, except with ¢ = [n/(2p)], and set n to the larger of n — g and 2 * p x k.
A A

TABLE 2.6: schedule Clause modifier Values

monotonic When the monotonic modifier is specified then each thread executes
the chunks that it is assigned in increasing logical iteration order.

nonmonotonic When the nonmonotonic modifier is specified then chunks are
assigned to threads in any order and the behavior of an application that
depends on any execution order of the chunks is unspecified.

simd When the simd modifier is specified and the loop is associated with
a SIMD construct, the chunk_size for all chunks except the first and
last chunks is new_chunk_size = [chunk_size/simd_width] *
simd_width where simd_width is an implementation-defined value.
The first chunk will have at least new_chunk_size iterations except if
it is also the last chunk. The last chunk may have fewer iterations than
new_chunk_size. If the simd modifier is specified and the loop is not

associated with a SIMD construct, the modifier is ignored.

CHAPTER 2. DIRECTIVES 111

No oo~ W=

10
11
12
13
14
15

16
17
18

19
20

21

22
23

24
25

26
27

28
29

30

31
32

33
34

Execution Model Events
The ws-loop-begin event occurs after an implicit task encounters a worksharing-loop construct but
before the task starts execution of the structured block of the worksharing-loop region.

The ws-loop-end event occurs after a worksharing-loop region finishes execution but before
resuming execution of the encountering task.

The ws-loop-iteration-begin event occurs once for each iteration of a worksharing-loop before the
iteration is executed by an implicit task.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback with ompt_scope_begin
as its endpoint argument and work_1loop as its wstype argument for each occurrence of a
ws-loop-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
work_loop as its wstype argument for each occurrence of a ws-loop-end event in that thread. The
callbacks occur in the context of the implicit task. The callbacks have type signature
ompt_callback_work t.

A thread dispatches a registered ompt_callback_dispatch callback for each occurrence of a
ws-loop-iteration-begin event in that thread. The callback occurs in the context of the implicit task.
The callback has type signature ompt_callback_dispatch_t.

Restrictions
Restrictions to the worksharing-loop construct are as follows:

e No OpenMP directive may appear in the region between any associated loops.

e If a collapse clause is specified, exactly one loop must occur in the region at each nesting
level up to the number of loops specified by the parameter of the collapse clause.

o If the ordered clause is present, all loops associated with the construct must be perfectly
nested; that is there must be no intervening code between any two loops.

e If a reduction clause with the inscan modifier is specified, neither the ordered nor
schedule clause may appear on the worksharing-loop directive.

e The values of the loop control expressions of the loops associated with the worksharing-loop
construct must be the same for all threads in the team.

e At most one schedule clause can appear on a worksharing-loop directive.

e The schedule clause must not appear on the worksharing-loop directive if the associated
loop(s) form a non-rectangular loop nest.

e The ordered clause must not appear on the worksharing-loop directive if the associated
loop(s) form a non-rectangular loop nest.

112 OpenMP API — Version 5.1 Preview, November 2019

oo N O o A~ © N =

-
o ©

11
12

13
14
15
16

17
18

19
20

21

22
23

24
25

26
27
28
29

The ordered clause must not appear on the worksharing-loop directive if the associated loops
include the generated loops of a tile directive.

At most one collapse clause can appear on a worksharing-loop directive.
chunk_size must be a loop invariant integer expression with a positive value.

The value of the chunk_size expression must be the same for all threads in the team.
The value of the run-sched-var ICV must be the same for all threads in the team.

When schedule (runtime) or schedule (auto) is specified, chunk_size must not be
specified.

A modifier may not be specified on a 1inear clause.
At most one ordered clause can appear on a worksharing-loop directive.

The ordered clause must be present on the worksharing-loop construct if any ordered
region ever binds to a worksharing-loop region arising from the worksharing-loop construct.

The nonmonotonic modifier cannot be specified if an ordered clause is specified.

Each modifier may be specified at most once on the same schedule clause.

Either the monotonic modifier or the nonmonotonic modifier can be specified but not both.
The loop iteration variable may not appear in a threadprivate directive.

If both the collapse and ordered clause with a parameter are specified, the parameter of the
ordered clause must be greater than or equal to the parameter of the collapse clause.

A linear clause or an ordered clause with a parameter can be specified on a
worksharing-loop directive but not both.

At most one order (concurrent) clause can appear on a worksharing-loop directive.

If an order (concurrent) clause is present, all restrictions from the 1oop construct with an
order (concurrent) clause also apply.

If an order (concurrent) clause is present, an ordered clause may not appear on the
same directive.

C/C++

The associated for-loops must be structured blocks.
Only an iteration of the innermost associated loop may be curtailed by a cont inue statement.
No statement can branch to any associated £or statement.

At most one nowait clause can appear on a for directive.

CHAPTER 2. DIRECTIVES 113

—_

© 0o No o >

10
11

12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28
29

e A throw executed inside a worksharing-loop region must cause execution to resume within the
same iteration of the worksharing-loop region, and the same thread that threw the exception must
catch it.

C/C++
Fortran
e The associated do-loops must be structured blocks.

e Only an iteration of the innermost associated loop may be curtailed by a CYCLE statement.

e No statement in the associated loops other than the DO statements can cause a branch out of the
loops.

e The do-loop iteration variable must be of type integer.

e The do-loop cannot be a DO WHILE or a DO loop without loop control.
Fortran

Cross References

e order (concurrent) clause, see Section 2.12.5 on page 133.

e tile construct, see Section 2.12.7.1 on page 140.

e ordered construct, see Section 2.20.9 on page 252.

e depend clause, see Section 2.20.11 on page 257.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_work_loop, see Section 4.4.4.15 on page 449.

e ompt_callback_work_t, see Section 4.5.2.5 on page 466.

e OMP_SCHEDULE environment variable, see Section 6.1 on page 585.

2.12.2.1 Determining the Schedule of a Worksharing-Loop

When execution encounters a worksharing-loop directive, the schedule clause (if any) on the
directive, and the run-sched-var and def-sched-var ICVs are used to determine how loop iterations
are assigned to threads. See Section 2.6 on page 66 for details of how the values of the ICVs are
determined. If the worksharing-loop directive does not have a schedule clause then the current
value of the def-sched-var ICV determines the schedule. If the worksharing-loop directive has a
schedule clause that specifies the runtime schedule kind then the current value of the
run-sched-var ICV determines the schedule. Otherwise, the value of the schedule clause
determines the schedule. Figure 2.1 describes how the schedule for a worksharing-loop is
determined.

OpenMP API — Version 5.1 Preview, November 2019

o N O b w

10

11
12

START

schedule

clause present? Use def-sched-var schedule kind

schedule
kind value is
runtime?

Use schedule kind specified in
schedule clause

> Use run-sched-var schedule kind

FIGURE 2.1: Determining the schedule for a Worksharing-Loop

Cross References
e ICVs, see Section 2.6 on page 66.

2.12.3 SIMD Directives
2.12.3.1 simd Construct
Summary

The simd construct can be applied to a loop to indicate that the loop can be transformed into a

SIMD loop (that is, multiple iterations of the loop can be executed concurrently using SIMD
instructions).

Syntax
C/C++

The syntax of the simd construct is as follows:

#pragma omp simd [clause[[, | clause] ... | new-line
for-loops

C/C++

CHAPTER 2. DIRECTIVES

115

18

19
20
21

22

23
24
25
26
27
28

116

C++
The syntax of the simd construct is also as follows:

[[omp :: simd [(/clause[[,] clause]...])] 11
for-loops

C++
C/C++

where clause is one of the following:

if ([simd :]scalar-expression)

safelen (length)

simdlen (length)

linear (list[: linear-step])

aligned (list[: alignment])

nontemporal ([list)

private (list)

lastprivate ([lastprivate-modifier: | list)

reduction ([reduction-modifier, Jreduction-identifier : list)

collapse (n)

order (concurrent)

The simd directive places restrictions on the structure of the associated for-loops. Specifically, all
associated for-loops must have canonical loop form (Section 2.12.1 on page 101).

C/C++
Fortran
The syntax of the simd construct is as follows:

'Somp simd [clause[[,] clause ... |
do-loops
[!$omp end simd]

where clause is one of the following:

if ([simd :] scalar-logical-expression)
safelen (length)

simdlen (length)

linear (list[: linear-step])

aligned (list[: alignment])

nontemporal ([list)

OpenMP API — Version 5.1 Preview, November 2019

—_

a A~ W N

o o N O

10
11
12

13
14
15

16
17
18
19

20
21
22
23

24
25
26
27
28
29

30
31

32
33
34
35

private (list)

lastprivate ([lastprivate-modifier: | list)

reduction ([reduction-modifier, [reduction-identifier : list)
collapse (n)

order (concurrent)

If an end simd directive is not specified, an end simd directive is assumed at the end of the
do-loops.

The simd directive places restrictions on the structure of all associated do-loops. Specifically, all
associated do-loops must have canonical loop form (see Section 2.12.1 on page 101).

Fortran

Binding
A simd region binds to the current task region. The binding thread set of the simd region is the
current team.

Description
The simd construct enables the execution of multiple iterations of the associated loops
concurrently by means of SIMD instructions.

The collapse clause may be used to specify how many loops are associated with the construct.
The parameter of the collapse clause must be a constant positive integer expression. If no
collapse clause is present, the only loop that is associated with the simd construct is the one
that immediately follows the directive.

If more than one loop is associated with the simd construct, then the iterations of all associated
loops are collapsed into one larger iteration space that is then executed with SIMD instructions.
The sequential execution of the iterations in all associated loops determines the order of the
iterations in the collapsed iteration space.

If more than one loop is associated with the simd construct then the number of times that any
intervening code between any two associated loops will be executed is unspecified but will be at
least once per iteration of the loop enclosing the intervening code and at most once per iteration of
the innermost loop associated with the construct. If the iteration count of any loop that is associated
with the simd construct is zero and that loop does not enclose the intervening code, the behavior is
unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

A SIMD loop has logical iterations numbered 0,1,...,.N-1 where N is the number of loop iterations,
and the logical numbering denotes the sequence in which the iterations would be executed if the
associated loop(s) were executed with no SIMD instructions. At the beginning of each logical
iteration, the loop iteration variable of each associated loop has the value that it would have if the

CHAPTER 2. DIRECTIVES 117

oNO O~ ON =

13
14

15
16

17
18
19

20
21

22
23

24
25

26
27
28
29
30
31

set of the associated loop(s) were executed sequentially. The number of iterations that are executed
concurrently at any given time is implementation defined. Each concurrent iteration will be
executed by a different SIMD lane. Each set of concurrent iterations is a SIMD chunk. Lexical
forward dependencies in the iterations of the original loop must be preserved within each SIMD
chunk.

The safelen clause specifies that no two concurrent iterations within a SIMD chunk can have a
distance in the logical iteration space that is greater than or equal to the value given in the clause.
The parameter of the safelen clause must be a constant positive integer expression. The
simdlen clause specifies the preferred number of iterations to be executed concurrently unless an
if clause is present and evaluates to false, in which case the preferred number of iterations to be
executed concurrently is one. The parameter of the simdlen clause must be a constant positive
integer expression.

C/C++

The aligned clause declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned clause.

C/C++

Fortran

The aligned clause declares that the location of each list item is aligned to the number of bytes
expressed in the optional parameter of the aligned clause.

Fortran

The optional parameter of the aligned clause, alignment, must be a constant positive integer
expression. If no optional parameter is specified, implementation-defined default alignments for
SIMD instructions on the target platforms are assumed.

The nontemporal clause specifies that accesses to the storage locations to which the list items
refer have low temporal locality across the iterations in which those storage locations are accessed.

Restrictions
e No OpenMP directive may appear in the region between any associated loops.

e If a collapse clause is specified, exactly one loop must occur in the region at each nesting
level up to the number of loops specified by the parameter of the collapse clause.

e The associated loops must be structured blocks.

e A program that branches into or out of a simd region is non-conforming.
e At most one collapse clause can appear on a simd directive.

e A list-item cannot appear in more than one aligned clause.

o A [ist-item cannot appear in more than one nontemporal clause.

e At most one safelen clause can appear on a simd directive.

OpenMP API — Version 5.1 Preview, November 2019

- O © oo~NOoO O PO N =

—_ -

-
\V]

13

14
15

16

17
18

19
20

21
22

23
24

At most one simdlen clause can appear on a simd directive.
At most one if clause can appear on the directive.

If both simdlen and safelen clauses are specified, the value of the simdlen parameter
must be less than or equal to the value of the safelen parameter.

A modifier may not be specified on a 1inear clause.

The only OpenMP constructs that can be encountered during execution of a simd region are the
atomic construct, the 1oop construct, the simd construct and the ordered construct with
the simd clause.

At most one order (concurrent) clause can appear on a simd directive.

If an order (concurrent) clause is present, all restrictions from the 1oop construct with an
order (concurrent) clause also apply.

C/C++
The simd region cannot contain calls to the longjmp or set jmp functions.

C/C++
C

The type of list items appearing in the aligned clause must be array or pointer.

C
C++

The type of list items appearing in the aligned clause must be array, pointer, reference to
array, or reference to pointer.

No exception can be raised in the simd region.

C++

Fortran
The do-loop iteration variable must be of type integer.

The do-loop cannot be a DO WHILE or a DO loop without loop control.

If a list item on the aligned clause has the ALLOCATABLE attribute, the allocation status must
be allocated.

If a list item on the aligned clause has the POINTER attribute, the association status must be
associated.

If the type of a list item on the aligned clause is either C_PTR or Cray pointer, the list item
must be defined.

Fortran

CHAPTER 2. DIRECTIVES 119

A W N =

O © oo ~NO O

11

12

13
14

15
16

17

18
19
20

21
22

23
24

25
26
27
28
29

120

Cross References
e order (concurrent) clause, see Section 2.12.5 on page 133.

e if Clause, see Section 2.18 on page 224.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

2.12.3.2 Worksharing-Loop SIMD Construct

Summary

The worksharing-loop SIMD construct specifies that the iterations of one or more associated loops
will be distributed across threads that already exist in the team and that the iterations executed by
each thread can also be executed concurrently using SIMD instructions. The worksharing-loop
SIMD construct is a composite construct.

Syntax
C/C++

The syntax of the worksharing-loop SIMD construct is as follows:

#pragma omp for simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the for or simd directives with identical
meanings and restrictions.

C/C++
Fortran
The syntax of the worksharing-loop SIMD construct is as follows:
'$Somp do simd [clause[[,] clause] ... |
do-loops
[!'$omp end do simd [nowait]]

where clause can be any of the clauses accepted by the simd or do directives, with identical
meanings and restrictions.

If an end do simd directive is not specified, an end do simd directive is assumed at the end of
the do-loops.

Fortran

Description

The worksharing-loop SIMD construct will first distribute the iterations of the associated loop(s)
across the implicit tasks of the parallel region in a manner consistent with any clauses that apply to
the worksharing-loop construct. The resulting chunks of iterations will then be converted to a
SIMD loop in a manner consistent with any clauses that apply to the simd construct.

OpenMP API — Version 5.1 Preview, November 2019

N -

© (o] N O O

11
12
13

14

15
16
17
18
19
20

21

22

23
24
25
26

27

28
29
30

Execution Model Events
This composite construct generates the same events as the worksharing-loop construct.

Tool Callbacks

This composite construct dispatches the same callbacks as the worksharing-loop construct.

Restrictions
All restrictions to the worksharing-loop construct and the simd construct apply to the
worksharing-loop SIMD construct. In addition, the following restrictions apply:

e No ordered clause with a parameter can be specified.

o A list item may appear in a 1inear or firstprivate clause but not both.

Cross References
e Worksharing-loop construct, see Section 2.12.2 on page 106.

e simd construct, see Section 2.12.3.1 on page 115.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

2.12.3.3 Declare SIMD Directive

Summary

The declare SIMD directive can be applied to a function (C, C++ and Fortran) or a subroutine
(Fortran) to enable the creation of one or more versions that can process multiple arguments using
SIMD instructions from a single invocation in a SIMD loop. The declare SIMD directive is a
declarative directive. There may be multiple declare SIMD directives for a function (C, C++,
Fortran) or subroutine (Fortran).

Syntax
C/C++

The syntax of the declare SIMD directive is as follows:

#fpragma omp declare simd [clause[[,] clause] ... | new-line
[#pragma omp declare simd [clause[[, | clause] ... | new-line]
[..]
function definition or declaration
C/C++
C++
The syntax of the declare SIMD directive is also as follows:

[[omp :: declare_simd [(/clause[[,] clause]...])] 11
[[[omp :: declare_simd [(/clause[[,] clause]...])] 11]
[...]

C++

CHAPTER 2. DIRECTIVES 121

—_

N o o A WD

©

10

11
12
13
14
15
16

17

18
19
20

21
22

23
24
25

122

C/C++

where clause is one of the following:

simdlen (length)

linear (linear-list[: linear-step])
aligned (argument-list[: alignment])
uniform (argument-list)

inbranch

notinbranch

C/C++
Fortran
The syntax of the declare simd directive is as follows:

I 'Somp declare simd [(proc-name) | [clause] [,] clause] ... |
where clause is one of the following:

simdlen (length)

linear (linear-list[: linear-step])

aligned (argument-list[: alignment])

uniform (argument-list)

inbranch
notinbranch
Fortran
Description
C/C++

The use of one or more declare SIMD directives on a function declaration or definition enables the
creation of corresponding SIMD versions of the associated function that can be used to process
multiple arguments from a single invocation in a SIMD loop concurrently.

The expressions appearing in the clauses of each directive are evaluated in the scope of the
arguments of the function declaration or definition.

C/C++
Fortran

The use of one or more declare simd directives for a specified subroutine or function enables
the creation of corresponding SIMD versions of the subroutine or function that can be used to
process multiple arguments from a single invocation in a SIMD loop concurrently.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

a0 =

10
11

12
13

14
15
16

17
18
19
20
21

If a SIMD version is created, the number of concurrent arguments for the function is determined by
the simdlen clause. If the simdlen clause is used its value corresponds to the number of
concurrent arguments of the function. The parameter of the simdlen clause must be a constant
positive integer expression. Otherwise, the number of concurrent arguments for the function is
implementation defined.

C++

The special this pointer can be used as if it was one of the arguments to the function in any of the
linear, aligned, or uniform clauses.

C++

The uniform clause declares one or more arguments to have an invariant value for all concurrent
invocations of the function in the execution of a single SIMD loop.

C/C++

The aligned clause declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned clause.

C/C++
Fortran

The aligned clause declares that the target of each list item is aligned to the number of bytes
expressed in the optional parameter of the aligned clause.

Fortran

The optional parameter of the aligned clause, alignment, must be a constant positive integer
expression. If no optional parameter is specified, implementation-defined default alignments for
SIMD instructions on the target platforms are assumed.

The inbranch clause specifies that the SIMD version of the function will always be called from
inside a conditional statement of a SIMD loop. The not inbranch clause specifies that the SIMD
version of the function will never be called from inside a conditional statement of a SIMD loop. If
neither clause is specified, then the SIMD version of the function may or may not be called from
inside a conditional statement of a SIMD loop.

CHAPTER 2. DIRECTIVES 123

0o N o0 A W N =

-
o ©

—_
N —

-
w

14
15

16

17

18

19
20

124

Restrictions

Each argument can appear in at most one uniform or linear clause.
At most one simdlen clause can appear in a declare SIMD directive.
Either inbranch or notinbranch may be specified, but not both.

When a linear-step expression is specified in a 1inear clause it must be either a constant integer
expression or an integer-typed parameter that is specified in a uniform clause on the directive.

The function or subroutine body must be a structured block.

The execution of the function or subroutine, when called from a SIMD loop, cannot result in the
execution of an OpenMP construct except for an ordered construct with the simd clause or an
atomic construct.

The execution of the function or subroutine cannot have any side effects that would alter its
execution for concurrent iterations of a SIMD chunk.

A program that branches into or out of the function is non-conforming.

C/C++

If the function has any declarations, then the declare SIMD directive for any declaration that has
one must be equivalent to the one specified for the definition. Otherwise, the result is unspecified.

The function cannot contain calls to the longjmp or set jmp functions.

C/C++
C

The type of list items appearing in the aligned clause must be array or pointer.

C
C++

The function cannot contain any calls to throw.

The type of list items appearing in the aligned clause must be array, pointer, reference to
array, or reference to pointer.

C++

OpenMP API — Version 5.1 Preview, November 2019

17
18

19

20
21

22
23
24
25

Fortran
e proc-name must not be a generic name, procedure pointer or entry name.

o If proc-name is omitted, the declare simd directive must appear in the specification part of a
subroutine subprogram or a function subprogram for which creation of the SIMD versions is
enabled.

e Any declare simd directive must appear in the specification part of a subroutine subprogram,
function subprogram or interface body to which it applies.

e If a declare simd directive is specified in an interface block for a procedure, it must match a
declare simd directive in the definition of the procedure.

e If a procedure is declared via a procedure declaration statement, the procedure proc-name should
appear in the same specification.

e If a declare simd directive is specified for a procedure name with explicit interface and a
declare simd directive is also specified for the definition of the procedure then the two
declare simd directives must match. Otherwise the result is unspecified.

e Procedure pointers may not be used to access versions created by the declare simd directive.

o The type of list items appearing in the aligned clause must be C_PTR or Cray pointer, or the
list item must have the POINTER or ALLOCATABLE attribute.

Fortran
Cross References
e linear clause, see Section 2.22.4.6 on page 292.

e reduction clause, see Section 2.22.5.4 on page 302.

2.12.4 distribute Loop Constructs
2.12.4.1 distribute Construct

Summary

The distribute construct specifies that the iterations of one or more loops will be executed by
the initial teams in the context of their implicit tasks. The iterations are distributed across the initial
threads of all initial teams that execute the teams region to which the distribute region binds.

CHAPTER 2. DIRECTIVES 125

A~ W

-
- O O 0 N o O

—_

13
14

15

16
17
18

19

20
21
22
23
24
25

26
27

28
29
30

126

Syntax
C/C++

The syntax of the distribute construct is as follows:

#pragma omp distribute [clause[[,] clause] ... | new-line
for-loops

Where clause is one of the following:

private (list)

firstprivate (list)

lastprivate (list)

collapse (n)

dist_schedule (kind[, chunk_size])

allocate (/allocator :]list)

The distribute directive places restrictions on the structure of all associated for-loops.
Specifically, all associated for-loops must have canonical loop form (see Section 2.12.1 on
page 101).

C/C++

Fortran
The syntax of the distribute construct is as follows:

'Somp distribute [clause[[,] clause] ... |
do-loops
[!'$omp end distribute]

Where clause is one of the following:

private (list)

firstprivate (list)

lastprivate (list)

collapse (n)

dist_schedule (kind[, chunk_size])
allocate ([allocator :]list)

If an end distribute directive is not specified, an end distribute directive is assumed at

the end of the do-loops.

The distribute directive places restrictions on the structure of all associated do-loops.
Specifically, all associated do-loops must have canonical loop form (see Section 2.12.1 on
page 101).

Fortran

OpenMP API — Version 5.1 Preview, November 2019

w N =

o~N oo

11
12
13
14
15
16
17
18

19
20
21
22
23

24
25

26
27
28
29
30
31

32
33

34
35
36
37
38

39

Binding
The binding thread set for a distribute region is the set of initial threads executing an
enclosing teams region. A distribute region binds to this teams region.

Description
The distribute construct is associated with a loop nest consisting of one or more loops that
follow the directive.

There is no implicit barrier at the end of a distribute construct. To avoid data races the
original list items modified due to lastprivate or 1linear clauses should not be accessed
between the end of the distribute construct and the end of the teams region to which the
distribute binds.

The collapse clause may be used to specify how many loops are associated with the
distribute construct. The parameter of the collapse clause must be a constant positive
integer expression. If no collapse clause is present or its parameter is 1, the only loop that is
associated with the distribute construct is the one that immediately follows the distribute
construct. If a collapse clause is specified with a parameter value greater than 1 and more than
one loop is associated with the distribute construct, then the iteration of all associated loops
are collapsed into one larger iteration space. The sequential execution of the iterations in all
associated loops determines the order of the iterations in the collapsed iteration space.

A distribute loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if the set of associated loop(s) were executed sequentially. At the beginning of each
logical iteration, the loop iteration variable of each associated loop has the value that it would have
if the set of the associated loop(s) were executed sequentially.

