
OpenMP Fortran Application Program
Interface

Version 1.1–November–1999

Contents

Pagev

Introduction [1] 1

Scope . 1

Execution Model . 2

Compliance . 2

Organization . 3

Directives [2] 5

OpenMP directive format . 5

Directive sentinels . 6

Fixed source form directive sentinels 6

Free source form directive sentinel 7

Conditional compilation . 7

Fixed source form conditional compilation sentinels 8

Free source form conditional compilation sentinel 8

Parallel region construct . 9

Work-sharing constructs . 11

DOdirective . 11

SECTIONSdirective . 14

SINGLE directive . 16

Combined parallel work-sharing constructs 16

PARALLEL DOdirective . 17

PARALLEL SECTIONSdirective 17

Synchronization constructs and the MASTERdirective 18

MASTERdirective . 19

CRITICAL directive . 19

Version
1.1–November–1999

i

OpenMP Fortran Application Program Interface

Page

BARRIERdirective . 20

ATOMICdirective . 20

FLUSHdirective . 21

ORDEREDdirective . 23

Data environment constructs . 24

THREADPRIVATEdirective . 24

Data scope attribute clauses . 25

PRIVATE clause . 26

SHAREDclause . 27

DEFAULTclause . 27

FIRSTPRIVATE . 28

LASTPRIVATE clause . 28

REDUCTIONclause . 29

COPYINclause . 31

Data environment rules . 32

Directive binding . 34

Directive nesting . 35

Run-time Library Routines [3] 37

Execution Environment Routines 37

OMP_SET_NUM_THREADSSubroutine 37

OMP_GET_NUM_THREADSFunction 38

OMP_GET_MAX_THREADSFunction 38

OMP_GET_THREAD_NUMFunction 39

OMP_GET_NUM_PROCSFunction 39

OMP_IN_PARALLELFunction . 40

OMP_SET_DYNAMICSubroutine 40

OMP_GET_DYNAMICFunction . 41

OMP_SET_NESTEDSubroutine 41

OMP_GET_NESTEDFunction . 42

Lock Routines . 42

ii Version 1.1–November–1999

Contents

Page

OMP_INIT_LOCK Subroutine . 42

OMP_DESTROY_LOCKSubroutine 43

OMP_SET_LOCKSubroutine . 43

OMP_UNSET_LOCKSubroutine 43

OMP_TEST_LOCKFunction . 44

Environment Variables [4] 45

OMP_SCHEDULEEnvironment Variable 45

OMP_NUM_THREADSEnvironment Variable 45

OMP_DYNAMICEnvironment Variable 46

OMP_NESTEDEnvironment Variable 46

Appendix A Examples 47

Executing a Simple Loop in Parallel 47

Specifying Conditional Compilation 47

Using Parallel Regions . 48

Using the NOWAITClause . 48

Using the CRITICAL Directive . 48

Using the LASTPRIVATE Clause . 49

Using the REDUCTIONClause . 49

Specifying Parallel Sections . 50

Using SINGLE Directives . 50

Specifying Sequential Ordering . 50

Specifying a Fixed Number of Threads 51

Using the ATOMICDirective . 51

Using the FLUSHDirective . 52

Determining the Number of Threads Used 52

Using Locks . 53

Nested DODirectives . 54

Version
1.1–November–1999

iii

OpenMP Fortran Application Program Interface

Page

Examples Showing Incorrect Nesting of Work-sharing Directives 55

Binding of BARRIERDirectives . 57

Scoping Variables with the PRIVATE Clause 58

Examples of Invalid Storage Association 59

Examples of Syntax of Parallel DOLoops 60

Examples of the ATOMICDirective 61

Examples of the ORDEREDDirective 63

Examples of THREADPRIVATE COMMONData 64

Examples of the Data Attribute Clauses: SHAREDand PRIVATE 66

Appendix B Stubs for Run-time Library Routines 69

Appendix C Using the SCHEDULEClause 73

Tables
Table 1. Initialization Values . 30

iv Version 1.1–November–1999

Copyright © 1997-99 OpenMP Architecture Review Board. Permission to copy
without fee all or part of this material is granted, provided the OpenMP
Architecture Review Board copyright notice and the title of this document
appear. Notice is given that copying is by permission of OpenMP Architecture
Review Board.

Version
1.1–November–1999

v

Introduction [1]

This document specifies a collection of compiler directives, library routines, and
environment variables that can be used to specify shared memory parallelism in
Fortran programs. The functionality described in this document is collectively
known as the OpenMP Fortran Application Program Interface (API). The goal of
this specification is to provide a model for parallel programming that is
portable across shared memory architectures from different vendors. The
OpenMP Fortran API will be supported by compilers from numerous vendors.
More information about OpenMP can be found at the following web site:

http://www.openmp.org

The directives, library routines, and environment variables defined in this
document will allow users to create and manage parallel programs while
ensuring portability. The directives extend the Fortran sequential programming
model with single-program multiple data (SPMD) constructs, work-sharing
constructs, synchronization constructs, and provide support for the sharing and
privatization of data. The library routines and environment variables provide
the functionality to control the run-time execution environment. The directive
sentinels are structured so that the directives are treated as Fortran comments.
Compilers that support the OpenMP Fortran API will include a command line
option that activates and allows interpretation of all OpenMP compiler
directives.

1.1 Scope

This specification describes only user-directed parallelization, wherein the user
explicitly specifies the actions to be taken by the compiler and run-time system
in order to execute the program in parallel. OpenMP Fortran implementations
are not required to check for dependencies, conflicts, deadlocks, race conditions
or other problems that result in incorrect program execution. The user is
responsible for ensuring that the application using the OpenMP Fortran API
constructs execute correctly.

Compiler-generated automatic parallelization and directives to the compiler to
assist such parallelization are not included in this specification.

Version
1.1–November–1999

1

OpenMP Fortran Application Program Interface

1.2 Execution Model

The OpenMP Fortran API uses the fork-join model of parallel execution. A
program that is written with the OpenMP Fortran API begins execution as a
single process, called the master thread of execution. The master thread executes
sequentially until the first parallel construct is encountered. In the OpenMP
Fortran API, the PARALLELand END PARALLELdirective pair constitutes the
parallel construct. When a parallel construct is encountered, the master thread
creates a team of threads, and the master thread becomes the master of the
team. The statements in the program that are enclosed by the parallel construct,
including routines called from within the enclosed statements, are executed in
parallel by each thread in the team. The statements enclosed lexically within a
construct define the static extent of the construct. The dynamic extent further
includes the routines called from within the construct.

Upon completion of the parallel construct, the threads in the team synchronize
and only the master thread continues execution. Any number of parallel
constructs can be specified in a single program. As a result, a program may
fork and join many times during execution.

The OpenMP Fortran API allows programmers to use directives in routines
called from within parallel constructs. Directives that do not appear in the
lexical extent of the parallel construct but lie in the dynamic extent are called
orphaned directives. Orphaned directives allow users to execute major portions
of their program in parallel with only minimal changes to the sequential
program. With this functionality, users can code parallel constructs at the top
levels of the program call tree and use directives to control execution in any of
the called routines.

1.3 Compliance

An implementation of the OpenMP Fortran API is OpenMP compliant if it
recognizes and preserves the semantics of all the elements of this specification
as laid out in chapters 2, 3, and 4. The appendixes are for information purposes
only and are not part of the specification.

The OpenMP Fortran API is an extension to the base language that is supported
by an implementation. If the base language does not support a language
construct or extension that appears in this document, the OpenMP
implementation is not required to support it.

All standard Fortran intrinsics and library routines and Fortran 90 ALLOCATE
and DEALLOCATEstatements must be thread-safe. Unsynchronized use of such
intrinsics and routines by different threads in a parallel region must produce

2 Version 1.1–November–1999

Introduction [1]

correct results (though not necessarily the same as serial execution results, as in
the case of random number generation intrinsics, for example).

Unsynchronized use of Fortran output statements to the same unit may result
in output in which data written by different threads is interleaved. Similarly,
unsynchronized input statements from the same unit may read data in an
interleaved fashion. Unsynchronized use of Fortran I/O, such that each thread
accesses a different unit, produces the same results as serial execution of the
I/O statements.

1.4 Organization

The rest of this document is organized into the following chapters:

• Chapter 2, page 5, describes the compiler directives.

• Chapter 3, page 37, describes the run-time library routines.

• Chapter 4, page 45, describes the environment variables.

• Appendix A, page 47, contains examples.

• Appendix B, page 69, describes stub library routines.

• Appendix C, page 73, has information about using the SCHEDULEclause.

Version
1.1–November–1999

3

Directives [2]

Directives are special Fortran comments that are identified with a unique
sentinel. The directive sentinels are structured so that the directives are treated
as Fortran comments. Compilers that support the OpenMP Fortran API will
include a command line option that activates and allows interpretation of all
OpenMP compiler directives. In the remainder of this document, the phrase
OpenMP compilation is used to mean that OpenMP directives are interpreted
during compilation.

This chapter addresses the following topics:

• Section 2.1, page 5, describes the directive format.

• Section 2.1.1, page 6, describes directive sentinels for both fixed source form
and free source form.

• Section 2.1.2, page 7, describes conditional compilation.

• Section 2.2, page 9, describes the parallel region construct.

• Section 2.3, page 11, describes work-sharing constructs.

• Section 2.4, page 16, describes the combined parallel work-sharing constructs.

• Section 2.5, page 18, describes synchronization constructs and the MASTER
directive.

• Section 2.6, page 24, describes the data environment, which includes
directives and clauses that affect the data environment.

• Section 2.7, page 34, describes directive binding.

• Section 2.8, page 35, describes directive nesting.

2.1 OpenMP directive format

The format of an OpenMP directive is as follows:

sentinel directive_name [clause[[,] clause]...]

All OpenMP compiler directives must begin with a directive sentinel. Directives
are case insensitive. Clauses can appear in any order after the directive name.

Version
1.1–November–1999

5

OpenMP Fortran Application Program Interface

Clauses on directives can be repeated as needed, subject to the restrictions listed
in the description of each clause. Directives cannot be embedded within
continued statements, and statements cannot be embedded within directives.
Comments cannot appear on the same line as a directive.

The following sections contain more information on directive sentinels and
describe conditional compilation.

2.1.1 Directive sentinels

The directive sentinels accepted by an OpenMP-compliant compiler differ
depending on the Fortran source form being used. The !$OMP sentinel is
accepted when compiling either fixed source form files or free source form files.
The C$OMPand *$OMPsentinels are accepted only when compiling fixed source
form files.

The following sections contain more information on using the different sentinels.

2.1.1.1 Fixed source form directive sentinels

The OpenMP Fortran API accepts the following sentinels in fixed source form
files:

!$OMP | C$OMP | *$OMP

Sentinels must start in column one and appear as a single word with no
intervening white space. Fortran fixed form line length, case sensitivity, white
space, continuation, and column rules apply to the directive line. Initial
directive lines must have a space or zero in column six, and continuation
directive lines must have a character other than a space or a zero in column six.

Example: The following formats for specifying directives are equivalent (the
first line represents the position of the first 9 columns):

C23456789

!$OMP PARALLEL DO SHARED(A,B,C)

C$OMP PARALLEL DO

C$OMP+SHARED(A,B,C)

C$OMP PARALLELDOSHARED(A,B,C)

6 Version 1.1–November–1999

Directives [2]

2.1.1.2 Free source form directive sentinel

The OpenMP Fortran API accepts the following sentinel in free source form files:

!$OMP

The sentinel can appear in any column as long as it is preceded only by white
space. It must appear as a single word with no intervening white space. Fortran
free form line length, case sensitivity, white space, and continuation rules apply
to the directive line. Initial directive lines must have a space after the sentinel.
Continued directive lines must have an ampersand as the last nonblank
character on the line. Continuation directive lines can have an ampersand after
the directive sentinel with optional white space before and after the ampersand.

Example: The following formats for specifying directives are equivalent (the
first line represents the position of the first 9 columns):

!23456789
!$OMP PARALLEL DO &

!$OMP SHARED(A,B,C)

!$OMP PARALLEL &

!$OMP&DO SHARED(A,B,C)

!$OMP PARALLEL DO SHARED(A,B,C)

In order to simplify the presentation, the remainder of this document uses the
!$OMP sentinel.

2.1.2 Conditional compilation

The OpenMP Fortran API permits Fortran lines to be compiled conditionally.
The directive sentinels for conditional compilation that are accepted by an
OpenMP-compliant compiler depend on the Fortran source form being used.
The !$ sentinel is accepted when compiling either fixed source form files or
free source form files. The C$ and *$ sentinels are accepted only when
compiling fixed source form.

During OpenMP compilation, the sentinel is replaced by two spaces, and the
rest of the line is treated as a normal Fortran line.

Version
1.1–November–1999

7

OpenMP Fortran Application Program Interface

In addition to the Fortran conditional compilation sentinels, a C preprocessor
macro, _OPENMP, can be used for conditional compilation. OpenMP-compliant
compilers will define this macro during OpenMP compilation.

