
	
 	

	
 	

OpenMP	
 Architecture	
 Review	
 Board	
 	
 	
 	
 	
 	
 	
 	
 www.openmp.org	
 	
 	
 	
 	
 	
 	
 	
 info@openmp.org	

c/o	
 David	
 K.	
 Poulsen,	
 OpenMP,	
 	
 	
 1906	
 Fox	
 Drive,	
 Champaign,	
 Illinois	
 61820	
 	
 USA	

OPENMP	
 ARB	

OpenMP	
 Technical	
 Report	
 2	
 on	

the	
 OMPT	
 Interface	
 	

	

This	
 Technical	
 Report	
 specifies	
 OMPT:	
 An	
 OpenMP	
 Tools	
 	

Application	
 Programming	
 Interface	
 for	
 Performance	
 Analysis	

	

Alexandre	
 Eichenberger	
 (co-­‐editor,	
 alexe@us.ibm.com)	

John	
 Mellor-­‐Crummey	
 (co-­‐editor,	
 johnmc@rice.edu)	

Martin	
 Schulz	
 (co-­‐editor,	
 schulzm@lnl.gov)	

	

Nawal	
 Copty	

Jim	
 Cownie	

Robert	
 Dietrich	

Xu	
 Liu	

Eugene	
 Loh	

Daniel	
 Lorenz	

and	
 other	
 members	
 of	
 the	
 OpenMP	
 Tools	
 Working	
 Group	

	

4/3/2014	

	

Expires:	
 4/3/2017	

We	
 actively	
 solicit	
 comments.	
 Please	
 provide	
 feedback	
 on	
 this	
 document	
 either	
 to	
 the	
 Editor	
 directly	
 or	
 in	
 the	

OpenMP	
 Forum	
 at	
 openmp.org	

End	
 of	
 Public	
 Comment	
 Period:	
 June	
 2,	
 2014	

	

	

	

This technical report describes possible future directions or extensions to the OpenMP
Specification.

The goal of this technical report is to build more widespread existing practice for an expanded
OpenMP. It gives advice on extensions or future directions to those vendors who wish to provide
them possibly for trial implementation, allows OpenMP to gather early feedback, support timing
and scheduling differences between official OpenMP releases, and offers a preview to users of
the future directions of OpenMP with the provision stated in the next paragraph.

This technical report is non-normative. Some of the components in this technical report may be
considered for standardization in a future version of OpenMP, but they are not currently part of
any OpenMP Specification. Some of the components in this technical report may never be
standardized, others may be standardized in a substantially changed form, or it may be
standardized as is in its entirety.

OMPT: An OpenMP R© Tools Application Programming Interface

for Performance Analysis

Alexandre Eichenberger∗, John Mellor-Crummey†, Martin Schulz‡,

Nawal Copty§, Jim Cownie¶, Robert Dietrich‖, Xu Liu†, Eugene Loh§, Daniel Lorenz∗∗,
and other members of the OpenMP Tools Working Group

March 21, 2014

1 Introduction

Today, it is difficult to produce high quality tools that support performance analysis of OpenMP programs
without tightly integrating them with a specific OpenMP runtime implementation. To address this prob-
lem, this document defines OMPT—an application programming interface (API) for first-party performance
tools.1 Extending the OpenMP standard with this API will make it possible to construct powerful tools
that will support any standard-compliant OpenMP implementation.

1.1 OMPT

The design of OMPT is based on experience with two prior efforts to define a standard OpenMP tools
API: the POMP API [3] and the Sun/Oracle Collector API [1, 2]. The POMP API provides support for
instrumentation-based measurement. A drawback of this approach is that its overhead can be significant
because an operation, e.g., an iteration of an OpenMP worksharing loop, may take less time than tool
callbacks monitoring its execution. In contrast, the Sun/Oracle Collector API was designed primarily to
support performance measurement using asynchronous sampling. This design enables the construction of
tools that attribute costs without the overhead and intrusion of pervasive instrumentation. With the Col-
lector API, tools can use low-overhead asynchronous sampling of application call stacks to record compact
call path profiles. However, the Collector API doesn’t provide enough instrumentation hooks to provide full
tool support for statically-linked executables. OMPT builds upon ideas from both the POMP and Collector
APIs. The core of OMPT is a minimal set of features to support tools that employ asynchronous sampling to
measure application performance. In addition, OMPT defines interfaces to support blame shifting [4, 5]—a
technique that shifts attribution of costs from symptoms to causes. Finally, OMPT defines callbacks suitable
for instrumentation-based monitoring of runtime events. OMPT can be implemented entirely by a compiler,
entirely by an OpenMP runtime system, or with a hybrid strategy that employs a mixture of compiler and
runtime support.

With the exception of one routine for tool control, all functions in the OMPT API are intended for use
only by tools rather than by applications. All OMPT API functions have a C binding. A Fortran binding
is provided only for the single application-facing tool control function described in Section 7.
∗IBM T.J. Watson Research Center
†Rice University
‡Lawrence Livermore National Laboratory
§Oracle
¶Intel
‖TU Dresden, ZIH
∗∗Jülich Supercomputer Center
1A first-party tool runs within the address space of an application process. This differs from a third-party tool, e.g., a

debugger, which runs as a separate process.

1

1.1.1 Design Objectives

OMPT tries to satisfy several design objectives for a performance tool interface for OpenMP. These objectives
are listed in decreasing order of importance.

• The API should enable tools to gather sufficient information about an OpenMP program execution to
associate costs with both the program and the OpenMP runtime system.

– The API should provide an interface sufficient to construct low-overhead performance tools based
on asynchronous sampling.

– The API should enable a profiler that uses call stack unwinding to identify which frames in its
call stack are present on behalf of the OpenMP runtime.

– An OpenMP runtime system should associate the activity of a thread at any point in time with
a state, e.g., idle, which will enable a performance tool to interpret program behavior.

– Certain API routines must be defined as async signal safe so that they can be invoked in a
profiler’s signal handler as it processes interrupts generated by asynchronous sampling.

• Incorporating support for the API in an OpenMP runtime system should add negligible overhead to
the runtime system if the interface is not in use by a tool.

• The API should define interfaces suitable for constructing instrumentation-based performance tools.

• Adding the API to an OpenMP runtime should not impose an unreasonable development burden on
the runtime developer.

• The API should not impose an unreasonable development burden on tool implementers.

To support the OMPT interface for tools, an OpenMP runtime system must maintain information about
the state of each OpenMP thread and provide a set of API calls that tools can use to interrogate the OpenMP
runtime. Maintaining information about the state of each thread in the runtime system is not free and thus
an OpenMP runtime system need not maintain state information unless a tool has registered its interest
in this information. Without any explicit request to enable tool support, an OpenMP runtime need not
maintain any state for the benefit of tools.

1.1.2 Minimally Compliant Implementation

OMPT has a small set of mandatory features that provide a common foundation for all performance tools.
A runtime may also implement additional, optional, OMPT features used by some tools to gather extra
information about a program execution. The features required by a minimally compliant implementation
are summarized below.

• Maintain a unique numerical ID per OpenMP thread, parallel region, and task region. A minimal
implementation may reuse the task ID required by OpenMP for nested locks.

• Maintain pointers into the stack for each OpenMP thread to distinguish frames for user procedures
from frames for OpenMP runtime routines. Each OpenMP worker must maintain a pointer to the
stack frame of the runtime routine containing its idle loop, if one exists on the stack.

• Maintain a state and a wait condition for each OpenMP thread. Mandatory states are idle, work serial,
work parallel, and undefined.

• Provide callbacks to tools when encountering the following events: thread begin/end, parallel region
begin/end, task region begin/end, a user-level tool control call, and runtime shutdown.

• Implement several async signal safe inquiry functions to retrieve information from the OpenMP run-
time.

• Have the OpenMP runtime initiate a callback to a tool initialization routine as directed by the value
of a new OpenMP environment variable (OMP_TOOL) and provide a function to register tool callbacks
with the runtime.

2

1.2 Document Roadmap

This document first outlines various aspects of the OMPT tools API. Section 2 describes the state information
maintained by the OpenMP runtime system on behalf of OMPT for use by tools. Section 3 describes the
OMPT callbacks to notify a tool of various OpenMP runtime events during an execution. Section 4 describes
the data structures used by the OMPT interface. Section 5 describes the runtime system inquiry operations
supported by OMPT for the benefit of tools. Section 6 describes the OMPT API operations for tool
initialization. Section 7 describes the tool control interface available to applications. Section 8 concludes
with a few notes about potential future enhancements. Appendix A provides a definition of the complete
OMPT interface in C. Appendix B illustrates the information that OMPT maintains about call stacks and
the use of OMPT API routines to inspect it; this support enables tools to associate code executed in OpenMP
parallel regions with application-level calling contexts.

2 Runtime States

To enable a tool to understand what an OpenMP thread is doing, when a tool registers itself with an OpenMP
runtime system, the runtime will maintain state information for each OpenMP thread that can be queried by
the tool. The state maintained for each thread by the OpenMP runtime is an approximation of the thread’s
instantaneous state. OMPT uses the enumeration type ompt_state_t for states; Appendix A.1 defines this
type. When the state of a thread not associated with the OpenMP runtime is queried, the runtime returns
ompt_state_undefined.

For each OpenMP thread the runtime maintains not only a state but also an ompt_wait_id_t identifier.
When a thread is waiting for a lock, critical region, ordered, or atomic, and the thread is in a wait state,
then the thread’s wait_id field identifies the lock, critical construct, ordered construct, atomic construct,
or internal variable upon which the thread is waiting. The semantics of the values used for a wait_id are
implementation defined. A thread’s wait_id is undefined if the thread is not in a wait state.