If any of the associated loop(s) is a generated loop of a tile directive, the effect of the
dist_schedule clause on the loop schedule is implementation defined.

If more than one loop is associated with the distribute construct then the number of times that
any intervening code between any two associated loops will be executed is unspecified but will be
at least once per iteration of the loop enclosing the intervening code and at most once per iteration
of the innermost loop associated with the construct. If the iteration count of any loop that is
associated with the distribute construct is zero and that loop does not enclose the intervening
code, the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

If dist_schedule is specified, kind must be statiec. If specified, iterations are divided into
chunks of size chunk_size, chunks are assigned to the initial teams of the league in a round-robin
fashion in the order of the initial team number. When no chunk_size is specified, the iteration space
is divided into chunks that are approximately equal in size, and at most one chunk is distributed to
each initial team of the league. The size of the chunks is unspecified in this case.

When no dist_schedule clause is specified, the schedule is implementation defined.

CHAPTER 2. DIRECTIVES 127

a b~ ON =

o N o

11
12
13

14
15

16

17
18

19
20

21
22

23
24

25
26

27
28

29
30
31
32

Execution Model Events
The distribute-begin event occurs after an implicit task encounters a distribute construct but
before the task starts to execute the structured block of the distribute region.

The distribute-end event occurs after an implicit task finishes execution of a distribute region
but before it resumes execution of the enclosing context.

Tool Callbacks

A thread dispatches a registered ompt_callback_work callback with ompt_scope_begin
as its endpoint argument and ompt_work_distribute as its wstype argument for each
occurrence of a distribute-begin event in that thread. Similarly, a thread dispatches a registered
ompt_callback_work callback with ompt_scope_end as its endpoint argument and
ompt_work_distribute as its wstype argument for each occurrence of a distribute-end event
in that thread. The callbacks occur in the context of the implicit task. The callbacks have type
signature ompt_callback_work_t.

Restrictions
Restrictions to the distribute construct are as follows:

e The distribute construct inherits the restrictions of the worksharing-loop construct.

e Each distribute region must be encountered by the initial threads of all initial teams in a
league or by none at all.

e The sequence of the distribute regions encountered must be the same for every initial thread
of every initial team in a league.

e The region corresponding to the distribute construct must be strictly nested inside a teams
region.

e A list item may appear in a firstprivate or lastprivate clause but not both.

e At most one dist_schedule clause can appear on the directive.

e The dist_schedule clause must not appear on the distribute directive if the associated
loop(s) form a non-rectangular loop nest.

Cross References

e teams construct, see Section 2.9 on page 87

e Worksharing-loop construct, see Section 2.12.2 on page 106.

e tile construct, see Section 2.12.7.1 on page 140.

e ompt_work_distribute, see Section 4.4.4.15 on page 449.

e ompt_callback_ work_t, see Section 4.5.2.5 on page 466.

OpenMP API — Version 5.1 Preview, November 2019

a b~ wN

10
11

12

13
14
15

16
17

18
19

20
21
22
23
24

25
26

27
28

2.12.4.2 distribute simd Construct

Summary

The distribute simd construct specifies a loop that will be distributed across the master
threads of the teams region and executed concurrently using SIMD instructions. The
distribute simd construct is a composite construct.

Syntax
C/C++

The syntax of the distribute simd construct is as follows:

#pragma omp distribute simd [clause[[,] clause] ... | newline
for-loops

where clause can be any of the clauses accepted by the distribute or simd directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the distribute simd construct is as follows:

'Somp distribute simd [clause[[,] clause] ... |
do-loops
[!'$Somp end distribute simd]

where clause can be any of the clauses accepted by the distribute or simd directives with
identical meanings and restrictions.

If an end distribute simd directive is not specified, an end distribute simd directive is
assumed at the end of the do-loops.

Fortran

Description

The distribute simd construct will first distribute the iterations of the associated loop(s)
according to the semantics of the distribute construct and any clauses that apply to the
distribute construct. The resulting chunks of iterations will then be converted to a SIMD loop in a
manner consistent with any clauses that apply to the simd construct.

Execution Model Events
This composite construct generates the same events as the distribute construct.

Tool Callbacks

This composite construct dispatches the same callbacks as the distribute construct.

CHAPTER 2. DIRECTIVES 129

a AW N =

© o NOo

11
12
13
14

15

16

17
18

19
20

21

22
23
24

25
26

27
28

130

Restrictions
e The restrictions for the distribute and simd constructs apply.

e A list item may not appear in a 1inear clause unless it is the loop iteration variable of a loop
that is associated with the construct.

e The conditional modifier may not appear in a lastprivate clause.

Cross References
e simd construct, see Section 2.12.3.1 on page 115.

e distribute construct, see Section 2.12.4.1 on page 125.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

2.12.4.3 Distribute Parallel Worksharing-Loop Construct

Summary

The distribute parallel worksharing-loop construct specifies a loop that can be executed in parallel
by multiple threads that are members of multiple teams. The distribute parallel worksharing-loop
construct is a composite construct.

Syntax
C/C++

The syntax of the distribute parallel worksharing-loop construct is as follows:

I #pragma omp distribute parallel for [clause[[,] clause] ... | newline

for-loops

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the distribute parallel worksharing-loop construct is as follows:

!'Somp distribute parallel do [clause[[,] clause] ...]
do-loops
[!'$omp end distribute parallel doj

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
directives with identical meanings and restrictions.

If an end distribute parallel do directive is not specified, an end distribute
parallel do directive is assumed at the end of the do-loops.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

No ok~ wnNn =

(oo}

11
12
13

14
15

16
17
18

19
20

21
22

23

24
25
26
27

Description

The distribute parallel worksharing-loop construct will first distribute the iterations of the
associated loop(s) into chunks according to the semantics of the distribute construct and any
clauses that apply to the distribute construct. Each of these chunks will form a loop. Each
resulting loop will then be distributed across the threads within the teams region to which the
distribute construct binds in a manner consistent with any clauses that apply to the parallel
worksharing-loop construct.

Execution Model Events
This composite construct generates the same events as the distribute and parallel
worksharing-loop constructs.

Tool Callbacks

This composite construct dispatches the same callbacks as the distribute and parallel
worksharing-loop constructs.

Restrictions

e The restrictions for the distribute and parallel worksharing-loop constructs apply.
e No ordered clause can be specified.

e No linear clause can be specified.

e The conditional modifier may not appear in a lastprivate clause.

Cross References
e distribute construct, see Section 2.12.4.1 on page 125.

e Parallel worksharing-loop construct, see Section 2.16.1 on page 193.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

2.12.4.4 Distribute Parallel Worksharing-Loop SIMD Construct

Summary

The distribute parallel worksharing-loop SIMD construct specifies a loop that can be executed
concurrently using SIMD instructions in parallel by multiple threads that are members of multiple
teams. The distribute parallel worksharing-loop SIMD construct is a composite construct.

CHAPTER 2. DIRECTIVES 131

a b~ W N

N e}

10
11

12
13

14
15

16
17
18
19
20
21
22
23

24
25
26

27
28
29

132

Syntax
C/C++

The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:

#pragma omp distribute parallel for simd \
[clause[[,] clause] ... | newline
for-loops

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
SIMD directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the distribute parallel worksharing-loop SIMD construct is as follows:

!Somp distribute parallel do simd [clause[[,] clause] ... |
do-loops
[!'$omp end distribute parallel do simd]

where clause can be any of the clauses accepted by the distribute or parallel worksharing-loop
SIMD directives with identical meanings and restrictions.

If an end distribute parallel do simd directive is not specified, an end distribute
parallel do simd directive is assumed at the end of the do-loops.

Fortran

Description

The distribute parallel worksharing-loop SIMD construct will first distribute the iterations of the
associated loop(s) according to the semantics of the distribute construct and any clauses that
apply to the distribute construct. The resulting loops will then be distributed across the
threads contained within the teams region to which the distribute construct binds in a
manner consistent with any clauses that apply to the parallel worksharing-loop construct. The
resulting chunks of iterations will then be converted to a SIMD loop in a manner consistent with
any clauses that apply to the simd construct.

Execution Model Events
This composite construct generates the same events as the distribute and parallel
worksharing-loop SIMD constructs.

Tool Callbacks
This composite construct dispatches the same callbacks as the distribute and parallel
worksharing-loop SIMD constructs.

OpenMP API — Version 5.1 Preview, November 2019

-
o © oOoN O o W N =

—_
—_

12
13

14
15

16

17
18
19

20

21

22
23

24

25
26
27
28
29
30

Restrictions
e The restrictions for the distribute and parallel worksharing-loop SIMD constructs apply.

e No ordered clause can be specified.

e A list item may not appear in a 1inear clause unless it is the loop iteration variable of a loop
that is associated with the construct.

e The conditional modifier may not appear in a lastprivate clause.

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

o At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

o At most one if clause with the simd directive-name-modifier can appear on the directive.

Cross References
e distribute construct, see Section 2.12.4.1 on page 125.

e Parallel worksharing-loop SIMD construct, see Section 2.16.5 on page 197.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

2.12.5 loop Construct

Summary
A loop construct specifies that the iterations of the associated loops may execute concurrently and
permits the encountering thread(s) to execute the loop accordingly.

Syntax
C/C++

The syntax of the 1oop construct is as follows:

#pragma omp loop /[clause[[,] clause] ... | new-line
for-loops

where clause is one of the following:
bind (binding)

collapse (n)

order (concurrent)
private (list)

lastprivate (list)

reduction ([default , Jreduction-identifier : list)

CHAPTER 2. DIRECTIVES 133

A O N =

(3}

11

12
13
14
15
16
17

18

19
20
21
22
23

24
25

where binding is one of the following:

teams
parallel
thread

The loop directive places restrictions on the structure of all associated for-loops. Specifically, all
associated for-loops must have canonical loop form (see Section 2.12.1 on page 101).

C/C++
Fortran
The syntax of the 1oop construct is as follows:

'$Somp loop [clause[[,] clause] ... |
do-loops
[!$Somp end loop]

where clause is one of the following:
bind (binding)

collapse (n)

order (concurrent)
private (list)
lastprivate (list)

reduction ([default , [reduction-identifier : list)
where binding is one of the following:

teams
parallel
thread

If an end loop directive is not specified, an end loop directive is assumed at the end of the
do-loops.

The 1loop directive places restrictions on the structure of all associated do-loops. Specifically, all
associated do-loops must have canonical loop form (see Section 2.12.1 on page 101).

Fortran

134 OpenMP API — Version 5.1 Preview, November 2019

O N O~ WN =

©

_
W N = O

14
15
16

17
18
19
20
21
22

23
24
25
26
27
28

29
30
31
32
33

34
35

36
37
38

Binding

If the bind clause is present on the construct, the binding region is determined by binding.
Specifically, if binding is teams and there exists an innermost enclosing teams region then the
binding region is that teams region; if binding is parallel then the binding region is the
innermost enclosing parallel region, which may be an implicit parallel region; and if binding is
thread then the binding region is not defined. If the bind clause is not present on the construct
and the 1loop construct is closely nested inside a teams or parallel construct, the binding
region is the corresponding teams or parallel region. If none of those conditions hold, the
binding region is not defined.

If the binding region is a teams region, then the binding thread set is the set of master threads that
are executing that region. If the binding region is a parallel region, then the binding thread set is the
team of threads that are executing that region. If the binding region is not defined, then the binding
thread set is the encountering thread.

Description
The loop construct is associated with a loop nest that consists of one or more loops that follow the
directive. The directive asserts that the iterations may execute in any order, including concurrently.

The collapse clause may be used to specify how many loops are associated with the 1oop
construct. The parameter of the collapse clause must be a constant positive integer expression.
If a collapse clause is specified with a parameter value greater than 1, then the iterations of the
associated loops to which the clause applies are collapsed into one larger iteration space with
unspecified ordering. If no collapse clause is present or its parameter is 1, the only loop that is
associated with the loop construct is the one that immediately follows the loop directive.

If more than one loop is associated with the Loop construct then the number of times that any
intervening code between any two associated loops will be executed is unspecified but will be at
least once per iteration of the loop enclosing the intervening code and at most once per iteration of
the innermost loop associated with the construct. If the iteration count of any loop that is associated
with the 1loop construct is zero and that loop does not enclose the intervening code, the behavior is
unspecified.

The iteration space of the associated loops correspond to logical iterations numbered 0,1,...,N-1
where N is the number of loop iterations, and the logical numbering denotes the sequence in which
the iterations would be executed if a set of associated loop(s) were executed sequentially. At the
beginning of each logical iteration, the loop iteration variable of each associated loop has the value
that it would have if the set of the associated loop(s) were executed sequentially.

Each logical iteration is executed once per instance of the 1oop region that is encountered by the
binding thread set.

If the order (concurrent) clause appears on the 1oop construct, the iterations of the
associated loops may execute in any order, including concurrently. If the order clause is not
present, the behavior is as if the order (concurrent) clause appeared on the construct.

CHAPTER 2. DIRECTIVES 135

NOoO g~ 0w N =

10
11

12

13
14

15
16

17
18

19

20
21

22
23

24
25
26

27
28

29
30

31
32

136

The set of threads that may execute the iterations of the loop region is the binding thread set. Each
iteration is executed by one thread from this set.

If the 1loop region binds to a teams region, the threads in the binding thread set may continue
execution after the 1loop region without waiting for all iterations of the associated loop(s) to
complete. The iterations are guaranteed to complete before the end of the teams region.

If the 1loop region does not bind to a teams region, all iterations of the associated loop(s) must
complete before the encountering thread(s) continue execution after the 1oop region.

Restrictions
Restrictions to the 1oop construct are as follows:

e If the collapse clause is specified then there may be no intervening OpenMP directives
between the associated loops.

e At most one collapse clause can appear on a loop directive.

e A list item may not appear in a lastprivate clause unless it is the loop iteration variable of a
loop that is associated with the construct.

e If a loop construct is not nested inside another OpenMP construct and it appears in a procedure,
the bind clause must be present.

e If a loop region binds to a teams or parallel region, it must be encountered by all threads in
the binding thread set or by none of them.

e At most one bind clause can appear on a 1loop directive.

e [f the bind clause is present and binding is teams, the 1oop region corresponding to the
loop construct must be strictly nested inside a teams region.

o If the bind clause is present and binding is parallel, the behavior is unspecified if the 1loop
region corresponding to a 1oop construct is closely nested inside a simd region.

e The only constructs that may be nested inside a 1oop region are the 1oop construct, the
parallel construct, the simd construct, and combined constructs for which the first construct
is a parallel construct.

e A loop region corresponding to a 1oop construct may not contain calls to procedures that
contain OpenMP directives.

e A loop region corresponding to a 1oop construct may not contain calls to the OpenMP
Runtime API.

o If a threadprivate variable is referenced inside a 1oop region, the behavior is unspecified.

e At most one order (concurrent) clause can appear on a 1oop directive.

OpenMP API — Version 5.1 Preview, November 2019

o © 0 NOoO

11

12
13

14

15

16
17
18
19
20
21
22

23

24
25

26

C/C++

The associated for-loops must be structured blocks.

e No statement can branch to any associated for statement.

C/C++
Fortran
The associated do-loops must be structured blocks.

loops.
Fortran

Cross References
e The single construct, see Section 2.11.2 on page 96.

The Worksharing-Loop construct, see Section 2.12.2 on page 106.

SIMD directives, see Section 2.12.3 on page 115.

distribute construct, see Section 2.12.4.1 on page 125.

2.12.6 scan Directive

Summary
The scan directive specifies that scan computations update the list items on each iteration.

Syntax
C/C++

The syntax of the scan directive is as follows:

loop-associated-directive
for-loop-headers

{
structured-block-sequence
#fpragma omp scan clause new-line
structured-block-sequence

}

where clause is one of the following:

inclusive (list)

exclusive (/ist)

and where loop-associated-directive is a for, for simd, or simd directive.

C/C++

CHAPTER 2. DIRECTIVES

No statement in the associated loops other than the DO statements can cause a branch out of the

137

OO O WN =

10
11

12
13

14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30

31

32
33
34
35
36

138

Fortran
The syntax of the scan directive is as follows:

loop-associated-directive

do-loop-headers
structured-block-sequence
!'Somp scan clause
structured-block-sequence

do-termination-stmts(s)

[end-loop-associated-directive |

where clause is one of the following:

inclusive (list)

exclusive (list)

and where loop-associated-directive (end-loop-associated-directive) is a do (end do), do simd
(end do simd), or simd (end simd) directive.

Fortran

Description

The scan directive may appear in the body of a loop or loop nest associated with an enclosing
worksharing-loop, worksharing-loop SIMD, or simd construct, to specify that a scan computation
updates each list item on each loop iteration. The directive specifies that either an inclusive scan
computation is to be performed for each list item that appears in an inclusive clause on the
directive, or an exclusive scan computation is to be performed for each list item that appears in an
exclusive clause on the directive. For each list item for which a scan computation is specified,
statements that lexically precede or follow the directive constitute one of two phases for a given
logical iteration of the loop — an input phase or a scan phase.

If the list item appears in an inclusive clause, all statements in the structured block sequence
that lexically precede the directive constitute the input phase and all statements in the structured
block sequence that lexically follow the directive constitute the scan phase. If the list item appears
in an exclusive clause, all statements in the structured block sequence that lexically precede the
directive constitute the scan phase and all statements in the structured block sequence that lexically
follow the directive constitute the input phase. The input phase contains all computations that
update the list item in the iteration, and the scan phase ensures that any statement that reads the list
item uses the result of the scan computation for that iteration.

The list items that appear in an inclusive or exclusive clause may include array sections.

The result of a scan computation for a given iteration is calculated according to the last generalized
prefix sum (PRESUM, 54+) applied over the sequence of values given by the original value of the list
item prior to the loop and all preceding updates to the list item in the logical iteration space of the
loop. The operation PRESUM; 5+ (0p, ay, ..., ax) is defined for a given binary operator op and a
sequence of N values ay, ..., ax as follows:

OpenMP API — Version 5.1 Preview, November 2019

—_

0 Noohs~r W

11
12
13
14
15
16

17
18
19
20
21
22

23
24

25
26
27

28
29
30

31
32

33
34
35
36

37
38

o ifN=1,ay

o if N> 1, op(PRESUM; ¢ (0p, ay, ..., ax), PRESUM; 4 (0p, ar, ..., an)), where
1<K+1=L<N.

At the beginning of the input phase of each iteration, the list item is initialized with the initializer
value of the reduction-identifier specified by the reduction clause on the innermost enclosing
construct. The update value of a list item is, for a given iteration, the value of the list item on
completion of its input phase.

Let orig-val be the value of the original list item on entry to the enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct. Let combiner be the combiner for the
reduction-identifier specified by the reduction clause on the construct. And let ; be the update
value of a list item for iteration /. For list items appearing in an inclusive clause on the scan
directive, at the beginning of the scan phase for iteration I the list item is assigned the result of the
operation PRESUM; 5t (combiner, orig-val, uy, ..., ug). For list items appearing in an
exclusive clause on the scan directive, at the beginning of the scan phase for iteration I = 0
the list item is assigned the value orig-val, and at the beginning of the scan phase for iteration / > 0
the list item is assigned the result of the operation PRESUM; 55+ (combiner, orig-val, uy, ..., urp).

For list items appearing in an inclusive clause, at the end of the enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct, the original list item is assigned the private copy from
the last logical iteration of the loops associated with the enclosing construct. For list items
appearing in an exclusive clause, let L be the last logical iteration of the loops associated with
the enclosing construct. At the end of the enclosing construct, the original list item is assigned the
result of the operation PRESUM; 55+ (combiner, orig-val, u, ..., ur).

Restrictions
Restrictions to the scan directive are as follows:

e Exactly one scan directive must appear in the loop body of an enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct on which a reduction clause with the inscan
modifier is present.

o A list item that appears in the inclusive or exclusive clause must appear in a
reduction clause with the inscan modifier on the enclosing worksharing-loop,
worksharing-loop SIMD, or simd construct.

e Cross-iteration dependences across different logical iterations must not exist, except for
dependences for the list items specified in an inclusive or exclusive clause.

e Intra-iteration dependences from a statement in the structured block sequence preceding a scan
directive to a statement in the structured block sequence following a scan directive must not
exist, except for dependences for the list items specified in an inclusive or exclusive
clause.

o The private copy of list items that appear in the inclusive or exclusive clause may not be
modified in the scan phase.

CHAPTER 2. DIRECTIVES 139

a A~ W N =

oo N O

11
12
13

14
15

16

17
18

19

20

21
22

23

24

25
26
27

140

Cross References
e Worksharing-loop construct, see Section 2.12.2 on page 106.

e simd construct, see Section 2.12.3.1 on page 115.
e Worksharing-loop SIMD construct, see Section 2.12.3.2 on page 120.

e reduction clause, see Section 2.22.5.4 on page 302.

2.12.7 Loop Transformation Constructs

A loop transformation construct replaces an associated loop nest with another loop nest that is
called the generated loop(s). A loop transformation construct that is closely nested within another
loop transformation construct applies before the enclosing loop transformation construct.

The associated loop(s) of a transformation construct must have canonical loop form (see

Section 2.12.1 on page 101). Each generated loop individually has canonical form, but not when
part of multiple associated loops, unless otherwise specified. Loop iteration variables of generated
loops are always private in the enclosing teams, parallel or task generating construct.

Cross References
e Canonical loop form, see Section 2.12.1 on page 101.

2.12.7.1 tile Construct

Summary
The tile construct tiles one or more loops.

Syntax
C/C++

The syntax of the tile construct is as follows:

I#pragma omp tile sizes (size-list) new-line

for-loops
where size-list is alist s1, ..., s, of positive integer expressions.
C/C++
Fortran

The syntax of the tile construct is as follows:

!$Somp tile sizes (size-list)
do-loops
[!'$omp end tile]

OpenMP API — Version 5.1 Preview, November 2019

w

o N oA

11
12
13
14
15

16
17
18
19

20
21

22
23

24
25

26
27
28
29
30

where size-list is a list 51, . . ., s, of positive integer expressions.

If an end tile directive is not specified, an end tile directive is assumed at the end of the
do-loops.

Fortran

Description

The tile construct is associated with a loop nest that consists of n loops that follow the directive,
where n is the number of items in size-list. Let ¢, .../, be the associated loops, from outermost to
innermost, which the construct replaces with a loop nest that consists of 2n loops. Let

fi,--oy fast1, ..., t, be the generated loops, from outermost to innermost. The f1, ..., f, are the
floor loops and the 1, . . ., t,, are the tile loops.

The n-dimensional logical iteration space of the associated loop(s) is the set

Q={(w1,...,wy) €EN" | Vi=1...n:0 <w; < N;} where N, is the number of iterations of
loop ¢;. For any (a1, ..., ay) € N7, define atile Ty, . o, as the set of iterations

{(wry.o o wn) €Q | Vi=1...n:s0; <w; < s;a; + s;} and

F=ATs,.. .an, | Ta,...a, 7 0} asthe set of tiles with at least one iteration. Tiles that contain
[I,—; ,, siiterations are complete tiles.

The floor loops iterate over all tiles {7y, ... o, € F'} in lexicographic order with respect to their
indices (a1, . . ., ;) and the tile loops iterate over the iterations in T,,,...,a, in lexicographic order
with respect to its elements (w1, . ..,w,). A program that relies on the order of iterations in a
non-complete tile relative to other iterations has unspecified behavior.

Multiple floor loops can be associated with a loop-associated directive to form canonical loop(s),
unless the resulting associated loop nest is non-rectangular.

Restrictions
e Exactly one loop must occur in the construct at each of the n nesting levels.

o All loops associated with the construct must be perfectly nested; that is there must be no
intervening code between any two loops.

e The associated loop(s) must not form a non-rectangular loop nest.

Cross References
e Worksharing-loop construct, see Section 2.12.2 on page 106.

e distribute construct, see Section 2.12.4.1 on page 125.

e taskloop construct, see Section 2.13.2 on page 147.

CHAPTER 2. DIRECTIVES 141

10
11
12
13
14
15
16
17
18
19
20
21
22
23

24
25

26

142

2.13 Tasking Constructs

2.13.1 task Construct

Summary
The task construct defines an explicit task.