The following sections contain more information on using the different sentinels
for conditional compilation. (See Section A.2, page 47 for an example.)

2.1.2.1 Fixed source form conditional compilation sentinels

The OpenMP Fortran API accepts the following conditional compilation
sentinels in fixed source form files:

!$ | C$ | *$

The sentinels must start in column one and appear as a single word with no
intervening white space. Fortran fixed form line length, case sensitivity, white
space, continuation, and column rules apply to the line. Initial lines must have
a space or zero in column six, and continuation lines must have a character
other than a space or zero in column six.

Example: The following forms for specifying conditional compilation are
equivalent:

C23456789

!$ 10 IAM = OMP_GET_THREAD_NUM() +

!$ & INDEX

#ifdef _OPENMP

10 IAM = OMP_GET_THREAD_NUM() +

& INDEX

#endif

2.1.2.2 Free source form conditional compilation sentinel

The OpenMP Fortran API accepts the following conditional compilation
sentinel in free source form files:

!$

This sentinel can appear in any column as long as it is preceded only by white
space. It must appear as a single word with no intervening white space.
Fortran free source form line length, case sensitivity, white space, and

8 Version 1.1–November–1999

Directives [2]

continuation rules apply to the line. Initial lines must have a space after the
sentinel. Continued lines must have an ampersand as the last nonblank
character on the line. Continuation lines can have an ampersand after the
sentinel, with optional white space before and after the ampersand.

2.2 Parallel region construct

The PARALLELand END PARALLELdirectives define a parallel region. A parallel
region is a block of code that is to be executed by multiple threads in parallel.
This is the fundamental parallel construct in OpenMP that starts parallel
execution. These directives have the following format:

!$OMP PARALLEL [clause[[,] clause]...]

block

!$OMP END PARALLEL

The clause can be one of the following:

• PRIVATE(list)

• SHARED(list)

• DEFAULT(PRIVATE | SHARED | NONE)

• FIRSTPRIVATE(list)

• REDUCTION ({operator| intrinsic}: list)

• IF(scalar_logical_expression)

• COPYIN(list)

For information on the PRIVATE, SHARED, DEFAULT, FIRSTPRIVATE,
REDUCTION, and COPYINclauses, see Section 2.6.2, page 25. For an example of
how to implement coarse-grain parallelism using these directives, see Section
A.3, page 48.

When a thread encounters a parallel region, it creates a team of threads, and it
becomes the master of the team. The master thread is a member of the team
and it has a thread number of 0 within the team. The number of threads in the
team is controlled by environment variables and/or library calls. For more

Version
1.1–November–1999

9

OpenMP Fortran Application Program Interface

information on environment variables, see Chapter 4. For more information on
library routines, see Chapter 3, page 37.

The number of physical processors actually hosting the threads at any given
time is implementation dependent. Once created, the number of threads in the
team remains constant for the duration of that parallel region, but it can be
changed either explicitly by the user or automatically by the run-time system
from one parallel region to another. The OMP_SET_DYNAMIClibrary routine
and the OMP_DYNAMICenvironment variable can be used to enable and disable
the automatic adjustment of the number of threads. For more information on
the OMP_SET_DYNAMIClibrary routine, see Section 3.1.7, page 40. For more
information on the OMP_DYNAMICenvironment variable, see Section 4.3, page
46.

The block denotes a structured block of Fortran statements. It is illegal to branch
into or out of the block. The code contained within the dynamic extent of the
parallel region is executed on each thread, and the code path can be different
for different threads.

The END PARALLELdirective denotes the end of the parallel region. There is
an implied barrier at this point. Only the master thread of the team continues
execution at the end of a parallel region.

If a thread in a team executing a parallel region encounters another parallel
region, it creates a new team, and it becomes the master of that new team. By
default, nested parallel regions are serialized; that is, they are executed by a
team composed of one thread. This default behavior can be changed by using
either the OMP_SET_NESTEDrun-time library routine or the OMP_NESTED
environment variable. For more information on the OMP_SET_NESTEDlibrary
routine, see Section 3.1.9, page 41. For more information on the OMP_NESTED
environment variable, see Section 4.4, page 46.

If an IF clause is present, the enclosed code region is executed in parallel only
if the scalar_logical_expression evaluates to .TRUE. . Otherwise, the parallel
region is serialized. The expression must be a scalar Fortran logical expression.
In the absence of an IF clause, the region is executed as if an IF(.TRUE.)
clause were specified.

The following restrictions apply to parallel regions:

• The PARALLEL/END PARALLELdirective pair must appear in the same
routine in the executable section of the code.

• The code contained by these two directives must be a structured block. It is
illegal to branch into or out of a parallel region.

10 Version 1.1–November–1999

Directives [2]

• Only a single IF clause can appear on the directive. The IF expression is
evaluated outside the context of the parallel region. Results are undefined if
the IF expression contains a function reference that has side effects.

Unsynchronized use of Fortran I/O statements by multiple threads on the same
unit has undefined behavior. (See Section A.3, page 48 for a related example.)

2.3 Work-sharing constructs

A work-sharing construct divides the execution of the enclosed code region
among the members of the team that encounter it. A work-sharing construct
must be enclosed dynamically within a parallel region in order for the directive
to execute in parallel. The work-sharing directives do not launch new threads,
and there is no implied barrier on entry to a work-sharing construct.

The following restrictions apply to the work-sharing directives:

• Work-sharing constructs and BARRIERdirectives must be encountered by all
threads in a team or by none at all.

• Work-sharing constructs and BARRIERdirectives must be encountered in the
same order by all threads in a team.

The following sections describe the work-sharing directives:

• Section 2.3.1, page 11, describes the DOand END DOdirectives.

• Section 2.3.2, page 14, describes the SECTIONS, SECTION, and
END SECTIONSdirectives.

• Section 2.3.3, page 16, describes the SINGLE and END SINGLEdirectives.

2.3.1 DOdirective

The DOdirective specifies that the iterations of the immediately following DO
loop must be executed in parallel. The loop that follows a DOdirective cannot
be a DO WHILEor a DOloop without loop control. The iterations of the DOloop
are distributed across threads that already exist.

The format of this directive is as follows:

Version
1.1–November–1999

11

OpenMP Fortran Application Program Interface

!$OMP DO [clause[[,] clause]...]

do_loop

[!$OMP END DO[NOWAIT]]

The do_loop may be a do_construct, an outer_shared_do_construct, or an
inner_shared_do_construct. A DOconstruct that contains several DOstatements
that share the same DOtermination statement syntactically consists of a
sequence of outer_shared_do_constructs, followed by a single
inner_shared_do_construct. If an END DOdirective follows such a DOconstruct, a
DOdirective can only be specified for the first (i.e., the outermost)
outer_shared_do_construct. (See examples in Section A.21, page 60.)

The clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

• LASTPRIVATE(list)

• REDUCTION({operator| intrinsic}: list)

• SCHEDULE(type[, chunk])

• ORDERED

The SCHEDULEand ORDEREDclauses are described in this section. The
PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are
described in Section 2.6.2, page 25.

If ordered sections are contained in the dynamic extent of the DOdirective, the
ORDEREDclause must be present. For more information on ordered sections, see
the ORDEREDdirective in Section 2.5.6, page 23.

The SCHEDULEclause specifies how iterations of the DOloop are divided
among the threads of the team. The chunk expression is evaluated outside the
context of the DOconstruct. Results are undefined if the chunk expression
contains a function reference that has side effects. Within the
SCHEDULE(type[, chunk]) clause syntax, type can be one of the following:

type Effect

STATIC When SCHEDULE(STATIC, chunk) is specified, iterations are
divided into pieces of a size specified by chunk. The pieces are

12 Version 1.1–November–1999

Directives [2]

statically assigned to threads in the team in a round-robin fashion
in the order of the thread number. chunk must be a scalar integer
expression.

When no chunk is specified, the iterations are divided among
threads in contiguous pieces, and one piece is assigned to each
thread.

DYNAMIC When SCHEDULE(DYNAMIC,chunk) is specified, the iterations are
broken into pieces of a size specified by chunk. As each thread
finishes a piece of the iteration space, it dynamically obtains the
next set of iterations.

When no chunk is specified, it defaults to 1.

GUIDED When SCHEDULE(GUIDED,chunk) is specified, the iteration space
is divided into pieces such that the size of each successive piece is
exponentially decreasing. chunk specifies the size of the smallest
piece, except possibly the last. The size of the initial piece is
implementation dependent. As each thread finishes a piece of the
iteration space, it dynamically obtains the next available piece.

When no chunk is specified, it defaults to 1.

RUNTIME When SCHEDULE(RUNTIME)is specified, the decision regarding
scheduling is deferred until run time. The schedule type and
chunk size can be chosen at run time by setting the
OMP_SCHEDULEenvironment variable. If this environment
variable is not set, the resulting schedule is
implementation-dependent. For more information on the
OMP_SCHEDULEenvironment variable, see Section 4.1, page 45.

When SCHEDULE(RUNTIME)is specified, it is illegal to specify a
chunk.

In the absence of the SCHEDULEclause, the default schedule is implementation
dependent. An OpenMP-compliant program should not rely on a particular
schedule for correct execution. Users should not rely on a particular
implementation of a schedule type for correct execution, because it is possible
to have variations in the implementations of the same schedule type across
different compilers.

If an END DOdirective is not specified, an END DOdirective is assumed at the
end of the DOloop. If NOWAITis specified on the END DOdirective, threads do
not synchronize at the end of the parallel loop. Threads that finish early
proceed straight to the instructions following the loop without waiting for the

Version
1.1–November–1999

13

OpenMP Fortran Application Program Interface

other members of the team to finish the DOdirective. (See Section A.4, page 48
for an example.)

Parallel DOloop control variables are block-level entities within the DOloop. If
the loop control variable also appears in the LASTPRIVATE list of the parallel
DO, it is copied out to a variable of the same name in the enclosing PARALLEL
region. The variable in the enclosing PARALLELregion must be SHAREDif it is
specified on the LASTPRIVATE list of a DOdirective.

The following restrictions apply to the DOdirectives:

• It is illegal to branch out of a DOloop associated with a DOdirective.

• The values of the loop control parameters of the DOloop associated with a
DOdirective must be the same for all the threads in the team.

• The DOloop iteration variable must be of type integer.

• If used, the END DOdirective must appear immediately after the end of the
loop.

• Only a single SCHEDULEclause can appear on a DOdirective.

• Only a single ORDEREDclause can appear on a DOdirective.

• The value of the chunk parameter must be the same for all of the threads in
the team.

2.3.2 SECTIONSdirective

The SECTIONSdirective is a non-iterative work-sharing construct that specifies
that the enclosed sections of code are to be divided among threads in the team.
Each section is executed once by a thread in the team.

The format of this directive is as follows:

14 Version 1.1–November–1999

Directives [2]

!$OMP SECTIONS [clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END SECTIONS[NOWAIT]

The clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

• LASTPRIVATE(list)

• REDUCTION({ operator| intrinsic}: list)

The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses are
described in Section 2.6.2, page 25.

Each section is preceded by a SECTIONdirective, though the SECTIONdirective
is optional for the first section. The SECTIONdirectives must appear within the
lexical extent of the SECTIONS/END SECTIONSdirective pair. The last section
ends at the END SECTIONSdirective. Threads that complete execution of their
sections wait at a barrier at the END SECTIONSdirective unless a NOWAITis
specified.

The following restrictions apply to the SECTIONSdirective:

• The code enclosed in a SECTIONS/END SECTIONSdirective pair must be a
structured block. In addition, each constituent section must also be a
structured block. It is illegal to branch into or out of the constituent section
blocks.

• It is illegal for a SECTIONdirective to be outside the lexical extent of the
SECTIONS/END SECTIONSdirective pair. (See Section A.8, page 50 for an
example that uses these directives.)

Version
1.1–November–1999

15

OpenMP Fortran Application Program Interface

2.3.3 SINGLE directive

The SINGLE directive specifies that the enclosed code is to be executed by only
one thread in the team. Threads in the team that are not executing the SINGLE
directive wait at the END SINGLEdirective unless NOWAITis specified.

The format of this directive is as follows:

!$OMP SINGLE [clause[[,] clause]...]

block

!$OMP END SINGLE [NOWAIT]

The clause can be one of the following:

• PRIVATE(list)

• FIRSTPRIVATE(list)

The PRIVATE and FIRSTPRIVATE clauses are described in Section 2.6.2, page
25.

The following restriction applies to a SINGLE directive:

• The code enclosed in a SINGLE/END SINGLEdirective pair must be a
structured block. It is illegal to branch into or out of the block.

See Section A.9, page 50 for an example of the SINGLE directive.

2.4 Combined parallel work-sharing constructs

The combined parallel work-sharing constructs are shortcuts for specifying a
parallel region that contains only one work-sharing construct. The semantics of
these directives are identical to that of explicitly specifying a PARALLEL
directive followed by a single work-sharing construct.

