
OpenMP	
 Architecture	
 Review	
 Board	
 	
 	
 	
 	
 	
 	
 	
 www.openmp.org	
 	
 	
 	
 	
 	
 	
 	
 info@openmp.org	

c/o	
 David	
 K.	
 Poulsen,	
 OpenMP,	
 	
 	
 1906	
 Fox	
 Drive,	
 Champaign,	
 Illinois	
 61820	
 	
 USA	

	
 	
 	
 	
 	
 	
 	
 Expires	
 November	
 6,	
 2015	

We	
 actively	
 solicit	
 comments.	
 Please	
 provide	
 feedback	
 on	
 this	
 document	
 either	
 to	
 the	
 Editor	
 directly	
 or	
 in	
 the	

OpenMP	
 Forum	
 at	
 openmp.org	
 	

End	
 of	
 Public	
 Comment	
 Period:	
 Jan	
 27,	
 2013	

OpenMP	
 Technical	
 Report	
 1	
 on	
 Directives	

for	
 Attached	
 Accelerators

This	
 Technical	
 Report	
 specifies	
 proposed	
 directives	
 for	
 the	
 execution	
 of	
 loops	

and	
 regions	
 of	
 code	
 on	
 attached	
 accelerators.

Eric	
 Stotzer,	
 Texas	
 Instruments	
 (editor,	
 accelerator	
 subcommittee	
 co-­‐chair):	
 estotzer@ti.com	

James	
 Beyer,	
 Cray	
 (accelerator	
 subcommittee	
 co-­‐chair)	

Dibyendu	
 Das,	
 AMD	

Gabriele	
 Jost,	
 AMD	

Prakash	
 Raghavendra,	
 AMD	

John	
 Leidel,	
 Convey	

Ajejandro	
 Duran,	
 Intel	

Ravi	
 Narayanaswamy,	
 Intel	

Xinmin	
 Tian,	
 Intel	

Oscar	
 Hernandez,	
 Oak	
 Ridge	
 National	
 Labs	
 (ORNL)	

Christian	
 Terboven,	
 RWTH	
 Aachen	
 University	

Sandra	
 Wienke,	
 RWTH	
 Aachen	
 University	

Lars	
 Koesterke,	
 Texas	
 Advanced	
 Computing	
 Center	
 (TACC)	

Kent	
 Milfeld,	
 	
 Texas	
 Advanced	
 Computing	
 Center	
 (TACC)	

Ajay	
 Jayaraj,	
 Texas	
 Instruments	

Robert	
 Dietrich,	
 TU	
 Dresden,	
 ZIH	

11/6/2012	

This document has been superseded by the ratification of
OpenMP 4.0.

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 1	

	

This technical report describes possible future directions or extensions to the OpenMP Specification.

The goal of this technical report is to build more widespread existing practice for an expanded OpenMP.
It gives advice on extensions or future directions to those vendors who wish to provide them possibly for
trial implementation, allows OpenMP to gather early feedback, support timing and scheduling differences
between official OpenMP releases, and offers a preview to users of the future directions of OpenMP wih
the provision stated in the next paragraph.

This technical report is non-normative. Some of the components in this technical report may be
considered for standardization in a future version of OpenMP, but they are not currently part of
any OpenMP Specification. Some of the components in this technical report may never be
standardized, others may be standardized in a substantially changed form, or it may be
standardized as is in its entirety.

Changes to 1.2.2 OpenMP Language Terminology

Add after [7:33]1

• device A logical execution engine with local storage.

1.2.4 Data Terminology

Change [10:8-10] from:

• data environment All the variables associated with the execution of a given task. The
data environment for a given task is constructed from the data environment of the
generating task at the time the task is generated.

to:

• data environment The variables associated with execution of a given region.

• device data environment A data environment associated with a target data or target
region.

Change section 1.3 (Execution Model)

Insert new paragraphs following [13:13]:

The thread that executes the initial OpenMP program executes on the host device. An
implementation may support other target devices. If supported, there are one or more devices
available to the host device for offloading code and data. Each device has its own threads that are
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

1	
 The	
 [page	
 number	
 :	
 line-­‐range]	
 notation	
 refers	
 to	
 pages	
 and	
 line	
 numbers	
 in	
 the	
 OpenMP	
 API	

v3.1	
 specification.	