Syntax
C/C++

The syntax of the task construct is as follows:

#pragma omp task [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:

if ([task :]scalar-expression)

final (scalar-expression)

untied

default (data-sharing-attribute)
mergeable

private (list)

firstprivate (list)

shared (list)

in_reduction (reduction-identifier : list)
depend ([depend-modifier, | dependence-type : locator-list)
priority (priority-value)

allocate ([allocator : | list)

affinity (/aff-modifier : | locator-list)

detach (event-handle)

where aff-modifier is one of the following:
I iterator (iterators-definition)

where event-handle is a variable of the omp_event_handle_t type.

C/C++

OpenMP API — Version 5.1 Preview, November 2019

20
21

22

23
24
25

Fortran

The syntax of the task construct is as follows:

'Somp task [clause[[,] clause] ... |
structured-block
!Somp end task

where clause is one of the following:

final (scalar-logical-expression)
untied

default (data-sharing-attribute)
mergeable

private (list)

firstprivate (/ist)

shared (/ist)

priority (priority-value)

allocate ([allocator :] list)

detach (event-handle)

where aff-modifier is one of the following:

I iterator (iterators-definition)

if ([task :]scalar-logical-expression)

in_reduction (reduction-identifier : list)

depend (/depend-modifier, | dependence-type :

affinity (/aff-modifier : | locator-list)

locator-list)

where event-handle is an integer variable of omp_event_handle_kind kind.

Binding

The binding thread set of the task region is the current team. A task region binds to the

innermost enclosing parallel region.

Fortran

CHAPTER 2. DIRECTIVES

143

—_ a4 a4
NO O A WN 000N OO OWND-—=

DN = —
- O © ©

DN NN
oo WD

WwWwwMnhNDN
N = O © 0N

w W
A~ ®

B W WWWwWw
O © oo ~NO O

144

Description

The task construct is a fask generating construct. When a thread encounters a task construct, an
explicit task is generated from the code for the associated structured-block. The data environment
of the task is created according to the data-sharing attribute clauses on the task construct, per-data
environment ICVs, and any defaults that apply. The data environment of the task is destroyed when
the execution code of the associated structured-block is completed.

The encountering thread may immediately execute the task, or defer its execution. In the latter case,
any thread in the team may be assigned the task. Completion of the task can be guaranteed using
task synchronization constructs. If a task construct is encountered during execution of an outer
task, the generated task region corresponding to this construct is not a part of the outer task
region unless the generated task is an included task.

If a detach clause is present on a task construct a new event allow-completion-event is created.
The allow-completion-event is connected to the completion of the associated task region. The
original event-handle will be updated to represent the allow-completion-event event before the task
data environment is created. The event-handle will be considered as if it was specified on a
firstprivate clause. The use of a variable in a detach clause expression of a task
construct causes an implicit reference to the variable in all enclosing constructs.

If no detach clause is present on a task construct the generated task is completed when the
execution of its associated structured-block is completed. If a detach clause is present on a task
construct the task is completed when the execution of its associated structured-block is completed
and the allow-completion-event is fulfilled.

When an if clause is present on a task construct, and the i £ clause expression evaluates to false,
an undeferred task is generated, and the encountering thread must suspend the current task region,
for which execution cannot be resumed until execution of the structured block that is associated
with the generated task is completed. The use of a variable in an if clause expression of a task
construct causes an implicit reference to the variable in all enclosing constructs.

When a £inal clause is present on a task construct and the £inal clause expression evaluates
to true, the generated task will be a final task. All task constructs encountered during execution of
a final task will generate final and included tasks. The use of a variable in a £inal clause
expression of a task construct causes an implicit reference to the variable in all enclosing
constructs. Encountering a task construct with the detach clause during the execution of a final
task results in unspecified behavior.

The if clause expression and the £inal clause expression are evaluated in the context outside of
the task construct, and no ordering of those evaluations is specified..

A thread that encounters a task scheduling point within the task region may temporarily suspend
the task region. By default, a task is tied and its suspended task region can only be resumed by
the thread that started its execution. If the untied clause is present on a task construct, any
thread in the team can resume the task region after a suspension. The untied clause is ignored
if a £inal clause is present on the same task construct and the £inal clause expression
evaluates to true, or if a task is an included task.

OpenMP API — Version 5.1 Preview, November 2019

oONOO OO WN =

- a4 o
W N = O o

-
(2B &) IE-N

- a
© 0

20

21
22

23
24
25
26

27
28
29

30
31
32
33
34

The task construct includes a task scheduling point in the task region of its generating task,
immediately following the generation of the explicit task. Each explicit task region includes a
task scheduling point at the end of its associated structured-block.

When the mergeable clause is present on a task construct, the generated task is a mergeable
task.

The priority clause is a hint for the priority of the generated task. The priority-value is a
non-negative integer expression that provides a hint for task execution order. Among all tasks ready
to be executed, higher priority tasks (those with a higher numerical value in the priority clause
expression) are recommended to execute before lower priority ones. The default priority-value
when no priority clause is specified is zero (the lowest priority). If a value is specified in the
priority clause that is higher than the max-task-priority-var ICV then the implementation will
use the value of that ICV. A program that relies on task execution order being determined by this
priority-value may have unspecified behavior.

The affinity clause is a hint to indicate data affinity of the generated task. The task is
recommended to execute closely to the location of the list items. A program that relies on the task
execution location being determined by this list may have unspecified behavior.

The list items that appear in the af£inity clause may reference iterators defined by an
iterators-definition appearing in the same clause. The list items that appear in the affinity
clause may include array sections.

C/C++

The list items that appear in the affinity clause may use shape-operators.
C/C++

If a list item appears in an affinity clause then data affinity refers to the original list item.

v v
Note — When storage is shared by an explicit task region, the programmer must ensure, by
adding proper synchronization, that the storage does not reach the end of its lifetime before the

explicit task region completes its execution.
A A

Execution Model Events
The task-create event occurs when a thread encounters a construct that causes a new task to be
created. The event occurs after the task is initialized but before it begins execution or is deferred.

Tool Callbacks

A thread dispatches a registered ompt_callback_task_create callback for each occurrence
of a task-create event in the context of the encountering task. This callback has the type signature
ompt_callback_task_create_t and the flags argument indicates the task types shown in
Table 2.7.

CHAPTER 2. DIRECTIVES 145

- O © 00 N o o~ W N =

—_

-
w N

14
15

16
17
18
19
20

TABLE 2.7: ompt_callback_task_create callback flags evaluation

Operation Evaluates to true

(flags & ompt_task_explicit) Always in the dispatched callback
(flags & ompt_task_undeferred) If the task is an undeferred task
(flags & ompt_task_final) If the task is a final task

(flags & ompt_task_untied) If the task is an untied task

(flags & ompt_task_mergeable) If the task is a mergeable task

(flags & ompt_task merged) If the task is a merged task

Restrictions
Restrictions to the task construct are as follows:

A program that branches into or out of a task region is non-conforming.

A program must not depend on any ordering of the evaluations of the clauses of the task
directive, or on any side effects of the evaluations of the clauses.

At most one if clause can appear on the directive.

At most one £inal clause can appear on the directive.

At most one priority clause can appear on the directive.
At most one detach clause can appear on the directive.

If a detach clause appears on the directive, then a mergeable clause cannot appear on the
same directive.

C/C++

A throw executed inside a task region must cause execution to resume within the same task
region, and the same thread that threw the exception must catch it.

C/C++

Cross References

Task scheduling constraints, see Section 2.13.6 on page 156.
allocate clause, see Section 2.14.4 on page 164.

if clause, see Section 2.18 on page 224.

depend clause, see Section 2.20.11 on page 257.
Data-sharing attribute clauses, Section 2.22.4 on page 284.

in_reduction clause, see Section 2.22.5.6 on page 306.

146 OpenMP API — Version 5.1 Preview, November 2019

NOoO ok~ W

10
11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

e omp_fulfill_ event, see Section 3.5.1 on page 395.

e ompt_callback_task_create_t, see Section 4.5.2.7 on page 469.

2.13.2 taskloop Construct

Summary

The taskloop construct specifies that the iterations of one or more associated loops will be
executed in parallel using explicit tasks. The iterations are distributed across tasks generated by the
construct and scheduled to be executed.

Syntax
C/C++

The syntax of the taskloop construct is as follows:

#fpragma omp taskloop [clause[[,] clause] ...] new-line
for-loops

where clause is one of the following:

if (/ taskloop :]scalar-expression)
shared (list)

private (list)

firstprivate (list)

lastprivate (list)

reduction ([default , Jreduction-identifier : list)
in_reduction (reduction-identifier : list)
default (data-sharing-attribute)
grainsize (grain-size)

num_tasks (num-tasks)

collapse (n)

final (scalar-expr)

priority (priority-value)

untied

mergeable

nogroup

allocate ([allocator :] list)

CHAPTER 2. DIRECTIVES 147

—_

NOoO g~

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26
27

28
29
30

148

The taskloop directive places restrictions on the structure of all associated for-loops.
Specifically, all associated for-loops must have canonical loop form (see Section 2.12.1 on
page 101).

C/C++

Fortran
The syntax of the taskloop construct is as follows:

!'Somp taskloop [clause[[,] clause] ...]
do-loops
[!'$omp end taskloop]/

where clause is one of the following:

if (/[taskloop :]scalar-logical-expression)
shared (list)

private (list)

firstprivate (list)

lastprivate (list)

reduction ([default , [reduction-identifier : list)
in_reduction (reduction-identifier : list)
default (data-sharing-attribute)

grainsize (grain-size)

num_tasks (num-tasks)

collapse (n)

final (scalar-logical-expr)

priority (priority-value)

untied

mergeable

nogroup

allocate ([allocator :] list)

If an end taskloop directive is not specified, an end taskloop directive is assumed at the end
of the do-loops.

The taskloop directive places restrictions on the structure of all associated do-loops.
Specifically, all associated do-loops must have canonical loop form (see Section 2.12.1 on
page 101).

Fortran

OpenMP API — Version 5.1 Preview, November 2019

Binding
The binding thread set of the taskloop region is the current team. A taskloop region binds to
the innermost enclosing parallel region.

Description

The taskloop construct is a task generating construct. When a thread encounters a taskloop
construct, the construct partitions the iterations of the associated loops into explicit tasks for
parallel execution. The data environment of each generated task is created according to the
data-sharing attribute clauses on the taskloop construct, per-data environment ICVs, and any
defaults that apply. The order of the creation of the loop tasks is unspecified. Programs that rely on
any execution order of the logical loop iterations are non-conforming.

By default, the taskloop construct executes as if it was enclosed in a taskgroup construct
with no statements or directives outside of the taskloop construct. Thus, the taskloop
construct creates an implicit taskgroup region. If the nogroup clause is present, no implicit
taskgroup region is created.

If a reduction clause is present on the taskloop construct, the behavior is as if a
task_reduction clause with the same reduction operator and list items was applied to the
implicit taskgroup construct enclosing the taskloop construct. The taskloop construct
executes as if each generated task was defined by a task construct on which an in_reduction
clause with the same reduction operator and list items is present. Thus, the generated tasks are
participants of the reduction defined by the task_reduction clause that was applied to the
implicit taskgroup construct.

If an in_reduction clause is present on the taskloop construct, the behavior is as if each
generated task was defined by a task construct on which an in_reduction clause with the
same reduction operator and list items is present. Thus, the generated tasks are participants of a
reduction previously defined by a reduction scoping clause.

If a grainsize clause is present on the taskloop construct, the number of logical loop
iterations assigned to each generated task is greater than or equal to the minimum of the value of
the grain-size expression and the number of logical loop iterations, but less than two times the value
of the grain-size expression.

The parameter of the grainsize clause must be a positive integer expression. If num_tasks is
specified, the taskloop construct creates as many tasks as the minimum of the num-tasks
expression and the number of logical loop iterations. Each task must have at least one logical loop
iteration. The parameter of the num_tasks clause must be a positive integer expression. If neither
a grainsize nor num_tasks clause is present, the number of loop tasks generated and the
number of logical loop iterations assigned to these tasks is implementation defined.

If any of the associated loop(s) is a generated loop of a tile directive, the effect of the
grainsize or num_tasks clauses on the partitioning of iterations into tasks is implementation
defined.

CHAPTER 2. DIRECTIVES 149

o~NOO O WN =

©

—_ a4
a b~ wWOwN-—=O

N = — =
O O 0N O®

N NN
W N =

N N
o

N NN
@® N o

WwwNn
N = O ©

W w w
o~ W

w
o]

w W
©

150

The collapse clause may be used to specify how many loops are associated with the taskloop
construct. The parameter of the collapse clause must be a constant positive integer expression.
If no collapse clause is present or its parameter is 1, the only loop that is associated with the
taskloop construct is the one that immediately follows the taskloop directive. If a
collapse clause is specified with a parameter value greater than 1 and more than one loop is
associated with the taskloop construct, then the iterations of all associated loops are collapsed
into one larger iteration space that is then divided according to the grainsize and num_tasks
clauses. The sequential execution of the iterations in all associated loops determines the order of
the iterations in the collapsed iteration space.

If more than one loop is associated with the taskloop construct then the number of times that
any intervening code between any two associated loops will be executed is unspecified but will be
at least once per iteration of the loop enclosing the intervening code and at most once per iteration
of the innermost loop associated with the construct. If the iteration count of any loop that is
associated with the taskloop construct is zero and that loop does not enclose intervening code,
the behavior is unspecified.

A taskloop loop has logical iterations numbered 0,1,...,N-1 where N is the number of loop
iterations, and the logical numbering denotes the sequence in which the iterations would be
executed if the set of associated loop(s) were executed sequentially. At the beginning of each
logical iteration, the loop iteration variable of each associated loop has the value that it would have
if the set of the associated loop(s) were executed sequentially.

The iteration count for each associated loop is computed before entry to the outermost loop. If
execution of any associated loop changes any of the values used to compute any of the iteration
counts, then the behavior is unspecified.

The integer type (or kind, for Fortran) used to compute the iteration count for the collapsed loop is
implementation defined.

When an if clause is present on a taskloop construct, and if the i £ clause expression evaluates
to false, undeferred tasks are generated. The use of a variable in an i £ clause expression of a
taskloop construct causes an implicit reference to the variable in all enclosing constructs.

When a £inal clause is present on a taskloop construct and the £inal clause expression
evaluates to frue, the generated tasks will be final tasks. The use of a variable in a £inal clause
expression of a taskloop construct causes an implicit reference to the variable in all enclosing
constructs.

When a priority clause is present on a taskloop construct, the generated tasks use the
priority-value as if it was specified for each individual task. If the priority clause is not
specified, tasks generated by the taskloop construct have the default task priority (zero).

If the untied clause is specified, all tasks generated by the taskloop construct are untied tasks.

When the mergeable clause is present on a taskloop construct, each generated task is a
mergeable task.

OpenMP API — Version 5.1 Preview, November 2019

\V]

NOoO o~ W

10
11
12
13

14
15

16
17

18
19
20
21
22
23

24
25
26

27
28

29
30

31
32

C++

For £irstprivate variables of class type, the number of invocations of copy constructors to
perform the initialization is implementation-defined.

C++

v v
Note — When storage is shared by a taskloop region, the programmer must ensure, by adding
proper synchronization, that the storage does not reach the end of its lifetime before the taskloop

region and its descendant tasks complete their execution.
A A

Execution Model Events

The taskloop-begin event occurs after a task encounters a taskloop construct but before any
other events that may trigger as a consequence of executing the taskloop. Specifically, a
taskloop-begin event for a taskloop will precede the raskgroup-begin that occurs unless a
nogroup clause is present. Regardless of whether an implicit taskgroup is present, a
taskloop-begin will always precede any task-create events for generated tasks.

The taskloop-end event occurs after a taskloop region finishes execution but before resuming
execution of the encountering task.

The taskloop-iteration-begin event occurs before an explicit task executes each iteration of a
taskloop.

Tool Callbacks

A thread dispatches a registered ompt__callback_work callback for each occurrence of a
taskloop-begin and taskloop-end event in that thread. The callback occurs in the context of the
encountering task. The callback has type signature ompt_callback_work_t. The callback
receives ompt__scope_begin or ompt_scope_end as its endpoint argument, as appropriate,
and ompt_work_taskloop as its wstype argument.

A thread dispatches a registered ompt__callback_dispatch callback for each occurrence of a
taskloop-iteration-begin event in that thread. The callback occurs in the context of the encountering
task. The callback has type signature ompt_callback_dispatch t.

Restrictions

The restrictions of the taskloop construct are as follows:

e A program that branches into or out of a taskloop region is non-conforming.
e No OpenMP directive may appear in the region between any associated loops.

e If a collapse clause is specified, exactly one loop must occur in the region at each nesting
level up to the number of loops specified by the parameter of the collapse clause.

CHAPTER 2. DIRECTIVES 151

o © 0o NOo O »~ W N =

—_ -
—_

12
13

14
15
16
17
18
19
20
21

22

23
24
25
26

152

If a reduction clause is present on the taskloop directive, the nogroup clause must not
be specified.

The same list item cannot appear in both a reduction and an in_reduction clause.
At most one grainsize clause can appear on a taskloop directive.
At most one num_tasks clause can appear on a taskloop directive.

The grainsize clause and num_tasks clause are mutually exclusive and may not appear on
the same taskloop directive.

At most one collapse clause can appear on a taskloop directive.
At most one if clause can appear on the directive.
At most one £inal clause can appear on the directive.

At most one priority clause can appear on the directive.

Cross References

tile construct, see Section 2.12.7.1 on page 140.

task construct, Section 2.13.1 on page 142.

if clause, see Section 2.18 on page 224.

taskgroup construct, Section 2.20.6 on page 235.

Data-sharing attribute clauses, Section 2.22.4 on page 284.

ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
ompt_work_taskloop, see Section 4.4.4.15 on page 449.
ompt_callback_work_t, see Section 4.5.2.5 on page 466.
ompt_callback_dispatch_t, see Section 4.5.2.6 on page 467.

2.13.3 taskloop simd Construct

Summary

The taskloop simd construct specifies a loop that can be executed concurrently using SIMD
instructions and that those iterations will also be executed in parallel using explicit tasks. The
taskloop simd construct is a composite construct.

OpenMP API — Version 5.1 Preview, November 2019

11
12

13
14

15
16
17

18
19
20
21
22
23
24
25

26
27

28
29

Syntax
C/C++

The syntax of the taskloop simd construct is as follows:

#pragma omp taskloop simd [clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the taskloop or simd directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the taskloop simd construct is as follows:
'Somp taskloop simd [clause[[,] clause] ...]
do-loops
[!'$omp end taskloop simd]

where clause can be any of the clauses accepted by the taskloop or simd directives with
identical meanings and restrictions.

If an end taskloop simd directive is not specified, an end taskloop simd directive is
assumed at the end of the do-loops.

Fortran

Binding
The binding thread set of the taskloop simd region is the current team. A taskloop simd
region binds to the innermost enclosing parallel region.

Description

The taskloop simd construct will first distribute the iterations of the associated loop(s) across
tasks in a manner consistent with any clauses that apply to the taskloop construct. The resulting
tasks will then be converted to a SIMD loop in a manner consistent with any clauses that apply to
the simd construct, except for the collapse clause. For the purposes of each task’s conversion
to a SIMD loop, the collapse clause is ignored and the effect of any in_reduction clause is
as if a reduction clause with the same reduction operator and list items is present on the simd
construct.

Execution Model Events
This composite construct generates the same events as the taskloop construct.

Tool Callbacks

This composite construct dispatches the same callbacks as the taskloop construct.

CHAPTER 2. DIRECTIVES 153

0o N o o~ W N =

10
11
12

13

14
15
16

17

18
19

20
21

22
23
24

25
26

154

Restrictions
e The restrictions for the taskloop and simd constructs apply.

e The conditional modifier may not appear in a lastprivate clause.

e If any if clause on the directive includes a directive-name-modifier then all i £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the taskloop directive-name-modifier can appear on the directive.

e At most one if clause with the simd directive-name-modifier can appear on the directive.

Cross References
e simd construct, see Section 2.12.3.1 on page 115.

e taskloop construct, see Section 2.13.2 on page 147.

e Data-sharing attribute clauses, see Section 2.22.4 on page 284.

2.13.4 taskyield Construct

Summary
The taskyield construct specifies that the current task can be suspended in favor of execution of
a different task. The taskyield construct is a stand-alone directive.

Syntax
C/C++

The syntax of the taskyield construct is as follows:
I #pragma omp taskyield new-line
C/C++
Fortran
The syntax of the taskyield construct is as follows:
| !$omp taskyield
Fortran
Binding
A taskyield region binds to the current task region. The binding thread set of the taskyield
region is the current team.

Description
The taskyield region includes an explicit task scheduling point in the current task region.

OpenMP API — Version 5.1 Preview, November 2019

—_

- O O © N O o~ W

—_ -

—a a
w N

14
15
16
17
18

19
20
21
22
23
24
25

26
27
28
29
30

31
32
33
34

Cross References
e Task scheduling, see Section 2.13.6 on page 156.

2.13.5 Initial Task

Execution Model Events
No events are associated with the implicit parallel region in each initial thread.

The initial-thread-begin event occurs in an initial thread after the OpenMP runtime invokes the tool
initializer but before the initial thread begins to execute the first OpenMP region in the initial task.

The initial-task-begin event occurs after an initial-thread-begin event but before the first OpenMP
region in the initial task begins to execute.

The initial-task-end event occurs before an initial-thread-end event but after the last OpenMP
region in the initial task finishes to execute.

The initial-thread-end event occurs as the final event in an initial thread at the end of an initial task
immediately prior to invocation of the tool finalizer.

Tool Callbacks

A thread dispatches a registered ompt_callback_thread_begin callback for the
initial-thread-begin event in an initial thread. The callback occurs in the context of the initial
thread. The callback has type signature ompt_callback_ thread begin_t. The callback
receives ompt_thread_initial asits thread_type argument.

A thread dispatches a registered ompt_callback_implicit_task callback with
ompt_scope_begin as its endpoint argument for each occurrence of an initial-task-begin in
that thread. Similarly, a thread dispatches a registered ompt_callback_implicit_task
callback with ompt__scope_end as its endpoint argument for each occurrence of an
initial-task-end event in that thread. The callbacks occur in the context of the initial task and have
type signature ompt_callback_implicit_task_t. In the dispatched callback,

(flag & ompt_task_initial) always evaluates to frue.

A thread dispatches a registered ompt_callback_thread_end callback for the
initial-thread-end event in that thread. The callback occurs in the context of the thread. The
callback has type signature ompt_callback thread end_t. The implicit parallel region
does not dispatch a ompt_callback_parallel_end callback; however, the implicit parallel
region can be finalized within this ompt_callback_thread_end callback.

Cross References
e ompt_thread_initial, see Section 4.4.4.10 on page 447.

e ompt_task_initial, see Section 4.4.4.18 on page 450.
e ompt_callback_thread_begin_t, see Section 4.5.2.1 on page 462.

CHAPTER 2. DIRECTIVES 155

—_

£ NGO R o)

156

ompt_callback_thread_end_t, see Section 4.5.2.2 on page 462.
ompt_callback_parallel_begin_t, see Section 4.5.2.3 on page 463.
ompt_callback _parallel end t, see Section 4.5.2.4 on page 465.
ompt_callback_implicit_task_t, see Section 4.5.2.11 on page 473.

2.13.6 Task Scheduling

Whenever a thread reaches a task scheduling point, the implementation may cause it to perform a
task switch, beginning or resuming execution of a different task bound to the current team. Task
scheduling points are implied at the following locations:

during the generation of an explicit task;

the point immediately following the generation of an explicit task;
after the point of completion of the structured block associated with a task;
in a taskyield region;

in a taskwait region;

at the end of a taskgroup region;

in an implicit barrier region;

in an explicit barrier region;

during the generation of a target region;

the point immediately following the generation of a target region;
at the beginning and end of a target data region;

in a target update region;

in a target enter data region;

in a target exit data region;

in the omp_target_memcpy routine;

in the omp_target_memcpy_async routine;

in the omp_target_memcpy_rect routine;

in the omp_target_memcpy_rect_async routine.