The following sections describe the combined parallel work-sharing directives:

• Section 2.4.1, page 17, describes the PARALLEL DOand END PARALLEL DO
directives.

• Section 2.4.2, page 17, describes the PARALLEL SECTIONSand
END PARALLEL SECTIONSdirectives.

16 Version 1.1–November–1999

Directives [2]

2.4.1 PARALLEL DOdirective

The PARALLEL DOdirective provides a shortcut form for specifying a parallel
region that contains a single DOdirective. (See also Section A.1, page 47 for an
example.)

The format of this directive is as follows:

!$OMP PARALLEL DO[clause[[,] clause]...]

do_loop

[!$OMP END PARALLEL DO]

The do_loop may be a do_construct, an outer_shared_do_construct, or an
inner_shared_do_construct. A DOconstruct that contains several DOstatements
that share the same DOtermination statement syntactically consists of a
sequence of outer_shared_do_constructs, followed by a single
inner_shared_do_construct. If an END PARALLEL DOdirective follows such a DO
construct, a PARALLEL DOdirective can only be specified for the first (i.e., the
outermost) outer_shared_do_construct. (See Section A.21, page 60 for examples.)

The clause can be one of the clauses accepted by the PARALLELand DO
directives. For information on the PARALLELdirective and the IF clause, see
Section 2.2, page 9. For information on the DOdirective and the SCHEDULED
and ORDEREDclauses, see Section 2.3.1, page 11. For information on the
remaining clauses, see Section 2.6.2, page 25.

If the END PARALLEL DOdirective is not specified, the PARALLEL DOis
assumed to end with the DOloop that immediately follows the PARALLEL DO
directive. If used, the END PARALLEL DOdirective must appear immediately
after the end of the DOloop.

The semantics are identical to explicitly specifying a PARALLELdirective
immediately followed by a DOdirective.

2.4.2 PARALLEL SECTIONSdirective

The PARALLEL SECTIONSdirective provides a shortcut form for specifying a
parallel region that contains a single SECTIONSdirective. The semantics are
identical to explicitly specifying a PARALLELdirective immediately followed by
a SECTIONSdirective.

Version
1.1–November–1999

17

OpenMP Fortran Application Program Interface

The format of this directive is as follows:

!$OMP PARALLEL SECTIONS[clause[[,] clause]...]

[!$OMP SECTION]

block

[!$OMP SECTION

block]

. . .

!$OMP END PARALLEL SECTIONS

The clause can be one of the clauses accepted by the PARALLELand SECTIONS
directives. For more information on the PARALLELdirective, see Section 2.2,
page 9. For more information on the SECTIONSdirective, see Section 2.3.2,
page 14. The PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTION
clauses are described in Section 2.6.2, page 25.

The last section ends at the END PARALLEL SECTIONSdirective.

2.5 Synchronization constructs and the MASTERdirective

The following sections describe the synchronization constructs and the MASTER
directive:

• Section 2.5.1, page 19, describes the MASTERand END MASTERdirectives.

• Section 2.5.2, page 19, describes the CRITICAL and END CRITICAL
directives.

• Section 2.5.3, page 20, describes the BARRIERdirective.

• Section 2.5.4, page 20, describes the ATOMICdirective.

• Section 2.5.5, page 21, describes the FLUSHdirective.

• Section 2.5.6, page 23, describes the ORDEREDand END ORDEREDdirectives.

18 Version 1.1–November–1999

Directives [2]

2.5.1 MASTERdirective

The code enclosed within MASTERand END MASTERdirectives is executed by
the master thread of the team.

These directives have the following format:

!$OMP MASTER

block

!$OMP END MASTER

The other threads in the team skip the enclosed section of code and continue
execution. There is no implied barrier either on entry to or exit from the master
section.

This directive has the following restriction:

• The section of code enclosed by MASTERand END MASTERdirectives must
be a structured block. It is illegal to branch into or out of the block.

2.5.2 CRITICAL directive

The CRITICAL and END CRITICAL directives restrict access to the enclosed
code to only one thread at a time.

These directives have the following format:

!$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

The optional name argument identifies the critical section.

A thread waits at the beginning of a critical section until no other thread in the
team is executing a critical section with the same name. All unnamed
CRITICAL directives map to the same name. Critical section names are global
entities of the program. If a name conflicts with any other entity, the behavior
of the program is undefined.

Version
1.1–November–1999

19

OpenMP Fortran Application Program Interface

The following restrictions apply to the CRITICAL directive:

• The section of code enclosed by the CRITICAL and END CRITICAL
directive pair must be a structured block. It is illegal to branch into or out of
the block.

• If a name is specified on a CRITICAL directive, the same name must also be
specified on the END CRITICAL directive. If no name appears on the
CRITICAL directive, no name can appear on the END CRITICAL directive.

See Section A.5, page 48 for an example that uses named CRITICAL sections.

2.5.3 BARRIERdirective

The BARRIERdirective synchronizes all the threads in a team. When
encountered, each thread waits until all of the others threads in that team have
reached this point.

This directive has the following format:

!$OMP BARRIER

2.5.4 ATOMICdirective

The ATOMICdirective ensures that a specific memory location is to be updated
atomically, rather than exposing it to the possibility of multiple, simultaneous
writing threads.

This directive has the following format:

!$OMP ATOMIC

This directive applies only to the immediately following statement, which must
have one of the following forms:

x = x operator expr

x = expr operator x

x = intrinsic (x, expr)

x = intrinsic (expr, x)

20 Version 1.1–November–1999

Directives [2]

In the preceding statements:

• x is a scalar variable of intrinsic type.

• expr is a scalar expression that does not reference x.

• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.

• operator is one of +, * , - , / , .AND. , .OR. , .EQV. , or .NEQV. .

This directive permits optimization beyond that of the necessary critical section
around the assignment. An implementation can replace all ATOMICdirectives
by enclosing the statement in a critical section. All of these critical sections
must use the same unique name.

Only the load and store of x are atomic; the evaluation of expr is not atomic. To
avoid race conditions, all updates of the location in parallel must be protected
with the ATOMICdirective, except those that are known to be free of race
conditions. The function intrinsic, the operator operator, and the assignment
must be the intrinsic function, operator, and assignment.

The following restriction applies to the use of ATOMICdirectives:

• All atomic references to the storage location of variable x throughout the
program are required to have the same type and type parameters.

Example:

!$OMP ATOMIC

Y(INDEX(I)) = Y(INDEX(I)) + B

See Section A.12, page 51 and Section A.22, page 61 for more examples using
the ATOMICdirective.

2.5.5 FLUSHdirective

The FLUSHdirective, whether explicit or implied, identifies a cross-thread
sequence point at which the implementation is required to ensure that each
thread in the team has a consistent view of certain variables in memory.

A consistent view requires that all memory operations (both reads and writes)
that occur before the FLUSHdirective in the program be performed before the
sequence point in the executing thread; similarly, all memory operations that
occur after the FLUSHmust be performed after the sequence point in the
executing thread.

Version
1.1–November–1999

21

OpenMP Fortran Application Program Interface

Thread-visible variables include the following data items:

• Globally visible variables (in common blocks and in modules).

• Local variables that do not have the SAVEattribute but have had their
address taken and saved or have had their address passed to another
subprogram.

• Local variables that do not have the SAVEattribute that are declared shared
in a parallel region within the subprogram.

• Dummy arguments.

• All pointer dereferences.

Implementations must ensure that modifications made to thread-visible
variables within the executing thread are made visible to all other threads at the
sequence point. For example, compilers must restore values from registers to
memory, and hardware may need to flush write buffers. Furthermore,
implementations must assume that thread-visible variables may have been
updated by other threads at the sequence point and must be retrieved from
memory before their first use past the sequence point.

Finally, the FLUSHdirective only provides consistency between operations
within the executing thread and global memory. To achieve a globally
consistent view across all threads, each thread must execute a FLUSHoperation.

This directive has the following format:

!$OMP FLUSH [(list)]

This directive must appear at the precise point in the code at which the
synchronization is required. The optional list argument consists of a
comma-separated list of variables that need to be flushed in order to avoid
flushing all variables. The list should contain only named variables (see Section
A.13, page 52). The FLUSHdirective is implied for the following directives:

• BARRIER

• CRITICAL and END CRITICAL

• END DO

• END PARALLEL

• END SECTIONS

22 Version 1.1–November–1999

Directives [2]

• END SINGLE

• ORDEREDand END ORDERED

The directive is not implied if a NOWAITclause is present.

2.5.6 ORDEREDdirective

The code enclosed within ORDEREDand END ORDEREDdirectives is executed in
the order in which iterations would be executed in a sequential execution of the
loop.

These directives have the following format:

!$OMP ORDERED

block

!$OMP END ORDERED

An ORDEREDdirective can appear only in the dynamic extent of a DOor
PARALLEL DOdirective. The DOdirective to which the ordered section binds
must have the ORDEREDclause specified (see Section 2.3.1, page 11). One thread
is allowed in an ordered section at a time. Threads are allowed to enter in the
order of the loop iterations. No thread can enter an ordered section until it is
guaranteed that all previous iterations have completed or will never execute an
ordered section. This sequentializes and orders code within ordered sections
while allowing code outside the section to run in parallel. ORDEREDsections
that bind to different DOdirectives are independent of each other.

The following restrictions apply to the ORDEREDdirective:

• The code enclosed by the ORDEREDand END ORDEREDdirectives must be a
structured block. It is illegal to branch into or out of the block.

• An ORDEREDdirective cannot bind to a DOdirective that does not have the
ORDEREDclause specified.

• An iteration of a loop with a DOdirective must not execute the same
ORDEREDdirective more than once, and it must not execute more than one
ORDEREDdirective.

See Section A.10, page 50 and Section A.23, page 63 for examples using the
ORDEREDdirective.

Version
1.1–November–1999

23

OpenMP Fortran Application Program Interface

2.6 Data environment constructs

This section presents constructs for controlling the data environment during the
execution of parallel constructs:

• Section 2.6.1, page 24, describes the THREADPRIVATEdirective, which makes
common blocks local to a thread.

• Section 2.6.2, page 25, describes directive clauses that affect the data
environment.

• Section 2.6.3, page 32 describes the data environment rules.

2.6.1 THREADPRIVATEdirective

The THREADPRIVATEdirective makes named common blocks private to a
thread but global within the thread.

This directive must appear in the declaration section of the scoping unit after
the declaration of the listed common blocks. Although variables in common
blocks can be accessed by use association or host association, common block
names cannot. This means that a common block name specified in a
THREADPRIVATEdirective must be declared to be a common block in the same
scoping unit in which the THREADPRIVATEdirective appears. Each thread gets
its own copy of the common block, so data written to the common block by one
thread is not directly visible to other threads. During serial portions and
MASTERsections of the program, accesses are to the master thread’s copy of the
common block. (See Section A.24, page 64 for examples.)

On entry to the first parallel region, data in the THREADPRIVATEcommon
blocks should be assumed to be undefined unless a COPYINclause is specified
on the PARALLELdirective. When a common block that is initialized using
DATAstatements appears in a THREADPRIVATEdirective, each thread’s copy is
initialized once prior to its first use. For subsequent parallel regions, the data in
the THREADPRIVATEcommon blocks is guaranteed to persist only if the
dynamic threads mechanism has been disabled and if the number of threads is
the same for all parallel regions. For more information on dynamic threads, see
the OMP_SET_DYNAMIClibrary routine, Section 3.1.7, page 40, and the
OMP_DYNAMICenvironment variable, Section 4.3, page 46.

The format of this directive is as follows:

!$OMP THREADPRIVATE(/cb/ [,/ cb/]...)

24 Version 1.1–November–1999

Directives [2]

cb is the name of the common block to be made private to a thread.

The following restrictions apply to the THREADPRIVATEdirective:

• The THREADPRIVATEdirective must appear after every declaration of a
thread private common block.

• Only named common blocks can be made thread private.

• It is illegal for a THREADPRIVATEcommon block or its constituent variables
to appear in any clause other than a COPYINclause. As a result, they are
not permitted in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, SHARED, or
REDUCTIONclause. They are not affected by the DEFAULTclause.

2.6.2 Data scope attribute clauses

Several directives accept clauses that allow a user to control the scope attributes
of variables for the duration of the construct. Not all of the following clauses
are allowed on all directives, but the clauses that are valid on a particular
directive are included with the description of the directive. If no data scope
clauses are specified for a directive, the default scope for variables affected by
the directive is SHARED. (See Section 2.6.3, page 32, for exceptions.)

Scope attribute clauses that appear on a PARALLELdirective indicate how the
specified variables are to be treated with respect to the parallel region
associated with the PARALLELdirective. They do not indicate the scope
attributes of these variables for any enclosing parallel regions, if they exist.

In determining the appropriate scope attribute for a variable used in the lexical
extent of a parallel region, all references and definitions of the variable must be
considered, including references and definitions which occur in any nested
parallel regions.