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 2	

	

distinct from threads executing on another device. Threads cannot migrate from one device to
another device. The execution model is host-centric such that the host device offloads target
regions to target devices.

A target region begins as a single thread of execution, called the initial device thread. The initial
device thread executes sequentially, as if enclosed in an implicit task region, called the initial
device task region that is defined by an implicit inactive parallel region surrounding the whole
target region.

When a target construct is encountered, the target region is executed by the implicit device task.
The task that encounters the target construct waits at the end of the construct until execution of
the region completes. If a target device does not exist, or the target device is not supported by the
implementation, or the target device cannot execute the target construct then the target region is
executed by the host device.

If a construct creates a data environment, it is created at the time the construct is encountered.
Whether a construct creates a data environment is defined in the description of the construct.

Change section 1.4.3 OpenMP Memory Consistency

Add after [17:3]:

The original variable in a host task data environment and the corresponding variable(s) in one or
more device data environments may share storage. Without intervening synchronization the
following cases can result in data races:

• Writes to the corresponding variable by a device thread followed by a read or write of the
original variable by a host task.

• Writes to the original variable by a host task followed by a read or write of the
corresponding variable by a device thread.

• Writes to the corresponding variable by a thread on one device followed by a read or
write of the corresponding variable by a thread on another device.

• Writes to the corresponding variable by a thread on one device followed by a read or
write of the corresponding variable by another thread in the same device but in a different
target region.

Change section 2.7.3 task scheduling

Add after [65:23]:

• immediately after a target construct
• immediately after a target data construct
• in a target update region

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 3	

	

Changes to section 2.3.1 ICV Descriptions

Add after [31:24]:

• device-num-var - controls the default device. There is one copy of this ICV per data
environment.

Change section 2.3.2 Modifying and Retrieving ICV Values

Add lines at end of table Modifying and Retrieving ICV variables [31:1]:

ICV Scope Ways to modify values Way to retrieve value Initial Value
device-
num-var

data
environment

OMP_DEVICE_NUM
omp_set_device_num() omp_get_device_num() Implementation

defined

Changes to section 2.3.2

Change [30:14] from:

Clauses on OpenMP constructs do not modify the values of any of the ICVs.

to:

Unless explicitly stated, clauses on OpenMP constructs do not modify the values of any of the
ICVs.

Changes to section 2.3.3 How the Per-Data Environment ICVs
Work

Change [30:22-23] from:

When a task construct or parallel construct is encountered, the generated task(s) inherit the
values of dyn-var, nest-var, and run-sched-var from the generating task's ICV values.

to:

When a task construct, parallel construct or target construct is encountered, the generated task(s)
inherit the values of dyn-var, nest-var, run-sched-var and device-num-var from the generating
task's ICV values. For the target construct, if it has a device clause the device-num-var is
initialized to the value of the clause.

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 4	

	

Add new section 2.3.4 How the ICVs work in target regions and
renumber sections after

Each device has its own copy of the ICVs with a global scope, and it is implementation defined
how they are initialized.

When a target construct is encountered, the device data environment inherits the values of dyn-
var, nest-var, nthreads-var and run-sched-var from the generating task's ICV values.

2.8 target constructs

2.8.1 target data construct

Summary

Create a device data environment for the extent of the region.

Syntax

C/C++
#pragma omp target data [clause[[,] clause],...] new-line
structured-block

C/C++
Fortran

!$omp target data [clause[[,] clause],...]
structured-block
!$omp end target data

Fortran

Clauses

device(integer-expression)
map(list)
mapto(list)
mapfrom(list)
scratch(list)
if(scalar-expression)

Binding

The binding task region for a target data construct is the encountering task. The target region
binds to the enclosing parallel or task region.

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 5	

	

Description

When a target data construct is encountered, a new device data environment is created, and the
encountering task executes the target data region. If there is no device clause, the default device
is determined by the device-num-var ICV. The new device data environment is constructed from
the enclosing data environment and any data motion clauses on the construct. When an if clause
is present and the if clause expression evaluates to false, the new device data environment is not
created.