When a thread encounters a task scheduling point it may do one of the following, subject to the
Task Scheduling Constraints (below):

begin execution of a tied task bound to the current team;

OpenMP API — Version 5.1 Preview, November 2019

e resume any suspended task region, bound to the current team, to which it is tied;

e begin execution of an untied task bound to the current team; or

e resume any suspended untied task region bound to the current team.

If more than one of the above choices is available, it is unspecified as to which will be chosen.
Task Scheduling Constraints are as follows:

1. Scheduling of new tied tasks is constrained by the set of task regions that are currently tied to the
thread and that are not suspended in a barrier region. If this set is empty, any new tied task may
be scheduled. Otherwise, a new tied task may be scheduled only if it is a descendent task of
every task in the set.

2. A dependent task shall not start its execution until its task dependences are fulfilled.

3. A task shall not be scheduled while any task with which it is mutually exclusive has been
scheduled, but has not yet completed.

4. When an explicit task is generated by a construct containing an if clause for which the
expression evaluated to false, and the previous constraints are already met, the task is executed
immediately after generation of the task.

A program relying on any other assumption about task scheduling is non-conforming.

v v
Note — Task scheduling points dynamically divide task regions into parts. Each part is executed
uninterrupted from start to end. Different parts of the same task region are executed in the order in
which they are encountered. In the absence of task synchronization constructs, the order in which a
thread executes parts of different schedulable tasks is unspecified.

A program must behave correctly and consistently with all conceivable scheduling sequences that
are compatible with the rules above.

For example, if threadprivate storage is accessed (explicitly in the source code or implicitly
in calls to library routines) in one part of a task region, its value cannot be assumed to be preserved
into the next part of the same task region if another schedulable task exists that modifies it.

As another example, if a lock acquire and release happen in different parts of a task region, no
attempt should be made to acquire the same lock in any part of another task that the executing
thread may schedule. Otherwise, a deadlock is possible. A similar situation can occur when a
critical region spans multiple parts of a task and another schedulable task contains a
critical region with the same name.

The use of threadprivate variables and the use of locks or critical sections in an explicit task with an
if clause must take into account that when the i f clause evaluates to false, the task is executed

immediately, without regard to Task Scheduling Constraint 2.
A A

CHAPTER 2. DIRECTIVES 157

13

14

15
16
17
18

19

20
21
22
23
24

158

Execution Model Events
The task-schedule event occurs in a thread when the thread switches tasks at a task scheduling
point; no event occurs when switching to or from a merged task.

Tool Callbacks

A thread dispatches a registered ompt_callback_task_schedule callback for each
occurrence of a fask-schedule event in the context of the task that begins or resumes. This callback
has the type signature ompt_callback_task_schedule_t. The argument prior_task_status
is used to indicate the cause for suspending the prior task. This cause may be the completion of the
prior task region, the encountering of a taskyield construct, or the encountering of an active
cancellation point.

Cross References
e ompt_callback_task_schedule_t, see Section 4.5.2.10 on page 472.

2.14 Memory Management Directives
2.14.1 Memory Spaces

OpenMP memory spaces represent storage resources where variables can be stored and retrieved.
Table 2.8 shows the list of predefined memory spaces. The selection of a given memory space
expresses an intent to use storage with certain traits for the allocations. The actual storage resources
that each memory space represents are implementation defined.

TABLE 2.8: Predefined Memory Spaces

Memory space name Storage selection intent
omp_default_mem_space Represents the system default storage.
omp_large_cap_mem_space Represents storage with large capacity.
omp_const_mem_space Represents storage optimized for variables with

constant values. The result of writing to this storage
is unspecified.

omp_high_bw_mem_space Represents storage with high bandwidth.
omp_low_lat_mem_space Represents storage with low latency.
v v

Note — For variables allocated in the omp_const_mem_space memory space OpenMP
supports initializing constant memory either by means of the £irstprivate clause or through
initialization with compile time constants for static and constant variables. Implementation-defined

mechanisms to provide the constant value of these variables may also be supported.
A A

OpenMP API — Version 5.1 Preview, November 2019

—_

O W ONO OLhA~ O

—_

11

12
13

14
15

16
17

Cross References
e omp_init_allocator routine, see Section 3.8.2 on page 415.

2.14.2 Memory Allocators

OpenMP memory allocators can be used by a program to make allocation requests. When a
memory allocator receives a request to allocate storage of a certain size, an allocation of logically
consecutive memory in the resources of its associated memory space of at least the size that was
requested will be returned if possible. This allocation will not overlap with any other existing
allocation from an OpenMP memory allocator.

The behavior of the allocation process can be affected by the allocator traits that the user specifies.
Table 2.9 shows the allowed allocators traits, their possible values and the default value of each trait.

TABLE 2.9: Allocator Traits

Allocator trait Allowed values Default value

sync_hint contended, uncontended, contended
serialized, private

alignment A positive integer value that is a power of 1 byte
2
access all, cgroup, pteam, thread all
pool_size Positive integer value Implementation
defined
fallback default_mem fb, null fb, default_mem_ fb
abort_fb,allocator_f£fb
fb_data an allocator handle (none)
pinned true, false false
partition environment, nearest, blocked, environment
interleaved

The sync_hint trait describes the expected manner in which multiple threads may use the
allocator. The values and their description are:

e contended: high contention is expected on the allocator; that is, many threads are expected to
request allocations simultaneously.

e uncontended: low contention is expected on the allocator; that is, few threads are expected to
request allocations simultaneously.

CHAPTER 2. DIRECTIVES 159

oNO OO N-=

11
12
13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40

160

e serialized: only one thread at a time will request allocations with the allocator. Requesting
two allocations simultaneously when specifying serialized results in unspecified behavior.

e private: the same thread will request allocations with the allocator every time. Requesting an
allocation from different threads, simultaneously or not, when specifying private results in
unspecified behavior.

Allocated memory will be byte aligned to at least the value specified for the alignment trait of
the allocator. Some directives and API routines can specify additional requirements on alignment
beyond those described in this section.

Memory allocated by allocators with the access trait defined to be all must be accessible by all
threads in the device where the allocation was requested. Memory allocated by allocators with the
access trait defined to be cgroup will be memory accessible by all threads in the same
contention group as the thread that requested the allocation. Attempts to access the memory
returned by an allocator with the access trait defined to be cgroup from a thread that is not part
of the same contention group as the thread that allocated the memory result in unspecified behavior.
Memory allocated by allocators with the access trait defined to be pteam will be memory
accessible by all threads that bind to the same parallel region of the thread that requested the
allocation. Attempts to access the memory returned by an allocator with the access trait defined
to be pteam from a thread that does not bind to the same parallel region as the thread that
allocated the memory result in unspecified behavior. Memory allocated by allocator with the
access trait defined to be thread will be memory accessible by the thread that requested the
allocation. Attempts to access the memory returned by an allocator with the access trait defined
to be thread from a thread other than the one that allocated the memory result in unspecified
behavior.

The total amount of storage in bytes that an allocator can use is limited by the pool_size trait.
For allocators with the access trait defined to be all, this limit refers to allocations from all
threads that access the allocator. For allocators with the access trait defined to be cgroup, this
limit refers to allocations from threads that access the allocator from the same contention group. For
allocators with the access trait defined to be pteam, this limit refers to allocations from threads
that access the allocator from the same parallel team. For allocators with the access trait defined
to be thread, this limit refers to allocations from each thread that access the allocator. Requests
that would result in using more storage than pool_size will not be fulfilled by the allocator.

The fallback trait specifies how the allocator behaves when it cannot fulfill an allocation
request. If the fallback trait is set to null_ £b, the allocator returns the value zero if it fails to
allocate the memory. If the fallback trait is set to abort_ £b, program execution will be
terminated if the allocation fails. If the £allback trait is set to allocator_£b then when an
allocation fails the request will be delegated to the allocator specified in the £b_data trait. If the
fallback trait is set to default_mem f£b then when an allocation fails another allocation will
be tried in the omp_default_mem_space memory space, which assumes all allocator traits to
be set to their default values except for fallback trait which will be set to null_fb.

Allocators with the pinned trait defined to be t rue ensure that their allocations remain in the

OpenMP API — Version 5.1 Preview, November 2019

1 same storage resource at the same location for their entire lifetime.

2 The partition trait describes the partitioning of allocated memory over the storage resources
3 represented by the memory space associated with the allocator. The partitioning will be done in
4 parts with a minimum size that is implementation defined. The values are:
5 e environment: the placement of allocated memory is determined by the execution
6 environment.
7 e nearest: allocated memory is placed in the storage resource that is nearest to the thread that
8 requests the allocation.
9 e blocked: allocated memory is partitioned into parts of approximately the same size with at
10 most one part per storage resource.
11 e interleaved: allocated memory parts are distributed in a round-robin fashion across the
12 storage resources.
13 Table 2.10 shows the list of predefined memory allocators and their associated memory spaces. The
14 predefined memory allocators have default values for their allocator traits unless otherwise
15 specified.

TABLE 2.10: Predefined Allocators

Allocator name Associated memory space

Non-default trait
values

omp_default_mem alloc omp_default_mem_space (none)
omp_large_cap_mem alloc omp_large_cap_mem_space (none)
omp_const_mem_alloc omp_const_mem_space (none)

10 omp_high bw_mem_alloc omp_high_bw_mem_ space (none)
omp_low_lat _mem alloc omp_low lat_mem_ space (none)
omp_cgroup_mem_alloc Implementation defined access:cgroup
omp_pteam_mem alloc Implementation defined access:pteam
omp_thread_mem_alloc Implementation defined access:thread

Fortran

17 If any operation of the base language causes a reallocation of an array that is allocated with a

18 memory allocator then that memory allocator will be used to release the current memory and to

19 allocate the new memory.

Fortran

CHAPTER 2. DIRECTIVES 161

o g~ W N =

11
12
13
14
15

16

17
18

19

20
21
22
23

24
25

26

162

Cross References
e omp_init_allocator routine, see Section 3.8.2 on page 415.

e omp_destroy_ allocator routine, see Section 3.8.3 on page 417.
e omp_set_default_allocator routine, see Section 3.8.4 on page 417.
e omp_get_default_allocator routine, see Section 3.8.5 on page 418.

e OMP_ALLOCATOR environment variable, see Section 6.21 on page 601.

2.14.3 allocate Directive

Summary
The allocate directive specifies how a set of variables are allocated. The allocate directive
is a declarative directive if it is not associated with an allocation statement.

Syntax
C/C++

The syntax of the allocate directive is as follows:
I #pragma omp allocate (list) [clause] new-line

where clause is one of the following:

I allocator (allocator)

where allocator is an expression of omp_allocator_handle_t type.

C/C++

Fortran
The syntax of the allocate directive is as follows:

I 'Somp allocate (list) [clause]

or

'Somp allocate/ (list) | clause
[!'$omp allocate (list) clause

[..1]

allocate statement

where clause is one of the following:

I allocator (allocator)

where allocator is an integer expression of omp_allocator_handle_kind kind.
Fortran

OpenMP API — Version 5.1 Preview, November 2019

© NOoO O~ WODND =

11
12
13

14
15

16
17
18

19
20

21

22
23
24

25
26

27
28

Description

If the directive is not associated with a statement, the storage for each list item that appears in the
directive will be provided by an allocation through a memory allocator. If no clause is specified
then the memory allocator specified by the def-allocator-var ICV will be used. If the allocator
clause is specified, the memory allocator specified in the clause will be used. The allocation of each
list item will be byte aligned to at least the alignment required by the base language for the type of
that list item.

The scope of this allocation is that of the list item in the base language. At the end of the scope for a
given list item the memory allocator used to allocate that list item deallocates the storage.

Fortran

If the directive is associated with an allocate statement, the same list items appearing in the
directive list and the allocate statement list are allocated with the memory allocator of the directive.
If no list items are specified then all variables listed in the allocate statement are allocated with the
memory allocator of the directive.

Fortran

For allocations that arise from this directive the null_ £b value of the fallback allocator trait will
behave as if the abort_ £b had been specified.

Restrictions
e A variable that is part of another variable (as an array or structure element) cannot appear in an
allocate directive.

e The allocate directive must appear in the same scope as the declarations of each of its list
items and must follow all such declarations.

e At most one allocator clause can appear on the allocate directive.

e allocate directives that appear in a target region must specify an allocator clause
unless a requires directive with the dynamic_allocators clause is present in the same
compilation unit.

C/C++

o If a list item has a static storage type, the allocator expression in the allocator clause must
be a constant expression that evaluates to one of the predefined memory allocator values.

e After a list item has been allocated, the scope that contains the allocate directive must not end
abnormally other than through C++ exceptions, such as through a call to the 1ongjmp function.

C/C++

CHAPTER 2. DIRECTIVES 163

O ©Woo~N OO0 AW N =

—_

11
12

13

14
15

16

17
18
19

20
21

22

23

24

Fortran

e List items specified in the allocate directive must not have the ALLOCATABLE attribute
unless the directive is associated with an allocate statement.

e List items specified in an allocate directive that is associated with an allocate statement must
be variables that are allocated by the allocate statement.

e Multiple directives can only be associated with an allocate statement if list items are specified on
each allocate directive.

o If a list item has the SAVE attribute, is a common block name, or is declared in the scope of a
module, then only predefined memory allocator parameters can be used in the allocator
clause.

e A type parameter inquiry cannot appear in an allocate directive.

Fortran

Cross References
o def-allocator-var ICV, see Section 2.6.1 on page 66.

e Memory allocators, see Section 2.14.2 on page 159.

e omp_allocator_handle_t and omp_allocator_handle_kind, see Section 3.8.1 on
page 413.

2.14.4 allocate Clause

Summary
The allocate clause specifies the memory allocator to be used to obtain storage for private
variables of a directive.

Syntax

The syntax of the allocate clause is as follows:
I allocate ([allocator:] list)

C/C++

where allocator is an expression of the omp_allocator_handle_t type.

C/C++

Fortran
where allocator is an integer expression of the omp_allocator_handle_kind kind.
Fortran

OpenMP API — Version 5.1 Preview, November 2019

© NOoO O~ WD =

11
12

13
14

15
16
17

18
19

20

21
22

23

24

25
26
27
28
29

30
31

32
33

Description

The storage for new list items that arise from list items that appear in the directive will be provided
through a memory allocator. If an allocator is specified in the clause, that allocator will be used for
allocations. For all directives except the target directive, if no allocator is specified in the clause
then the memory allocator that is specified by the def-allocator-var ICV will be used for the list
items that are specified in the allocate clause. The allocation of each list item will be byte
aligned to at least the alignment required by the base language for the type of that list item.

For allocations that arise from this clause the null_ £b value of the fallback allocator trait will
behave as if the abort_ £b had been specified.

Restrictions
e For any list item that is specified in the allocate clause on a directive, a data-sharing attribute
clause that may create a private copy of that list item must be specified on the same directive.

e For task, taskloop or target directives, allocation requests to memory allocators with the
trait access set to thread result in unspecified behavior.

e allocate clauses that appear on a target construct or on constructs in a target region
must specify an allocator expression unless a requires directive with the
dynamic_allocators clause is present in the same compilation unit.

Cross References
o def-allocator-var ICV, see Section 2.6.1 on page 66.

e Memory allocators, see Section 2.14.2 on page 159.

e omp_allocator_handle_t and omp_allocator_handle_kind, see Section 3.8.1 on
page 413.

2.15 Device Directives

2.15.1 Device Initialization

Execution Model Events

The device-initialize event occurs in a thread that encounters the first target, target data, or
target enter data construct or a device memory routine that is associated with a particular
target device after the thread initiates initialization of OpenMP on the device and the device’s
OpenMP initialization, which may include device-side tool initialization, completes.

The device-load event for a code block for a target device occurs in some thread before any thread
executes code from that code block on that target device.

The device-unload event for a target device occurs in some thread whenever a code block is
unloaded from the device.

CHAPTER 2. DIRECTIVES 165

N —

o~N OO0k~ W

11
12

13
14
15

16
17
18

19
20

21
22

23
24
25

26

27
28
29

166

The device-finalize event for a target device that has been initialized occurs in some thread before
an OpenMP implementation shuts down.

Tool Callbacks

A thread dispatches a registered ompt_callback_device_initialize callback for each
occurrence of a device-initialize event in that thread. This callback has type signature
ompt_callback_device_initialize_t.

A thread dispatches a registered ompt_callback_device_load callback for each occurrence
of a device-load event in that thread. This callback has type signature
ompt_callback_device_load t.

A thread dispatches a registered ompt_callback_device_unload callback for each
occurrence of a device-unload event in that thread. This callback has type signature
ompt_callback_device_unload_t.

A thread dispatches a registered ompt_callback_device_finalize callback for each
occurrence of a device-finalize event in that thread. This callback has type signature
ompt_callback_device_finalize_t.

Restrictions
No thread may offload execution of an OpenMP construct to a device until a dispatched
ompt_callback_device_initialize callback completes.

No thread may offload execution of an OpenMP construct to a device after a dispatched
ompt_callback_device_finalize callback occurs.

Cross References
e ompt_callback_device_initialize_t, see Section 4.5.2.19 on page 482.

e ompt_callback_device_finalize_t, see Section 4.5.2.20 on page 484.
e ompt_callback _device_load t, see Section 4.5.2.21 on page 485.
e ompt_callback_device_unload_t, see Section 4.5.2.22 on page 486.

2.15.2 target data Construct

Summary
The target data construct maps variables to a device data environment for the extent of the
region.

OpenMP API — Version 5.1 Preview, November 2019

AW

o © 00 N o O

11

12
13
14

15

16
17
18
19
20

21
22
23

Syntax

The syntax of the target data construct is as follows:

C/C++

#pragma omp target data clause [[,] clause] ... | new-line

structured-block

where clause is one of the following:

device (integer-expression)

use_device_ptr (ptr-list)

use_device_addr (list)

The syntax of the target data construct is as follows:

if (/[target data :] scalar-expression)

C/C++

Fortran

!Somp target data clause/ [[,] clause] ... |

structured-block
!Somp end target data

where clause is one of the following:

use_device_ptr (ptr-list)

use_device_addr (list)

Binding

device (scalar-integer-expression)

Fortran

map ([[map-type-modifier([, | [map-type-modifier[, | ...] map-type : | locator-list)

if (/[target data :]scalar-logical-expression)

map ([[map-type-modifier([, | [map-type-modifier([, | ...] map-type : | locator-list)

The binding task set for a target data region is the generating task. The target data region

binds to the region of the generating task.

CHAPTER 2. DIRECTIVES

167

0oNOO O WN =

11
12
13
14

15
16
17
18

19
20
21

22
23

24
25
26
27

28
29

30
31
32
33
34

35
36
37

168

Description

When a target data construct is encountered, the encountering task executes the region. If no
device clause is present, the default device is determined by the default-device-var ICV. When an
if clause is present and the i £ clause expression evaluates to false, the device is the host.
Variables are mapped for the extent of the region, according to any data-mapping attribute clauses,
from the data environment of the encountering task to the device data environment. Pointers that
appear in a use_device_ptr clause are privatized and the device pointers to the corresponding
list items in the device data environment are assigned into the private versions.

List items that appear in a use_device_addr clause have the address of the corresponding
object in the device data environment inside the construct. For objects, any reference to the value of
the object will be to the corresponding object on the device, while references to the address will
result in a valid device address that points to that object. Array sections privatize the base of the
array section and assign the private copy to the address of the corresponding array section in the
device data environment.

If one or more of the use_device_ptr or use_device_addr clauses and one or more map
clauses are present on the same construct, the address conversions of use_device_addr and
use_device_ptr clauses will occur as if performed after all variables are mapped according to
those map clauses.

Execution Model Events
The events associated with entering a target data region are the same events as associated with a
target enter data construct, described in Section 2.15.3 on page 169.

The events associated with exiting a target data region are the same events as associated with a
target exit data construct, described in Section 2.15.4 on page 172.

Tool Callbacks

The tool callbacks dispatched when entering a target data region are the same as the tool callbacks
dispatched when encountering a target enter data construct, described in Section 2.15.3 on

page 169.

The tool callbacks dispatched when exiting a target data region are the same as the tool callbacks
dispatched when encountering a target exit data construct, described in Section 2.15.4 on page 172.

Restrictions

e A program must not depend on any ordering of the evaluations of the clauses of the
target data directive, except as explicitly stated for map clauses relative to
use_device_ptr and use_device_addr clauses, or on any side effects of the evaluations
of the clauses.

e At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

OpenMP API — Version 5.1 Preview, November 2019

—_

O W oo~ OO A W N

—_ .
—_

12
13

14
15
16
17

18

19
20
21

22

23
24

25

26
27
28
29
30

At most one if clause can appear on the directive.
A map-type in a map clause must be to, from, tofromor alloc.

At least one map, use_device_addr or use_device_ptr clause must appear on the
directive.

A list item in a use_device_ptr clause must hold the address of an object that has a
corresponding list item in the device data environment.

A listitem in a use_device_addr clause must have a corresponding list item in the device

data environment.

A list item that specifies a given variable may not appear in more than one use_device_ptr

clause.

A reference to a list item in a use_device_addr clause must be to the address of the list item.

Cross References

default-device-var, see Section 2.6 on page 66.

if Clause, see Section 2.18 on page 224.

map clause, see Section 2.22.7.1 on page 318.
omp_get_num_devices routine, see Section 3.2.36 on page 370.

ompt_callback_target_t, see Section 4.5.2.26 on page 490.

2.15.3 target enter data Construct

Summary
The target enter data directive specifies that variables are mapped to a device data
environment. The target enter data directive is a stand-alone directive.

Syntax

C/C++

The syntax of the target enter data construct is as follows:

I#pragma omp target enter data [clause[[,] clause]...] new-line

where clause is one of the following:

if (/[target enter data :] scalar-expression)

device (infeger-expression)

map (/map-type-modifier[, | [map-type-modifier[,] ...] map-type: locator-list)
depend (/depend-modifier, | dependence-type : locator-list)

nowait

CHAPTER 2. DIRECTIVES

169

N

0o N O g M~ W

10
11
12

13
14
15

16
17

18
19
20
21
22
23

24
25

26
27

28
29
30

170

C/C++
Fortran

The syntax of the target enter data is as follows:

I 'Somp target enter data [clause[[,] clause]...]

where clause is one of the following:

if (/[target enter data :] scalar-logical-expression)

device (scalar-integer-expression)

map ([map-type-modifier[, | [map-type-modifier[, | ...] map-type: locator-list)
depend ([depend-modifier, | dependence-type : locator-list)

nowait

Fortran

Binding

The binding task set for a target enter data region is the generating task, which is the rarget
task generated by the target enter data construct. The target enter data region binds
to the corresponding target task region.

Description
When a target enter data construct is encountered, the list items are mapped to the device
data environment according to the map clause semantics.

The target enter data construct is a task generating construct. The generated task is a target
task. The generated task region encloses the target enter data region.

All clauses are evaluated when the target enter data construct is encountered. The data
environment of the farget task is created according to the data-sharing attribute clauses on the
target enter data construct, per-data environment ICVs, and any default data-sharing
attribute rules that apply to the target enter data construct. A variable that is mapped in the
target enter data construct has a default data-sharing attribute of shared in the data
environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.22.7.1 on page 318)
occur when the target task executes.

If the nowait clause is present, execution of the rarget task may be deferred. If the nowait
clause is not present, the farget task is an included task.

If a depend clause is present, it is associated with the target task.
If no device clause is present, the default device is determined by the default-device-var ICV.

When an if clause is present and the i £ clause expression evaluates to false, the device is the host.

OpenMP API — Version 5.1 Preview, November 2019

o »~ WON-=

(oo NI 0)]

11
12
13
14
15
16
17

18
19
20

21

22
23
24

25
26
27
28
29
30
31
32
33
34

Execution Model Events
Events associated with a target task are the same as for the task construct defined in
Section 2.13.1 on page 142.

The target-enter-data-begin event occurs when a thread enters a target enter data region.
The target-enter-data-end event occurs when a thread exits a target enter data region.
Tool Callbacks

Callbacks associated with events for rarget tasks are the same as for the task construct defined in

Section 2.13.1 on page 142; (flags & ompt_task_target) always evaluates to true in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target_enter_data as its kind
argument for each occurrence of a target-enter-data-begin event in that thread in the context of the
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target
callback with ompt__scope_end as its endpoint argument and ompt_target_enter_data
as its kind argument for each occurrence of a target-enter-data-end event in that thread in the
context of the target task on the host. These callbacks have type signature
ompt_callback_target_t.