Each clause accepts an argument list, which is a comma-separated list of named
variables or named common blocks that are accessible in the scoping unit.
Subobjects cannot be specified as items in any of the lists. When named
common blocks appear in a list, their names must appear between slashes.

Although variables in common blocks can be accessed by use association or host
association, common block names cannot. This means that a common block
name specified in a data scope attribute clause must be declared to be a common
block in the same scoping unit in which the data scope attribute clause appears.

The following sections describe the data scope attribute clauses:

• Section 2.6.2.1, page 26, describes the PRIVATE clause.

Version
1.1–November–1999

25

OpenMP Fortran Application Program Interface

• Section 2.6.2.2, page 27, describes the SHAREDclause.

• Section 2.6.2.3, page 27, describes the DEFAULTclause.

• Section 2.6.2.4, page 28, describes the FIRSTPRIVATE clause.

• Section 2.6.2.5, page 28, describes the LASTPRIVATE clause.

• Section 2.6.2.6, page 29, describes the REDUCTIONclause.

• Section 2.6.2.7, page 31, describes the COPYINclause.

2.6.2.1 PRIVATE clause

The PRIVATE clause declares the variables in list to be private to each thread in
a team.

This clause has the following format:

PRIVATE(list)

The behavior of a variable declared in a PRIVATE clause is as follows:

1. A new object of the same type is declared once for each thread in the team.
One thread in the team is permitted, but not required, to re-use the existing
storage as the storage for the new object. For all other threads, new storage
is created for the new object.

2. All references to the original object in the lexical extent of the directive
construct are replaced with references to the private object.

3. Variables defined as PRIVATE are undefined for each thread on entering the
construct, and the corresponding shared variable is undefined on exit from
a parallel construct.

4. A variable declared as PRIVATE may be storage-associated with other
variables when the PRIVATE clause is encountered. Storage association
may exist because of constructs such as EQUIVALENCE, COMMON, etc. If a is
a variable appearing in a PRIVATE clause and b is a variable which was
storage-associated with a, then:

a. The contents, allocation, and association status of b are undefined on
entry to the parallel construct.

b. Any definition of a, or of its allocation or association status, causes the
contents, allocation, and association status of b to become undefined.

26 Version 1.1–November–1999

Directives [2]

c. Any definition of b, or of its allocation or association status, causes the
contents, allocation, and association status of a to become undefined.

See Section A.19, page 58 and Section A.20, page 59, for examples.

2.6.2.2 SHAREDclause

The SHAREDclause makes variables that appear in the list shared among all the
threads in a team. All threads within a team access the same storage area for
SHAREDdata.

This clause has the following format:

SHARED(list)

2.6.2.3 DEFAULTclause

The DEFAULTclause allows the user to specify a PRIVATE, SHARED, or NONE
scope attribute for all variables in the lexical extent of any parallel region.
Variables in THREADPRIVATEcommon blocks are not affected by this clause.

This clause has the following format:

DEFAULT(PRIVATE | SHARED| NONE)

The PRIVATE, SHARED, and NONEspecifications have the following effects:

• Specifying DEFAULT(PRIVATE) makes all named objects in the lexical
extent of the parallel region, including common block variables but
excluding THREADPRIVATEvariables, private to a thread as if each variable
were listed explicitly in a PRIVATE clause.

• Specifying DEFAULT(SHARED)makes all named objects in the lexical extent
of the parallel region shared among the threads in a team, as if each variable
were listed explicitly in a SHAREDclause. In the absence of an explicit
DEFAULTclause, the default behavior is the same as if DEFAULT(SHARED)
were specified.

• Specifying DEFAULT(NONE)requires that each variable used in the lexical
extent of the parallel region be explicitly listed in a data scope attribute
clause on the parallel region, unless it is one of the following:

– THREADPRIVATE.

Version
1.1–November–1999

27

OpenMP Fortran Application Program Interface

– A Cray pointee.

– A loop iteration variable used only as a loop iteration variable for
sequential loops in the lexical extent of the region or parallel DOloops
that bind to the region.

– Only used in work-sharing constructs that bind to the region, and is
specified in a data scope attribute clause for each such construct.

Only one DEFAULTclause can be specified on a PARALLELdirective.

Variables can be exempted from a defined default using the PRIVATE, SHARED,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses. As a result, the
following example is legal:

!$OMP PARALLEL DO DEFAULT(PRIVATE), FIRSTPRIVATE(I),SHARED(X),
!$OMP& SHARED(R) LASTPRIVATE(I)

2.6.2.4 FIRSTPRIVATE

The FIRSTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

This clause has the following format:

FIRSTPRIVATE(list)

Variables that appear in the list are subject to PRIVATE clause semantics
described in Section 2.6.2.1, page 26. In addition, private copies of the variables
are initialized from the original object existing before the construct.

2.6.2.5 LASTPRIVATE clause

The LASTPRIVATE clause provides a superset of the functionality provided by
the PRIVATE clause.

This clause has the following format:

LASTPRIVATE(list)

Variables that appear in the list are subject to the PRIVATE clause semantics
described in Section 2.6.2.1, page 26. When the LASTPRIVATE clause appears
on a DOdirective, the thread that executes the sequentially last iteration updates

28 Version 1.1–November–1999

Directives [2]

the version of the object it had before the construct (see Section A.6, page 49 for
an example). When the LASTPRIVATE clause appears in a SECTIONSdirective,
the thread that executes the lexically last SECTIONupdates the version of the
object it had before the construct. Subobjects that are not assigned a value by
the last iteration of the DOor the lexically last SECTIONof the SECTIONS
directive are undefined after the construct.

2.6.2.6 REDUCTIONclause

This clause performs a reduction on the variables that appear in list, with the
operator operator or the intrinsic intrinsic, where operator is one of the following:
+, * , - , .AND. , .OR. , .EQV. , or .NEQV. , and intrinsic is one of the following:
MAX, MIN, IAND, IOR, or IEOR.

This clause has the following format:

REDUCTION({operator| intrinsic}: list)

Variables in list must be named scalar variables of intrinsic type. Since the
intermediate values of the REDUCTIONvariables may be combined in random
order, there is no guarantee that bit-identical results will be obtained for
floating point reductions from one parallel run to another.

Variables that appear in a REDUCTIONclause must be SHAREDin the enclosing
context. A private copy of each variable in list is created for each thread as if
the PRIVATE clause had been used. The private copy is initialized according to
the operator. See Table 1, page 28, for more information.

At the end of the REDUCTION, the shared variable is updated to reflect the
result of combining the original value of the (shared) reduction variable with
the final value of each of the private copies using the operator specified. The
reduction operators are all associative (except for subtraction), and the compiler
can freely reassociate the computation of the final value (the partial results of a
subtraction reduction are added to form the final value).

The value of the shared variable becomes undefined when the first thread
reaches the containing clause, and it remains so until the reduction computation
is complete. Normally, the computation is complete at the end of the
REDUCTIONconstruct; however, if the REDUCTIONclause is used on a construct
to which NOWAITis also applied, the shared variable remains undefined until a
barrier synchronization has been performed to ensure that all the threads have
completed the REDUCTIONclause.

Version
1.1–November–1999

29

OpenMP Fortran Application Program Interface

The REDUCTIONclause is intended to be used on a region or work-sharing
construct in which the reduction variable is used only in reduction statements
with one of the following forms:

x = x operator expr

x = expr operator x (except for subtraction)

x = intrinsic (x, expr)

x = intrinsic (expr, x)

Some reductions can be expressed in other forms. For instance, a MAXreduction
might be expressed as follows:

IF (x .LT. expr) x = expr

Alternatively, the reduction might be hidden inside a subroutine call. The user
should be careful that the operator specified in the REDUCTIONclause matches
the reduction operation.

The following table lists the operators and intrinsics that are valid and their
canonical initialization values. The actual initialization value will be consistent
with the data type of the reduction variable.

Table 1. Initialization Values

Operator/Intrinsic Initialization

+ 0

* 1

- 0

.AND. .TRUE.

.OR. .FALSE.

.EQV. .TRUE.

.NEQV. .FALSE.

MAX Smallest representable number

MIN Largest representable number

IAND All bits on

IOR 0

30 Version 1.1–November–1999

Directives [2]

IEOR 0

See Section A.7, page 49 for an example that uses the + operator.

Any number of reduction clauses can be specified on the directive, but a
variable can appear only once in a REDUCTIONclause for that directive.

Example:

!$OMP DO REDUCTION(+: A, Y) REDUCTION(.OR.: AM)

2.6.2.7 COPYINclause

The COPYINclause applies only to common blocks that are declared as
THREADPRIVATE. A COPYINclause on a parallel region specifies that the data
in the master thread of the team be copied to the thread private copies of the
common block at the beginning of the parallel region.

This clause has the following format:

COPYIN(list)

It is not necessary to specify a whole common block to be copied in. Named
variables appearing in the THREADPRIVATEcommon block can be specified in
the list.

Although variables in common blocks can be accessed by use association or
host association, common block names cannot. This means that a common
block name specified in a COPYINclause must be declared to be a common
block in the same scoping unit in which the COPYINclause appears. See
Section A.24, page 64 for more information.

In the following example, the common blocks BLK1 and FIELDS are specified
as thread private, but only one of the variables in common block FIELDS is
specified to be copied in.

COMMON /BLK1/ SCRATCH

COMMON /FIELDS/ XFIELD, YFIELD, ZFIELD

!$OMP THREADPRIVATE(/BLK1/, /FIELDS/)

!$OMP PARALLEL DEFAULT(PRIVATE) COPYIN(/BLK1/,ZFIELD)

An OpenMP-compliant implementation is required to ensure that the value of
each threadprivate copy is the same as the value of the master thread copy
when the master thread reached the directive containing the COPYINclause.

Version
1.1–November–1999

31

OpenMP Fortran Application Program Interface

2.6.3 Data environment rules

A program that conforms to the OpenMP Fortran API must adhere to the
following rules and restrictions with respect to data scope:

1. Sequential DOloop control variables in the lexical extent of a PARALLEL
region that would otherwise be SHAREDbased on default rules are
automatically made private on the PARALLELdirective. Sequential DOloop
control variables with no enclosing PARALLELregion are not classified
automatically. It is up to the user to guarantee that these indexes are
private if the containing procedures are called from a PARALLELregion.

All implied DOloop control variables and FORALLindexes are automatically
made private at the enclosing implied DOor FORALLconstruct.

2. Variables that are privatized in a parallel region cannot be privatized again
on an enclosed work-sharing directive. As a result, variables that appear in
the PRIVATE, FIRSTPRIVATE, LASTPRIVATE, and REDUCTIONclauses on
a work-sharing directive must have shared scope in the enclosing parallel
region.

3. A variable that appears in a PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTIONclause must be definable.

4. Assumed-size and assumed-shape arrays cannot be specified as PRIVATE,
FIRSTPRIVATE, or LASTPRIVATE. Array dummy arguments that are
explicitly shaped (including variably dimensioned) can be declared in any
scoping clause.

5. Fortran pointers and allocatable arrays can be declared as PRIVATE or
SHAREDbut not as FIRSTPRIVATE or LASTPRIVATE.

Within a parallel region, the initial status of a private pointer is undefined.
Private pointers that become allocated during the execution of a parallel
region should be explicitly deallocated by the program prior to the end of
the parallel region to avoid memory leaks.

The association status of a SHAREDpointer becomes undefined upon entry
to and on exit from the parallel construct if it is associated with a target or a
subobject of a target that is PRIVATE, FIRSTPRIVATE, LASTPRIVATE, or
REDUCTIONinside the parallel construct. An allocatable array declared
PRIVATE must have an allocation status of “not currently allocated” on
entry to and on exit from the construct.

6. PRIVATE or SHAREDattributes can be declared for a Cray pointer but not
for the pointee. The scope attribute for the pointee is determined at the

32 Version 1.1–November–1999

Directives [2]

point of pointer definition. It is illegal to declare a scope attribute for a
pointee. Cray pointers may not be specified in FIRSTPRIVATE or
LASTPRIVATE clauses.

7. Scope clauses apply only to variables in the static extent of the directive on
which the clause appears, with the exception of variables passed as actual
arguments. Local variables in called routines that do not have the SAVE
attribute are PRIVATE. Common blocks and modules in called routines in
the dynamic extent of a parallel region always have an implicit SHARED
attribute, unless they are THREADPRIVATEcommon blocks. Local variables
in called routines that have the SAVEattribute are SHARED.

8. When a named common block is specified in a PRIVATE, FIRSTPRIVATE,
or LASTPRIVATE clause of a directive, none of its constituent elements may
be declared in another scope attribute clause in that directive. It should be
noted that when individual members of a common block are privatized, the
storage of the specified variables is no longer associated with the storage of
the common block itself. (See Section A.24, page 64 for examples.)

9. Variables that are not allowed in the PRIVATE and SHAREDclauses are not
affected by DEFAULT(PRIVATE) or DEFAULT(SHARED)clauses,
respectively.