States are classified as mandatory, optional, or flexible. Flexible states provide an OpenMP runtime with
leeway to determine if and when to report transitions to a flexible state. For example, consider when a
thread acquires a lock. One compliant runtime may transition a thread’s state to ompt_state_wait_lock
(flexible state) early before the thread attempts to acquire a lock. Another compliant runtime may transition
a thread’s state to ompt_state_wait_lock late, only if the thread begins to spin or block to wait for an
unavailable lock. A third compliant runtime may transition a thread’s state to ompt_state_wait_lock even
later, e.g., only after the thread waits for a significant amount of time.

State values 0 to 127 are reserved for current OMPT states and future extensions.

Idle State

ompt_state_idle (mandatory)

The thread is idle while waiting to work on an OpenMP parallel region.

Work States

ompt_state_work_serial (mandatory)

The thread is executing code outside all parallel regions.

ompt_state_work_parallel (mandatory)

The thread is executing code within the scope of a parallel region construct.

ompt_state_work_reduction (optional)

The thread is combining partial reduction results from threads in its team. A compliant runtime might
never report a thread in this state; a thread combining partial reduction results may report its state
as ompt_state_work_parallel or ompt_state_overhead.

3

Barrier Wait States

ompt_state_wait_barrier (flexible)

The thread is waiting at either an implicit or explicit barrier. A compliant implementation may
have a thread enter this state early, when the thread encounters a barrier, or late, when the
thread begins to wait at the barrier. A compliant implementation may never report a thread
in this state; instead a thread might report its state as ompt_state_wait_barrier_implicit or
ompt_state_wait_barrier_explicit, as appropriate.

ompt_state_wait_barrier_implicit (flexible)

The thread is waiting at an implicit barrier in a parallel region. A compliant implementation may have
a thread enter this state early, when the thread encounters a barrier, or late, when the thread begins
to wait at the barrier. A compliant runtime implementation may report ompt_state_wait_barrier
for implicit barriers.

ompt_state_wait_barrier_explicit (flexible)

The thread is waiting at an explicit barrier in a parallel region. A compliant implementation may have
a thread enter this state early, when the thread encounters a barrier, or late, when the thread begins
to wait at the barrier. A compliant runtime implementation may report ompt_state_wait_barrier
for explicit barriers.

Task Wait States

ompt_state_wait_taskwait (flexible)

The thread is waiting at a taskwait construct. A compliant implementation may have a thread enter
this state early, when the thread encounters a taskwait construct, or late, when the thread begins to
wait for an uncompleted task.

ompt_state_wait_taskgroup (flexible)

The thread is waiting at the end of a taskgroup construct. A compliant implementation may have a
thread enter this state early, when the thread encounters the end of a taskgroup construct, or late,
when the thread begins to wait for an uncompleted task.

Mutex Wait States

ompt_state_wait_lock (ompt_state_wait_nest_lock) (flexible)

The thread is waiting for a lock (nest lock). A compliant implementation may have a thread enter this
state early, when a thread encounters a lock (nest lock) set routine, or late, when the thread begins
to wait for a lock (nest lock).

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to identify the lock (nest lock) being acquired.

ompt_state_wait_critical (flexible)

The thread is waiting to enter a critical region. A compliant implementation may have a thread enter
this state early, when the thread encounters a critical construct, or late, when the thread begins to
wait to enter the critical region. A compliant implementation may report a thread waiting to enter a
critical region in ompt_state_wait_lock if waiting for a lock associated with the construct.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to identify the critical construct or an internal runtime variable (e.g., a lock) associated with the
critical construct.

4

ompt_state_wait_atomic (flexible)

The thread is waiting to enter an atomic region. A compliant implementation may have a thread enter
this state early, when the thread encounters an atomic construct, or late, when the thread begins to
wait to enter the atomic region. A compliant implementation may report a thread waiting to enter an
atomic region in ompt_state_wait_lock if waiting for a lock associated with the atomic construct. A
compliant implementation may opt to not report this state, for example, when using atomic hardware
instructions, which allow non-blocking atomic implementations.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to identify the atomic construct, a program variable, or an internal runtime variable (e.g., a lock)
associated with the atomic construct.

ompt_state_wait_ordered (flexible)

The thread is waiting to enter an ordered region. A compliant implementation may have a thread enter
this state early, when the thread encounters an ordered construct, or late, when the thread begins to
wait to enter the ordered region. A compliant implementation may report a thread waiting to enter a
ordered region in ompt_state_wait_lock if waiting for a lock associated with the ordered construct.

Before a thread enters this state, the OpenMP runtime system will update the thread’s ompt_wait_id_t
field to identify the ordered construct or an internal runtime variable (e.g., a lock) associated with the
ordered construct.

Overhead State

ompt_state_overhead (optional)

A thread may be reported as being in the overhead state at any point while executing within an
OpenMP runtime system, e.g., while preparing a parallel region, preparing a new explicit task, prepar-
ing a worksharing region, or preparing to execute iterations of a parallel loop. It is compliant to report
some or all OpenMP runtime overhead as work.

Miscellaneous States

ompt_state_undefined (mandatory)

This state is reserved for threads that are not user threads, initial threads, threads currently in an
OpenMP team, or threads waiting to become part of an OpenMP team.

ompt_state_first (mandatory)

This state is a placeholder exclusively reserved for use by the OMPT runtime call
ompt_enumerate_state (see Section 5.1), which is used to enumerate all available runtime states.
A thread will never be reported in this state.

3 Events

This section describes callback events that an OpenMP runtime may provide for use by a tool. OMPT uses
the enumeration type ompt_event_t for events; Appendix A.2 defines this type. A tool need not register
a callback for any particular event. In most cases, an OpenMP runtime system will not make any callback
unless a tool has registered to receive it. The exception to this rule is begin/end event pairs. To implement
event notifications efficiently, a runtime may assume that for certain begin/end event pairs if one event of
the pair has a callback registered, the other will have a callback defined as well. When this exception applies,
it will be noted for affected events.

Callbacks for different events may have different type signatures. The type signature for an event’s
callback is noted with the event definition. Appendix A.3 defines type signatures for callback events.

5

There are two classes of events: mandatory events and optional events. Mandatory events must be
implemented in any compliant OpenMP runtime implementation. Optional events are grouped in sets of
related events. Except for begin/end pairs as noted, support for any particular optional event can be included
or omitted at the discretion of a runtime system implementer.

3.1 Mandatory Events

The following callback events are mandatory and must be supported by a compliant OpenMP runtime
system.

Threads

ompt_event_thread_begin

The OpenMP runtime invokes this callback in the context of an initial thread just after it initializes
the OpenMP runtime for itself, or in the context of a new thread created by the OpenMP runtime
system just after the thread initializes itself. In either case, this callback must be the first callback
for a thread and must occur before the thread executes any OpenMP tasks. The type of the thread
(ompt_thread_initial, ompt_thread_worker, or ompt_thread_other) is passed as an argument to
the callback. This callback has type signature ompt_thread_type_callback_t.

ompt_event_thread_end

The OpenMP runtime invokes this callback after an OpenMP thread completes all of its tasks but
before the thread is destroyed. The callback executes in the context of the OpenMP thread. This
callback must be the last callback event for any thread of type ompt_thread_worker; it is optional for
other types of threads. This callback has type signature ompt_thread_type_callback_t.

Parallel Regions

ompt_event_parallel_begin

The OpenMP runtime invokes this callback after a task encounters a parallel construct but be-
fore any implicit task starts to execute the parallel region’s work. The callback executes in the
context of the task that encountered the parallel construct. This callback has type signature
ompt_new_parallel_callback_t, and includes a parameter that indicates the number of threads
requested by the user. A tool may use this value as an upper bound on the number of threads that
will participate in the team.

ompt_event_parallel_end

The OpenMP runtime invokes this callback after a parallel region executes its closing synchro-
nization barrier but before resuming execution of the parent task. The callback executes in the
context of the task that encountered the parallel construct. This callback has type signature
ompt_parallel_callback_t.

Tasks

ompt_event_task_begin

The OpenMP runtime invokes this callback after a task encounters a task construct but before the
new explicit task executes. The callback executes in the context of the task that encountered the task
construct. This callback has type signature ompt_new_task_callback_t.

ompt_event_task_end

The OpenMP runtime invokes this callback after an explicit task completes but before the thread
resumes execution of another task. The callback executes in the context of an arbitrary task on the
thread that completed the explicit task. This callback has type signature ompt_task_callback_t.

6

Application Tool Control

ompt_event_control

If the user program calls ompt_control, the OpenMP runtime invokes this callback. The callback
executes in the environment of the user control call; the arguments passed to the callback are the values
passed by the user to ompt_control. This callback has type signature ompt_control_callback_t.

Termination

ompt_event_runtime_shutdown

The OpenMP runtime system invokes this callback before it shuts down the runtime system. This
callback enables a tool to clean up its state and record or report its measurement data, as appro-
priate. A runtime may later restart and reinitialize the tool by calling the tool initializer function
(ompt_initialize, described in Section 6.1) again. This callback has type signature ompt_callback_t.

3.2 Optional Events

This section describes two sets of events. The first set of events is intended primarily for use by sampling-
based performance tools that employ a strategy known as blame shifting to attribute waiting to activity in
contexts that cause other threads to wait rather than contexts in which waiting is observed. The second set
of events, in combination with other mandatory and optional events, enables instrumentation-based tools to
receive notification for any or all OpenMP runtime events as they occur.

Support for these events is optional. An OpenMP runtime system remains compliant even if it supports
none of the events in this section.

3.2.1 Events for Blame Shifting (Optional)

This section describes callback events used by sampling-based performance tools that employ blame shifting
to transfer blame for waiting from contexts where waiting is observed to contexts responsible for the waiting.2

Using these callbacks, a tool employing blame shifting can attribute time that a thread spends waiting for
a lock to the context of the lock holder. Similarly, time that threads spend waiting at a barrier can be
attributed back to code being executed by working threads while other threads wait.

The events listed immediately below are used by an OpenMP runtime to notify a tool when various kinds
of idling begin and end. Since idling indicates the absence of any activity, a thread will not receive any event
notification between begin and end notifications for idling.