Restrictions

• A program must not depend on any ordering of the evaluations of the clauses of the
target data directive, or on any side effects of the evaluations of the clauses.

• At most one device clause may appear on the directive. The device expression must
evaluate to a positive integer value.

• At most one if clause can appear on the directive.

Cross References

• Data Motion clauses, see Section 2.9 on page ##.
• device-num-var, see Section 2.3 on page 30.

2.8.2 target construct

Summary

Create a device data environment and execute the construct on the same device.

Syntax

C/C++
#pragma omp target [clause[[,] clause],...] new-line
parallel-loop-construct | parallel-sections-construct

C/C++
Fortran

!$omp target [clause[[,] clause],...]
parallel-loop-construct | parallel-sections-construct
!$omp end target

Fortran

Clauses

device(integer-expression)
map(list)
mapto(list)
mapfrom(list)

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 6	

	

scratch(list)
num_threads(list)
if(scalar-expression)

Binding

The binding task for a target construct is the encountering task. The target region binds to the
enclosing parallel or task region.

Description

The target construct provides a superset of the functionality and restrictions provided by the
target data construct. In addition, the target construct specifies that the region is executed by a
device. The encountering task waits for the device to complete the target region at the end of the
construct. When an if clause is present and the if clause expression evaluates to false, the target
region is not executed by the device, but instead is executed by the encountering task. When a
num_threads clause is present, the nthreads-var in the new device data environment is assigned
the value list.

Restrictions

• If a target, target update, or target data construct appears within a target region then
the construct is ignored.

• The result of an omp_set_device or omp_get_device routine called within a target region
is unspecified.

Cross References

• target data construct, see Section 2.8.1 on page ##.
• Data motion clauses, see Section 2.9 on page ##.

2.8.3 target update construct

Summary

The target update directive makes the list items in the device data environment consistent with
their corresponding original list items.

Syntax

C/C++
#pragma omp target update [clause[[,] clause],...] new-line

C/C++
Fortran

!$omp target update [clause[[,] clause],...]
Fortran

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 7	

	

Clauses

device(integer-expression)
mapto(list)
mapfrom(list)
if(scalar-expression)

Binding

The binding task for a target update construct is the encountering task.

Description

The target update directive makes the list items in the device data environment consistent with
their corresponding original list items. If the corresponding list item does not exist in the device
data environment, the list item is ignored in the mapto or mapfrom. The device is specified in
the device clause. If there is no device clause, the device is determined by the device-num-var
ICV.

When an if clause is present and the if clause expression evaluates to false, the target update
construct is ignored.

Restrictions

• A target update shall not appear inside of a target region.
• A list item may only appear in a mapto or mapfrom clause, but not both.
• At most one device clause may appear on the directive. The device expression must

evaluate to a positive integer value.
• At most one if clause can appear on the directive.

Cross References

• mapto and mapfrom clauses, see Section 2.9 on page ##.

2.8.4 declare target directive

Summary

The declare target construct can be applied to a function (C, C++ and Fortran) or a subroutine
(Fortran) to enable the creation of a device specific version that can be called from a target
region.

Syntax

The syntax of the declare target construct is as follows:

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 8	

	

C/C++
#pragma omp declare target new-line
function-definition-or-declaration

C/C++
Fortran

!$omp declare target (subroutine-or-function-name)
Fortran

Description

C/C++
The use of a declare target construct on a function enables the creation of a version of the
associated function that can be used inside a target region that executes on the device.

C/C++
Fortran

The use of a declare target construct enables the creation of a versions of the specified
subroutine or function that can be used inside a target region that executes on the device.

Fortran

Restrictions

C/C++
• All declarations and definitions for the function must have a declare target construct if

one is specified for any of them. Otherwise, the result is unspecified.

C/C++
Fortran

• Procedure pointers may not be used to access versions created by the declare target
directive.