10. Clauses can be repeated as needed, but each variable and each named
common block can appear explicitly in only one clause per directive, with
the following exceptions:

• A variable can be specified as both FIRSTPRIVATE and LASTPRIVATE.

• Variables affected by the DEFAULTclause can be listed explicitly in a
clause to override the default specification.

11. Variables that are specified as LASTPRIVATE for a work-sharing directive
for which NOWAITappears, must not be used prior to a barrier.

12. Variables that appear in namelist statements, in variable format expressions,
and in expressions for statement function definitions must not be specified
in PRIVATE, FIRSTPRIVATE, or LASTPRIVATE clauses.

13. The shared variables that are specified in REDUCTIONor LASTPRIVATE
clauses become defined at the end of the construct. Any concurrent uses or
definitions of those variables must be synchronized with the definition that
occurs at the end of the construct to avoid race conditions.

14. If the following three conditions hold regarding an actual argument in a
reference to a non-intrinsic procedure, then any references to (or definitions

Version
1.1–November–1999

33

OpenMP Fortran Application Program Interface

of) the shared storage that is associated with the dummy argument by any
other thread must be synchronized with the procedure reference to avoid
possible race conditions:

a. The actual argument is one of the following:

• A SHAREDvariable

• A subobject of a SHAREDvariable

• An object associated with a SHAREDvariable

• An object associated with a subobject of a SHAREDvariable

b. The actual argument is also one of the following:

• An array section with a vector subscript

• An array section

• An assumed-shape array

• A pointer array

c. The associated dummy argument for this actual argument is an
explicit-shape array or an assumed-size array.

The situations described above may result in the value of the shared
variable being copied into temporary storage before the procedure
reference, and back out of the temporary storage into the actual argument
storage after the procedure reference. This effectively results in references to
and definitions of the storage during the procedure reference.

15. An implementation that conforms to the OpenMP Fortran API must adhere
to the following rule:

• If a variable is specified as FIRSTPRIVATE and LASTPRIVATE, the
implementation must ensure that the update required for LASTPRIVATE
occurs after all initializations for FIRSTPRIVATE.

2.7 Directive binding

An implementation that conforms to the OpenMP Fortran API must adhere to
the following rules with respect to the dynamic binding of directives:

• A parallel region is available for binding purposes, whether it is serialized
or executed in parallel.

34 Version 1.1–November–1999

Directives [2]

• The DO, SECTIONS, SINGLE, MASTER, and BARRIERdirectives bind to the
dynamically enclosing PARALLELdirective, if one exists. (See Section A.18,
page 57 for an example.)

• The ORDEREDdirective binds to the dynamically enclosing DOdirective.

• The ATOMICdirective enforces exclusive access with respect to ATOMIC
directives in all threads, not just the current team.

• The CRITICAL directive enforces exclusive access with respect to CRITICAL
directives in all threads, not just the current team.

• A directive can never bind to any directive outside the closest enclosing
PARALLEL.

2.8 Directive nesting

An implementation that conforms to the OpenMP Fortran API must adhere to
the following rules with respect to the dynamic nesting of directives:

• A PARALLELdirective dynamically inside another PARALLELdirective
logically establishes a new team, which is composed of only the current
thread, unless nested parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL
directive are not allowed to be nested one inside the other.

• DO, SECTIONS, and SINGLE directives are not permitted in the dynamic
extent of CRITICAL and MASTERdirectives.

• BARRIERdirectives are not permitted in the dynamic extent of DO,
SECTIONS, SINGLE, MASTER, and CRITICAL directives.

• MASTERdirectives are not permitted in the dynamic extent of DO,
SECTIONS, and SINGLE directives.

• ORDEREDsections are not allowed in the dynamic extent of CRITICAL
sections.

• Any directive set that is legal when executed dynamically inside a PARALLEL
region is also legal when executed outside a parallel region. When executed
dynamically outside a user-specified parallel region, the directive is executed
with respect to a team composed of only the master thread.

See Section A.16, page 54 for legal examples of directive nesting, and Section
A.17, page 55 for invalid examples.

Version
1.1–November–1999

35

Run-time Library Routines [3]

This section describes the OpenMP Fortran API run-time library routines that
can be used to control and query the parallel execution environment. A set of
general purpose lock routines are also provided.

OpenMP Fortran API run-time library routines are external procedures. In the
following descriptions, scalar_integer_expression is a default scalar integer
expression, and scalar_logical_expression is a default scalar logical expression.
The return values of these routines are also of default kind.

3.1 Execution Environment Routines

The following sections describe the execution environment routines:

• Section 3.1.1, page 37, describes the OMP_SET_NUM_THREADSsubroutine.

• Section 3.1.2, page 38, describes the OMP_GET_NUM_THREADSfunction.

• Section 3.1.3, page 38, describes the OMP_GET_MAX_THREADSfunction.

• Section 3.1.4, page 39, describes the OMP_GET_THREAD_NUMfunction.

• Section 3.1.5, page 39, describes the OMP_GET_NUM_PROCSfunction.

• Section 3.1.6, page 40, describes the OMP_IN_PARALLELfunction.

• Section 3.1.7, page 40, describes the OMP_SET_DYNAMICsubroutine.

• Section 3.1.8, page 41, describes the OMP_GET_DYNAMICfunction.

• Section 3.1.9, page 41, describes the OMP_SET_NESTEDsubroutine.

• Section 3.1.10, page 42, describes the OMP_GET_NESTEDfunction.

3.1.1 OMP_SET_NUM_THREADSSubroutine

The OMP_SET_NUM_THREADSsubroutine sets the number of threads to use for
the next parallel region.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

Version
1.1–November–1999

37

OpenMP Fortran Application Program Interface

The scalar_integer_expression is evaluated, and its value is used as the number of
threads to use. This function has effect only when called from serial portions of
the program. If this function is called from a portion of the program where the
OMP_IN_PARALLELfunction returns .TRUE. , the behavior of the function is
undefined. When dynamic adjustment of the number of threads is enabled,
calls to OMP_SET_NUM_THREADSset the maximum number of threads to use
for the next parallel region. For additional information on this subject, see the
OMP_SET_DYNAMIC()subroutine described in Section 3.1.7, page 40, and the
OMP_GET_DYNAMIC()function described in Section 3.1.8, page 41, and the
example in Section A.11, page 51.

This call has precedence over the OMP_NUM_THREADSenvironment variable.

3.1.2 OMP_GET_NUM_THREADSFunction

The OMP_GET_NUM_THREADSfunction returns the number of threads currently
in the team executing the parallel region from which it is called.

This function has the following format:

INTEGER FUNCTION OMP_GET_NUM_THREADS()

The OMP_SET_NUM_THREADS()call and the OMP_NUM_THREADSenvironment
variable control the number of threads in a team. For more information on the
OMP_SET_NUM_THREADS()call, see Section 3.1.1, page 37.

If the number of threads has not been explicitly set by the user, the default is
implementation dependent. This function binds to the closest enclosing
PARALLELdirective. For more information on the PARALLELdirective, see
Section 2.2, page 9.

If this call is made from the serial portion of a program, or from a nested
parallel region that is serialized, this function returns 1. (See Section A.14, page
52 for an example.)

3.1.3 OMP_GET_MAX_THREADSFunction

The OMP_GET_MAX_THREADSfunction returns the maximum value that can be
returned by calls to the OMP_GET_NUM_THREADS()function. For more
information on OMP_GET_NUM_THREADS(), see Section 3.1.2, page 38.

This function has the following format:

38 Version 1.1–November–1999

Run-time Library Routines [3]

INTEGER FUNCTION OMP_GET_MAX_THREADS()

If OMP_SET_NUM_THREADS()is used to change the number of threads,
subsequent calls to OMP_GET_MAX_THREADS()will return the new value. This
function can be used to allocate maximum sized per-thread data structures
when the OMP_SET_DYNAMIC()subroutine is set to .TRUE. . For more
information on OMP_SET_DYNAMIC(), see Section 3.1.7, page 40.

This function has global scope and returns the maximum value whether
executing from a serial region or a parallel region.

3.1.4 OMP_GET_THREAD_NUMFunction

The OMP_GET_THREAD_NUMfunction returns the thread number, within the
team, that lies between 0 and OMP_GET_NUM_THREADS()-1, inclusive. (See the
second example in Section A.14, page 52.)The master thread of the team is
thread 0.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_THREAD_NUM()

This function binds to the closest enclosing PARALLELdirective. For more
information on the PARALLELdirective, see Section 2.2, page 9.

When called from a serial region, OMP_GET_THREAD_NUMreturns 0. When
called from within a nested parallel region that is serialized, this function
returns 0.

3.1.5 OMP_GET_NUM_PROCSFunction

The OMP_GET_NUM_PROCSfunction returns the number of processors that are
available to the program.

The format of this function is as follows:

INTEGER FUNCTION OMP_GET_NUM_PROCS()

Version
1.1–November–1999

39

OpenMP Fortran Application Program Interface

3.1.6 OMP_IN_PARALLELFunction

The OMP_IN_PARALLELfunction returns .TRUE. if it is called from the
dynamic extent of a region executing in parallel, and .FALSE. otherwise. A
parallel region that is serialized is not considered to be a region executing in
parallel.

The format of this function is as follows:

LOGICAL FUNCTION OMP_IN_PARALLEL()

This function has global scope. As a result, it will always return .TRUE. within
the dynamic extent of a region executing in parallel, regardless of nested
regions that are serialized.

3.1.7 OMP_SET_DYNAMICSubroutine

The OMP_SET_DYNAMICsubroutine enables or disables dynamic adjustment of
the number of threads available for execution of parallel regions.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_DYNAMIC(scalar_logical_expression)

If scalar_logical_expression evaluates to .TRUE. , the number of threads that are
used for executing subsequent parallel regions can be adjusted automatically by
the run-time environment to obtain the best use of system resources. As a
consequence, the number of threads specified by the user is the maximum
thread count. The number of threads always remains fixed over the duration of
each parallel region and is reported by the OMP_GET_NUM_THREADS()
function. For more information on the OMP_GET_NUM_THREADS()function, see
Section 3.1.2, page 38.

If scalar_logical_expression evaluates to .FALSE. , dynamic adjustment is
disabled. (See Section A.11, page 51 for an example.)

A call to OMP_SET_DYNAMIChas precedence over the OMP_DYNAMIC
environment variable. For more information on the OMP_DYNAMICenvironment
variable, see Section 4.3, page 46.

The default for dynamic thread adjustment is implementation dependent. As a
result, user codes that depend on a specific number of threads for correct

40 Version 1.1–November–1999

Run-time Library Routines [3]

execution should explicitly disable dynamic threads. Implementations are not
required to provide the ability to dynamically adjust the number of threads, but
they are required to provide the interface in order to support portability across
platforms.

3.1.8 OMP_GET_DYNAMICFunction

The OMP_GET_DYNAMICfunction returns .TRUE. if dynamic thread adjustment
is enabled and returns .FALSE. otherwise. For more information on dynamic
thread adjustment, see Section 3.1.7, page 40.

The format of this function is as follows:

LOGICAL FUNCTION OMP_GET_DYNAMIC()

If the implementation does not implement dynamic adjustment of the number
of threads, this function always returns .FALSE. .

3.1.9 OMP_SET_NESTEDSubroutine

The OMP_SET_NESTEDsubroutine enables or disables nested parallelism.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_NESTED(scalar_logical_expression)

If scalar_logical_expression evaluates to .FALSE. , which is the default, nested
parallelism is disabled, and nested parallel regions are serialized and executed
by the current thread. If set to .TRUE. , nested parallelism is enabled, and
parallel regions that are nested can deploy additional threads to form the team.

This call has precedence over the OMP_NESTEDenvironment variable. For more
information on the OMP_NESTEDenvironment variable, see Section 4.4, page 46.

When nested parallelism is enabled, the number of threads used to execute
nested parallel regions is implementation dependent. As a result,
OpenMP-compliant implementations are allowed to serialize nested parallel
regions even when nested parallelism is enabled.

Version
1.1–November–1999

41

OpenMP Fortran Application Program Interface

3.1.10 OMP_GET_NESTEDFunction

The OMP_GET_NESTEDfunction returns .TRUE. if nested parallelism is enabled
and .FALSE. if nested parallelism is disabled. For more information on nested
parallelism, see Section 3.1.9, page 41.

The format of this function is as follows:

LOGICAL FUNCTION OMP_GET_NESTED()

If an implementation does not implement nested parallelism, this function
always returns .FALSE. .

3.2 Lock Routines

The OpenMP run-time library includes a set of general-purpose locking
routines. The lock variable, var, must be accessed only through the routines
described in this section. For all these routines, var should be of type integer and
of a KIND large enough to hold an address. For example, on 64-bit addressable
systems, the var may be declared as INTEGER(SELECTED_INT_KIND(18)) .

The lock control routines are as follows:

• Section 3.2.1, page 42, describes the OMP_INIT_LOCK subroutine.