Idle State Entry/Exit

ompt_event_idle_begin

The OpenMP runtime invokes this callback when a thread starts to idle outside a parallel region.
The callback executes in the environment of the idling thread. This callback has type signature
ompt_thread_callback_t.

Note: If this callback is registered, the callback for ompt_event_idle_end must also be registered.

ompt_event_idle_end

The OpenMP runtime invokes this callback when a thread finishes idling outside a parallel region. The
callback executes in the environment of the thread that is about to resume useful work. This callback
has type signature ompt_thread_callback_t.

Note: If this callback is registered, the callback for ompt_event_idle_begin must also be registered.

2The utility of blame shifting has previously been demonstrated for attributing idling while waiting to steal work in a
work-stealing runtime [4], and spin waiting to acquire a lock [5].

7

Barrier Idling

ompt_event_wait_barrier_begin

The OpenMP runtime invokes this callback when an implicit task starts to wait in a barrier region.
One barrier region may generate multiple pairs of barrier begin and end callbacks in a task, e.g., if
waiting at the barrier occurs in multiple stages or if another task is scheduled on this thread while
it waits at the barrier. The callback executes in the context of an implicit task waiting for a barrier
region to complete. This callback has type signature ompt_parallel_callback_t.

Note: If this callback is registered, the callback for ompt_event_wait_barrier_end must also be regis-
tered.

ompt_event_wait_barrier_end

The OpenMP runtime invokes this callback when an implicit task finishes waiting in a barrier region.
One barrier region may generate multiple pairs of barrier begin and end callbacks in a task, e.g., if
waiting at the barrier occurs in multiple stages or if another task is scheduled on this thread while
it waits at the barrier. The callback executes in the context of an implicit task waiting for a barrier
region to complete. This callback has type signature ompt_parallel_callback_t.

Note: If this callback is registered, the callback for ompt_event_wait_barrier_begin must also be
registered.

Taskwait Idling

ompt_event_wait_taskwait_begin

The OpenMP runtime invokes this callback when a thread starts to wait in a taskwait region. One
taskwait region may generate multiple pairs of taskwait begin and end callbacks if another task is sched-
uled on this thread while it waits at the taskwait. This callback executes in the context of the task that
encountered the taskwait construct. This callback has type signature ompt_parallel_callback_t.

Note: If this callback is registered, the callback for ompt_event_wait_taskwait_end must also be
registered.

ompt_event_wait_taskwait_end

The OpenMP runtime invokes this callback when a task finishes waiting in a taskwait region. One
taskwait region may generate multiple pairs of taskwait begin and end callbacks if another task is sched-
uled on this thread while it waits in the taskwait region. This callback executes in the context of the task
that encountered the taskwait construct. This callback has type signature ompt_parallel_callback_t.

Note: If this callback is registered, the callback for ompt_event_wait_taskwait_begin must also be
registered.

Taskgroup Idling

ompt_event_wait_taskgroup_begin

The OpenMP runtime invokes this callback when a task starts to wait for a taskgroup region to
complete. One taskgroup region may generate multiple pairs of taskgroup begin and end callbacks if
another task is scheduled on this thread while it waits in the taskgroup region. This callback executes
in the context of the task that encountered the taskgroup construct. This callback has type signature
ompt_parallel_callback_t.

Note: If this callback is registered, the callback for ompt_event_wait_taskgroup_end must also be
registered.

8

ompt_event_wait_taskgroup_end

The OpenMP runtime invokes this callback when a task finishes waiting for a taskgroup region to
complete. One taskgroup region may generate multiple pairs of taskgroup begin and end callbacks if
another task is scheduled on this thread while it waits in the taskgroup region. This callback executes
in the context of the task that encountered the taskgroup construct. This callback has type signature
ompt_parallel_callback_t.

Note: If this callback is registered, the callback for ompt_event_wait_taskgroup_begin must also be
registered.

Lock Release

ompt_event_release_lock

The OpenMP runtime system invokes this callback after a task releases a lock. This callback executes
in the context of the task that called omp_unset_lock; its wait_id parameter identifies the released
lock. This callback has type signature ompt_wait_callback_t.

Note: This callback may be useful to an instrumentation-based tool to terminate an interval beginning
with ompt_event_acquired_lock.

ompt_event_release_nest_lock_last

The OpenMP runtime invokes this callback for certain releases of a nest lock. If a task acquires a nest
lock n times, this callback occurs only after the nth release. The inner n − 1 releases are reported as
ompt_event_release_nest_lock_prev events. This callback executes in the context of the task that
called omp_unset_nest_lock; its wait_id parameter identifies the nest lock released. This callback
has type signature ompt_wait_callback_t.

Note: This callback may be useful to an instrumentation-based tool to terminate an interval beginning
with ompt_event_acquired_nest_lock_first.

Critical Release

ompt_event_release_critical

The OpenMP runtime system invokes this callback after a task exits a critical region. This callback
executes in the context of the task that encountered the critical construct; its wait_id parameter
identifies the critical construct or an internal runtime variable (e.g., a lock) associated with the critical
construct that was exited. This callback has type signature ompt_wait_callback_t.

Note: This callback may be useful to an instrumentation-based tool to terminate an interval beginning
with ompt_event_acquired_critical.

Ordered Release

ompt_event_release_ordered

The OpenMP runtime system invokes this callback after a task exits an ordered region. This callback
executes in the context of the task that encountered the ordered construct; its wait_id parameter
identifies the ordered construct or an internal runtime variable (e.g., a lock) associated with the ordered
construct that was exited. This callback has type signature ompt_wait_callback_t.

Note: This callback may be useful to an instrumentation-based tool to terminate an interval beginning
with ompt_event_acquired_ordered.

9

Atomic Release

ompt_event_release_atomic

The OpenMP runtime system invokes this callback after a task completes an atomic region. This
callback executes in the context of the task that encountered the atomic construct; its wait_id param-
eter identifies the atomic construct, a program variable, or an internal runtime variable (e.g., a lock)
associated with the atomic construct being exited.

If an atomic block is implemented using a hardware instruction, then an OpenMP runtime may choose
never to report this event. However, if an atomic region is implemented using any mechanism that
involves a software protocol that spin waits or retries, then an OpenMP runtime developer should
consider reporting this event to accept blame for any spin waiting or retries that the atomic region
causes. Examples of spinning in software include spin waiting for a critical region used to implement
atomics, or retrying atomic operations implemented using hardware primitives that may fail. Examples
of hardware primitives that could fail with explicit retries in software include transactional instructions,
load-linked/store-conditional, or compare-and-swap.

This callback has type signature ompt_wait_callback_t.

Note: This callback may be useful to an instrumentation-based tool to terminate an interval beginning
with ompt_event_acquired_atomic.

3.2.2 Events for Instrumentation-based Measurement Tools (Optional)

The following set of events, in combination with other mandatory and optional events, enables instrumentation-
based tools to receive notification for any or all OpenMP runtime events as they occur.

Task Creation and Destruction

ompt_event_implicit_task_begin

The OpenMP runtime system invokes this callback, after an implicit task is fully initialized but before
the task executes its work. This callback executes in the context of the new implicit task. This callback
has type signature ompt_parallel_callback_t.

ompt_event_implicit_task_end

The OpenMP runtime system invokes this callback after an implicit task executes its closing synchro-
nization barrier but before returning to idle or the task is destroyed. The callback executes in the
context of the implicit task. This callback has type signature ompt_parallel_callback_t.

ompt_event_initial_task_begin

The OpenMP runtime system invokes this callback, just after an initial implicit task is fully initialized
but before it starts to execute. This callback executes in the context of an initial task. This callback
has type signature ompt_task_callback_t.

ompt_event_initial_task_end

The OpenMP runtime system invokes this callback when an initial implicit task ends but before the
task is destroyed. The callback executes in the context of the initial implicit task. This callback has
type signature ompt_task_callback_t,

ompt_event_task_switch

The OpenMP runtime system invokes this callback after it suspends one task and before it resumes
another task. This callback executes in the context of the resumed task. If the suspended task actually
completed and its data structure was deallocated, the value of the suspended_task_id parameter is
0. This callback has type signature ompt_task_switch_callback_t.

10

Lock Creation and Destruction

ompt_event_init_lock (ompt_event_init_nest_lock)

The OpenMP runtime system invokes this callback just after a task initializes a lock (nest lock). This
callback executes in the context of the task that called omp_init_lock (omp_init_nest_lock); its
wait_id parameter identifies the lock. This callback has type signature ompt_wait_callback_t.

ompt_event_destroy_lock (ompt_event_destroy_nest_lock)

The OpenMP runtime system invokes this callback just before a task destroys a lock (nest lock). This
callback executes in the context of the task that called omp_destroy_lock (omp_destroy_nest_lock);
its wait_id parameter identifies the lock. This callback has type signature ompt_wait_callback_t.

Loops

ompt_event_loop_begin

The OpenMP runtime system invokes this callback after a task encounters a loop construct but before
the task executes its first iteration of the loop. This callback executes in the context of the task that
encountered the loop. This callback has type signature ompt_new_workshare_callback_t.

ompt_event_loop_end

The OpenMP runtime system invokes this callback after a task executes its last iteration of a loop
region but before the task executes the loop barrier (wait) or the statement following the loop (nowait).
This callback executes in the context of the task that encountered the loop. This callback has type
signature ompt_parallel_callback_t.

Sections

ompt_event_sections_begin

The OpenMP runtime system invokes this callback before a task executes its first section in a sections
region. This callback executes in the context of the task that encountered the sections construct. This
callback has type signature ompt_new_workshare_callback_t.

ompt_event_sections_end

The OpenMP runtime system invokes this callback after a task executes its last section in a sections
region and before the task executes the section barrier (wait) or the statement following the section
construct (nowait). This callback executes in the context of the task that encountered the sections
construct. This callback has type signature ompt_parallel_callback_t.