Restrictions
e A program must not depend on any ordering of the evaluations of the clauses of the
target enter data directive, or on any side effects of the evaluations of the clauses.

o At least one map clause must appear on the directive.

e At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

e At most one if clause can appear on the directive.

o A map-type must be specified in all map clauses and must be either to or alloc.
e At most one nowait clause can appear on the directive.

Cross References

e default-device-var, see Section 2.6.1 on page 66.

e task, see Section 2.13.1 on page 142.

e task scheduling constraints, see Section 2.13.6 on page 156.

e target data, see Section 2.15.2 on page 166.

e target exit data, see Section 2.15.4 on page 172.

e if Clause, see Section 2.18 on page 224.

CHAPTER 2. DIRECTIVES 171

No o M

11

12
13
14
15
16

17
18

19

20
21
22
23
24

172

e map clause, see Section 2.22.7.1 on page 318.

e omp_get_num_devices routine, see Section 3.2.36 on page 370.

e ompt_callback_ target_t, see Section 4.5.2.26 on page 490.

2.15.4 target exit data Construct

Summary

The target exit data directive specifies that list items are unmapped from a device data
environment. The target exit data directive is a stand-alone directive.

Syntax
C/C++

The syntax of the target exit data construct is as follows:

I #pragma omp target exit data [clause[[,] clause]...] new-line

where clause is one of the following:

device (integer-expression)

nowait

C/C++
Fortran
The syntax of the target exit data is as follows:

if (/[target exit data :]scalar-expression)

map (/map-type-modifier(, | [map-type-modifier(, | ...] map-type : locator-list)
depend (/depend-modifier, | dependence-type :

locator-list)

| !$omp target exit data [clause[[,] clause]...]

where clause is one of the following:

device (scalar-integer-expression)

nowait

Fortran

OpenMP API — Version 5.1 Preview, November 2019

if (/[target exit data :]scalar-logical-expression)

map ([map-type-modifier[, | [map-type-modifier[, | ...] map-type: locator-list)
depend (/depend-modifier, | dependence-type :

locator-list)

A OWND =

(o0} ~N O O

11
12
13
14
15

16
17

18
19

20
21
22

23
24
25

26
27

28
29
30
31

32
33
34
35

Binding

The binding task set for a target exit data region is the generating task, which is the target
task generated by the target exit data construct. The target exit data region binds to
the corresponding farget task region.

Description
When a target exit data construct is encountered, the list items in the map clauses are
unmapped from the device data environment according to the map clause semantics.

The target exit data construct is a task generating construct. The generated task is a rarget
task. The generated task region encloses the target exit data region.

All clauses are evaluated when the target exit data construct is encountered. The data
environment of the farget task is created according to the data-sharing attribute clauses on the
target exit data construct, per-data environment ICVs, and any default data-sharing attribute
rules that apply to the target exit data construct. A variable that is mapped in the

target exit data construct has a default data-sharing attribute of shared in the data
environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.22.7.1 on page 318)
occur when the rarget task executes.

If the nowait clause is present, execution of the rarget task may be deferred. If the nowait
clause is not present, the target task is an included task.

If a depend clause is present, it is associated with the rarget task.
If no device clause is present, the default device is determined by the default-device-var ICV.

When an if clause is present and the i f clause expression evaluates to false, the device is the host.

Execution Model Events
Events associated with a target task are the same as for the task construct defined in
Section 2.13.1 on page 142.

The target-exit-data-begin event occurs when a thread enters a target exit data region.

The target-exit-data-end event occurs when a thread exits a target exit data region.

Tool Callbacks

Callbacks associated with events for farget tasks are the same as for the task construct defined in
Section 2.13.1 on page 142; (flags & ompt_task_target) always evaluates to frue in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target_exit_data as its kind
argument for each occurrence of a target-exit-data-begin event in that thread in the context of the
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target

CHAPTER 2. DIRECTIVES 173

W N =

15
16

17
18
19
20
21
22
23
24

25

26
27
28

174

callback with ompt_scope_end as its endpoint argument and ompt_target_exit_data as
its kind argument for each occurrence of a target-exit-data-end event in that thread in the context of
the target task on the host. These callbacks have type signature ompt_callback_target_t.

Restrictions

A program must not depend on any ordering of the evaluations of the clauses of the
target exit data directive, or on any side effects of the evaluations of the clauses.

At least one map clause must appear on the directive.

At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num devices () or
to the value of omp_get_initial_ device().

At most one if clause can appear on the directive.

A map-type must be specified in all map clauses and must be either £rom, release, or
delete.

At most one nowait clause can appear on the directive.

Cross References

default-device-var, see Section 2.6.1 on page 66.

task, see Section 2.13.1 on page 142.

task scheduling constraints, see Section 2.13.6 on page 156.
target data, see Section 2.15.2 on page 166.

target enter data, see Section 2.15.3 on page 169.

if Clause, see Section 2.18 on page 224.

map clause, see Section 2.22.7.1 on page 318.
omp_get_num_devices routine, see Section 3.2.36 on page 370.

ompt_callback_target_t, see Section 4.5.2.26 on page 490.

2.15.5 target Construct

Summary
The target construct maps variables to a device data environment and executes the construct on
that device.

OpenMP API — Version 5.1 Preview, November 2019

19
20
21

22
23

24

25
26
27

28

Syntax
C/C++

The syntax of the target construct is as follows:
#pragma omp target [clause[[,] clause] ... | new-line
structured-block

where clause is one of the following:

if (/[target :]scalar-expression)

device ([device-modifier : | integer-expression)
private (list)

firstprivate (list)

in_reduction (reduction-identifier : list)

map (/[map-type-modifier[, | [map-type-modifier[,] ...] map-type:] locator-list)
is_device_ptr (list)

defaultmap (implicit-behavior(:variable-category])
nowait

depend (/depend-modifier, | dependence-type : locator-list)
allocate ([/allocator :] list)

uses_allocators (allocator[(allocator-traits-array) |

[, allocator[(allocator-traits-array) | ...])

and where device-modifier is one of the following:
ancestor
device num

and where allocator is an identifier of omp_allocator_handle_t type and
allocator-traits-array is an identifier of const omp_alloctrait_t =* type.

C/C++

Fortran
The syntax of the target construct is as follows:

!Somp target [clause[[,] clause] ... |
structured-block
!Somp end target

where clause is one of the following:

CHAPTER 2. DIRECTIVES

175

0o N o g M~ 0N =

11
12
13

14

15
16

17
18

19
20
21

22
23
24

25
26

27
28

29
30
31
32

176

if ([target :]scalar-logical-expression)

device ([device-modifier : | scalar-integer-expression)
private (list)

firstprivate (list)

in_reduction (reduction-identifier : list)

map (/[map-type-modifier(, | [map-type-modifier(, | ...] map-type: | locator-list)
is_device_ptr (list)

defaultmap (implicit-behavior|:variable-category])
nowait

depend (/depend-modifier, | dependence-type : locator-list)
allocate ([allocator:]list)

uses_allocators (allocator[(allocator-traits-array) |

[, allocator((allocator-traits-array) | ...])
and where device-modifier is one of the following:

ancestor

device_num

and where allocator is an integer expression of omp_allocator_handle_kind kind and
allocator-traits-array is an array of type (omp_alloctrait) type.

Fortran

Binding
The binding task set for a target region is the generating task, which is the rarget rask generated
by the target construct. The target region binds to the corresponding target task region.

Description
The target construct provides a superset of the functionality provided by the target data
directive, except for the use_device_ptr and use_device_addr clauses.

The functionality added to the target directive is the inclusion of an executable region to be
executed by a device. That is, the target directive is an executable directive.

The target construct is a task generating construct. The generated task is a farget task. The
generated task region encloses the target region.

All clauses are evaluated when the target construct is encountered. The data environment of the
target task is created according to the data-sharing attribute clauses on the target construct,
per-data environment ICVs, and any default data-sharing attribute rules that apply to the target
construct. If a variable or part of a variable is mapped by the target construct and does not

OpenMP API — Version 5.1 Preview, November 2019

0 N O O A W N =

11
12
13
14
15

16
17

18

19
20

21
22
23
24

25
26
27
28

29
30
31
32
33

34
35
36

appear as a list item in an in_reduction clause on the construct, the variable has a default
data-sharing attribute of shared in the data environment of the target task.

Assignment operations associated with mapping a variable (see Section 2.22.7.1 on page 318)
occur when the target task executes.

If a device clause in which the device_num device-modifier appears is present on the
construct, the device clause expression specifies the device number of the target device. If
device-modifier does not appear in the clause, the behavior of the clause is as if device-modifier is
device_num.

If a device clause in which the ancestor device-modifier appears is present on the target
construct and the device clause expression evaluates to 1, execution of the target region occurs
on the parent device of the enclosing target region. If the target construct is not encountered
in a target region, the current device is treated as the parent device. The encountering thread
waits for completion of the target region on the parent device before resuming. For any list item
that appears in a map clause on the same construct, if the corresponding list item exists in the device
data environment of the parent device, it is treated as if it has a reference count of positive infinity.

If the nowait clause is present, execution of the rarget task may be deferred. If the nowait
clause is not present, the target task is an included task.

If a depend clause is present, it is associated with the rarget task.

When an if clause is present and the if clause expression evaluates to false, the target region
is executed by the host device in the host data environment.

The is_device_ptr clause is used to indicate that a list item is a device pointer already in the
device data environment and that it should be used directly. Support for device pointers created
outside of OpenMP, specifically outside of any OpenMP mechanism that returns a device pointer, is
implementation defined.

If a function (C, C++, Fortran) or subroutine (Fortran) is referenced in a target construct that
does not specify a device clause in which the ancestor device-modifier appears then that
function or subroutine is treated as if its name had appeared in a to clause on a declare target
directive.

Each memory allocator specified in the uses_allocators clause will be made available in the
target region. For each non-predefined allocator that is specified, a new allocator handle will be
associated with an allocator that is created with the specified traits as if by a call to
omp_init_allocator at the beginning of the target region. Each non-predefined allocator
will be destroyed as if by a call to omp_destroy_allocator at the end of the target region.

C/C++

If a list item in a map clause has a base pointer and it is a scalar variable with a predetermined
data-sharing attribute of firstprivate (see Section 2.22.1.1 on page 271), then on entry to the
target region:

CHAPTER 2. DIRECTIVES 177

a b~ ON =

(o]

10

11
12

13
14

15
16

17
18
19
20

21
22
23
24
25
26
27

28
29
30

178

o If the list item is not a zero-length array section, the corresponding private variable is initialized
such that the corresponding list item in the device data environment can be accessed through the
pointer in the target region.

o If the list item is a zero-length array section , the corresponding private variable is initialized
according to Section 2.22.7.2 on page 327.

C/C++
Fortran

When an internal procedure is called in a target region, any references to variables that are host
associated in the procedure have unspecified behavior.

Fortran

Execution Model Events
Events associated with a target task are the same as for the task construct defined in
Section 2.13.1 on page 142.

Events associated with the initial task that executes the target region are defined in
Section 2.13.5 on page 155.

The target-begin event occurs when a thread enters a target region.
The target-end event occurs when a thread exits a target region.

The target-submit event occurs prior to creating an initial task on a target device for a target
region.

Tool Callbacks

Callbacks associated with events for zarget tasks are the same as for the task construct defined in
Section 2.13.1 on page 142; (flags & ompt_task_target) always evaluates to true in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target as its kind argument for
each occurrence of a target-begin event in that thread in the context of the target task on the host.
Similarly, a thread dispatches a registered ompt_callback_target callback with
ompt_scope_end as its endpoint argument and ompt_target as its kind argument for each
occurrence of a farget-end event in that thread in the context of the target task on the host. These
callbacks have type signature ompt_callback_target_t.

A thread dispatches a registered ompt_callback_target_submit callback for each
occurrence of a target-submit event in that thread. The callback has type signature
ompt_callback_target_submit_t.

OpenMP API — Version 5.1 Preview, November 2019

W oo~N O o N =

4 a4 a a4
N S

-
o O

_ -
©

DN =
— O ©

NN
wW N

N N
[6) BN

NN
N O

N N
O 0

W ww
N = O

w W
H

Restrictions

If a target update, target data, target enter data, or target exit data
construct is encountered during execution of a target region, the behavior is unspecified.

The result of an omp_set_default_device, omp_get_default_device, or
omp_get_num_devices routine called within a target region is unspecified.

The effect of an access to a threadprivate variable in a target region is unspecified.

If a list item in a map clause is a structure element, any other element of that structure that is
referenced in the target construct must also appear as a list item in a map clause.

A variable referenced in a target region but not the target construct that is not declared in
the target region must appear in a declare target directive.

At most one defaultmap clause for each category can appear on the directive.
At most one nowait clause can appear on the directive.

At most one if clause can appear on the directive.

A map-type in a map clause must be to, from, tofromor alloc.

A list item that appears in an is_device_ptr clause must be a valid device pointer in the
device data environment.

A list item that appears in an is_device_ptr clause must not be specified on any
data-sharing attribute clause on the same target construct.

At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num devices () or
to the value of omp_get_initial_ device().

If a device clause in which the ancestor device-modifier appears is present on the
construct, then the following restrictions apply:

— A requires directive with the reverse_offload clause must be specified;

— The device clause expression must evaluate to 1;

Only the device, firstprivate, private, defaultmap, and map clauses may
appear on the construct;

No OpenMP constructs or calls to OpenMP API runtime routines are allowed inside the
corresponding target region.

Memory allocators that do not appear in a uses_allocators clause cannot appear as an
allocator in an allocate clause or be used in the target region unless a requires
directive with the dynamic_allocators clause is present in the same compilation unit.

Memory allocators that appear in a uses_allocators clause cannot appear in other
data-sharing attribute clauses or data-mapping attribute clauses in the same construct.

CHAPTER 2. DIRECTIVES 179

© oo NOoO arO N =

-
o

11

12
13

14
15

16
17

18
19

20
21
22

23
24

180

Predefined allocators appearing in a uses_allocators clause cannot have traits specified.
Non-predefined allocators appearing in a uses_allocators clause must have traits specified.

Arrays that contain allocator traits that appear in a uses_allocators clause must be
constant arrays, have constant values and be defined in the same scope as the construct in which
the clause appears.

Any IEEE floating-point exception status flag, halting mode, or rounding mode set prior to a
target region is unspecified in the region.

Any IEEE floating-point exception status flag, halting mode, or rounding mode set in a target
region is unspecified upon exiting the region.

C/C++

An attached pointer must not be modified in a target region.

C/C++
C
A list item that appears in an is_device_ptr clause must have a type of pointer or array.
C
C++

A list item that appears in an is_device_ptr clause must have a type of pointer, array,
reference to pointer or reference to array.

A throw executed inside a target region must cause execution to resume within the same
target region, and the same thread that threw the exception must catch it.

C++
Fortran
An attached pointer that is associated with a given pointer target must not become associated
with a different pointer target in a target region.

A list item that appears in an is_device_ptr clause must be a pointer or a dummy argument
that does not have the ALLOCATABLE or VALUE attribute.

If a list item in a map clause is an array section, and the array section is derived from a variable
with a POINTER or ALLOCATABLE attribute then the behavior is unspecified if the
corresponding list item’s variable is modified in the region.

A reference to a coarray that is encountered on a target device must not be coindexed or appear as
an actual argument to a procedure where the corresponding dummy argument is a coarray.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

o © 00 N o o A W N -=

4 a4 a4 a4 a4
a A O N =

16

17
18
19
20

21

22

23

24

25
26
27
28

29

Cross References
o default-device-var, see Section 2.6 on page 66.

e task construct, see Section 2.13.1 on page 142.

e task scheduling constraints, see Section 2.13.6 on page 156

e Memory allocators, see Section 2.14.2 on page 159.

e target data construct, see Section 2.15.2 on page 166.

e if Clause, see Section 2.18 on page 224.

e private and firstprivate clauses, see Section 2.22.4 on page 284.

e Data-Mapping Attribute Rules and Clauses, see Section 2.22.7 on page 317.
e omp_get_num devices routine, see Section 3.2.36 on page 370.

e omp_alloctrait_t and omp_alloctrait types, see Section 3.8.1 on page 413.
e omp_set_default_allocator routine, see Section 3.8.4 on page 417.
e omp_get_default_allocator routine, see Section 3.8.5 on page 418.
e ompt_callback target_t, see Section 4.5.2.26 on page 490.

e ompt_callback_target_submit_t, Section 4.5.2.28 on page 493.

2.15.6 target update Construct
Summary

The target update directive makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified motion clauses. The
target update construct is a stand-alone directive.

Syntax
C/C++

The syntax of the target update construct is as follows:

I #pragma omp target update clause [[,] clause] ... | new-line
where clause is either motion-clause or one of the following:

if (/[target update :]scalar-expression)
device (integer-expression)
nowait

depend (/depend-modifier, | dependence-type : locator-list)

and motion-clause is one of the following:

CHAPTER 2. DIRECTIVES

181

—_

o 00 b~ W

10
11
12
13

14

15
16

17

18
19
20

21
22
23
24

182

where

to ([[motion-modifier[, | [motion-modifier[, | ...]:]| locator-list)
from ([[motion-modifier[, | [motion-modifier(, | ...]:] locator-list)
motion-modifier is one of the following:

present

mapper (mapper-identifier)

iterator (iterators-definition)

C/C++
Fortran

The syntax of the target update construct is as follows:

| !$omp target update clause/ [[,] clause] ... |

where

clause is either motion-clause or one of the following:
if (/[target update :]scalar-logical-expression)
device (scalar-integer-expression)
nowait

depend (/depend-modifier, | dependence-type : locator-list)

and motion-clause is one of the following:

where

Bind

to ([[motion-modifier[, | [motion-modifier[,] ...]:]| locator-list)

from ([[motion-modifier[, | [motion-modifier(,] ...]:] locator-list)

motion-modifier is one of the following:

present

mapper (mapper-identifier)

iterator (iterators-definition)

Fortran

ing

The binding task set for a target update region is the generating task, which is the farget task
generated by the target update construct. The target update region binds to the
corresponding farget task region.

OpenMP API — Version 5.1 Preview, November 2019

- O VWO NO O P~»WN =

—_

a4 A a4
a WD

16
17

18
19

20
21

22
23

24

25
26

27
28

29

30
31

32
33

Description

For each list item in a to or £rom clause there is a corresponding list item and an original list item.
If the corresponding list item is not present in the device data environment and there is no
present modifier in the clause, then no assignment occurs to or from the original list item.
Otherwise, each corresponding list item in the device data environment has an original list item in
the current task’s data environment. If a mapper () modifier appears in a to clause, each list item
is replaced with the list items that the given mapper specifies are to be mapped with a to or
tofrom map-type. If a mapper () modifier appears in a £rom clause, each list item is replaced
with the list items that the given mapper specifies are to be mapped with a f£rom or tofrom
map-type. If a present modifier appears in the clause and the corresponding list item is not
present in the device data environment then an error occurs and the program termintates.

The list items that appear in a to or £rom may reference iterators defined by an iterators-definition
appearing on an iterator modifier.

For each list item in a £rom or a to clause:

e For each part of the list item that is an attached pointer:

C/C++

— On exit from the region that part of the original list item will have the value it had on entry to
the region;

— On exit from the region that part of the corresponding list item will have the value it had on
entry to the region;

C/C++
Fortran

— On exit from the region that part of the original list item, if associated, will be associated with
the same pointer target with which it was associated on entry to the region;

— On exit from the region that part of the corresponding list item, if associated, will be
associated with the same pointer target with which it was associated on entry to the region.

Fortran

e For each part of the list item that is not an attached pointer:

— If the clause is £rom, the value of that part of the corresponding list item is assigned to that
part of the original list item;

— If the clause is to, the value of that part of the original list item is assigned to that part of the
corresponding list item.

e To avoid data races:

— Concurrent reads or updates of any part of the original list item must be synchronized with the
update of the original list item that occurs as a result of the £rom clause;

— Concurrent reads or updates of any part of the corresponding list item must be synchronized
with the update of the corresponding list item that occurs as a result of the to clause.

CHAPTER 2. DIRECTIVES 183

- OOVWoo~NOO OO~ WN

_ a2 a4
w N

- a4
o 0 b

—_ a4
© o

20
21
22

23
24

25
26
27
28

29
30
31
32
33

184

C/C++

The list items that appear in the to or £rom clauses may use shape-operators.
C/C++

The list items that appear in the to or £rom clauses may include array sections with stride
expressions.

The target update construct is a task generating construct. The generated task is a target task.
The generated task region encloses the target update region.

All clauses are evaluated when the target update construct is encountered. The data
environment of the farget task is created according to the data-sharing attribute clauses on the
target update construct, per-data environment ICVs, and any default data-sharing attribute
rules that apply to the target update construct. A variable that is mapped in the

target update construct has a default data-sharing attribute of shared in the data
environment of the rarget task.

Assignment operations associated with mapping a variable (see Section 2.22.7.1 on page 318)
occur when the target task executes.

If the nowait clause is present, execution of the target task may be deferred. If the nowait
clause is not present, the farget task is an included task.

If a depend clause is present, it is associated with the target task.

The device is specified in the device clause. If no device clause is present, the device is
determined by the default-device-var ICV. When an i £ clause is present and the i f clause
expression evaluates to false then no assignments occur.

Execution Model Events
Events associated with a target task are the same as for the task construct defined in
Section 2.13.1 on page 142.

The target-update-begin event occurs when a thread enters a target update region.

The target-update-end event occurs when a thread exits a target update region.

Tool Callbacks

Callbacks associated with events for target tasks are the same as for the task construct defined in
Section 2.13.1 on page 142; (flags & ompt_task_target) always evaluates to true in the
dispatched callback.

A thread dispatches a registered ompt_callback_target callback with
ompt_scope_begin as its endpoint argument and ompt_target_update as its kind
argument for each occurrence of a rarget-update-begin event in that thread in the context of the
target task on the host. Similarly, a thread dispatches a registered ompt_callback_target
callback with ompt__scope_end as its endpoint argument and ompt_target_update as its

OpenMP API — Version 5.1 Preview, November 2019

N —

(oo} ~ > O~ W

10
11
12

13
14

15
16

17
18
19
20
21
22
23
24
25
26

27

28
29
30

kind argument for each occurrence of a target-update-end event in that thread in the context of the
target task on the host. These callbacks have type signature ompt_callback_target_t.

Restrictions
e A program must not depend on any ordering of the evaluations of the clauses of the
target update directive, or on any side effects of the evaluations of the clauses.

e Each of the motion-modifier modifiers can appear at most once on a motion clause.
o At least one motion-clause must be specified.

o A list item can only appear in a to or £rom clause, but not both.

e A listitem in a to or £rom clause must have a mappable type.

e At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

e At most one if clause can appear on the directive.

e At most one nowait clause can appear on the directive.

Cross References
e Array shaping, Section 2.1.4 on page 42

e Array sections, Section 2.1.5 on page 42

e Iterators, see Section 2.1.6 on page 46.

o default-device-var, see Section 2.6 on page 66.

e task construct, see Section 2.13.1 on page 142.

e task scheduling constraints, see Section 2.13.6 on page 156

e target data, see Section 2.15.2 on page 166.

e if Clause, see Section 2.18 on page 224.

e omp_get_num devices routine, see Section 3.2.36 on page 370.

e ompt_callback_task_create_t, see Section 4.5.2.7 on page 469.
e ompt_callback_target_t, see Section 4.5.2.26 on page 490.

2.15.7 Declare Target Directive

Summary
The declare target directive specifies that variables, functions (C, C++ and Fortran), and
subroutines (Fortran) are mapped to a device. The declare target directive is a declarative directive.

CHAPTER 2. DIRECTIVES 185

a b~ W N

»

10

11
12
13

14

15
16
17
18

19
20

21
22

23
24

25

26
27
28
29

186

Syntax
C/C++

The syntax of the declare target directive is as follows:

#pragma omp declare target new-line
declaration-definition-seq

#pragma omp end declare target new-line

or

I#pragma omp declare target (extended-list) new-line

or

I #pragma omp declare target clause[[[,] clause] ... | new-line

or

#pragma omp begin declare target [clause[[[,] clause]...] | new-line
declaration-definition-seq
#pragma omp end declare target new-line

where clause is one of the following:

to (extended-list)

link (list)

device_type (host | nohost | any)
indirect/(invoked-by-fptr)]

where invoked-by-fptr is a constant boolean expression that evaluates to true or false at compile
time.