• Section 3.2.2, page 43, describes the OMP_DESTROY_LOCKsubroutine.

• Section 3.2.3, page 43, describes the OMP_SET_LOCKsubroutine.

• Section 3.2.4, page 43, describes the OMP_UNSET_LOCKsubroutine.

• Section 3.2.5, page 44, describes the OMP_TEST_LOCKfunction.

See Section A.15, page 53 for an example using these subroutines.

3.2.1 OMP_INIT_LOCKSubroutine

The OMP_INIT_LOCKsubroutine initializes a lock associated with lock variable
var for use in subsequent calls.

The format of this subroutine is as follows:

SUBROUTINE OMP_INIT_LOCK(var)

42 Version 1.1–November–1999

Run-time Library Routines [3]

The initial state is unlocked. It is illegal to call this routine with a lock variable
that is already associated with a lock.

3.2.2 OMP_DESTROY_LOCKSubroutine

The OMP_DESTROY_LOCKsubroutine disassociates the given lock variable var
from any locks.

The format of this subroutine is as follows:

SUBROUTINE OMP_DESTROY_LOCK(var)

It is illegal to call this routine with a lock variable that has not been initialized.

3.2.3 OMP_SET_LOCKSubroutine

The OMP_SET_LOCKsubroutine forces the executing thread to wait until the
specified lock is available.

The format of this subroutine is as follows:

SUBROUTINE OMP_SET_LOCK(var)

The thread is granted ownership of the lock when it is available. It is illegal to
call this routine with a lock variable that has not been initialized.

3.2.4 OMP_UNSET_LOCKSubroutine

The OMP_UNSET_LOCKsubroutine releases the executing thread from
ownership of the lock.

The format of this subroutine as follows:

SUBROUTINE OMP_UNSET_LOCK(var)

The behavior is undefined if the thread does not own that lock. It is illegal to
call this routine with a lock variable that has not been initialized.

Version
1.1–November–1999

43

OpenMP Fortran Application Program Interface

3.2.5 OMP_TEST_LOCKFunction

The OMP_TEST_LOCKfunction tries to set the lock associated with the lock
variable var.

The format of this function is as follows:

LOGICAL FUNCTION OMP_TEST_LOCK(var)

This function returns .TRUE. if the lock was set successfully, otherwise it
returns .FALSE. . It is illegal to call this routine with a lock variable that has
not been initialized.

44 Version 1.1–November–1999

Environment Variables [4]

This chapter describes the OpenMP Fortran API environment variables (or
equivalent platform-specific mechanisms) that control the execution of parallel
code. The names of environment variables must be uppercase. The values
assigned to them are case insensitive.

4.1 OMP_SCHEDULEEnvironment Variable

This variable applies only to DOand PARALLEL DOdirectives that have the
schedule type RUNTIME. For more information on the DOdirective, see Section
2.3.1, page 11. For more information on the PARALLEL DOdirective, see Section
2.4.1, page 17.

The schedule type and chunk size for all such loops can be set at run time by
setting this environment variable to any of the recognized schedule types and
to an optional chunk size. For DOand PARALLEL DOdirectives that have a
schedule type other than RUNTIME, this environment variable is ignored. The
default value for this environment variable is implementation dependent. If the
optional chunk size is not set, a chunk size of 1 is assumed, except in the case
of a STATIC schedule. For a STATIC schedule, the default chunk size is set to
the loop iteration space divided by the number of threads applied to the loop.

Examples:

setenv OMP_SCHEDULE "GUIDED,4"

setenv OMP_SCHEDULE "dynamic"

4.2 OMP_NUM_THREADSEnvironment Variable

The OMP_NUM_THREADSenvironment variable sets the number of threads to
use during execution, unless that number is explicitly changed by calling the
OMP_SET_NUM_THREADS()subroutine. For more information on the
OMP_SET_NUM_THREADS()subroutine, see Section 3.1.1, page 37.

When dynamic adjustment of the number of threads is enabled, the value of
this environment variable is the maximum number of threads to use. The
default value is implementation dependent.

Example:

Version
1.1–November–1999

45

OpenMP Fortran Application Program Interface

setenv OMP_NUM_THREADS 16

4.3 OMP_DYNAMICEnvironment Variable

The OMP_DYNAMICenvironment variable enables or disables dynamic
adjustment of the number of threads available for execution of parallel regions.
For more information on parallel regions, see Section 2.2, page 9.

If set to TRUE, the number of threads that are used for executing parallel regions
can be adjusted by the run-time environment to best utilize system resources.

If set to FALSE, dynamic adjustment is disabled. The default condition is
implementation dependent. For more information, see the OMP_SET_DYNAMIC
subroutine described in Section 3.1.7, page 40.

Example:

setenv OMP_DYNAMIC TRUE

4.4 OMP_NESTEDEnvironment Variable

The OMP_NESTEDenvironment variable enables or disables nested parallelism.
If set to TRUE, nested parallelism is enabled; if it is set to FALSE, it is disabled.
The default value is FALSE. See also Section 3.1.9, page 41.

Example:

setenv OMP_NESTED TRUE

46 Version 1.1–November–1999

Examples [A]

The following are examples of the constructs defined in this document.

A.1 Executing a Simple Loop in Parallel

The following example shows how to parallelize a simple loop using the
PARALELL DOdirective (specified in Section 2.4.1, page 17). The loop iteration
variable is private by default, so it is not necessary to declare it explicitly.

!$OMP PARALLEL DO

DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0
ENDDO

!$OMP END PARALLEL DO

The END PARALLEL DOdirective is optional.

A.2 Specifying Conditional Compilation

The following example illustrates the use of the conditional compilation sentinel
(specified in Section 2.1.2, page 7). Assuming Fortran fixed source form, the
following statement is illegal when using OpenMP constructs:

C234567890

!$ X(I) = X(I) + XLOCAL

With OpenMP compilation, the conditional compilation sentinel !$ is treated as
two spaces. As a result, the statement infringes on the statement label field. To
be legal, the statement should begin after column 6, like any other fixed source
form statement:

C234567890
!$ X(I) = X(I) + XLOCAL

In other words, conditionally compiled statements need to meet all applicable
language rules when the sentinel is replaced with two spaces.

Version
1.1–November–1999

47

OpenMP Fortran Application Program Interface

A.3 Using Parallel Regions

The PARALLELdirective (specified in Section 2.2, page 9) can be used in
coarse-grain parallel programs. In the following example, each thread in the
parallel region decides what part of the global array X to work on based on the
thread number:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,NPOINTS)

IAM = OMP_GET_THREAD_NUM()

NP = OMP_GET_NUM_THREADS()
IPOINTS = NPOINTS/NP

CALL SUBDOMAIN(X,IAM,IPOINTS)

!$OMP END PARALLEL

A.4 Using the NOWAITClause

If there are multiple independent loops within a parallel region, you can use the
NOWAITclause (specified in Section 2.3.1, page 11)to avoid the implied
BARRIERat the end of the DOdirective, as follows:

!$OMP PARALLEL

!$OMP DO

DO I=2,N

B(I) = (A(I) + A(I-1)) / 2.0
ENDDO

!$OMP END DO NOWAIT

!$OMP DO

DO I=1,M

Y(I) = SQRT(Z(I))

ENDDO
!$OMP END DO NOWAIT

!$OMP END PARALLEL

A.5 Using the CRITICAL Directive

The following example (for Section 2.5.2, page 19)includes several CRITICAL
directives. The example illustrates a queuing model in which a task is
dequeued and worked on. To guard against multiple threads dequeuing the
same task, the dequeuing operation must be in a critical section. Because there
are two independent queues in this example, each queue is protected by
CRITICAL directives with different names, XAXIS and YAXIS, respectively.

48 Version 1.1–November–1999

Examples [A]

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(X,Y)

!$OMP CRITICAL(XAXIS)
CALL DEQUEUE(IX_NEXT, X)

!$OMP END CRITICAL(XAXIS)

CALL WORK(IX_NEXT, X)

!$OMP CRITICAL(YAXIS)

CALL DEQUEUE(IY_NEXT,Y)

!$OMP END CRITICAL(YAXIS)
CALL WORK(IY_NEXT, Y)

!$OMP END PARALLEL

A.6 Using the LASTPRIVATE Clause

Correct execution sometimes depends on the value that the last iteration of a
loop assigns to a variable. Such programs must list all such variables as
arguments to a LASTPRIVATE clause (specified in Section 2.6.2.5, page 28) so
that the values of the variables are the same as when the loop is executed
sequentially.

!$OMP PARALLEL

!$OMP DO LASTPRIVATE(I)

DO I=1,N
A(I) = B(I) + C(I)

ENDDO

!$OMP END PARALLEL

CALL REVERSE(I)

In the preceding example, the value of I at the end of the parallel region will
equal N+1, as in the sequential case.

A.7 Using the REDUCTIONClause

The following example (for Section 2.6.2.6, page 29)shows how to use the
REDUCTIONclause:

!$OMP PARALLEL DO DEFAULT(PRIVATE) REDUCTION(+: A,B)
DO I=1,N

CALL WORK(ALOCAL,BLOCAL)

A = A + ALOCAL

B = B + BLOCAL

ENDDO
!$OMP END PARALLEL DO

Version
1.1–November–1999

49

OpenMP Fortran Application Program Interface

A.8 Specifying Parallel Sections

In the following example (for Section 2.3.2, page 14), subroutines XAXIS,
YAXIS, and ZAXIS can be executed concurrently. The first SECTIONdirective is
optional. Note that all SECTIONdirectives need to appear in the lexical extent
of the PARALLEL SECTIONS/END PARALLEL SECTIONSconstruct.

!$OMP PARALLEL SECTIONS

!$OMP SECTION

CALL XAXIS
!$OMP SECTION

CALL YAXIS

!$OMP SECTION

CALL ZAXIS

!$OMP END PARALLEL SECTIONS

A.9 Using SINGLE Directives

The first thread that encounters the SINGLE directive (specified in Section 2.3.3,
page 16) executes subroutines OUTPUTand INPUT. The user must not make any
assumptions as to which thread will execute the SINGLE section. All other
threads will skip the SINGLE section and stop at the barrier at the END SINGLE
construct. If other threads can proceed without waiting for the thread executing
the SINGLE section, a NOWAITclause can be specified on the END SINGLE
directive.

!$OMP PARALLEL DEFAULT(SHARED)

CALL WORK(X)

!$OMP BARRIER

!$OMP SINGLE
CALL OUTPUT(X)

CALL INPUT(Y)

!$OMP END SINGLE

CALL WORK(Y)

!$OMP END PARALLEL

A.10 Specifying Sequential Ordering

ORDEREDsections (specified in Section 2.5.6, page 23)are useful for sequentially
ordering the output from work that is done in parallel. Assuming that a
reentrant I/O library exists, the following program prints out the indexes in
sequential order:

50 Version 1.1–November–1999

Examples [A]

!$OMP DO ORDERED SCHEDULE(DYNAMIC)

DO I=LB,UB,ST
CALL WORK(I)

END DO

...

SUBROUTINE WORK(K)

!$OMP ORDERED

WRITE(*,*) K
!$OMP END ORDERED

END

A.11 Specifying a Fixed Number of Threads

Some programs rely on a fixed, prespecified number of threads to execute
correctly. Because the default setting for the dynamic adjustment of the number
of threads is implementation-dependent, such programs can choose to turn off
the dynamic threads capability and set the number of threads explicitly to
ensure portability. The following example (for Section 3.1.1, page 37)shows how
to do this:

CALL OMP_SET_DYNAMIC(.FALSE.)

CALL OMP_SET_NUM_THREADS(16)
!$OMP PARALLEL DEFAULT(PRIVATE)SHARED(X,NPOINTS)

IAM = OMP_GET_THREAD_NUM()

IPOINTS = NPOINTS/16

CALL DO_BY_16(X,IAM,IPOINTS)

!$OMP END PARALLEL

In this example, the program executes correctly only if it is executed by 16
threads. Note that the number of threads executing a parallel region remains
constant during a parallel region, regardless of the dynamic threads setting. The
dynamic threads mechanism determines the number of threads to use at the
start of the parallel region and keeps it constant for the duration of the region.

A.12 Using the ATOMICDirective

The following example (for Section 2.5.4, page 20)avoids race conditions by
protecting all simultaneous updates of the location, by multiple threads, with
the ATOMICdirective:

!$OMP PARALLEL DO DEFAULT(PRIVATE) SHARED(X,Y,INDEX,N)
DO I=1,N

Version
1.1–November–1999

51

OpenMP Fortran Application Program Interface

CALL WORK(XLOCAL, YLOCAL)

!$OMP ATOMIC
X(INDEX(I)) = X(INDEX(I)) + XLOCAL

Y(I) = Y(I) + YLOCAL

ENDDO

Note that the ATOMICdirective applies only to the Fortran statement
immediately following it. As a result, Y is not updated atomically in this
example.