Single Blocks

ompt_event_single_in_block_begin

The OpenMP runtime system invokes this callback after a task encounters a single construct but before
it executes the code block of the single construct. This callback executes in the context of the task that
will execute the single code block. This callback has type signature ompt_new_workshare_callback_t.

ompt_event_single_in_block_end

The OpenMP runtime system invokes this callback after a task executes the code block of a single
construct but before the task executes the single barrier (wait) or the statement following the single
construct (nowait). This callback executes in the context of the task that executed the single code
block. This callback has type signature ompt_parallel_callback_t.

11

ompt_event_single_others_begin

The OpenMP runtime system invokes this callback when a task that encounters a single construct is
not chosen to execute the single code block. This callback executes in the context of the task that
encountered the single construct. This callback has type signature ompt_parallel_callback_t.

ompt_event_single_others_end

The OpenMP runtime system invokes this callback in a task after that task reports event
ompt_event_single_others_begin but before the task executes the single barrier (wait) or the state-
ment following the single construct (nowait). This callback executes in the context of the task that
encountered the single construct. This callback has type signature ompt_parallel_callback_t.

Workshares

ompt_event_workshare_begin

The OpenMP runtime system invokes this callback after a task encounters a workshare construct
but before the task executes its first unit of work for the workshare. This callback executes in the
context of the task that encountered the workshare construct. This callback has type signature
ompt_new_workshare_callback_t.

ompt_event_workshare_end

The OpenMP runtime system invokes this callback after a task executes its last unit of work for a
workshare and before the task executes the workshare barrier (wait) or the statement following the
workshare construct (nowait). This callback executes in the context of the task that encountered the
workshare construct. This callback has type signature ompt_parallel_callback_t.

Master Blocks

ompt_event_master_begin

The OpenMP runtime system invokes this callback after the implicit task of a master thread encounters
a master construct but before the task executes the master region. This callback executes in the context
of the master task of a team. This callback has type signature ompt_parallel_callback_t.

ompt_event_master_end

The OpenMP runtime system invokes this callback after the implicit task of a master thread executed
the master region but before the task executes the statement following the master construct. This
callback executes in the context of the master task of a team. This callback has type signature
ompt_parallel_callback_t.

Barriers

ompt_event_barrier_begin

The OpenMP runtime system invokes this callback before an implicit task begins execution of a barrier
region. This callback executes in the context of the implicit task that encountered the barrier construct.
This callback has type signature ompt_parallel_callback_t.

ompt_event_barrier_end

The OpenMP runtime system invokes this callback after an implicit task exits a barrier region. This
callback executes in the context of the implicit task that encountered the barrier construct. This
callback has type signature ompt_parallel_callback_t.

12

Taskwait

ompt_event_taskwait_begin

The OpenMP runtime system invokes this callback after a task encounters a taskwait construct
but before the task begins execution of the taskwait region. This callback executes in the con-
text of the task that encountered the taskwait construct. This callback has type signature
ompt_parallel_callback_t.

ompt_event_taskwait_end

The OpenMP runtime system invokes this callback after a task exits a taskwait region. This callback
executes in the context of the task that encountered the taskwait construct. This callback has type
signature ompt_parallel_callback_t.

Taskgroup

ompt_event_taskgroup_begin

The OpenMP runtime system invokes this callback before a task begins execution of a taskgroup
region. This callback executes in the context of the task that encountered the taskgroup construct.
This callback has type signature ompt_parallel_callback_t.

ompt_event_taskgroup_end

The OpenMP runtime system invokes this callback after a task exits a taskgroup region. This callback
executes in the context of the task that encountered the taskgroup construct. This callback has type
signature ompt_parallel_callback_t.

Locks

ompt_event_wait_lock

The OpenMP runtime system invokes this callback if a task enters the ompt_state_wait_lock state.
This callback executes in the context of the task that called omp_set_lock; its wait_id parameter
identifies the lock. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_lock

The OpenMP runtime system invokes this callback just after a task acquires a lock. This callback
executes in the context of the task that called omp_set_lock; its wait_id parameter identifies the
lock. This callback has type signature ompt_wait_callback_t.

Nest Locks

ompt_event_wait_nest_lock

The OpenMP runtime system invokes this callback when a task enters the ompt_state_wait_nest_lock
state. This callback executes in the context of the task that called omp_set_nest_lock; its wait_id
parameter identifies the nest lock. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_nest_lock_first

The OpenMP runtime system invokes this callback just after a task acquires a nest lock for the first
time. This callback executes in the context of the task that called omp_set_nest_lock; its wait_id
parameter identifies the nest lock. This callback has type signature ompt_wait_callback_t.

13

ompt_event_release_nest_lock_prev

The OpenMP runtime system invokes this callback after a task releases a nest lock that is still owned
by this task after the release. If a nest lock was acquired n times by the same task, this callback occurs
for the inner n− 1 releases. The nth release is handled by the ompt_event_release_nest_lock_last
event. This callback executes in the context of the task that called omp_unset_nest_lock; its wait_id
parameter identifies the nest lock unset. This callback has type signature ompt_wait_callback_t.

ompt_event_acquired_nest_lock_next

The OpenMP runtime system invokes this callback just after this task acquires a nest lock that
was already owned by this task. This callback executes in the context of the task that called
omp_unset_nest_lock; its wait_id parameter identifies the nest lock set. This callback has type
signature ompt_wait_callback_t.

Critical Sections

ompt_event_wait_critical

The OpenMP runtime system invokes this callback when this task enters the
ompt_state_wait_critical state. This callback executes in the context of the task that en-
countered the critical construct; its wait_id parameter identifies the critical construct. This callback
has type signature ompt_wait_callback_t.

ompt_event_acquired_critical

The OpenMP runtime system invokes this callback just after this task enters a critical region. This call-
back executes in the context of the task that encountered the critical construct; its wait_id parameter
identifies the critical region being entered. This callback has type signature ompt_wait_callback_t.

Ordered Sections

ompt_event_wait_ordered

The OpenMP runtime system invokes this callback when this task enters the
ompt_state_wait_ordered state. This callback executes in the context of the task that en-
countered the ordered construct; its wait_id parameter identifies the ordered construct. This callback
has type signature ompt_wait_callback_t.

ompt_event_acquired_ordered

The OpenMP runtime system invokes this callback just after this task enters an ordered region. This
callback executes in the context of the task that encountered the ordered construct; its wait_id
parameter identifies a variable associated with the ordered construct. This callback has type signature
ompt_wait_callback_t.

Atomic Blocks

ompt_event_wait_atomic

The OpenMP runtime system invokes this callback when this task enters the ompt_state_wait_atomic
state. This callback executes in the context of the task that encountered the atomic construct; its
wait_id parameter identifies the atomic construct, a program variable, or an internal runtime variable
(e.g., a lock) associated with the atomic construct being awaited. This callback has type signature
ompt_wait_callback_t.

14

ompt_event_acquired_atomic

The OpenMP runtime system invokes this callback just after this task enters an atomic region. This
callback executes in the context of the task that encountered the atomic construct; its wait_id pa-
rameter identifies the atomic construct, a program variable, or an internal runtime variable (e.g.,
a lock) associated with the atomic construct being awaited. This callback has type signature
ompt_wait_callback_t.

Miscellaneous

ompt_event_flush

The OpenMP runtime system invokes this callback just after performing a flush operation. This
callback executes in the context of the task that encountered the flush construct. This callback has
type signature ompt_thread_callback_t.

4 Tool Data Structures

4.1 Thread Identifier (Mandatory)

Each OpenMP thread has an associated ompt_thread_id_t that uniquely identifies the thread.

typedef uint64_t ompt_thread_id_t;

The ompt_thread_id_t is unique across all thread instances. A OpenMP thread is assigned an ID when the
thread begins. A thread’s ID is passed to callbacks associated with the begin/end of the thread. A thread
ID can be retrieved on demand by invoking the ompt_get_thread_id function (described in Section 5.2).
Tools should not assume that ompt_thread_id_t values are consecutive or small. The value 0 is reserved to
indicate an invalid thread id.

4.2 Parallel Region Identifier (Mandatory)

Each OpenMP parallel region has an associated ompt_parallel_id_t that uniquely identifies the region.

typedef uint64_t ompt_parallel_id_t;

The ompt_parallel_id_t for a parallel region is unique across all parallel regions. A parallel region is
assigned an ID when the region is created. A parallel region’s ID is passed to callbacks associated with
begin/end of the parallel region, as well as callbacks that occur in the context of the parallel region. A
parallel region ID can be retrieved on demand by invoking the ompt_get_parallel_id function (described in
Section 5.3). Tools should not assume that ompt_parallel_id_t values for adjacent regions are consecutive.
The value 0 is reserved to indicate an invalid parallel id.

4.3 Task Region Identifier (Mandatory)

Each OpenMP task region has an associated ompt_task_id_t that uniquely identifies the task region. This
holds for implicit tasks, including the initial task, as well as for explicit tasks.

typedef uint64_t ompt_task_id_t;

The ompt_task_id_t for a task region is unique across all task regions. A task region is assigned an ID when
the region is created. A task region’s ID is passed to callbacks associated with begin/end of the task region.
A task region’s ID can be retrieved on demand by invoking the ompt_get_task_id function (described in
Section 5.4). Tools should not assume that ompt_task_id_t values for adjacent task regions are consecutive.
The value 0 is reserved to indicate an invalid task id.

An initial task will also have its own unique task region ID.

15

exit / reenter reenter = null reenter = defined
exit = null case 1) initial task in user code

case 2) explicit task that is cre-
ated but not yet scheduled

task in runtime because of a par-
allel region or a task creation

exit = defined non-initial task in (or soon to be
in) user code

non-initial task in runtime be-
cause of a parallel region or a task
creation

Table 1: Meaning of various values for exit runtime frame and reenter runtime frame.