C/C++
Fortran
The syntax of the declare target directive is as follows:
| !$omp declare target (extended-list)

or
I '$Somp declare target [clausel [,] clause] ... |
where clause is one of the following:

to (extended-list)

link (list)

device_type (host | nohost | any)

indirect/(invoked-by-fptr)]

OpenMP API — Version 5.1 Preview, November 2019

—_

0 N OO0~ W

11
12
13

14
15

16
17
18

19
20

21
22

23
24
25
26

27
28
29

where invoked-by-fptr is a constant logical expression that evaluates to true or false at compile
time.

Fortran

Description

The declare target directive ensures that procedures and global variables can be executed or
accessed on a device. Variables are mapped for all device executions, or for specific device
executions through a 1ink clause.

If an extended-list is present with no clause then the to clause is assumed.

The device_type clause specifies if a version of the procedure or variable should be made
available on the host, device or both. If host is specified only a host version of the procedure or
variable is made available. If any is specified then both device and host versions of the procedure
or variable are made available. If nohost is specified for a procedure then only a device version of
the procedure is made available. If nohost is specified for a variable then that variable is not
available on the host.

C/C++

If a function appears in a to clause in the same compilation unit in which the definition of the
function occurs then a device-specific version of the function is created.

If a variable appears in a to clause in the same compilation unit in which the definition of the
variable occurs then the original list item is allocated a corresponding list item in the device data
environment of all devices.

C/C++
Fortran

If a procedure appears in a to clause in the same compilation unit in which the definition of the
procedure occurs then a device-specific version of the procedure is created.

If a variable that is host associated appears in a to clause then the original list item is allocated a
corresponding list item in the device data environment of all devices.

Fortran

If a variable appears in a to clause then the corresponding list item in the device data environment
of each device is initialized once, in the manner specified by the program, but at an unspecified
point in the program prior to the first reference to that list item. The list item is never removed from
those device data environments as if its reference count is initialized to positive infinity.

Including list items in a 1ink clause supports compilation of functions called in a target region
that refer to the list items. The list items are not mapped by the declare target directive. Instead,
they are mapped according to the data mapping rules described in Section 2.22.7 on page 317.

CHAPTER 2. DIRECTIVES 187

oNOO O~ W=

©

-
OO wWND—=O

NDMNON = =2
N = O © 0 N

23
24
25
26
27

28
29
30

31
32
33

188

C/C++

If a function is referenced in a function that appears as a list item in a to clause on a declare target
directive that does not specify a device_type clause with host and the function reference is
not enclosed in a target construct that specifies a device clause in which the ancestor
device-modifier appears then the name of the referenced function is treated as if it had appeared in a
to clause on a declare target directive.

If a variable with static storage duration or a function (except lambda for C++) is referenced in the
initializer expression list of a variable with static storage duration that appears as a list item in a to
clause on a declare target directive then the name of the referenced variable or function is treated as
if it had appeared in a to clause on a declare target directive.

The form, preceded by either the declare target directive that has no clauses and no
extended-list or the begin declare target directive and followed by a matching

end declare target directive, defines an implicit extended-list. The implicit extended-list
consists of the variable names of any variable declarations at file or namespace scope that appear
between the two directives and of the function names of any function declarations at file,
namespace or class scope that appear between the two directives. The implicit extended-list is
converted to an implicit to clause.

The declaration-definition-seq preceded by either begin declare target directive or a
declare target directive without any clauses or an extended-list and followed by an

end declare target directive may contain declare target directives. If a device_type
clause is present on the contained declare target directive, then its argument determines which
versions are made available. If a list item appears both in an implicit and explicit list, the explicit
list determines which versions are made available.

C/C++

Fortran
If a procedure is referenced in a procedure that appears as a list item in a to clause on a
declare target directive that does not specify a device_type clause with host and the
procedure reference is not enclosed in a target construct that specifies a device clause in
which the ancestor device-modifier appears then the name of the referenced procedure is treated
as if it had appeared in a to clause on a declare target directive.

If a declare target does not have any clauses and does not have an extended-list then an
implicit to clause with one item is formed from the name of the enclosing subroutine subprogram,
function subprogram or interface body to which it applies.

If a declare target directive has a device_type clause then any enclosed internal
procedures cannot contain any declare target directives. The enclosing device_type
clause implicitly applies to internal procedures.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

NOoO O~ W NN =

10
11
12

13
14

15
16

17
18

19
20

21
22

23
24

25

26
27

28
29
30

If the indirect clause is present and invoked-by-fptr is not specified, the effect of the clause is as
if invoked-by-fptr evaluates to true.

If the indirect clause is present and invoked-by-fptr evaluates to true, any procedures that appear
in a to clause on the directive may be called with an indirect device invocation. If the indirect
clause is present and invoked-by-fptr does not evaluate to true, any procedures that appear in a to
clause on the directive may not be called with an indirect device invocation. Unless otherwise
specified by an indirect clause, procedures may not be called with an indirect device invocation.

C/C++

If a function appears in the to clause of a begin declare target directive and in the to
clause of a declare target directive that is contained in the declaration-definition-seq associated with
the begin declare target directive, and if an indirect clause appears on both directives,
then the indirect clause on the begin declare target directive has no effect for that
function.

C/C++

Restrictions
e A threadprivate variable cannot appear in a declare target directive.

e A variable declared in a declare target directive must have a mappable type.
o The same list item must not appear multiple times in clauses on the same directive.

e The same list item must not explicitly appear in both a to clause on one declare target directive
and a 1ink clause on another declare target directive.

o If a declare target directive has a clause, it must contain at least one to clause or at least one
link clause.

e A variable for which nohost is specified may not appear in a 1ink clause.
e At most one indirect clause can be specified on the declare target directive.

e If an indirect clause is present and invoked-by-fptr evaluates to true then the only permitted
device_type clause is device_type (any).

C++

e A to clause or a 1ink clause cannot appear in a begin declare target directive.

e The function names of overloaded functions or template functions may only be specified within
an implicit extended-list.

o If a lambda declaration and definition appears between a declare target directive and the paired
end declare target directive, all variables that are captured by the lambda expression must
also appear in a to clause.

C++

CHAPTER 2. DIRECTIVES 189

—_

o~N OO MAWOWN

11
12

13
14
15

16
17

18
19

20
21
22

23
24

25

26
27

28
29

30
31

32

Fortran
e If alistitem is a procedure name, it must not be a generic name, procedure pointer or entry name.

e If a declare target directive does not have any clause, has a device_type clause, or has
clauses that contain a function name, it must appear in the specification part of a subroutine
subprogram, function subprogram or interface body.

e If a declare target directive has a variable name in extended-list, it must appear in the
specification part of a subroutine subprogram, function subprogram, program or module.

e If a declare target directive is specified in an interface block for a procedure, it must match
a declare target directive in the definition of the procedure, including the device_type
clause if present.

e If an external procedure is a type-bound procedure of a derived type and a declare target
directive is specified in the definition of the external procedure, such a directive must appear in
the interface block that is accessible to the derived type definition.

e If any procedure is declared via a procedure declaration statement that is not in the type-bound
procedure part of a derived-type definition, any declare target with the procedure name
must appear in the same specification part.

e A variable that is part of another variable (as an array, structure element or type parameter
inquiry) cannot appear in a declare target directive.

e The declare target directive must appear in the declaration section of a scoping unit in
which the common block or variable is declared.

e If a declare target directive that specifies a common block name appears in one program
unit, then such a directive must also appear in every other program unit that contains a COMMON
statement that specifies the same name, after the last such COMMON statement in the program unit.

e If a list item is declared with the BIND attribute, the corresponding C entities must also be
specified in a declare target directive in the C program.

e A blank common block cannot appear in a declare target directive.

e A variable can only appear in a declare target directive in the scope in which it is declared.
It must not be an element of a common block or appear in an EQUIVALENCE statement.

e A variable that appears in a declare target directive must be declared in the Fortran scope
of a module or have the SAVE attribute, either explicitly or implicitly.

Fortran

Cross References
e target data construct, see Section 2.15.2 on page 166.

e target construct, see Section 2.15.5 on page 174.

190 OpenMP API — Version 5.1 Preview, November 2019

a b wN

N O

(o]

10
11
12
13
14
15

16

17
18
19

20
21
22

23
24

25
26
27

28
29
30
31

C/C++

2.15.8 interop Construct

Summary

The interop construct retrieves interoperability properties from the OpenMP implementation to
enable interoperability with foreign execution contexts. The interop construct is a stand-alone
directive.

Syntax

The syntax of the interop construct is as follows:

I #fpragma omp interop [clause [[,] clause] ...] new-line

where clause is one of the following:
obj (interop-var)

init

destroy

tasksync

device (integer-expression)

depend (/depend-modifier, | dependence-type : locator-list)

where interop-var is a variable of type omp_interop_t.

Binding
The binding task set for an interop region is the generating task. The interop region binds to
the region of the generating task.

Description
When an interop construct is encountered, the encountering task executes the region. If no
device clause is present, the default device is determined by the default-device-var ICV.

If neither the init clause nor the destroy clause is specified, an implicit init clause is
assumed.

If the init clause is specified, the inferop-var specified in the obj clause is initialized to refer to a
foreign execution context with the type, type_name, device and device_context
properties appropriately defined for the specified device.

If the tasksync clause is specified, the tasksyne property for the interop-var specified by the
obj clause will be initialized to enable synchronization between OpenMP tasks and foreign tasks
that execute in the foreign execution context to which the interop-var specified in the obj clause is
initialized.

CHAPTER 2. DIRECTIVES 191

o~N OO0~ W N-=

—_ 1 a
a b~ wWwN-—= O

16
17

18
19
20

21
22

23

24
25
26

27
28
29

30
31

32
33

192

If the implementation is unable to initialize the interop-var specified in the obj clause according to

the above, interop-var will be initialized to the value of OMP__ INTEROP_NONE.

If the destroy clause is specified, the interop-var specified in the obj clause must be non-const
and will be set to the value of OMP_INTEROP_NONE after releasing resources associated with
interop-var. The object referred to by the interop-var specified in the ob3j clause will be unusable
after destruction until it is initialized again by an interop construct.

If the interop-var specified in the obj clause is initialized with the tasksync property, an empty
task is generated. Any depend clauses that are present on the construct apply to the generated

task. The interop construct ensures an ordered execution of the generated task relative to foreign

tasks executed in the foreign execution context through the foreign synchronization object to which
the interop-var specified in the obj clause is initialized. When the creation of the foreign task
precedes the encountering of an interop construct in happens before order (see Section 1.4.5),
the foreign task must complete execution before the generated task begins execution. Likewise,

when the creation of a foreign task follows the encountering of an interop construct in happens
before order, the foreign task must not begin execution until the generated task completes execution.

Restrictions

Exactly one obj clause must appear on the directive.

At most one init clause can appear on the directive.

At most one destroy clause can appear on the directive.

The interop-var must be non-const if a init clause appears on the directive

Neither an init clause nor a tasksynec clause can be specified if a destroy clause is
specified on the directive.

At most one tasksync clause can appear on the directive.

A depend clause can only appear on the directive if a tasksync clause is present or if a
destroy clause is present and the interop-var specified in the ob3j clause was initialized by a
prior interop construct on which the tasksync clause was present.

At most one device clause can appear on the directive. The device clause expression must
evaluate to a non-negative integer value less than the value of omp_get_num_devices () or
to the value of omp_get_initial_device().

Cross References

Interoperability routines, see Section 3.7 on page 410.

depend clause, see Section 2.20.11 on page 257(WRONG ORDERING:
directives_device.tex line 1561).

C/C++

OpenMP API — Version 5.1 Preview, November 2019

a A OODND

© 0 »

10

11

12
13

14
15

16

17
18
19

20
21

22
23

24
25
26

27
28

2.16 Combined Constructs

Combined constructs are shortcuts for specifying one construct immediately nested inside another
construct. The semantics of the combined constructs are identical to that of explicitly specifying
the first construct containing one instance of the second construct and no other statements.

For combined constructs, tool callbacks are invoked as if the constructs were explicitly nested.

2.16.1 Parallel Worksharing-Loop Construct

Summary
The parallel worksharing-loop construct is a shortcut for specifying a parallel construct
containing a worksharing-loop construct with one or more associated loops and no other statements.

Syntax
C/C++

The syntax of the parallel worksharing-loop construct is as follows:
#fpragma omp parallel for [clausel [,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or for directives, except the
nowait clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel worksharing-loop construct is as follows:

!Somp parallel do [clause[[,] clause] ... |
do-loops
[!'$omp end parallel doJ

where clause can be any of the clauses accepted by the parallel or do directives, with identical
meanings and restrictions.

If an end parallel do directive is not specified, an end parallel do directive is assumed at
the end of the do-loops. nowait may not be specified on an end parallel do directive.

Fortran
Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a worksharing-loop directive.

Restrictions
o The restrictions for the parallel construct and the worksharing-loop construct apply.

CHAPTER 2. DIRECTIVES 193

A W N =

o ~NO O

10

11
12

13
14

15

16
17
18

19
20

21
22
23

24
25
26

27
28

194

Cross References
e parallel construct, see Section 2.8 on page 79.

e Worksharing-loop construct, see Section 2.12.2 on page 106.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.2 parallel loop Construct

Summary
The parallel loop construct is a shortcut for specifying a parallel construct containing a
loop construct with one or more associated loops and no other statements.

Syntax
C/C++

The syntax of the parallel loop construct is as follows:

#pragma omp parallel loop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or loop directives, with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel loop construct is as follows:

!'Somp parallel loop [clause[[,] clause] ...]
do-loops
[!$omp end parallel loop]/

where clause can be any of the clauses accepted by the parallel or loop directives, with
identical meanings and restrictions.

If an end parallel loop directive is not specified, an end parallel loop directive is
assumed at the end of the do-loops. nowait may not be specified on an end parallel loop
directive.

Fortran
Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a 1loop directive.

Restrictions
e The restrictions for the parallel construct and the 1oop construct apply.

OpenMP API — Version 5.1 Preview, November 2019

A W N =

o N O

10

11
12
13
14
15
16
17
18

19
20

21

22
23
24
25
26
27
28

29
30

31
32

Cross References
e parallel construct, see Section 2.8 on page 79.

e loop construct, see Section 2.12.5 on page 133.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.3 parallel sections Construct

Summary
The parallel sections construct is a shortcut for specifying a parallel construct
containing a sections construct and no other statements.

Syntax
C/C++

The syntax of the parallel sections construct is as follows:

#fpragma omp parallel sections [clause[[,] clause] ... | new-line

{

[#pragma omp section new-line]
structured-block-sequence
[#pragma omp section new-line
structured-block-sequence]

}
where clause can be any of the clauses accepted by the parallel or sections directives,
except the nowait clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel sections construct is as follows:

!Somp parallel sections [clause[[,]| clause] ... |
[!$omp section]
structured-block-sequence
[!$omp section
structured-block-sequence]

!Somp end parallel sections

where clause can be any of the clauses accepted by the parallel or sections directives, with
identical meanings and restrictions.

The last section ends at the end parallel sections directive. nowait cannot be specified
on an end parallel sections directive.

Fortran

CHAPTER 2. DIRECTIVES 195

[

10
11
12

13

14
15
16

17
18

19
20
21

22
23
24

25
26
27
28

196

Description
C/C++

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a sections directive.

C/C++

Fortran
The semantics are identical to explicitly specifying a parallel directive immediately followed
by a sections directive, and an end sections directive immediately followed by an
end parallel directive.

Fortran

Restrictions
The restrictions for the parallel construct and the sections construct apply.

Cross References
e parallel construct, see Section 2.8 on page 79.

e sections construct, see Section 2.11.1 on page 93.
e Data attribute clauses, see Section 2.22.4 on page 284.

Fortran

2.16.4 parallel workshare Construct

Summary
The parallel workshare construct is a shortcut for specifying a parallel construct
containing a workshare construct and no other statements.

Syntax

The syntax of the parallel workshare construct is as follows:

!Somp parallel workshare [clause[[,] clause] ... |
structured-block
!$Somp end parallel workshare

where clause can be any of the clauses accepted by the parallel directive, with identical
meanings and restrictions. nowait may not be specified on an end parallel workshare
directive.

Description

The semantics are identical to explicitly specifying a parallel directive immediately followed
by a workshare directive, and an end workshare directive immediately followed by an
end parallel directive.

OpenMP API — Version 5.1 Preview, November 2019

N —

D O AW

11

12

13
14

15
16

17

18
19
20

21
22

23
24
25

26
27
28

Restrictions
The restrictions for the parallel construct and the workshare construct apply.

Cross References
e parallel construct, see Section 2.8 on page 79.

e workshare construct, see Section 2.11.3 on page 98.

e Data attribute clauses, see Section 2.22.4 on page 284.
Fortran

2.16.5 Parallel Worksharing-Loop SIMD Construct

Summary
The parallel worksharing-loop SIMD construct is a shortcut for specifying a parallel construct
containing a worksharing-loop SIMD construct and no other statements.

Syntax
C/C++

The syntax of the parallel worksharing-loop SIMD construct is as follows:

#fpragma omp parallel for simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or for simd directives, except
the nowait clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel worksharing-loop SIMD construct is as follows:

!Somp parallel do simd [clause[[,] clause] ...]
do-loops
[!'$omp end parallel do simd/

where clause can be any of the clauses accepted by the parallel or do simd directives, with
identical meanings and restrictions.

If an end parallel do simd directive is not specified, an end parallel do simd directive
is assumed at the end of the do-loops. nowait may not be specified on an end parallel
do simd directive.

Fortran
Description

The semantics of the parallel worksharing-loop SIMD construct are identical to explicitly
specifying a parallel directive immediately followed by a worksharing-loop SIMD directive.

CHAPTER 2. DIRECTIVES 197

0o N o o~ W=

11
12

13

14
15
16

17

18

19
20

21
22

23
24
25
26

27
28

Restrictions
The restrictions for the parallel construct and the worksharing-loop SIMD construct apply
except for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

o At most one if clause with the simd directive-name-modifier can appear on the directive.

Cross References
e parallel construct, see Section 2.8 on page 79.

e Worksharing-loop SIMD construct, see Section 2.12.3.2 on page 120.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.6 parallel master Construct

Summary
The parallel master construct is a shortcut for specifying a parallel construct containing
amaster construct and no other statements.

Syntax
C/C++

The syntax of the parallel master construct is as follows:

#pragma omp parallel master [clause[[,] clause] ... | new-line
structured-block

where clause can be any of the clauses accepted by the parallel or master directives, with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel master construct is as follows:

!'Somp parallel master [clause[[,] clause] ... |
structured-block
!Somp end parallel master

where clause can be any of the clauses accepted by the parallel or master directives, with
identical meanings and restrictions.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

—_

o >

© 0 N O

10

11
12
13

14

15

16
17

18
19

20
21
22
23

24
25

26
27

Description
The semantics are identical to explicitly specifying a parallel directive immediately followed
by a master directive.

Restrictions
The restrictions for the parallel construct and the master construct apply.

Cross References
e parallel construct, see Section 2.8 on page 79.

e master construct, see Section 2.19 on page 225.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.7 master taskloop Construct

Summary
The master taskloop construct is a shortcut for specifying a master construct containing a
taskloop construct and no other statements.

Syntax
C/C++

The syntax of the master taskloop construct is as follows:
#fpragma omp master taskloop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the master or taskloop directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the master taskloop construct is as follows:

!Somp master taskloop [clause[[,] clause] ... |
do-loops
[!$Somp end master taskloop/

where clause can be any of the clauses accepted by the master or taskloop directives with
identical meanings and restrictions.

If an end master taskloop directive is not specified, an end master taskloop directive is
assumed at the end of the do-loops.

Fortran

CHAPTER 2. DIRECTIVES 199

—_

(63}

© o0 NO

11
12
13

14

15

16
17

18
19

20
21
22
23

24
25

26
27

200

Description

The semantics are identical to explicitly specifying a master directive immediately followed by a

taskloop directive.

Restrictions
The restrictions for the master and taskloop constructs apply.

Cross References
e taskloop construct, see Section 2.13.2 on page 147.

e master construct, see Section 2.19 on page 225.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.8 master taskloop simd Construct

Summary
The master taskloop simd construct is a shortcut for specifying a master construct
containing a taskloop simd construct and no other statements.

Syntax
C/C++

The syntax of the master taskloop simd construct is as follows:

#pragma omp master taskloop simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the master or taskloop simd directives

with identical meanings and restrictions.
C/C++
Fortran
The syntax of the master taskloop simd construct is as follows:

!$Somp master taskloop simd [clause[[,] clause] ... |
do-loops
[!'$omp end master taskloop simd]

where clause can be any of the clauses accepted by the master or taskloop simd directives

with identical meanings and restrictions.

If an end master taskloop simd directive is not specified, an end master
taskloop simd directive is assumed at the end of the do-loops.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

—_

o b~

© 0 N O

10

11
12
13

14

15

16
17

18
19

20
21
22
23

24
25

26
27

Description
The semantics are identical to explicitly specifying a master directive immediately followed by a
taskloop simd directive.

Restrictions
The restrictions for the master and taskloop simd constructs apply.

Cross References
e taskloop simd construct, see Section 2.13.3 on page 152.

e master construct, see Section 2.19 on page 225.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.9 parallel master taskloop Construct

Summary
The parallel master taskloop construct is a shortcut for specifying a parallel
construct containing a master taskloop construct and no other statements.

Syntax
C/C++

The syntax of the parallel master taskloop construct is as follows:
#fpragma omp parallel master taskloop /[clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or master taskloop
directives, except the in_reduction clause, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the parallel master taskloop construct is as follows:

!Somp parallel master taskloop [clause[[,] clause] ... |
do-loops
[!$omp end parallel master taskloop]/

where clause can be any of the clauses accepted by the parallel or master taskloop
directives, except the in_reduction clause, with identical meanings and restrictions.

If an end parallel master taskloop directive is not specified, an
end parallel master taskloop directive is assumed at the end of the do-loops.

Fortran

CHAPTER 2. DIRECTIVES 201

w N =

o © oOo~N o Oos

12
13

14
15

16

17
18
19

20

21

22
23

24
25

202

Description
The semantics are identical to explicitly specifying a parallel directive immediately followed
by a master taskloop directive.

Restrictions
The restrictions for the parallel construct and the master taskloop construct apply except
for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the taskloop directive-name-modifier can appear on the directive.

Cross References
e parallel construct, see Section 2.8 on page 79.

e master taskloop construct, see Section 2.16.7 on page 199.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.10 parallel master taskloop simd Construct

Summary
The parallel master taskloop simd construct is a shortcut for specifying a parallel
construct containing a master taskloop simd construct and no other statements.

Syntax
C/C++

The syntax of the parallel master taskloop simd construct is as follows:
#pragma omp parallel master taskloop simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the parallel or master taskloop simd
directives, except the in_reduction clause, with identical meanings and restrictions.

C/C++

OpenMP API — Version 5.1 Preview, November 2019

A OND =

o o O

10
11

12
13
14

15
16

17
18
19
20
21
22
23
24

25

26
27
28

Fortran
The syntax of the parallel master taskloop simd construct is as follows:
!Somp parallel master taskloop simd [clause[[,] clause] ... |
do-loops
[!'$Somp end parallel master taskloop simd/

where clause can be any of the clauses accepted by the parallel or master taskloop simd
directives, except the in_reduction clause, with identical meanings and restrictions.

If an end parallel master taskloop simd directive is not specified, an end parallel
master taskloop simd directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a parallel directive immediately followed
by amaster taskloop simd directive.

Restrictions
The restrictions for the parallel construct and the master taskloop simd construct apply
except for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

o At most one if clause with the taskloop directive-name-modifier can appear on the directive.

At most one if clause with the simd directive-name-modifier can appear on the directive.
Cross References

e parallel construct, see Section 2.8 on page 79.

e master taskloop simd construct, see Section 2.16.8 on page 200.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.11 teams distribute Construct

Summary
The teams distribute construct is a shortcut for specifying a teams construct containing a
distribute construct and no other statements.