A.13 Using the FLUSHDirective

The following example (for Section 2.5.5, page 21)uses the FLUSHdirective for
point-to-point synchronization between pairs of threads:

!$OMP PARALLEL DEFAULT(PRIVATE) SHARED(ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) = 0

!$OMP BARRIER

CALL WORK()

C I AM DONE WITH MY WORK, SYNCHRONIZE WITH MY NEIGHBOR

ISYNC(IAM) = 1
!$OMP FLUSH(ISYNC)

C WAIT TILL NEIGHBOR IS DONE

DO WHILE (ISYNC(NEIGH) .EQ. 0)

!$OMP FLUSH(ISYNC)

END DO
!$OMP END PARALLEL

A.14 Determining the Number of Threads Used

Consider the following incorrect example:

NP = OMP_GET_NUM_THREADS()

!$OMP PARALLEL DO SCHEDULE(STATIC)

DO I = 0, NP-1
CALL WORK(I)

ENDDO

!$OMP END PARALLEL DO

The OMP_GET_NUM_THREADS()call (specified in Section 3.1.2, page 38) returns
1 in the serial section of the code, so NPwill always be equal to 1 in the

52 Version 1.1–November–1999

Examples [A]

preceding example. To determine the number of threads that will be deployed
for the parallel region, the call should be inside the parallel region.

The following example shows how to rewrite this program without including a
query for the number of threads:

!$OMP PARALLEL PRIVATE(I)

I = OMP_GET_THREAD_NUM()

CALL WORK(I)

!$OMP END PARALLEL

A.15 Using Locks

This in an example of the use of the lock routines (specified in Section 3.2, page
42).

In the following program, note that the argument to the lock routines should be
of type INTEGERand of a KIND large enough to hold an address:

PROGRAM LOCK_USAGE

EXTERNAL OMP_TEST_LOCK
LOGICAL OMP_TEST_LOCK

INTEGER LCK ! THIS VARIABLE SHOULD BE POINTER SIZED

CALL OMP_INIT_LOCK(LCK)

!$OMP PARALLEL SHARED(LCK) PRIVATE(ID)
ID = OMP_GET_THREAD_NUM()

CALL OMP_SET_LOCK(LCK)

PRINT *, ’MY THREAD ID IS ’, ID

CALL OMP_UNSET_LOCK(LCK)

Version
1.1–November–1999

53

OpenMP Fortran Application Program Interface

DO WHILE (.NOT. OMP_TEST_LOCK(LCK))

CALL SKIP(ID) ! WE DO NOT YET HAVE THE LOCK
! SO WE MUST DO SOMETHING ELSE

END DO

CALL WORK(ID) ! WE NOW HAVE THE LOCK

! AND CAN DO THE WORK

CALL OMP_UNSET_LOCK(LCK)
!$OMP END PARALLEL

CALL OMP_DESTROY_LOCK(LCK)

END

A.16 Nested DODirectives

The following example of directive nesting (specified in Section 2.8, page 35) is
legal because the inner and outer DOdirectives bind to different PARALLEL
regions:

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO
DO I = 1, N

!$OMP PARALLEL SHARED(I,N)

!$OMP DO

DO J = 1, N

CALL WORK(I,J)
END DO

!$OMP END PARALLEL

END DO

!$OMP END PARALLEL

The following variation of the preceding example is also legal:

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

CALL SOME_WORK(I,N)
END DO

!$OMP END PARALLEL

SUBROUTINE SOME_WORK(I,N)

!$OMP PARALLEL DEFAULT(SHARED)

54 Version 1.1–November–1999

Examples [A]

!$OMP DO

DO J = 1, N
CALL WORK(I,J)

END DO

!$OMP END PARALLEL

RETURN

END

A.17 Examples Showing Incorrect Nesting of Work-sharing Directives

The examples in this section illustrate the directive nesting rules (specified in
Section 2.8, page 35).

The following example is illegal because the inner and outer DOdirectives are
nested and bind to the same PARALLELdirective:

PROGRAM WRONG1

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO
DO I = 1, N

!$OMP DO

DO J = 1, N

CALL WORK(I,J)

END DO
END DO

!$OMP END PARALLEL

END

Version
1.1–November–1999

55

OpenMP Fortran Application Program Interface

The following dynamically nested version of the preceding example is also
illegal:

PROGRAM WRONG2

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

CALL SOME_WORK(I,N)
END DO

!$OMP END PARALLEL

END

SUBROUTINE SOME_WORK(I,N)

!$OMP DO
DO J = 1, N

CALL WORK(I,J)

END DO

RETURN

END

The following example is illegal because the DOand SINGLE directives are
nested, and they bind to the same PARALLELregion:

PROGRAM WRONG3

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO
DO I = 1, N

!$OMP SINGLE

CALL WORK(I)

!$OMP END SINGLE

END DO
!$OMP END PARALLEL

END

The following example is illegal because a BARRIERdirective inside a SINGLE
or a DOcan result in deadlock:

PROGRAM WRONG3

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP DO

DO I = 1, N

CALL WORK(I)
!$OMP BARRIER

CALL MORE_WORK(I)

END DO

56 Version 1.1–November–1999

Examples [A]

!$OMP END PARALLEL

END

The following example is illegal because the BARRIERresults in deadlock due
to the fact that only one thread at a time can enter the critical section:

PROGRAM WRONG4

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP CRITICAL

CALL WORK(N,1)

!$OMP BARRIER

CALL MORE_WORK(N,2)

!$OMP END CRITICAL
!$OMP END PARALLEL

END

The following example is illegal because the BARRIERresults in deadlock due
to the fact that only one thread executes the SINGLE section:

PROGRAM WRONG5

!$OMP PARALLEL DEFAULT(SHARED)

CALL SETUP(N)

!$OMP SINGLE

CALL WORK(N,1)

!$OMP BARRIER
CALL MORE_WORK(N,2)

!$OMP END SINGLE

CALL FINISH(N)

!$OMP END PARALLEL

END

A.18 Binding of BARRIERDirectives

The directive binding rules call for a BARRIERdirective to bind to the closest
enclosing PARALLELdirective. (For more information, see Section 2.7, page 34.)

In the following example, the call from MAIN to SUB2 is legal because the
BARRIER(in SUB3) binds to the PARALLELregion in SUB2. The call from MAIN
to SUB1 is legal because the BARRIERbinds to the PARALLELregion in
subroutine SUB2.

PROGRAM MAIN

CALL SUB1(2)

CALL SUB2(2)

Version
1.1–November–1999

57

OpenMP Fortran Application Program Interface

END

SUBROUTINE SUB1(N)

!$OMP PARALLEL PRIVATE(I) SHARED(N)

!$OMP DO

DO I = 1, N

CALL SUB2(I)

END DO
!$OMP END PARALLEL

END

SUBROUTINE SUB2(K)

!$OMP PARALLEL SHARED(K)
CALL SUB3(K)

!$OMP END PARALLEL

END

SUBROUTINE SUB3(N)
CALL WORK(N)

!$OMP BARRIER

CALL WORK(N)

END

A.19 Scoping Variables with the PRIVATE Clause

The values of I and J in the following example are undefined on exit from the
parallel region:

INTEGER I,J

I = 1

J = 2

!$OMP PARALLEL PRIVATE(I) FIRSTPRIVATE(J)
I = 3

J = J+ 2

!$OMP END PARALLEL

PRINT *, I, J

(For more information, see Section 2.6.2.1, page 26.)

58 Version 1.1–November–1999

Examples [A]

A.20 Examples of Invalid Storage Association

The following examples illustrate the implications of the PRIVATE clause rules
(see Section 2.6.2.1, page 26, rule 4) with regard to storage association:

Example 1: Invalid Example

COMMON /BLOCK/ X

X = 1.0

!$OMP PARALLEL PRIVATE (X)

X = 2.0

CALL SUB()
...

!$OMP END PARALLEL

...

SUBROUTINE SUB()

COMMON /BLOCK/ X

...
PRINT *,X ! X is undefined. The result of the

! print is undefined.

...

END SUBROUTINE SUB

END PROGRAM

Example 2: Invalid Example

COMMON /BLOCK/ X

X = 1.0

!$OMP PARALLEL PRIVATE (X)
X = 2.0

CALL SUB()

...

!$OMP END PARALLEL

...
CONTAINS

SUBROUTINE SUB()

COMMON /BLOCK/ Y

...

PRINT *,X ! X is undefined.

PRINT *,Y ! Y is undefined.
...

END SUBROUTINE SUB

END PROGRAM

Version
1.1–November–1999

59

OpenMP Fortran Application Program Interface

Example 3: Invalid Example

EQUIVALENCE (X,Y)
X = 1.0

!$OMP PARALLEL PRIVATE(X)

...

PRINT *,Y ! Y is undefined.

Y = 10
PRINT *,X ! X is undefined.

!$OMP END PARALLEL

Example 4: Invalid Example

INTEGER A(100), B(100)

EQUIVALENCE (A(51), B(1))

!$OMP PARALLEL DO DEFAULT(PRIVATE) PRIVATE(I,J) LASTPRIVATE(A)

DO I=1,100
DO J=1,100

B(J) = J - 1

ENDDO

DO J=1,100

A(J) = J ! B becomes undefined at this point
ENDDO

DO J=1,50

B(J) = B(J) + 1 ! Reference to B is not defined. A

! becomes undefined at this point.

ENDDO
ENDDO

!$OMP END PARALLEL DO ! The LASTPRIVATE write for A has

! undefined results.

PRINT *, B ! B is undefined since the LASTPRIVATE
! write of A was not defined.

END

A.21 Examples of Syntax of Parallel DOLoops

Both block-do and non-block-do are permitted with PARALLEL DOand
work-sharing DOdirectives. However, if a user specifies an ENDDOdirective for
a non-block-do construct with shared termination, then the matching DO

60 Version 1.1–November–1999

Examples [A]

directive must precede the outermost DO. (For more information, see Section
2.3.1, page 11 and Section 2.4.1, page 17.)

The following are some examples:

Example 1:

DO 100 I = 1,10

!$OMP DO
DO 100 J = 1,10

...

100 CONTINUE

Example 2:

!$OMP DO

DO 100 J = 1,10

...
100 A(I) = I + 1

!$OMP ENDDO

Example 3:

!$OMP DO

DO 100 I = 1,10

DO 100 J = 1,10

...

100 CONTINUE
!$OMP ENDDO

Example 4: Invalid Example

DO 100 I = 1,10

!$OMP DO

DO 100 J = 1,10

...
100 CONTINUE

!$OMP ENDDO

A.22 Examples of the ATOMICDirective

All atomic references to the storage location of a variable that appears on the
left-hand side of an ATOMICassignment statement throughout the program are

Version
1.1–November–1999

61

OpenMP Fortran Application Program Interface

required to have the same type and type parameters. (For more information,
see Section 2.5.4, page 20.)

The following are some examples:

Example 1: Invalid Example

INTEGER:: I

REAL:: R
EQUIVALENCE(I,R)

!$OMP PARALLEL

...

!$OMP ATOMIC

I = I + 1
...

!$OMP ATOMIC

R = R + 1.0

!$OMP END PARALLEL

Example 2: Invalid Example

SUBROUTINE FRED() SUBROUTINE SUB()

COMMON /BLK/ I COMMON /BLK/ R
INTEGER:: I REAL:: R

!$OMP PARALLEL ...

... !$OMP ATOMIC

!$OMP ATOMIC R = R + 1.0

I = I + 1

... END SUBROUTINE
CALL SUB()

!$OMP END PARALLEL

62 Version 1.1–November–1999

Examples [A]

Example 3: Invalid Example

Although the following example might work on some implementation, this is
considered a non-conforming example.

INTEGER:: I
REAL:: R

EQUIVALENCE(I,R)

!OMP PARALLEL

...

!OMP ATOMIC

I = I + 1
!OMP END PARALLEL

...

!OMP PARALLEL

...

!OMP ATOMIC
R = R + 1.0

!OMP END PARALLEL

A.23 Examples of the ORDEREDDirective

It is possible to have multiple ORDEREDsections within a DOspecified with the
ORDEREDclause. However, the following example is invalid, because the API
states the following:

An iteration of a loop with a DOdirective must not execute the
same ORDEREDdirective more than once, and it must not execute
more than one ORDEREDdirective.

For more information, see Section 2.5.6, page 23.

Version
1.1–November–1999

63

OpenMP Fortran Application Program Interface

Example 1: Invalid Example

In this example, all iterations execute 2 ORDEREDsections:

!$OMP DO

DO I = 1, N
...

!$OMP ORDERED

...

!$OMP END ORDERED

...

!$OMP ORDERED
...

!$OMP END ORDERED

...

END DO

Example 2:

This is a valid example of a DOwith more than one ORDEREDsection:

!$OMP DO ORDERED

DO I = 1,N
...

IF (I <= 10) THEN

...

!$OMP ORDERED

WRITE(4,*) I

!$OMP END ORDERED
ENDIF

...

IF (I > 10) THEN

...