4.4 Wait Identifier (Mandatory)

Each thread instance maintains an ompt_wait_id_t. When a thread is waiting for something, the thread’s
wait ID identifies what the thread is awaiting.

typedef uint64_t ompt_wait_id_t;

For example, when a thread is waiting for a lock, the thread’s wait ID identifies the lock. The thread’s wait
ID is passed to callbacks associated with wait events, and also can be retrieved on demand by invoking the
ompt_get_state function (described in Section 5.2). When a thread is not in a wait state, a thread’s wait
ID has an undefined value. Value 0 is reserved to indicate an undefined wait ID.

4.5 Pointers to Support Classification of Stack Frames (Mandatory)

Each implicit or explicit task region provides an ompt_frame_t data structure which contains pointers to
OpenMP runtime procedure frames that appear above and below procedure frames associated with user task
code.

typedef struct ompt_frame_s {
void *exit_runtime_frame; /* next frame is user code */
void *reenter_runtime_frame; /* previous frame is user code */

} ompt_frame_t;

The structure’s lifetime begins when a task region is created and ends when the task region is destroyed.
While the value of the structure is preserved over the lifetime of the task, tools should not assume that the
address of a structure remains constant over its lifetime. Frame data is passed to some callbacks; it can
also be retrieved asynchronously for a task by invoking the ompt_get_task_frame function (described in
Section 5.4) in a signal handler. Frame data contains two components:

exit_runtime_frame This value is set once, the first time that a task exits the runtime to begin executing
user code. This field points to the stack frame of the runtime procedure that called the user code. This
value is NULL until just before the task exits the runtime.

reenter_runtime_frame This value is set each time that current task re-enters the runtime to create new
(implicit or explicit) tasks. This field points to the stack frame of the runtime procedure called by a
task to re-enter the runtime. This value is NULL until just after the task re-enters the runtime.

Table 1 describes the meaning of this structure with various values. In the presence of nested parallelism, a
tool may observe a sequence of ompt_frame_t records for a thread. Appendix B discusses an example that
illustrates the use of ompt_frame_t records with nested parallelism.

The live range of the ompt_frame_t for a given task starts at the ompt_event_task_begin,
ompt_event_implicit_task_begin, or ompt_event_initial_task_begin event and lasts until the
ompt_event_task_end, ompt_event_implicit_task_end, or ompt_event_initial_task_end event, inclu-
sively.

16

Advice to tool implementers: A monitoring tool using asynchronous sampling can observe values of
exit_runtime_frame and reenter_runtime_frame at inconvenient times. Tools must be prepared to ob-
serve and handle frame exit and reenter values that have not yet been set or reset as the program enters or
returns to the runtime.

5 Inquiry Functions for Tools

Inquiry functions retrieve data from the execution environment for the tools. All functions in the inquiry API
are marked with OMPT_API. These functions should not be global symbols in an OpenMP runtime system
implementation to avoid tempting tool developers to call them directly. Section 6.1 describes how a tool
will obtain pointers to these inquiry functions. All inquiry functions are async signal safe. Note that it is
unsafe to call OpenMP Execution Library Routines within an OMPT callback because doing so may cause
deadlock. Specifically, since OpenMP Execution Library Routines are not guaranteed to be async signal
safe, they might acquire a lock that may already be held when an OMPT callback is involved.

5.1 Enumerate States Supported by an OpenMP Runtime (Mandatory)

An OpenMP runtime system is allowed to support other states in addition to those described in this doc-
ument. For instance, a particular runtime system may want to provide more detail about the nature of
runtime overhead, e.g., to differentiate between overhead associated with setting up a parallel region and
overhead associated with setting up a task. Further, a tool need not report all states defined herein, e.g.,
if state tracking for a particular state would be too expensive. To enable a tool to identify all states that
an OpenMP runtime system implements, OMPT provides the following interface for enumerating all states
that a particular runtime system implementation may report.

OMPT_API int ompt_enumerate_state(
ompt_state_t current_state,
ompt_state_t *next_state,
const char **next_state_name

);

To begin enumerating the states that a runtime system supports, the value ompt_state_first should
be supplied for current_state in the call to ompt_enumerate_state that begins the enumeration. The
argument next_state is a pointer to an ompt_state_t that will be set to the code for the next state in
the enumeration. The argument next_state_name is a pointer to a location that will be filled in with a
pointer to the name associated with next_state. Subsequent invocations of ompt_enumerate_state should
pass the code returned in next_state by the prior call. Whenever one or more states are left in the
enumeration, ompt_enumerate_state will return 1. When the last state in the enumeration is passed to
ompt_enumerate_state as current_state, the function will return 0 indicating that the enumeration is
complete. An example of how to enumerate the states supported by an OpenMP runtime system is shown
below:

ompt_state_t state = ompt_state_first;
const char *state_name;
while (ompt_enumerate_state(state, &state, &state_name)) {
// tool notes that the runtime supports ompt_state_t "state"
// associated with "state_name"

}

5.2 Thread Inquiry (Mandatory)

Function ompt_get_thread_id is the inquiry function to determine the thread ID of the current thread.

OMPT_API ompt_thread_id_t ompt_get_thread_id();

17

ancestor level meaning
0 current parallel region
1 parallel region directly enclosing region at ancestor level 0
2 parallel region directly enclosing region at ancestor level 1
...

Table 2: Meaning of different values for the ancestor level argument to ompt get parallel id.

This function returns the value 0 if the thread is unknown to the OpenMP runtime. This function is async
signal safe.

Function ompt_get_state is the inquiry function to determine the state of the current thread.

OMPT_API ompt_state_t ompt_get_state(
ompt_wait_id_t *wait_id

);

The function returns the state of the current thread and updates the location specified by wait_id with the
wait identifier associated with the current state, if any, or zero if the wait ID is undefined. One may pass
NULL for wait_id if the tool does not want a wait ID returned. This function is async signal safe.

Function ompt_get_idle_frame is the inquiry function to determine the lowest frame in the current
thread’s call stack where the thread would await new work.

OMPT_API void * ompt_get_idle_frame();

We specify the lowest frame where a thread would await work since the thread might call a routine to check for
work or a routine that blocks on a condition variable from this frame. The function ompt_get_idle_frame
returns the value NULL when the current thread has no idle frame in its call stack. Note that this function
always returns NULL for an OpenMP initial thread. This function is async signal safe.

5.3 Parallel Region Inquiry (Mandatory)

Function ompt_get_parallel_id returns the unique ID associated with a parallel region:

OMPT_API ompt_parallel_id_t ompt_get_parallel_id(
int ancestor_level

);

Outside a parallel region, ompt_get_parallel_id should return 0. If a thread is in the idle state, then
ompt_get_parallel_id should return 0. In all other cases, the thread should return the ID of the enclosing
parallel region, even if the thread is waiting at a barrier.

The function takes an ancestor level as an argument. By specifying different values for ancestor level,
one can access information about all enclosing parallel regions. The meaning of different values for the
ancestor_level argument to ompt_get_parallel_id is given in Table 2.

The function returns the value 0 when requesting higher levels of ancestry than exist. This function is
async signal safe.

Function ompt_get_parallel_team_size returns the number of threads associated with a parallel region:

OMPT_API int ompt_get_parallel_team_size(
int ancestor_level

);

This function returns the value -1 when requesting higher levels of ancestry than exist. This function is
async signal safe.

18

5.4 Task Region Inquiry (Mandatory)

The OMPT interface defines two inquiry functions that provide information about both implicit and explicit
tasks. Both functions ompt_get_task_id and ompt_get_task_frame specify a target task by a depth. Depth
0 refers to the current task. Information about other tasks in the current execution context may be queried
at higher depths. Both functions are async signal safe.

The function ompt_get_task_id returns an ID for the specified task region.

OMPT_API ompt_task_id_t *ompt_get_task_id(
int depth

);

If a tool requests a task ID at a depth deeper than the dynamic nesting of implicit and explicit tasks in the
current execution context, ompt get task id will return 0—the value reserved to indicate an invalid task.

Function ompt_get_task_frame returns an ompt_frame_t record that identifies a contiguous interval of
frames on the call stack. This interval of stack frames represents activity by the application rather than the
OpenMP runtime system.

OMPT_API ompt_frame_t *ompt_get_task_frame(
int depth

);

Using return values from ompt_get_task_frame, a tool that collects the call stack of a thread can analyze
frames in the call stack and identify ones that exist on behalf of the runtime system.3 This capability
enables a tool to map from an implementation-level view back to the source-level view familiar to application
developers. Appendix B discusses an example that illustrates the use of ompt_get_task_frame with multiple
threads and nested parallelism.

6 Initializing OMPT Support for Tools

If no tool registers itself with an OpenMP runtime during initialization (as described below in Section 6.1),
the runtime need not maintain information to support tools and the runtime’s behavior is undefined if a tool
invokes any API inquiry functions. Section 6.1 describes tool initialization. Section 6.2 describes environment
variable control over tool initialization.

6.1 Initialization of a Tool

A tool must register itself with an OpenMP runtime system and then specify callbacks for events of interest.
Section 6.1.1 describes the initializer for a tool. Section 6.1.2 describes registration of callbacks for OMPT
events.

6.1.1 Initializer (Mandatory)

A tool must register itself with an OpenMP runtime by providing an implementation of the following function:

extern "C" {
int ompt_initialize(ompt_function_lookup_t lookup,

const char *runtime_version,
unsigned int ompt_version);

}

Since only one tool-provided definition of ompt_initialize will be seen by an OpenMP runtime, only one
tool may register itself. Ordinarily, ompt_initialize will be invoked by an OpenMP runtime immediately
after the runtime initializes itself.

3A frame on the call stack is said to exist on behalf of an OpenMP runtime system if it is a frame for a runtime system
routine, or if it belongs to a library function called by a runtime system routine, directly or indirectly.