CHAPTER 2. DIRECTIVES 203

[

11
12

13
14

15
16
17

18
19

20
21

22
23

24

25
26
27

204

Syntax
C/C++

The syntax of the teams distribute construct is as follows:
#pragma omp teams distribute [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the teams distribute construct is as follows:

'Somp teams distribute [clause[[,] clause] ...]
do-loops
[!'$omp end teams distribute]

where clause can be any of the clauses accepted by the teams or distribute directives with
identical meanings and restrictions.

If an end teams distribute directive is not specified, an end teams distribute
directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute directive.

Restrictions
The restrictions for the teams and distribute constructs apply.

Cross References
e teams construct, see Section 2.9 on page 87.

e distribute construct, see Section 2.12.4.1 on page 125.

o Data attribute clauses, see Section 2.22.4 on page 284.

2.16.12 teams distribute simd Construct

Summary
The teams distribute simd construct is a shortcut for specifying a teams construct
containing a distribute simd construct and no other statements.

OpenMP API — Version 5.1 Preview, November 2019

11
12

13
14

15
16
17

18
19

20
21

22
23

24
25
26

27
28

Syntax
C/C++

The syntax of the teams distribute simd construct is as follows:
#pragma omp teams distribute simd [clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute simd directives
with identical meanings and restrictions.

C/C++
Fortran
The syntax of the teams distribute simd construct is as follows:

'Somp teams distribute simd [clause[[,] clause] ... |
do-loops
[!'$omp end teams distribute simd]

where clause can be any of the clauses accepted by the teams or distribute simd directives
with identical meanings and restrictions.

If an end teams distribute simd directive is not specified, an end teams
distribute simd directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute simd directive.

Restrictions
The restrictions for the teams and distribute simd constructs apply.

Cross References
e teams construct, see Section 2.9 on page 87.

e distribute simd construct, see Section 2.12.4.2 on page 129.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.13 Teams Distribute Parallel Worksharing-Loop
Construct

Summary
The teams distribute parallel worksharing-loop construct is a shortcut for specifying a teams
construct containing a distribute parallel worksharing-loop construct and no other statements.

CHAPTER 2. DIRECTIVES 205

a b w N

N O

10
11

12
13

14
15

16
17
18

19
20

21
22
23
24

25
26

27
28
29
30

206

Syntax
C/C++

The syntax of the teams distribute parallel worksharing-loop construct is as follows:

#pragma omp teams distribute parallel for \
[clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute parallel for
directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the teams distribute parallel worksharing-loop construct is as follows:

!Somp teams distribute parallel do [clause[[,] clause] ... |
do-loops
[!'$omp end teams distribute parallel do]

where clause can be any of the clauses accepted by the teams or distribute parallel do

directives with identical meanings and restrictions.

If an end teams distribute parallel do directive is not specified, an end teams
distribute parallel do directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a teams directive immediately followed by a
distribute parallel worksharing-loop directive.

Restrictions
The restrictions for the teams and distribute parallel worksharing-loop constructs apply.

Cross References
e teams construct, see Section 2.9 on page 87.
e Distribute parallel worksharing-loop construct, see Section 2.12.4.3 on page 130.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.14 Teams Distribute Parallel Worksharing-Loop SIMD
Construct

Summary

The teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a

teams construct containing a distribute parallel worksharing-loop SIMD construct and no other
statements.

OpenMP API — Version 5.1 Preview, November 2019

(62 Ir ¢S B o)

»

10
11

12
13

14
15

16
17
18

19
20

21
22

23
24

25

26
27
28

Syntax
C/C++

The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:

#pragma omp teams distribute parallel for simd \
[clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the teams or distribute parallel
for simd directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the teams distribute parallel worksharing-loop SIMD construct is as follows:

!Somp teams distribute parallel do simd /clause[[,] clause] ... |
do-loops
[!'$omp end teams distribute parallel do simd]

where clause can be any of the clauses accepted by the teams or distribute parallel
do simd directives with identical meanings and restrictions.

If an end teams distribute parallel do simd directive is not specified, an end teams

distribute parallel do simd directive is assumed at the end of the do-loops.
Fortran

Description

The semantics are identical to explicitly specifying a teams directive immediately followed by a

distribute parallel worksharing-loop SIMD directive.

Restrictions

The restrictions for the teams and distribute parallel worksharing-loop SIMD constructs apply.

Cross References
e teams construct, see Section 2.9 on page 87.

o Distribute parallel worksharing-loop SIMD construct, see Section 2.12.4.4 on page 131.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.15 teams loop Construct

Summary
The teams loop construct is a shortcut for specifying a teams construct containing a 1oop
construct and no other statements.

CHAPTER 2. DIRECTIVES

207

[

11
12

13
14

15
16
17

18
19

20
21

22
23

24

25
26
27

208

Syntax
C/C++

The syntax of the teams loop construct is as follows:

I #pragma omp teams loop [clause[[,] clause] ... | new-line

for-loops

where clause can be any of the clauses accepted by the teams or loop directives with identical
meanings and restrictions.

C/C++
Fortran
The syntax of the teams loop construct is as follows:

'Somp teams loop [clause[[,] clause] ... |
do-loops
[!'$omp end teams loop]/

where clause can be any of the clauses accepted by the teams or loop directives with identical
meanings and restrictions.

If an end teams loop directive is not specified, an end teams loop directive is assumed at the
end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a teams directive immediately followed by a
loop directive.

Restrictions
The restrictions for the teams and loop constructs apply.

Cross References
e teams construct, see Section 2.9 on page 87.

e loop construct, see Section 2.12.5 on page 133.

o Data attribute clauses, see Section 2.22.4 on page 284.

2.16.16 target parallel Construct

Summary
The target parallel construct is a shortcut for specifying a target construct containing a
parallel construct and no other statements.

OpenMP API — Version 5.1 Preview, November 2019

11
12

13
14
15

16
17
18

19
20

21
22
23
24
25
26
27
28

Syntax
C/C++

The syntax of the target parallel construct is as follows:

#fpragma omp target parallel [clause[[,] clause] ... | new-line
structured-block

where clause can be any of the clauses accepted by the target or parallel directives, except
for copyin, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel construct is as follows:

'!Somp target parallel [clause[[,] clause] ... |
structured-block
!Somp end target parallel

where clause can be any of the clauses accepted by the target or parallel directives, except
for copyin, with identical meanings and restrictions.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel directive.

Restrictions
The restrictions for the target and parallel constructs apply except for the following explicit
modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

Cross References
e parallel construct, see Section 2.8 on page 79.

e target construct, see Section 2.15.5 on page 174.

e if Clause, see Section 2.18 on page 224.

Data attribute clauses, see Section 2.22.4 on page 284.

CHAPTER 2. DIRECTIVES 209

—_

A~ WN

11

12
13
14

15
16

17
18

19
20
21

22
23
24

25
26

27
28
29

210

2.16.17 Target Parallel Worksharing-Loop Construct

Summary
The target parallel worksharing-loop construct is a shortcut for specifying a target construct
containing a parallel worksharing-loop construct and no other statements.

Syntax
C/C++

The syntax of the target parallel worksharing-loop construct is as follows:

I #pragma omp target parallel for [clause[[,] clause] ... | new-line

for-loops

where clause can be any of the clauses accepted by the target or parallel for directives,
except for copyin, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel worksharing-loop construct is as follows:

!'Somp target parallel do [clause[[,] clause] ... |
do-loops
[!'$omp end target parallel do]/

where clause can be any of the clauses accepted by the target or parallel do directives,
except for copyin, with identical meanings and restrictions.

If an end target parallel do directive is not specified, an end target parallel do
directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel worksharing-loop directive.

Restrictions
The restrictions for the target and parallel worksharing-loop constructs apply except for the
following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all i £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

OpenMP API — Version 5.1 Preview, November 2019

a »~ W N =

© 0 »

10

11

12
13
14

15
16

17

18
19
20

21
22

23
24

25
26
27

Cross References
e target construct, see Section 2.15.5 on page 174.

e Parallel Worksharing-Loop construct, see Section 2.16.1 on page 193.

if Clause, see Section 2.18 on page 224.

Data attribute clauses, see Section 2.22.4 on page 284.

2.16.18 Target Parallel Worksharing-Loop SIMD Construct

Summary
The target parallel worksharing-loop SIMD construct is a shortcut for specifying a target
construct containing a parallel worksharing-loop SIMD construct and no other statements.

Syntax
C/C++

The syntax of the target parallel worksharing-loop SIMD construct is as follows:

#pragma omp target parallel for simd \
[clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel for simd
directives, except for copyin, with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target parallel worksharing-loop SIMD construct is as follows:

!Somp target parallel do simd [clause[[,] clause] ... |
do-loops
[!$Somp end target parallel do simd]

where clause can be any of the clauses accepted by the target or parallel do simd
directives, except for copyin, with identical meanings and restrictions.

If an end target parallel do simd directive is not specified, an end target parallel

do simd directive is assumed at the end of the do-loops.
Fortran

Description

The semantics are identical to explicitly specifying a target directive immediately followed by a

parallel worksharing-loop SIMD directive.

CHAPTER 2. DIRECTIVES

211

© 00 N O o~ wWwnNh =

11
12
13
14

15

16
17
18

19

20

21
22

23
24

212

Restrictions
The restrictions for the target and parallel worksharing-loop SIMD constructs apply except for
the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

At most one if clause without a directive-name-modifier can appear on the directive.

At most one if clause with the parallel directive-name-modifier can appear on the directive.

At most one if clause with the target directive-name-modifier can appear on the directive.

At most one if clause with the simd directive-name-modifier can appear on the directive.

Cross References
e target construct, see Section 2.15.5 on page 174.

e Parallel worksharing-loop SIMD construct, see Section 2.16.5 on page 197.

e if Clause, see Section 2.18 on page 224.

Data attribute clauses, see Section 2.22.4 on page 284.

2.16.19 target parallel loop Construct

Summary
The target parallel loop construct is a shortcut for specifying a target construct
containing a parallel loop construct and no other statements.

Syntax
C/C++

The syntax of the target parallel loop construct is as follows:
#pragma omp target parallel loop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or parallel loop directives,
except for copyin, with identical meanings and restrictions.

C/C++

OpenMP API — Version 5.1 Preview, November 2019

A OND =

© 00 o O

10
11
12

13
14
15

16
17

18
19
20

21
22

23
24

25

26
27
28

Fortran
The syntax of the target parallel loop construct is as follows:

!Somp target parallel loop [clause[[,] clause] ... |
do-loops
[!$Somp end target parallel loop]

where clause can be any of the clauses accepted by the target or parallel loop directives,
except for copyin, with identical meanings and restrictions.

If an end target parallel loop directive is not specified, an end target parallel
loop directive is assumed at the end of the do-loops. nowait may not be specified on an
end target parallel loop directive.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
parallel loop directive.

Restrictions
The restrictions for the target and parallel loop constructs apply except for the following
explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
o At most one if clause with the parallel directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.

Cross References
e target construct, see Section 2.15.5 on page 174.

e parallel loop construct, see Section 2.16.2 on page 194.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.20 target simd Construct

Summary
The target simd construct is a shortcut for specifying a target construct containing a simd
construct and no other statements.

CHAPTER 2. DIRECTIVES 213

[

11
12

13
14

15
16
17

18
19
20

21
22

23
24
25
26
27
28
29

Syntax
C/C++

The syntax of the target simd construct is as follows:
#pragma omp target simd [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or simd directives with identical
meanings and restrictions.

C/C++
Fortran
The syntax of the target simd construct is as follows:

'Somp target simd [clause/ [,] clause] ... |
do-loops
[!$omp end target simd]

where clause can be any of the clauses accepted by the target or simd directives with identical
meanings and restrictions.

If an end target simd directive is not specified, an end target simd directive is assumed at
the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
simd directive.

Restrictions
The restrictions for the target and simd constructs apply except for the following explicit
modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the target directive-name-modifier can appear on the directive.

e At most one if clause with the simd directive-name-modifier can appear on the directive.

Cross References
e simd construct, see Section 2.12.3.1 on page 115.

e target construct, see Section 2.15.5 on page 174.

e Data attribute clauses, see Section 2.22.4 on page 284.

OpenMP API — Version 5.1 Preview, November 2019

A WM

11

12
13
14

15
16

17
18
19

20
21

22
23
24
25

26

27
28
29

2.16.21 target teams Construct

Summary
The target teams construct is a shortcut for specifying a target construct containing a
teams construct and no other statements.

Syntax
C/C++

The syntax of the target teams construct is as follows:

#fpragma omp target teams [clause[[,] clause] ... | new-line
structured-block

where clause can be any of the clauses accepted by the target or teams directives with identical
meanings and restrictions.

C/C++
Fortran
The syntax of the target teams construct is as follows:

!Somp target teams [clause[[,] clause] ... |
structured-block
!Somp end target teams

where clause can be any of the clauses accepted by the target or teams directives with identical
meanings and restrictions.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
teams directive.

Restrictions
The restrictions for the target and teams constructs apply.

Cross References
e teams construct, see Section 2.9 on page 87.
e target construct, see Section 2.15.5 on page 174.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.22 target teams distribute Construct

Summary
The target teams distribute construct is a shortcut for specifying a target construct
containing a teams distribute construct and no other statements.

CHAPTER 2. DIRECTIVES 215

A~ W

[

11
12

13
14

15
16
17

18
19

20
21

22
23

24

25
26
27

216

Syntax
C/C++

The syntax of the target teams distribute construct is as follows:
#pragma omp target teams distribute [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute
directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute construct is as follows:

!'Somp target teams distribute [clause/ [,]| clause] ... |
do-loops
[!'$omp end target teams distribute]

where clause can be any of the clauses accepted by the target or teams distribute
directives with identical meanings and restrictions.

If an end target teams distribute directive is not specified, an end target teams
distribute directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute directive.

Restrictions
The restrictions for the target and teams distribute constructs.

Cross References
e target construct, see Section 2.15.2 on page 166.

e teams distribute construct, see Section 2.16.11 on page 203.

o Data attribute clauses, see Section 2.22.4 on page 284.

2.16.23 target teams distribute simd Construct

Summary
The target teams distribute simd construct is a shortcut for specifying a target
construct containing a teams distribute simd construct and no other statements.

OpenMP API — Version 5.1 Preview, November 2019

a b~ w N

»

10
11

12
13

14
15

16
17
18

19
20
21

22
23

24
25
26
27
28
29
30

Syntax
C/C++

The syntax of the target teams distribute simd construct is as follows:

#pragma omp target teams distribute simd \
[clause[[,] clause] ...] new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute simd
directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute simd construct is as follows:

!Somp target teams distribute simd [clause/ [, | clause] ... |
do-loops
[!'$omp end target teams distribute simd]

where clause can be any of the clauses accepted by the target or teams distribute simd
directives with identical meanings and restrictions.

If an end target teams distribute simd directive is not specified, an end target
teams distribute simd directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute simd directive.

Restrictions
The restrictions for the target and teams distribute simd constructs apply except for the
following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.

e At most one if clause with the target directive-name-modifier can appear on the directive.
e At most one if clause with the simd directive-name-modifier can appear on the directive.
Cross References

e target construct, see Section 2.15.2 on page 166.

e teams distribute simd construct, see Section 2.16.12 on page 204.

e Data attribute clauses, see Section 2.22.4 on page 284.

CHAPTER 2. DIRECTIVES 217

—_

A~ WM

11

12
13
14

15
16

17
18

19
20
21

22
23

24
25
26
27

218

2.16.24 target teams loop Construct

Summary
The target teams loop construct is a shortcut for specifying a target construct containing a
teams loop construct and no other statements.

Syntax
C/C++

The syntax of the target teams loop construct is as follows:
#pragma omp target teams loop [clause[[,] clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams loop directives with
identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams loop construct is as follows:

!Somp target teams loop [clause[[,] clause] ... |
do-loops
[!'$omp end target teams loop]

where clause can be any of the clauses accepted by the target or teams loop directives with
identical meanings and restrictions.

If an end target teams loop directive is not specified, an end target teams loop
directive is assumed at the end of the do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
teams loop directive.

Restrictions
The restrictions for the target and teams loop constructs.

Cross References
e target construct, see Section 2.15.5 on page 174.

e Teams loop construct, see Section 2.16.15 on page 207.

e Data attribute clauses, see Section 2.22.4 on page 284.

OpenMP API — Version 5.1 Preview, November 2019

o0~ W N =

10
11

12
13

14

15
16
17

18
19

20
21
22

23
24
25

2.16.25 Target Teams Distribute Parallel Worksharing-Loop
Construct

Summary

The target teams distribute parallel worksharing-loop construct is a shortcut for specifying a
target construct containing a teams distribute parallel worksharing-loop construct and no other
statements.

Syntax
C/C++

The syntax of the target teams distribute parallel worksharing-loop construct is as follows:

#pragma omp target teams distribute parallel for \
[clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute
parallel for directives with identical meanings and restrictions.

C/C++
Fortran
The syntax of the target teams distribute parallel worksharing-loop construct is as follows:

!Somp target teams distribute parallel do [clause[[,] clause] ... |
do-loops
[!'$omp end target teams distribute parallel do]

where clause can be any of the clauses accepted by the target or teams distribute
parallel do directives with identical meanings and restrictions.

If an end target teams distribute parallel do directive is not specified, an
end target teams distribute parallel do directive is assumed at the end of the
do-loops.

Fortran
Description

The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute parallel worksharing-loop directive.

CHAPTER 2. DIRECTIVES 219

o N o o~ W=

11
12
13

14
15
16
17

18
19

20

21

22
23
24

25
26

220

Restrictions
The restrictions for the target and teams distribute parallel worksharing-loop constructs apply
except for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

e At most one if clause without a directive-name-modifier can appear on the directive.
e At most one if clause with the parallel directive-name-modifier can appear on the directive.

o At most one if clause with the target directive-name-modifier can appear on the directive.

Cross References
e target construct, see Section 2.15.5 on page 174.

e Teams distribute parallel worksharing-loop construct, see Section 2.16.13 on page 205.
e if Clause, see Section 2.18 on page 224.

e Data attribute clauses, see Section 2.22.4 on page 284.

2.16.26 Target Teams Distribute Parallel Worksharing-Loop
SIMD Construct

Summary

The target teams distribute parallel worksharing-loop SIMD construct is a shortcut for specifying a
target construct containing a teams distribute parallel worksharing-loop SIMD construct and no
other statements.

Syntax
C/C++

The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:

#pragma omp target teams distribute parallel for simd \
[clause[[, | clause] ... | new-line
for-loops

where clause can be any of the clauses accepted by the target or teams distribute
parallel for simd directives with identical meanings and restrictions.

C/C++

OpenMP API — Version 5.1 Preview, November 2019

A OND =

© 00 o O

10
11
12

13
14
15

16
17

18
19
20
21

22
23

24
25
26

Fortran
The syntax of the target teams distribute parallel worksharing-loop SIMD construct is as follows:
!Somp target teams distribute parallel do simd [clause[[,] clause] ... |
do-loops
[!$omp end target teams distribute parallel do simd]

where clause can be any of the clauses accepted by the target or teams distribute
parallel do simd directives with identical meanings and restrictions.

If an end target teams distribute parallel do simd directive is not specified, an
end target teams distribute parallel do simd directive is assumed at the end of the
do-loops.

Fortran

Description
The semantics are identical to explicitly specifying a target directive immediately followed by a
teams distribute parallel worksharing-loop SIMD directive.

Restrictions
The restrictions for the target and teams distribute parallel worksharing-loop SIMD constructs
apply except for the following explicit modifications:

e If any if clause on the directive includes a directive-name-modifier then all 1 £ clauses on the
directive must include a directive-name-modifier.

At most one if clause without a directive-name-modifier can appear on the directive.

At most one if clause with the parallel directive-name-modifier can appear on the directive.

At most one if clause with the target directive-name-modifier can appear on the directive.

At most one if clause with the simd directive-name-modifier can appear on the directive.

Cross References
e target construct, see Section 2.15.5 on page 174.

o Teams distribute parallel worksharing-loop SIMD construct, see Section 2.16.14 on page 206.

if Clause, see Section 2.18 on page 224.

Data attribute clauses, see Section 2.22.4 on page 284.

CHAPTER 2. DIRECTIVES 221

- O © oOo~NO O~ W N

- a4 a4
w N

- a4 a4
N o o

—_
©

NN
- O

NDNDDMNDNDDNDN
No ok~ WD

W W NN
- O ©O ©o©

w w
w N

222

2.17 Clauses on Combined and Composite
Constructs

This section specifies the handling of clauses on combined or composite constructs and the
handling of implicit clauses from variables with predetermined data sharing if they are not
predetermined only on a particular construct. Some clauses are permitted only on a single construct
of the constructs that constitute the combined or composite construct, in which case the effect is as
if the clause is applied to that specific construct. As detailed in this section, other clauses have the
effect as if they are applied to one or more constituent constructs.

The collapse clause is applied once to the combined or composite construct.

The effect of the private clause is as if it is applied only to the innermost constituent construct
that permits it.

The effect of the £irstprivate clause is as if it is applied to one or more constructs as follows:
e To the distribute construct if it is among the constituent constructs;

e To the teams construct if it is among the constituent constructs and the distribute
construct is not;

e To the worksharing-loop construct if it is among the constituent constructs;
e To the taskloop construct if it is among the constituent constructs;

e To the parallel construct if it is among the constituent constructs and the worksharing-loop
construct or the taskloop construct is not;

e To the target construct if it is among the constituent constructs and the same list item does not
appear in a lastprivate or map clause.

If the parallel construct is among the constituent constructs and the effect is not as if the
firstprivate clause is applied to it by the above rules, then the effect is as if the shared
clause with the same list item is applied to the parallel construct. If the teams construct is
among the constituent constructs and the effect is not as if the £irstprivate clause is applied to
it by the above rules, then the effect is as if the shared clause with the same list item is applied to
the teams construct.

The effect of the lastprivate clause is as if it is applied to one or more constructs as follows:
e To the worksharing-loop construct if it is among the constituent constructs;

e To the taskloop construct if it is among the constituent constructs;

e To the distribute construct if it is among the constituent constructs; and

e To the innermost constituent construct that permits it unless it is a worksharing-loop or
distribute construct.

OpenMP API — Version 5.1 Preview, November 2019

O N O~ WN =

11
12

13
14

15

16
17
18
19
20
21
22
23
24
25

26
27
28
29

30

31
32
33
34
35
36
37
38

If the parallel construct is among the constituent constructs and the list item is not also specified
in the firstprivate clause, then the effect of the lastprivate clause is as if the shared
clause with the same list item is applied to the parallel construct. If the teams construct is
among the constituent constructs and the list item is not also specified in the firstprivate
clause, then the effect of the lastprivate clause is as if the shared clause with the same list
item is applied to the teams construct. If the target construct is among the constituent
constructs and the list item is not specified in a map clause, the effect of the lastprivate clause
is as if the same list item appears in a map clause with a map-type of tofrom.

The effect of the shared, default, order, or allocate clause is as if it is applied to all
constituent constructs that permit the clause.

The effect of the reduction clause is as if it is applied to all constructs that permit the clause,
except for the following constructs:

e The parallel construct, when combined with the sections, worksharing-loop, 1oop, or
taskloop construct; and

e The teams construct, when combined with the Loop construct.

For the parallel and teams constructs above, the effect of the reduction clause instead is as
if each list item or, for any list item that is an array item, its corresponding base array or base
pointer appears in a shared clause for the construct. If the task reduction-modifier is specified,
the effect is as if it only modifies the behavior of the reduction clause on the innermost
construct that constitutes the combined construct and that accepts the modifier (see Section 2.22.5.4
on page 302). If the inscan reduction-modifier is specified, the effect is as if it modifies the
behavior of the reduction clause on all constructs of the combined construct to which the clause
is applied and that accept the modifier. If a construct to which the inscan reduction-modifier is
applied is combined with the target construct, the effect is as if the same list item also appears in
a map clause with a map-type of tofrom.

The in_reduction clause is permitted on a single construct among those that constitute the
combined or composite construct and the effect is as if the clause is applied to that construct, but if
that construct is a target construct, the effect is also as if the same list item appears in a map
clause with a map-type of tofrom and a map-type-modifier of always.

The effect of the i f clause is described in Section 2.18 on page 224.