!$OMP ORDERED
WRITE(3,*) I

!$OMP END ORDERED

ENDIF

ENDDO

A.24 Examples of THREADPRIVATE COMMONData

The following examples show two invalid uses and one correct use of the
THREADPRIVATEdirective. For more information, see Section 2.6.1, page 24
and Section 2.6.2.7, page 31.

64 Version 1.1–November–1999

Examples [A]

Example 1: Invalid Example

MODULE FOO

COMMON /T/ A
END MODULE FOO

SUBROUTINE BAR

USE FOO

!$OMP THREADPRIVATE(/T/)

!$OMP PARALLEL
...

!$OMP END PARALLEL

END SUBROUTINE BAR

Example 2: Invalid Example:

COMMON /T/ A

!$OMP THREADPRIVATE(/T/)

...
CONTAINS

SUBROUTINE BAR

!$OMP PARALLEL COPYIN(/T/)

...

!$OMP END PARALLEL

END SUBROUTINE BAR
END PROGRAM

Example 3: Correct Rewrite of Previous Example

COMMON /T/ A

!$OMP THREADPRIVATE(/T/)

...

CONTAINS

SUBROUTINE BAR
COMMON /T/ A

!$OMP THREADPRIVATE(/T/)

!$OMP PARALLEL COPYIN(/T/)

...

!$OMP END PARALLEL

END SUBROUTINE BAR
END PROGRAM

Version
1.1–November–1999

65

OpenMP Fortran Application Program Interface

A.25 Examples of the Data Attribute Clauses: SHAREDand PRIVATE

When a named common block is specified in a PRIVATE, FIRSTPRIVATE or
LASTPRIVATE clause of a directive, none of its constituent elements may be
declared in another scope attribute clause in that directive. The following
examples, both valid and invalid, illustrate this point. (For more information,
see item 8 of Section 2.6.3, page 32.)

Example 1:

COMMON /C/ X,Y

!$OMP PARALLEL PRIVATE (/C/)

...

!$OMP END PARALLEL
...

!$OMP PARALLEL SHARED (X,Y)

...

!$OMP END PARALLEL

Example 2:

COMMON /C/ X,Y

!$OMP PARALLEL
...

!$OMP DO PRIVATE(/C/)

...

!$OMP END DO

!

!$OMP DO PRIVATE(X)
...

!$OMP END DO

...

!$OMP END PARALLEL

Example 3: Invalid Example

COMMON /C/ X,Y

!$OMP PARALLEL PRIVATE(/C/), SHARED(X)
...

!$OMP END PARALLEL

66 Version 1.1–November–1999

Examples [A]

Example 4:

COMMON /C/ X,Y

!$OMP PARALLEL PRIVATE (/C/)
...

!$OMP END PARALLEL

...

!$OMP PARALLEL SHARED (/C/)

...

!$OMP END PARALLEL

Example 5: Invalid Example

COMMON /C/ X,Y
!$OMP PARALLEL PRIVATE(/C/), SHARED(/C/)

...

!$OMP END PARALLEL

Version
1.1–November–1999

67

Stubs for Run-time Library Routines [B]

This section provides stubs for the runtime library routines defined in the
OpenMP Fortran API. The stubs are provided to enable portability to platforms
that do not support the OpenMP Fortran API. On these platforms, OpenMP
programs must be linked with a library containing these stub routines. The stub
routines assume that the directives in the OpenMP program are ignored. As
such, they emulate serial semantics.

Note: The lock variable that appears in the lock routines must be accessed
exclusively through these routines. It should not be initialized or otherwise
modified in the user program. Users should not make assumptions about
mechanisms used by OpenMP Fortran implementations to implement locks
based on the scheme used by the stub routines.

SUBROUTINE OMP_SET_NUM_THREADS(NP)

INTEGER NP
RETURN

END

INTEGER FUNCTION OMP_GET_NUM_THREADS()

OMP_GET_NUM_THREADS = 1

RETURN
END

INTEGER FUNCTION OMP_GET_MAX_THREADS()

OMP_GET_MAX_THREADS = 1

RETURN
END

INTEGER FUNCTION OMP_GET_THREAD_NUM()

OMP_GET_THREAD_NUM = 0

RETURN
END

INTEGER FUNCTION OMP_GET_NUM_PROCS()

OMP_GET_NUM_PROCS = 1

RETURN

END

SUBROUTINE OMP_SET_DYNAMIC(FLAG)

LOGICAL FLAG

Version
1.1–November–1999

69

OpenMP Fortran Application Program Interface

RETURN

END

LOGICAL FUNCTION OMP_GET_DYNAMIC()

OMP_GET_DYNAMIC = .FALSE.

RETURN

END

LOGICAL FUNCTION OMP_IN_PARALLEL()

OMP_IN_PARALLEL = .FALSE.

RETURN

END

SUBROUTINE OMP_SET_NESTED(FLAG)

LOGICAL FLAG

RETURN

END

LOGICAL FUNCTION OMP_GET_NESTED()

OMP_GET_NESTED = .FALSE.

RETURN

END

SUBROUTINE OMP_INIT_LOCK(LOCK)
POINTER (LOCK,IL)

INTEGER IL

LOCK = -1

RETURN

END

SUBROUTINE OMP_DESTROY_LOCK(LOCK)

POINTER (LOCK,IL)

INTEGER IL

LOCK = 0
RETURN

END

SUBROUTINE OMP_SET_LOCK(LOCK)

POINTER (LOCK,IL)

INTEGER IL

IF(LOCK .EQ. 0) THEN

PRINT*, ’ERROR: LOCK NOT INITIALIZED’

70 Version 1.1–November–1999

Stubs for Run-time Library Routines [B]

STOP

ELSEIF(LOCK .EQ. 1) THEN
PRINT*, ’ERROR: DEADLOCK IN USING LOCK VARIABLE’

STOP

ELSE

LOCK = 1

ENDIF

RETURN
END

SUBROUTINE OMP_UNSET_LOCK(LOCK)

POINTER (LOCK,IL)

INTEGER IL
IF(LOCK .EQ. 0) THEN

PRINT*, ’ERROR: LOCK NOT INITIALIZED’

STOP

ELSEIF(LOCK .EQ. 1) THEN

LOCK = -1
ELSE

PRINT*, ’ERROR: LOCK NOT SET’

STOP

ENDIF

RETURN

END

LOGICAL FUNCTION OMP_TEST_LOCK(LOCK)

POINTER (LOCK,IL)

INTEGER IL

IF (LOCK .EQ. -1) THEN
LOCK = 1

OMP_TEST_LOCK = .TRUE.

ELSEIF(LOCK .EQ. 1) THEN

OMP_TEST_LOCK = .FALSE.

ELSE
PRINT*, ’ERROR: LOCK NOT INITIALIZED’

STOP

ENDIF

RETURN

END

Version
1.1–November–1999

71

Using the SCHEDULEClause [C]

A parallel region has at least one barrier, at its end, and may have additional
barriers within it. At each barrier, the other members of the team must wait for
the last thread to arrive. To minimize this wait time, shared work should be
distributed so that all threads arrive at the barrier at about the same time. If
some of that shared work is contained in DOconstructs, the SCHEDULEclause
can be used for this purpose.

When there are repeated references to the same objects, the choice of schedule
for a DOconstruct may be determined primarily by characteristics of the
memory system, such as the presence and size of caches and whether memory
access times are uniform or nonuniform. Such considerations may make it
preferable to have each thread consistently refer to the same set of elements of
an array in a series of loops, even if some threads are assigned relatively less
work in some of the loops. This can be done by using the STATIC schedule
with the same bounds for all the loops. In the following example, note that 1 is
used as the lower bound in the second loop, even though K would be more
natural if the schedule were not important.

!$OMP PARALLEL

!$OMP DO SCHEDULE(STATIC)

DO I=1,N
A(I) = WORK1(I)

ENDDO

!$OMP DO SCHEDULE(STATIC)

DO I=1,N

IF(I .GE. K) A(I) = A(I) + WORK2(I)
ENDDO

!$OMP END PARALLEL

ENDDO

In the remaining examples, it is assumed that memory access is not the
dominant consideration, and, unless otherwise stated, that all threads receive
comparable computational resources. In these cases, the choice of schedule for a
DOconstruct depends on all the shared work that is to be performed between
the nearest preceding barrier and either the implied closing barrier or the
nearest subsequent barrier, if there is a NOWAITclause. For each kind of
schedule, a short example shows how that schedule kind is likely to be the best
choice. A brief discussion follows each example.

Version
1.1–November–1999

73

OpenMP Fortran Application Program Interface

The STATIC schedule is also appropriate for the simplest case, a parallel region
containing a single DOconstruct, with each iteration requiring the same amount
of work.

!$OMP PARALLEL DO SCHEDULE(STATIC)

DO I=1,N

CALL INVARIANT_AMOUNT_OF_WORK(I)

ENDDO

The STATIC schedule is characterized by the properties that each thread gets
approximately the same number of iterations as any other thread, and each
thread can independently determine the iterations assigned to it. Thus no
synchronization is required to distribute the work, and, under the assumption
that each iteration requires the same amount of work, all threads should finish
at about the same time.

For a team of P threads, let CEILING(N/P) be the integer Q, which satisfies N
= P*Q - R with 0 <= R < P. One implementation of the STATIC schedule
for this example would assign Q iterations to the first P–1 threads, and Q-R
iterations to the last thread. Another acceptable implementation would assign Q
iterations to the first P-R threads, and Q-1 iterations to the remaining R threads.
This illustrates why a program should not rely on the details of a particular
implementation.

The DYNAMICschedule is appropriate for the case of a DOconstruct with the
iterations requiring varying, or even unpredictable, amounts of work.

!$OMP PARALLEL DO SCHEDULE(DYNAMIC)

DO I=1,N
CALL UNPREDICTABLE_AMOUNT_OF_WORK(I)

ENDDO

The DYNAMICschedule is characterized by the property that no thread waits at
the barrier for longer than it takes another thread to execute its final iteration.
This requires that iterations be assigned one at a time to threads as they become
available, with synchronization for each assignment. The synchronization
overhead can be reduced by specifying a minimum chunk size K greater than 1,
so that each thread is assigned K iterations at a time until fewer than K
iterations remain. This guarantees that no thread waits at the barrier longer
than it takes another thread to execute its final chunk of (at most) K iterations.

The DYNAMICschedule can be useful if the threads receive varying
computational resources, which has much the same effect as varying amounts
of work for each iteration. Similarly, the DYNAMICschedule can also be useful if

74 Version 1.1–November–1999

Using the SCHEDULEClause [C]

the threads arrive at the DOconstruct at varying times, though in some of these
cases the GUIDEDschedule may be preferable.

The GUIDEDschedule is appropriate for the case in which the threads may
arrive at varying times at a DOconstruct with each iteration requiring about the
same amount of work. This can happen if, for example, the DOconstruct is
preceded by one or more SECTIONSor DOconstructs with NOWAITclauses.

!$OMP PARALLEL

!$OMP SECTIONS
..........

!$OMP END SECTIONS NOWAIT

!$OMP DO SCHEDULE(GUIDED)

DO I=1,N
CALL INVARIANT_AMOUNT_OF_WORK(I)

ENDDO

Like DYNAMIC, the GUIDEDschedule guarantees that no thread waits at the
barrier longer than it takes another thread to execute its final iteration, or final
K iterations if a chunk size of K is specified. Among such schedules, the
GUIDEDschedule is characterized by the property that it requires the fewest
synchronizations. For chunk size K, a typical implementation will assign Q =
CEILING(N/P) iterations to the first available thread, set N to the larger of N-Q
and P*K , and repeat until all iterations are assigned.

When the choice of the optimum schedule is not as clear as it is for these
examples, the RUNTIMEschedule is convenient for experimenting with different
schedules and chunk sizes without having to modify and recompile the
program. It can also be useful when the optimum schedule depends (in some
predictable way) on the input data to which the program is applied.

To see an example of the trade-offs between different schedules, consider
sharing 1000 iterations among 8 threads. Suppose there is an invariant amount
of work in each iteration, and use that as the unit of time.

If all threads start at the same time, the STATIC schedule will cause the
construct to execute in 125 units, with no synchronization. But suppose that one
thread is 100 units late in arriving. Then the remaining seven threads wait for
100 units at the barrier, and the execution time for the whole construct increases
to 225.

Because both the DYNAMICand GUIDEDschedules ensure that no thread waits
for more than one unit at the barrier, the delayed thread causes their execution
times for the construct to increase only to 138 units, possibly increased by

Version
1.1–November–1999

75

OpenMP Fortran Application Program Interface

delays from synchronization. If such delays are not negligible, it becomes
important that the number of synchronizations is 1000 for DYNAMICbut only 41
for GUIDED, assuming the default chunk size of one. With a chunk size of 25,
DYNAMICand GUIDEDboth finish in 150 units, plus any delays from the
required synchronizations, which now number only 40 and 20, respectively.

76 Version 1.1–November–1999