19

The function ompt_initialize serves two roles. First, if a tool wants to receive notification of OpenMP
events (described in Section 3), the tool’s implementation of ompt_initialize must register a callback for
every event of interest using ompt_set_callback (described in Section 6.1.2). Second, the return value of
ompt_initialize indicates whether or not a tool wants the OpenMP runtime system to maintain thread
runtime state information for the tool and invoke any callback functions that the tool may have registered.

A tool-supplied implementation may return 0 or 1. If ompt_initialize returns 0, the OpenMP runtime
need not maintain any state information for OpenMP threads and will not perform any callbacks. If a tool-
supplied implementation of ompt_initialize returns 1, the OpenMP runtime system will maintain state
information for each OpenMP thread and will perform any callbacks that have been registered by the tool.

The first argument to ompt_initialize is lookup—a callback that a tool must use to interrogate the
runtime system to obtain pointers to OMPT interface functions. The type signature for lookup is:

ompt_interface_fn_t lookup(const char *interface_function_name);

The lookup callback is necessary because when the OpenMP runtime is dynamically loaded by a shared
library, the OMPT interface functions provided by the library may be invisible to a preloaded tool. Within
a tool, one uses lookup to obtain function pointers to each OMPT inquiry function. For example, to obtain
a function pointer to ompt_get_thread_id, one invokes lookup as follows:

ompt_interface_fn_t ompt_get_thread_id_ptr = lookup("ompt_get_thread_id");

If a named callback is not available in an OpenMP runtime’s implementation of OMPT, lookup will return
NULL.

The second argument to ompt_initialize is a version string that unambiguously identifies an OpenMP
runtime system implementation. This argument is useful to tool developers trying to debug a statically-
linked executable that contains both a tool implementation and an OpenMP runtime system implementation.
Knowing exactly what version of an OpenMP runtime system is present in a binary may be helpful when
diagnosing a problem, e.g., identifying an old runtime system that may be incompatible with a newer tool.

The third argument ompt_version indicates the version of the OMPT interface supported by a runtime
system. The version of OMPT described by this document is known as version 1.

After a process fork, if OpenMP is re-initialized in the child process, the OpenMP runtime system in the
child process will call ompt_initialize under the same conditions as it would for any process.

6.1.2 Callback Registration (Mandatory)

Tools register callbacks to receive notification of various events that occur as an OpenMP program executes.
All functions in the registration API are marked with OMPT_API. These functions should not be global symbols
in an OpenMP runtime system implementation to avoid tempting tool developers to call them directly.
Section 6.1.1 describes how a tool will obtain pointers to these functions. A tool uses ompt_set_callback
to register callback functions.

OMPT_API int ompt_set_callback(
ompt_event_t event,
ompt_callback_t callback

);

The function ompt_set_callback may only be called within the implementation of ompt_initialize pro-
vided by a tool, as described in Section 6.1.1 The possible return codes for ompt_set_callback and their
meaning is shown in Table 3. Registration of supported callbacks may fail if this function is called outside
ompt_initialize. The ompt_callback_t type for a callback does not reflect the actual signature of the
callback; OMPT uses this generic type to avoid the need to declare a separate registration function for each
actual callback type.

The function ompt_get_callback may be called at any time to inspect whether a callback has been
registered or not.

20

return code meaning
0 callback registration error (e.g., callbacks cannot be registered at this time).
1 event may occur; no callback is possible
2 event will never occur in runtime
3 event may occur; callback invoked when convenient
4 event may occur; callback always invoked when event occurs

Table 3: Meaning of return codes for ompt set callback.

OMP_TOOL value action
disabled OMPT is disabled regardless of whether a tool is present or not. The

OpenMP runtime is not required to maintain any information about thread
state nor support any invocation of the inquiry API.

enabled ompt_initialize is called after the OpenMP runtime initializes itself. If
the return value from ompt_initialize is 1, the OpenMP runtime must
maintain runtime state information for each OpenMP thread, respond to
any invocations of the inquiry API, and invoke any registered callbacks
when appropriate.

Table 4: OpenMP runtime responses to settings of the OMP TOOL environment variable.

OMPT_API int ompt_get_callback(
ompt_event_t event,
ompt_callback_t *callback

);

If a callback has been registered, ompt_get_callback will return 1 and set callback to the address of the
callback function; otherwise, ompt_get_callback will return 0.

6.2 An Environment Variable for Tool Initialization (Mandatory)

The environment variable OMP_TOOL is used to control tool initialization. Table 4 describes actions an
OpenMP runtime system takes in response to various values of OMP_TOOL. When OMP_TOOL is not defined,
its default value is enabled.

An OpenMP runtime will attempt to initialize a tool if OMP_TOOL is enabled. If the OpenMP run-
time calls ompt_initialize, but no tool-provided version of ompt_initialize is present, a weak ver-
sion of ompt_initialize provided by the OpenMP runtime will return 0. If a tool-provided version of
ompt_initialize is present, it may return 0 or 1. Only if ompt_initialize returns 1 is the OpenMP
runtime obligated to perform state tracking and invoke any event callbacks registered by ompt_initialize.

If OMP_TOOL is set to disabled, the OpenMP runtime will not call ompt_initialize to attempt tool
initialization, maintain any thread state information for tools, or make any tool callbacks.

Behavior for any other values of OMP_TOOL is unspecified.

6.3 Implementation Considerations for Tool Initialization

Unless OMP TOOL=disabled, if a tool-supplied implementation of ompt_initialize is present in the address
space of a process and visible to the OpenMP runtime system, the tool-supplied ompt_initialize must be
called immediately after the OpenMP runtime system initializes itself.

Whether a tool-supplied implementation of ompt_initialize defined as a strong global symbol is visible
to an OpenMP runtime system when present in the address space of a process is non-obvious. There are
several scenarios to consider. A tool-supplied version of ompt_initialize is visible to an OpenMP runtime
system if:

21

• The tool implementation of ompt_initialize is statically-linked into an executable. Such an imple-
mentation of ompt_initialize will be visible to an OpenMP runtime system regardless of whether
the runtime is statically linked into the executable or dynamically-linked into a shared library.

• An implementation of ompt_initialize is in a tool’s shared library, which we denote LT . Such an
implementation of ompt_initialize will be visible to an OpenMP runtime system in a library LO as
long as (a) LO is a shared library itself, and (b) LT is in the dynamic library search path for LO ahead
of LO itself. LT is guaranteed to be on LO’s dynamic library search path ahead of LO iff

– LT is pre-loaded by the dynamic linker into the address space of a process before execution
begins.4

– LT and LO are both direct shared library dependences of a load module5 and LT appeared ahead
of LO when linking the load module.

– A load module dynamically loads LT ahead of a shared library LX (because LT preceded LX

when the load module was linked), and LX directly or indirectly loads LO.

The recommended approach for handling initialization in the OpenMP runtime system for a particular
target platform depends on the features supported by compiler, linker, and operating system.

Compiler and linker support weak symbols. On systems where the compiler and linker support weak
symbols, it is convenient for the OpenMP runtime system to define ompt_initialize as a weak global symbol
that returns 0. Definition of ompt_initialize as a weak global symbol is suitable for use in either a static
or dynamic library. If a shared-library implementation of an OpenMP library LO defines ompt_initialize
as a weak global symbol, then a tool library LT must be appear on the dynamic library search path ahead
of LO for the tool version of ompt_initialize to be invoked.

Compiler and linker don’t support weak symbols. On systems that don’t support weak symbols,
different implementation strategies are needed for static and dynamic linking.

For a static library implementation of an OpenMP runtime library, the library can provide a stub version
of ompt_initialize in a separate object file. In this case, the linker will include the OpenMP library’s stub
implementation of ompt_initialize only if no tool supplied version is already present when the OpenMP
runtime library is used to resolve undefined symbols.

An OpenMP implementation used as a dynamic library can define ompt_initialize as a global sym-
bol. The version in the OpenMP library would be invoked only if no tool-supplied implementation of
ompt_initialize is statically linked in the executable or a tool library that appears before the OpenMP
runtime library in the dynamic library search path during execution.

A Binary rewriter alters a load module that provides an OpenMP runtime system. Regardless
of whether a system supports weak symbols or not, one can use a static or dynamic binary rewriting tool to
modify an OpenMP runtime system present in an executable or a shared library to invoke a tool-supplied
version of a version of ompt_initialize rather than the default implementation of ompt_initialize present
in the OpenMP runtime.

7 Tool Control for Applications (Mandatory)

In OMPT, there is only one application-facing routine: ompt_control. An application may call the function
ompt_control to control tool operation. While tool support for ompt_control is optional, the runtime is
required to pass a control command to a tool if the tool registered a callback with the ompt_event_control
event. As an application-facing routine, this function has type signatures for both C and Fortran:

4While Linux and some other operating systems support library pre-loading, library pre-loading is not universally available.
5A load module is an application binary or a shared library.

22

C:
void ompt_control(uint64_t command, uint64_t modifier);

Fortran:
subroutine ompt_control(command, modifier)
integer*8 command, modifier

A classic use case for ompt_control is for an application to start and stop data collection by a tool. A tool
may allow an application to turn monitoring on and off multiple times during an execution to monitor only
code regions of interest. To simplify use in this common case, OMPT defines four values for command:

1: start or restart monitoring
2: pause monitoring
3: flush tool buffers and continue monitoring
4: permanently turn off monitoring

A command code of 1 asks a tool to start or restart monitoring if it is off. If monitoring is already on, this
command is idempotent. If monitoring has already been turned off permanently, this command will have
no effect. A command code of 2 asks a tool to temporarily turn monitoring off. If monitoring is already off,
it is idempotent. A command code of 3 asks a tool to flush any performance data that it has buffered and
then continue monitoring. A command code of 4 turns monitoring off permanently; the tool may perform
finalization at this point and write all of its outputs.

Other values of command and modifier appropriate for any tool will be tool specific. Tool-specific
commands codes must be ≥ 64. Tools must ignore command codes that they are not explicitly designed to
handle and implement callbacks for such codes as no-ops.