The effect of the 1inear clause is as if it is applied to the innermost constituent construct.
Additionally, if the list item is not the iteration variable of a simd or worksharing-loop SIMD
construct, the effect on the outer constituent constructs is as if the list item was specified in
firstprivate and lastprivate clauses on the combined or composite construct, with the
rules specified above applied. If a list item of the 1inear clause is the iteration variable of a
simd or worksharing-loop SIMD construct and it is not declared in the construct, the effect on the
outer constituent constructs is as if the list item was specified in a lastprivate clause on the
combined or composite construct with the rules specified above applied.

CHAPTER 2. DIRECTIVES 223

oNOO O~ W N =

©

—_ —a
N = O

13

14
15
16
17

18

19
20

21
22

23
24
25
26
27
28

224

The effect of the nowait clause is as if it is applied to the outermost constituent construct that
permits it.

If the clauses have expressions on them, such as for various clauses where the argument of the
clause is an expression, or lower-bound, length, or stride expressions inside array sections (or
subscript and stride expressions in subscript-triplet for Fortran), or linear-step or alignment
expressions, the expressions are evaluated immediately before the construct to which the clause has
been split or duplicated per the above rules (therefore inside of the outer constituent constructs).
However, the expressions inside the num_teams and thread_1limit clauses are always
evaluated before the outermost constituent construct.

The restriction that a list item may not appear in more than one data sharing clause with the
exception of specifying a variable in both £irstprivate and lastprivate clauses applies
after the clauses are split or duplicated per the above rules.

2.18 if Clause

Summary

The semantics of an i £ clause are described in the section on the construct to which it applies. The
if clause directive-name-modifier names the associated construct to which an expression applies,
and is particularly useful for composite and combined constructs.

Syntax
C/C++

The syntax of the i £ clause is as follows:

I if (/[directive-name-modifier : | scalar-expression)

C/C++
Fortran
The syntax of the if clause is as follows:

I if ([directive-name-modifier : | scalar-logical-expression)

Fortran

Description

The effect of the i £ clause depends on the construct to which it is applied. For combined or
composite constructs, the i £ clause only applies to the semantics of the construct named in the
directive-name-modifier if one is specified. If no directive-name-modifier is specified for a
combined or composite construct then the i £ clause applies to all constructs to which an if clause

can apply.

OpenMP API — Version 5.1 Preview, November 2019

10
11

12
13
14

15
16
17
18
19

20
21
22

23
24

25
26
27
28
29
30
31

2.19 master Construct

Summary
The master construct specifies a structured block that is executed by the master thread of the team.

Syntax
C/C++

The syntax of the master construct is as follows:

#pragma omp master new-line
structured-block

C/C++
Fortran
The syntax of the master construct is as follows:

!Somp master
structured-block
!Somp end master

Fortran

Binding
The binding thread set for a master region is the current team. A master region binds to the
innermost enclosing parallel region.

Description

Only the master thread of the team that executes the binding parallel region participates in the
execution of the structured block of the master region. Other threads in the team do not execute
the associated structured block. There is no implied barrier either on entry to, or exit from, the
master construct.

Execution Model Events
The master-begin event occurs in the master thread of a team that encounters the master construct
on entry to the master region.

The master-end event occurs in the master thread of a team that encounters the master construct
on exit from the master region.

Tool Callbacks

A thread dispatches a registered ompt__callback_master callback with
ompt_scope_begin as its endpoint argument for each occurrence of a master-begin event in
that thread. Similarly, a thread dispatches a registered ompt_callback_master callback with
ompt_scope_end as its endpoint argument for each occurrence of a master-end event in that
thread. These callbacks occur in the context of the task executed by the master thread and have the
type signature ompt_callback_master_t.

CHAPTER 2. DIRECTIVES 225

w

N o obs

10
11

12
13
14
15

16

17
18
19

20

21

22
23

24
25

Restrictions
C++

o A throw executed inside a master region must cause execution to resume within the same
master region, and the same thread that threw the exception must catch it

C++

Cross References
e parallel construct, see Section 2.8 on page 79.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.

e ompt_callback_master_t, see Section 4.5.2.12 on page 474.

2.20 Synchronization Constructs and Clauses

A synchronization construct orders the completion of code executed by different threads. This
ordering is imposed by synchronizing flush operations that are executed as part of the region that
corresponds to the construct.

Synchronization through the use of synchronizing flush operations and atomic operations is
described in Section 1.4.4 on page 26 and Section 1.4.6 on page 29. Section 2.20.8.1 on page 249
defines the behavior of synchronizing flush operations that are implied at various other locations in
an OpenMP program.

2.20.1 critical Construct

Summary
The eritical construct restricts execution of the associated structured block to a single thread at
a time.

Syntax
C/C++

The syntax of the eritical construct is as follows:

#fpragma omp critical [(name) [[,] hint (hint-expression) | | new-line
structured-block

where hint-expression is an integer constant expression that evaluates to a valid synchronization
hint (as described in Section 2.20.12 on page 262).

C/C++

OpenMP API — Version 5.1 Preview, November 2019

A OND =

o O

10
11
12
13
14
15

16
17

18
19

20
21
22
23

24
25
26
27
28

Fortran
The syntax of the critical construct is as follows:

'Somp critical [(name) [[,] hint (hint-expression) | |
structured-block
!Somp end critical [(name)]

where hint-expression is a constant expression that evaluates to a scalar value with kind
omp_sync_hint_kind and a value that is a valid synchronization hint (as described
in Section 2.20.12 on page 262).

Fortran

Binding

The binding thread set for a critical region is all threads in the contention group.

Description

The region that corresponds to a critical construct is executed as if only a single thread at a
time among all threads in the contention group enters the region for execution, without regard to the
team(s) to which the threads belong. An optional name may be used to identify the critical
construct. All critical constructs without a name are considered to have the same unspecified
name.

C/C++

Identifiers used to identify a critical construct have external linkage and are in a name space
that is separate from the name spaces used by labels, tags, members, and ordinary identifiers.

C/C++

Fortran

The names of critical constructs are global entities of the program. If a name conflicts with
any other entity, the behavior of the program is unspecified.

Fortran

The threads of a contention group execute the critical region as if only one thread of the
contention group executes the ecritical region at a time. The eritical construct enforces
these execution semantics with respect to all ecritical constructs with the same name in all
threads in the contention group.

If present, the hint clause gives the implementation additional information about the expected
runtime properties of the critical region that can optionally be used to optimize the
implementation. The presence of a hint clause does not affect the isolation guarantees provided
by the critical construct. If no hint clause is specified, the effect is as if

hint (omp_sync_hint_none) had been specified.

CHAPTER 2. DIRECTIVES 227

No o~ W=

10
11

12
13
14

15
16
17

18
19
20

21
22

23
24

25
26

27
28

29
30

31
32

Execution Model Events
The critical-acquiring event occurs in a thread that encounters the critical construct on entry
to the critical region before initiating synchronization for the region.

The critical-acquired event occurs in a thread that encounters the critical construct after it
enters the region, but before it executes the structured block of the critical region.

The critical-released event occurs in a thread that encounters the ecritical construct after it
completes any synchronization on exit from the eritical region.

Tool Callbacks

A thread dispatches a registered ompt__callback_mutex_acquire callback for each
occurrence of a critical-acquiring event in that thread. This callback has the type signature
ompt_callback_mutex_acquire_t.

A thread dispatches a registered ompt_callback_mutex_acquired callback for each
occurrence of a critical-acquired event in that thread. This callback has the type signature
ompt_callback_mutex_t.

A thread dispatches a registered ompt_callback_mutex_released callback for each
occurrence of a critical-released event in that thread. This callback has the type signature
ompt_callback_mutex_t.

The callbacks occur in the task that encounters the critical construct. The callbacks should receive
ompt_mutex_critical as their kind argument if practical, but a less specific kind is
acceptable.

Restrictions
The following restrictions apply to the critical construct:

e Unless the effect is as if hint(omp_sync_hint_none) was specified, the critical
construct must specify a name.

e If the hint clause is specified, each of the eritical constructs with the same name must
have a hint clause for which the hint-expression evaluates to the same value.

C++

e A throw executed inside a critical region must cause execution to resume within the same
critical region, and the same thread that threw the exception must catch it.

C++

Fortran

o If a name is specified on a critical directive, the same name must also be specified on the
end critical directive.

e If no name appears on the critical directive, no name can appear on the end ecritical
directive.

Fortran

OpenMP API — Version 5.1 Preview, November 2019

a ~ W N =

© oo ~N O

10

11
12

13
14

15
16
17

18
19
20
21

22

Cross References
e Synchronization Hints, see Section 2.20.12 on page 262.

e ompt_mutex_critical, see Section 4.4.4.16 on page 449.
e ompt_callback_mutex_acquire_t, see Section 4.5.2.14 on page 477.

e ompt_callback _mutex_t, see Section 4.5.2.15 on page 478.

2.20.2 barrier Construct
Summary

The barrier construct specifies an explicit barrier at the point at which the construct appears.

The barrier construct is a stand-alone directive.

Syntax
C/C++

The syntax of the barrier construct is as follows:
| #pragma omp barrier new-line
C/C++
Fortran
The syntax of the barrier construct is as follows:

I !Somp barrier
Fortran
Binding

The binding thread set for a barrier region is the current team. A barrier region binds to
innermost enclosing parallel region.

Description

the

All threads of the team that is executing the binding parallel region must execute the barrier
region and complete execution of all explicit tasks bound to this parallel region before any are

allowed to continue execution beyond the barrier.

The barrier region includes an implicit task scheduling point in the current task region.

CHAPTER 2. DIRECTIVES

229

- O ©Wo0o NoO o~ W=

—_

13
14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33

34
35
36
37

230

Execution Model Events
The explicit-barrier-begin event occurs in each thread that encounters the barrier construct on
entry to the barrier region.

The explicit-barrier-wait-begin event occurs when a task begins an interval of active or passive
waiting in a barrier region.

The explicit-barrier-wait-end event occurs when a task ends an interval of active or passive waiting
and resumes execution in a barrier region.

The explicit-barrier-end event occurs in each thread that encounters the barrier construct after
the barrier synchronization on exit from the barrier region.

A cancellation event occurs if cancellation is activated at an implicit cancellation point in a
barrier region.

Tool Callbacks

A thread dispatches a registered ompt__callback_sync_region callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of an explicit-barrier-begin event in the task that
encounters the barrier construct. Similarly, a thread dispatches a registered
ompt_callback_sync_region callback with
ompt_sync_region_barrier explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of an explicit-barrier-end event in the task that encounters
the barrier construct. These callbacks occur in the task that encounters the barrier construct
and have the type signature ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_ scope_begin as
its endpoint argument for each occurrence of an explicit-barrier-wait-begin event. Similarly, a
thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_barrier_explicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of an explicit-barrier-wait-end event. These callbacks
occur in the context of the task that encountered the barrier construct and have type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_cancel callback with
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in
that thread. The callback occurs in the context of the encountering task. The callback has type
signature ompt_callback_cancel_t.

OpenMP API — Version 5.1 Preview, November 2019

oo AW N =

o © o

12

13
14
15
16

17
18
19

20
21

22
23

24
25

26
27

Restrictions
The following restrictions apply to the barrier construct:

e Fach barrier region must be encountered by all threads in a team or by none at all, unless
cancellation has been requested for the innermost enclosing parallel region.

o The sequence of worksharing regions and barrier regions encountered must be the same for
every thread in a team.

Cross References
e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.

e ompt_sync_region_barrier, see Section 4.4.4.13 on page 448.
e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 475.

e ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.

2.20.3 Implicit Barriers

This section describes the OMPT events and tool callbacks associated with implicit barriers, which
occur at the end of various regions as defined in the description of the constructs to which they
correspond. Implicit barriers are task scheduling points. For a description of task scheduling
points, associated events, and tool callbacks, see Section 2.13.6 on page 156.

Execution Model Events
The implicit-barrier-begin event occurs in each implicit task at the beginning of an implicit barrier
region.

The implicit-barrier-wait-begin event occurs when a task begins an interval of active or passive
waiting in an implicit barrier region.

The implicit-barrier-wait-end event occurs when a task ends an interval of active or waiting and
resumes execution of an implicit barrier region.

The implicit-barrier-end event occurs in each implicit task after the barrier synchronization on exit
from an implicit barrier region.

A cancellation event occurs if cancellation is activated at an implicit cancellation point in an
implicit barrier region.

CHAPTER 2. DIRECTIVES 231

T G GO Oy
O© O NOOOPA,WN - O0O©0ONOOOGTA~WN =

NN
- O

NN NN
a b~ wN

26
27
28
29
30
31

32
33
34
35
36
37

232

Tool Callbacks

A thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_barrier_implicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of an implicit-barrier-begin event in that thread.
Similarly, a thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_barrier_implicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of an implicit-barrier-end event in that thread. These
callbacks occur in the implicit task that executes the parallel region and have the type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_barrier_implicit — or ompt_sync_region_barrier, if the
implementation cannot make a distinction — as its kind argument and ompt_scope_begin as
its endpoint argument for each occurrence of a implicit-barrier-wait-begin event in that thread.
Similarly, a thread dispatches a registered ompt_callback_sync_region_wait callback
with ompt_sync_region_barrier explicit — or ompt_sync_region_barrier,
if the implementation cannot make a distinction — as its kind argument and ompt_scope_end
as its endpoint argument for each occurrence of an implicit-barrier-wait-end event in that thread.
These callbacks occur in the implicit task that executes the parallel region and have type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_cancel callback with
ompt_cancel_detected as its flags argument for each occurrence of a cancellation event in
that thread. The callback occurs in the context of the encountering task. The callback has type
signature ompt_callback_cancel_t.

Restrictions

If a thread is in the state ompt_state_wait_barrier implicit_parallel,acallto
ompt_get_parallel_info may return a pointer to a copy of the data object associated with
the parallel region rather than a pointer to the associated data object itself. Writing to the data
object returned by omp_get_parallel_info when a thread is in the
ompt_state_wait_barrier_implicit_parallel results in unspecified behavior.

Cross References

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_sync_region_barrier, see Section 4.4.4.13 on page 448

e ompt_cancel_detected, see Section 4.4.4.24 on page 453.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 475.

ompt_callback_cancel_t, see Section 4.5.2.18 on page 481.

OpenMP API — Version 5.1 Preview, November 2019

O N O~ WDN

10
11
12

13

14
15

16
17

18
19

20
21

22
23
24

2.20.4 Implementation-Specific Barriers

An OpenMP implementation can execute implementation-specific barriers that are not implied by
the OpenMP specification; therefore, no execution model events are bound to these barriers. The
implementation can handle these barriers like implicit barriers and dispatch all events as for
implicit barriers. These callbacks are dispatched with

ompt_sync_region_barrier_ implementation —or
ompt_sync_region_barrier, if the implementation cannot make a distinction — as the kind
argument.

2.20.5 taskwait Construct

Summary
The taskwait construct specifies a wait on the completion of child tasks of the current task. The
taskwait construct is a stand-alone directive.

Syntax
C/C++

The syntax of the taskwait construct is as follows:

I #pragma omp taskwait [clause/ [,]| clause] ... | new-line

where clause is one of the following:

I depend (/depend-modifier, |dependence-type : locator-list)

C/C++
Fortran
The syntax of the taskwait construct is as follows:

I 'Somp taskwait [clause[[,] clause] ...]

where clause is one of the following:

I depend (/depend-modifier, |dependence-type : locator-list)
Fortran
Binding

The taskwait region binds to the current task region. The binding thread set of the taskwait
region is the current team.

CHAPTER 2. DIRECTIVES 233

oNoO Ol WO =

10
11

12
13

14
15

16
17

18
19
20
21
22
23
24
25
26
27

28
29
30
31
32
33
34
35

234

Description

If no depend clause is present on the taskwait construct, the current task region is suspended
at an implicit task scheduling point associated with the construct. The current task region remains
suspended until all child tasks that it generated before the taskwait region complete execution.

Otherwise, if one or more depend clauses are present on the taskwait construct, the behavior
is as if these clauses were applied to a task construct with an empty associated structured block
that generates a mergeable and included task. Thus, the current task region is suspended until the
predecessor tasks of this task complete execution.

Execution Model Events
The taskwait-begin event occurs in each thread that encounters the taskwait construct on entry
to the taskwait region.

The taskwait-wait-begin event occurs when a task begins an interval of active or passive waiting in
a taskwait region.

The taskwait-wait-end event occurs when a task ends an interval of active or passive waiting and
resumes execution in a taskwait region.

The taskwait-end event occurs in each thread that encounters the taskwait construct after the
taskwait synchronization on exit from the taskwait region.

Tool Callbacks

A thread dispatches a registered ompt__callback_sync_region callback with
ompt_sync_region_taskwait as its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a taskwait-begin event in the task that encounters the
taskwait construct. Similarly, a thread dispatches a registered
ompt_callback_sync_region callback with ompt_sync_region_taskwait as its
kind argument and ompt__scope_end as its endpoint argument for each occurrence of a
taskwait-end event in the task that encounters the taskwait construct. These callbacks occur in
the task that encounters the taskwait construct and have the type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskwait asits kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a taskwait-wait-begin event. Similarly, a thread
dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskwait as its kind argument and ompt_scope_end as its endpoint
argument for each occurrence of a raskwait-wait-end event. These callbacks occur in the context of
the task that encounters the taskwait construct and have type signature
ompt_callback_sync_region_t.

OpenMP API — Version 5.1 Preview, November 2019

oo AW N =

o © o

12
13

14

15
16
17

18

19

20
21

22

23
24

Restrictions
The following restrictions apply to the taskwait construct:

o The mutexinoutset dependence-type may not appear in a depend clause on a taskwait
construct.

o If the dependence-type of a depend clause is depobj then the dependence objects cannot
represent dependences of the mutexinoutset dependence type.

Cross References
e task construct, see Section 2.13.1 on page 142.

Task scheduling, see Section 2.13.6 on page 156.

depend clause, see Section 2.20.11 on page 257.
e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_sync_region_taskwait, see Section 4.4.4.13 on page 448.

e ompt_callback_sync_region_t, see Section 4.5.2.13 on page 475.

2.20.6 taskgroup Construct

Summary
The taskgroup construct specifies a wait on completion of child tasks of the current task and
their descendent tasks.

Syntax
C/C++

The syntax of the taskgroup construct is as follows:

#fpragma omp taskgroup [clause[[, | clause]...] new-line
structured-block

where clause is one of the following:

task_reduction (reduction-identifier : list)
allocate ([allocator:]list)

C/C++

CHAPTER 2. DIRECTIVES 235

AN =

(¢

11
12
13
14
15

16
17

18
19
20

21
22

23
24

25
26

236

Fortran
The syntax of the taskgroup construct is as follows:

'$Somp taskgroup [clause [[,] clause]...]
structured-block
!$Somp end taskgroup

where clause is one of the following:

task_reduction (reduction-identifier : list)
allocate ([allocator:]list)

Fortran

Binding
The binding task set of a taskgroup region is all tasks of the current team that are generated in
the region. A taskgroup region binds to the innermost enclosing parallel region.

Description

When a thread encounters a taskgroup construct, it starts executing the region. All child tasks
generated in the taskgroup region and all of their descendants that bind to the same parallel
region as the taskgroup region are part of the taskgroup set associated with the taskgroup
region.

There is an implicit task scheduling point at the end of the taskgroup region. The current task is
suspended at the task scheduling point until all tasks in the taskgroup set complete execution.

Execution Model Events
The taskgroup-begin event occurs in each thread that encounters the taskgroup construct on
entry to the taskgroup region.

The taskgroup-wait-begin event occurs when a task begins an interval of active or passive waiting
in a taskgroup region.

The taskgroup-wait-end event occurs when a task ends an interval of active or passive waiting and
resumes execution in a taskgroup region.

The taskgroup-end event occurs in each thread that encounters the taskgroup construct after the
taskgroup synchronization on exit from the taskgroup region.

OpenMP API — Version 5.1 Preview, November 2019

O N O~ WN =

-
o ©

- 4 a4 4 4 o a a
O N O~ WN =

19
20

21
22
23
24

25

26
27
28
29

30
31
32
33
34

Tool Callbacks

A thread dispatches a registered ompt_callback_sync_region callback with
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a taskgroup-begin event in the task that encounters the
taskgroup construct. Similarly, a thread dispatches a registered
ompt_callback_sync_region callback with ompt_sync_region_taskgroup as its
kind argument and ompt__scope_end as its endpoint argument for each occurrence of a
taskgroup-end event in the task that encounters the taskgroup construct. These callbacks occur
in the task that encounters the taskgroup construct and have the type signature
ompt_callback_sync_region_t.

A thread dispatches a registered ompt_callback_sync_region_wait callback with
ompt_sync_region_taskgroup as its kind argument and ompt_scope_begin as its
endpoint argument for each occurrence of a taskgroup-wait-begin event. Similarly, a thread
dispatches a registered ompt_callback sync_region_wait callback with
ompt_sync_region_taskgroup as its kind argument and ompt_scope_end as its
endpoint argument for each occurrence of a taskgroup-wait-end event. These callbacks occur in the
context of the task that encounters the taskgroup construct and have type signature
ompt_callback_sync_region_t.

Cross References

o Task scheduling, see Section 2.13.6 on page 156.

e task_reduction Clause, see Section 2.22.5.5 on page 305.

e ompt_scope_begin and ompt_scope_end, see Section 4.4.4.11 on page 447.
e ompt_sync_region_taskgroup, see Section 4.4.4.13 on page 448.

e ompt_callback sync_region_t, see Section 4.5.2.13 on page 475.

2.20.7 atomic Construct

Summary

The atomic construct ensures that a specific storage location is accessed atomically, rather than
exposing it to the possibility of multiple, simultaneous reading and writing threads that may result
in indeterminate values.

Syntax

In the following syntax, atomic-clause is a clause that indicates the semantics for which atomicity is
enforced, memory-order-clause is a clause that indicates the memory ordering behavior of the
construct and clause is a clause other than atomic-clause. Specifically, atomic-clause is one of the
following:

CHAPTER 2. DIRECTIVES 237

A W N =

O © O N O O

11
12

13

14
15
16

17

18
19

20

21
22
23

24

25
26

27
28

29

read
write
update

capture
memory-order-clause is one of the following:

seq _cst
acq rel
release
acquire

relaxed

and clause is either memory-order-clause or one of the following:
I hint (hint-expression)
C/C++

The syntax of the atomiec construct takes one of the following forms:

#pragma omp atomic [clause[[[,] clause] ...] [,]] atomic-clause
[[,] clause [[[,] clause] ...]] new-line
expression-stmt

or

#pragma omp atomic [clause[[, | clause] ... | new-line
expression-stmt

or

#pragma omp atomic [clause[[[,] clause] ...][,]] capture
[[,] clause [[[,] clause] ...]] new-line
structured-block

where expression-stmt is an expression statement with one of the following forms:

o If atomic-clause is read:

|v=x;

o If atomic-clause is write:

Ix = expr;

o If atomic-clause is update or not present:

238 OpenMP API — Version 5.1 Preview, November 2019

No oA~ wnNn =

10
11
12
13
14
15

16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34

35
36

37
38

In the preceding expressions:

++x;
—x;

x binop= expr;

X = x binop expr;

X

expr binop x;

If atomic-clause is capture:

v

S S S S S S

X++;
S
++x;
——x;
x binop= expr;
X
X

x binop expr;
expr binop x;

C/C++ (cont.)

and where structured-block is a structured block with one of the following forms:

—~

e T e B W W i e S S Y

Vv
X
1%
1%
X
X
v
1%
1%

++x; v = x;
xX++; v = Xx;

v
1%

e
x==;

= x; x binop= expr; }
binop= expr; v = x; }
= x; X = x binop expr;
= x; X = expr binop x;

= Xx;
= Xx;

X++;
++x;

= Xx;
= X; —=X;
Vv = Xx;

v = Xx;

x binop expr; v = x;
expr binop x; v
= X; X = expr;

X7

}

e o o

e x and v (as applicable) are both [-value expressions with scalar type.

x must not have an atomic type.

During the execution of an atomic region, multiple syntactic occurrences of x must designate the
same storage location.

Neither of v and expr (as applicable) may access the storage location designated by x.

Neither of x and expr (as applicable) may access the storage location designated by v.

CHAPTER 2. DIRECTIVES 239

- O