8 Final Notes

Developers of many trace-based tools would prefer to have ompt_event_implicit_task_begin and
ompt_event_implicit_task_end included in the mandatory events. As we acquire more experience with
OMPT implementations, perhaps these events will be added to the set of mandatory events, if they don’t
add much overhead to OpenMP runtime implementations when OMPT is disabled.

8.1 Future Enhancements

As OpenMP runtime developers acquire more experience with OpenMP 4.0 features, we envision two types
of enhancements to OMPT. First, the current definition of OMPT doesn’t provide support for tracking or
interrogating task dependences. Second, the current definition of OMPT doesn’t provide support for tracking
data movement and computation for devices. Eventually, we expect to extend OMPT with support to expose
information about dependences to tools, track data movement to/from devices, and track computation on
devices.

Acknowledgments

The authors would like to acknowledge Scott Parker at Argonne National Laboratory (ANL) for his role in
catalyzing new work on an OpenMP tool API as part of ANL’s Mira procurement. The design of OMPT
builds upon ideas from both the POMP and Collector tool APIs for OpenMP. Bernd Mohr, Allen D. Malony,
Hans-Christian Hoppe, Frank Schlimbach, Grant Haab, Jay Hoeflinger, and Sanjiv Shah designed the POMP
API. Marty Itzkowitz, Oleg Mazurov, Nawal Copty, and Yuan Lin designed the Collector API.

We would also like to recognize other members of the OpenMP tools working group who contributed
ideas and feedback that helped shape the design of OMPT: Brian Bliss, Bronis de Supinski, Alex Grund,
Kevin Huck, Marty Itzkowitz, Bernd Mohr, Harald Servat, and Michael Wong.

23

References

[1] M. Itzkowitz, O. Mazurov, N. Copty, and Y. Lin. An OpenMP runtime API for profiling. Sun Microsys-
tems, Inc.. OpenMP ARB White Paper. Available online at http://www.compunity.org/futures/
omp-api.html.

[2] G. Jost, O. Mazurov, and D. an Mey. Adding new dimensions to performance analysis through user-
defined objects. In Proceedings of the 2005 and 2006 International Conference on OpenMP shared memory
parallel programming, IWOMP’05/IWOMP’06, pages 255–266, Berlin, Heidelberg, 2008. Springer-Verlag.

[3] B. Mohr, A. D. Malony, H.-C. Hoppe, F. Schlimbach, G. Haab, J. Hoeflinger, and S. Shah. A performance
monitoring interface for OpenMP. In Proceedings of the Fourth European Workshop on OpenMP, Rome,
Italy, 2002.

[4] N. R. Tallent and J. M. Mellor-Crummey. Effective performance measurement and analysis of multi-
threaded applications. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’09, pages 229–240, New York, NY, USA, 2009. ACM.

[5] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield. Analyzing lock contention in multithreaded
applications. In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’10, pages 269–280, New York, NY, USA, 2010. ACM.

24

http://www.compunity.org/futures/omp-api.html
http://www.compunity.org/futures/omp-api.html

A OMPT Interface Type Definitions

A.1 Runtime States

When OMPT is enabled, an OpenMP runtime system will maintain information about the state of each
OpenMP thread. Below we define an enumeration type that specifies the set of runtime states. The purpose
of these states is described in Section 2.

typedef enum {
/* work states (0..15) */
ompt_state_work_serial = 0x00, /* working outside parallel */
ompt_state_work_parallel = 0x01, /* working within parallel */
ompt_state_work_reduction = 0x02, /* performing a reduction */

/* idle (16..31) */
ompt_state_idle = 0x10, /* waiting for work */

/* overhead states (32..63) */
ompt_state_overhead = 0x20, /* non-wait overhead */

/* barrier wait states (64..79) */
ompt_state_wait_barrier = 0x40, /* generic barrier */
ompt_state_wait_barrier_implicit = 0x41, /* implicit barrier */
ompt_state_wait_barrier_explicit = 0x42, /* explicit barrier */

/* task wait states (80..95) */
ompt_state_wait_taskwait = 0x50, /* waiting at a taskwait */
ompt_state_wait_taskgroup = 0x51, /* waiting at a taskgroup */

/* mutex wait states (96..111) */
ompt_state_wait_lock = 0x60, /* waiting for lock */
ompt_state_wait_nest_lock = 0x61, /* waiting for nest lock */
ompt_state_wait_critical = 0x62, /* waiting for critical */
ompt_state_wait_atomic = 0x63, /* waiting for atomic */
ompt_state_wait_ordered = 0x64, /* waiting for ordered */

/* misc (112.127) */
ompt_state_undefined = 0x70, /* undefined thread state */
ompt_state_first = 0x71, /* initial enumeration state */

} ompt_state_t;

25

A.2 Runtime Event Callbacks

When OMPT support for a tool is enabled, OMPT enables a tool to indicate interest in receiving notification
about certain OpenMP runtime events by registering callbacks. When those events occur during execution,
OMPT will invoke the registered callback in the appropriate thread context. Below we define an enumeration
type that specifies the set of event callbacks that may be supported by an OpenMP runtime system. The
purpose of these callbacks is described in Section 3.

typedef enum {
/*--- Mandatory Events ---*/
ompt_event_parallel_begin = 1, /* parallel create */
ompt_event_parallel_end = 2, /* parallel exit */

ompt_event_task_begin = 3, /* task create */
ompt_event_task_end = 4, /* task destroy */

ompt_event_thread_begin = 5, /* thread begin */
ompt_event_thread_end = 6, /* thread end */

ompt_event_control = 7, /* support control calls */

ompt_event_runtime_shutdown = 8, /* runtime shutdown */

/*--- Optional Events (blame shifting) ---*/
ompt_event_idle_begin = 9, /* begin idle state */
ompt_event_idle_end = 10, /* end idle state */

ompt_event_wait_barrier_begin = 11, /* begin wait at barrier */
ompt_event_wait_barrier_end = 12, /* end wait at barrier */
ompt_event_wait_taskwait_begin = 13, /* begin wait at taskwait */
ompt_event_wait_taskwait_end = 14, /* end wait at taskwait */
ompt_event_wait_taskgroup_begin = 15, /* begin wait at taskgroup */
ompt_event_wait_taskgroup_end = 16, /* end wait at taskgroup */

ompt_event_release_lock = 17, /* lock release */
ompt_event_release_nest_lock_last = 18, /* last nest lock release */
ompt_event_release_critical = 19, /* critical release */
ompt_event_release_atomic = 20, /* atomic release */
ompt_event_release_ordered = 21, /* ordered release */

/*--- Optional Events (synchronous events) --- */
ompt_event_implicit_task_begin = 22, /* implicit task create */
ompt_event_implicit_task_end = 23, /* implicit task destroy */

ompt_event_initial_task_begin = 24, /* initial task create */
ompt_event_initial_task_end = 25, /* initial task destroy */

ompt_event_task_switch = 26, /* task switch */

ompt_event_loop_begin = 27, /* task at loop begin */
ompt_event_loop_end = 28, /* task at loop end */

ompt_event_sections_begin = 29, /* task at section begin */
ompt_event_sections_end = 30, /* task at section end */

26

ompt_event_single_in_block_begin = 31, /* task at single begin */
ompt_event_single_in_block_end = 32, /* task at single end */
ompt_event_single_others_begin = 33, /* task at single begin */
ompt_event_single_others_end = 34, /* task at single end */

ompt_event_workshare_begin = 35, /* task at workshare begin */
ompt_event_workshare_end = 36, /* task at workshare end */

ompt_event_master_begin = 37, /* task at master begin */
ompt_event_master_end = 38, /* task at master end */

ompt_event_barrier_begin = 39, /* task at barrier begin */
ompt_event_barrier_end = 40, /* task at barrier end */

ompt_event_taskwait_begin = 41, /* task at taskwait begin */
ompt_event_taskwait_end = 42, /* task at task wait end */

ompt_event_taskgroup_begin = 43, /* task at taskgroup begin */
ompt_event_taskgroup_end = 44, /* task at taskgroup end */

ompt_event_release_nest_lock_prev = 45, /* prev nest lock release */

ompt_event_wait_lock = 46, /* lock wait */
ompt_event_wait_nest_lock = 47, /* nest lock wait */
ompt_event_wait_critical = 48, /* critical wait */
ompt_event_wait_atomic = 49, /* atomic wait */
ompt_event_wait_ordered = 50, /* ordered wait */

ompt_event_acquired_lock = 51, /* lock acquired */
ompt_event_acquired_nest_lock_first = 52, /* 1st nest lock acquired */
ompt_event_acquired_nest_lock_next = 53, /* next nest lock acquired */
ompt_event_acquired_critical = 54, /* critical acquired */
ompt_event_acquired_atomic = 55, /* atomic acquired */
ompt_event_acquired_ordered = 56, /* ordered acquired */

ompt_event_init_lock = 57, /* lock init */
ompt_event_init_nest_lock = 58, /* nest lock init */

ompt_event_destroy_lock = 59, /* lock destruction */
ompt_event_destroy_nest_lock = 60, /* nest lock destruction */

ompt_event_flush = 61 /* after executing flush */

} ompt_event_t;

27

A.3 Type Signatures for Tool Callbacks

This section describes type signatures for all callbacks that a tool may register to receive from an OpenMP
runtime. Section 3 describes OpenMP runtime events and registration of callback functions with these type
signatures.

/* initialization */
typedef void (*ompt_interface_fn_t)(
void
);

typedef ompt_interface_fn_t (*ompt_function_lookup_t)(
const char *entry_point /* entry point to look up */
);

/* threads */
typedef void (*ompt_thread_callback_t) (/* for thread */
ompt_thread_id_t thread_id /* ID of thread */
);

typedef enum ompt_thread_type_e {
ompt_thread_initial = 1,
ompt_thread_worker = 2,
ompt_thread_other = 3

} ompt_thread_type_t;

typedef void (*ompt_thread_type_callback_t) (/* for thread */
ompt_thread_type_t thread_type, /* type of thread */
ompt_thread_id_t thread_id /* ID of thread */
);

typedef void (*ompt_wait_callback_t) (/* for wait */
ompt_wait_id_t wait_id /* wait ID */
);

/* parallel & workshares */
typedef void (*ompt_parallel_callback_t) (/* for inside parallel */
ompt_parallel_id_t parallel_id, /* ID of parallel region */
ompt_task_id_t task_id /* ID of task */
);

typedef void (*ompt_new_workshare_callback_t) (/* for workshares */
ompt_parallel_id_t parallel_id, /* ID of parallel region */
ompt_task_id_t task_id, /* ID of task */
void *workshare_function /* pointer to outlined function */
);

typedef void (*ompt_new_parallel_callback_t) (/* for new parallel */
ompt_task_id_t parent_task_id, /* ID of parent task */
ompt_frame_t *parent_task_frame, /* frame data of parent task */
ompt_parallel_id_t parallel_id, /* ID of parallel region */
uint32_t requested_team_size, /* requested number of threads */
void *parallel_function /* pointer to outlined function */
);

28

/* tasks */
typedef void (*ompt_task_callback_t) (/* for tasks */
ompt_task_id_t task_id /* ID of task */
);

typedef void (*ompt_task_switch_callback_t) (/* for task switch */
ompt_task_id_t suspended_task_id, /* ID of suspended task */
ompt_task_id_t resumed_task_id /* ID of resumed task */
);

typedef void (*ompt_new_task_callback_t) (/* for new tasks */
ompt_task_id_t parent_task_id, /* ID of parent task */
ompt_frame_t *parent_task_frame, /* frame data for parent task */
ompt_task_id_t new_task_id, /* ID of created task */
void *new_task_function /* pointer to outlined function */
);

/* program */
typedef void (*ompt_control_callback_t) (/* for control */
uint64_t command, /* command of control call */
uint64_t modifier /* modifier of control call */
);

typedef void (*ompt_callback_t)(/* for shutdown */
void
);

Placeholder callback signature. The type ompt_callback_t is also a placeholder signature used only
by the tool callback registration interface. Only one callback registration function is defined and it expects
that the callback supplied will be cast into type ompt_callback_t, regardless of its actual type signature.
This approach avoids the need for a separate registration routine for each unique tool callback signature.

29

A.4 OMPT Inquiry and Control API

The functions in this section are not global function symbols in an OpenMP runtime system. These functions
can be looked up by name using the ompt_function_lookup_t function passed to ompt_initialize, as
described in Section 6.1 and Appendix A.5.

/* callback management */
OMPT_API int ompt_set_callback(/* register a callback for an event */
ompt_event_t event, /* the event of interest */
ompt_callback_t callback /* function pointer for the callback */

);

OMPT_API int ompt_get_callback(/* return the current callback for an event (if any) */
ompt_event_t event, /* the event of interest */
ompt_callback_t *callback /* pointer to receive the return value */

);

/* state inquiry */
OMPT_API int ompt_enumerate_state(/* extract the set of states supported */
ompt_state_t current_state, /* current state in the enumeration */
ompt_state_t *next_state, /* next state in the enumeration */
const char **next_state_name /* string description of next state */

);

/* thread inquiry */
OMPT_API ompt_thread_id_t ompt_get_thread_id(/* identify the current thread */
void

);

OMPT_API ompt_state_t ompt_get_state(/* get the state for a thread */
ompt_wait_id_t *wait_id /* for wait states: identify what awaited */

);

OMPT_API void * ompt_get_idle_frame(/* identify the idle frame (if any) for a thread */
void

);

/* parallel region inquiry */
OMPT_API ompt_parallel_id_t ompt_get_parallel_id(/* identify a parallel region */
int ancestor_level /* how many levels the ancestor is removed from the current region */

);

OMPT_API int ompt_get_parallel_team_size(/* query # threads in a parallel region */
int ancestor_level /* how many levels the ancestor is removed from the current region */

);

/* task inquiry */
OMPT_API ompt_task_id_t *ompt_get_task_id(/* identify a task */
int depth /* how many levels removed from the current task */

);

OMPT_API ompt_frame_t *ompt_get_task_frame(
int depth /* how many levels removed from the current task */

);

30

A.5 Initialization

The function ompt_initialize is the only global symbol associated with OMPT. To use OMPT, a tool
overlays an implementation of ompt_initialize in place of the default one provided by the OMPT imple-
mentation. This interface is described in greater detail in Section 6.1.1.

extern "C" {
int ompt_initialize(
ompt_function_lookup_t lookup, /* function to look up OMPT API routines by name */
const char *runtime_version, /* OpenMP runtime version string */
unsigned int ompt_version /* integer that identifies the OMPT revision */

);
}

31

B Task Frame Management and Inspection

Code A
#pragma omp parallel “b”

Code B
#pragma omp parallel “c”

Code C

Thread 1

code A (f0)
code A (f1)

par (f2)
par (f3)
par (f4)

code B (f5)

Thread 2

par (f7)

par (f9)
par (f10)

idle (f6)

code B (f8)
par “b”

par (f11)
code C (f12)

par “c”

exit(a)
reenter(a)

exit(b)
reenter(b)

0

0

exit(b)
reenter(b)

exit(c)
reenter(c)0

r1:

r2:

r3:

r4:

ompt_get_task_frame(0) ➞ r2
ompt_get_task_frame(1) ➞ r1
ompt_get_task_frame(2) ➞ 0

ompt_get_task_frame(0) ➞ r4
ompt_get_task_frame(1) ➞ r3
ompt_get_task_frame(2) ➞ r1
ompt_get_task_frame(3) ➞ 0

ompt_get_idle_frame(0) ➞ f6ompt_get_idle_frame(0) ➞ 0

Figure 1: Frame information.

Figure 1 illustrates a program executing a nested parallel region, where code A, B, and C represent, re-
spectively, code associated with an initial task, outer-parallel, and inner-parallel regions. Figure 1 also depicts
the stacks of two threads, where each new function call instantiates a new stack frame below the previous
frames. When thread 1 encounters the outer-parallel region (parallel “b”), it calls a routine in the OpenMP
runtime system to create a new parallel region. The OpenMP runtime sets the reenter_runtime_frame
field in the ompt_frame_t for the initial task executing code A to frame f2, the runtime routine called by
frame f1 in the initial task. The ompt_frame_t for the initial task is labeled r1 in Figure 1. In this figure,
three consecutive runtime system frames (labeled “par” with frame identifiers f2–f4) are on the stack. Before
starting the implicit task for parallel region “b” in thread 1, the runtime sets the exit_runtime_frame in
the implicit task’s ompt_frame_t (labeled r2) to f4. Execution of application code for parallel region “b”
begins on thread 1 when the runtime system invokes application code B (frame f5) from frame f4. Since
thread 1 is an OpenMP initial thread, a call to ompt_get_idle_frame on this thread will always return
NULL.

Let us focus now on thread 2, an OpenMP thread. Figure 1 shows this worker executing work for the outer-
parallel region “b.” On the OpenMP thread’s stack is a runtime frame labeled “idle,” where the OpenMP
thread waits for work. At any time after the idle frame is on thread 2’s stack, a call to ompt_get_idle_frame
by thread 2 will return frame f6. When work becomes available, the runtime system invokes a function to
dispatch it. While dispatching parallel work might involve a chain of several calls, here we assume that the
length of this chain is 1 (frame f7). Before thread 2 exits the runtime to execute an implicit task for parallel
region “b,” the runtime sets the exit_runtime_frame field of the implicit task’s ompt_frame_t (labeled r3)
to frame f7. When thread 2 later encounters the inner-parallel region “c,” execution returns to the runtime
and the runtime fills in the reenter_runtime_frame field of the current task’s ompt_frame_t (labeled r3)
to frame f9. Before the task for parallel region “c” is invoked on thread 2, the runtime system sets the
reenter_runtime_frame field of the ompt_frame_t (labeled r4) for the implicit task for “c” to frame f11.
Execution of application code for parallel region “c” begins on thread 2 when the runtime system invokes
application code C (frame f12) from frame f11.

Below the stack for each thread in Figure 1 is set of ompt_get_task_frame inquiries that are assumed to
be made on each thread for the stack state shown. Each call indicates an ancestor level with an argument

32

and shows the ID of the ompt_frame_t record returned. Note that thread 2 has task frame information for
three levels of tasks, whereas thread 1 has only two.

33

	Introduction
	OMPT
	Design Objectives
	Minimally Compliant Implementation

	Document Roadmap

	Runtime States
	Events
	Mandatory Events
	Optional Events
	Events for Blame Shifting (Optional)
	Events for Instrumentation-based Measurement Tools (Optional)

	Tool Data Structures
	Thread Identifier (Mandatory)
	Parallel Region Identifier (Mandatory)
	Task Region Identifier (Mandatory)
	Wait Identifier (Mandatory)
	Pointers to Support Classification of Stack Frames (Mandatory)

	Inquiry Functions for Tools
	Enumerate States Supported by an OpenMP Runtime (Mandatory)
	Thread Inquiry (Mandatory)
	Parallel Region Inquiry (Mandatory)
	Task Region Inquiry (Mandatory)

	Initializing OMPT Support for Tools
	Initialization of a Tool
	Initializer (Mandatory)
	Callback Registration (Mandatory)

	An Environment Variable for Tool Initialization (Mandatory)
	Implementation Considerations for Tool Initialization

	Tool Control for Applications (Mandatory)
	Final Notes
	Future Enhancements

	OMPT Interface Type Definitions
	Runtime States
	Runtime Event Callbacks
	Type Signatures for Tool Callbacks
	OMPT Inquiry and Control API
	Initialization

	Task Frame Management and Inspection