Fortran

2.8.5 declare target mirror directive

Summary

The declare target mirror directive specifies that variables are replicated, with a device having
its own copy. The declare target mirror directive is a declarative directive.

Syntax

C/C++
#pragma omp declare target mirror(list) new-line

C/C++

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 9	

	

Fortran
!$omp declare target mirror(list)

Fortran

Description

For each list item that appears in a declare target mirror directive, a corresponding list item is
available in the device data environment for the extent of the program.

If the original list item is initialized, the corresponding list item in the device data environment is
initialized with the same value.

Restrictions

2.8.5 declare target linkable directive

Summary

The declare target linkable directive specifies that the named variable will be made available
on the device. The declare target linkable directive is a declarative directive.

Syntax

C/C++
#pragma omp declare target linkable(list) new-line

C/C++
Fortran

!$omp declare target linkable(list)
Fortran

Description

The declare target linkable directive specifies that the list item will be made available on the
device.

This construct does not move the variable to the device, so the user must use a target data or
target construct to move the variable to the device.

Restrictions

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 10	

	

New Section 2.9.5 Data-Motion Attribute Rules

2.9.5.1 Data-Motion Attribute Rules for Variables Referenced in
Construct

The data-motion attributes of variables that are referenced in a target construct can be
predetermined, explicitly determined, or implicitly determined, according to the rules outlined in
this section.

Specifying a variable on a clause of an enclosed construct causes an implicit reference to the
variable in the enclosing target construct. Such implicit references are also subject to the data-
motion attribute rules outlined in this section.

Certain variables and objects have predetermined data-motion attributes as follows:

C/C++
• Variables appearing in a declare target mirror directive have no data-motion attribute.
• Objects with dynamic storage duration have no data-motion attribute.
• Variables with automatic storage duration that are declared in a scope inside the region

have no data-motion attribute.
• Variables with static storage duration that are declared in a scope inside the region have

no data-motion attribute.

C/C++
Fortran

• Cray pointees inherit the data-motion attribute of the storage with which their Cray
pointers are associated.

• An associate name preserves the association with the selector established at the Fortran
ASSOCIATE statement.

Fortran

Variables with predetermined data-motion attributes may not be listed in data-motion attribute
clauses, except for the cases listed below. For these exceptions only, listing a predetermined
variable in a data-motion attribute clause is allowed and overrides the variable’s predetermined
data-sharing attributes.

• Variables appearing in a declare target mirror directive can appear in any data-motion
clause.

Variables with explicitly determined data-motion attributes are those that are referenced in a
given construct and are listed in a data-motion attribute clause on the target construct.

Variables with implicitly determined data-motion attributes are those that are referenced in a
given construct, do not have predetermined data-motion attributes, and are not listed in a data-

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 11	

	

motion attribute clause on the construct. All variables that are implicitly determined in a target
construct are map.

2.9.5.2 Data-Motion Attribute Rules for Variables Referenced in
Region but not in a Construct

All variables that are referenced in a region, but not in a construct, have no data-motion attribute.
A reference to a variable appearing in a declare target linkable directive in the region that is not
referenced in the construct results in unspecified behavior.

New Section 2.9.6 Data-Motion Clauses

For list items appearing in map, mapto, mapfrom, and scratch clauses, corresponding new list
items are optionally created in the device data environment associated with the construct.

The original and new list items may share storage such that writes to either item by one task or
device followed by a read of the other item by another task or device without intervening
synchronization can result in data races.

C/C++
If a new list item is created then a new list item of the same type, with automatic storage
duration, is allocated for the construct. The storage and thus lifetime of these list items lasts until
the block in which they are created exits. The size and alignment of the new list item are
determined by the type of the variable. This allocation occurs, if the region references the list
item in any statement.

The new list item is initialized, or has an undefined initial value, as if it had been locally declared
without an initializer. The order in which any default constructors for new list items of class type
are called is unspecified. The order in which any C/C++ destructors for different private
variables of class type are called is unspecified

C/C++
Fortran

If a new list item is created then a new list item of the same type, kind, and rank is allocated. The
initial value of the new list item is undefined.

Fortran

2.9.6.1 scratch clause

Summary

The scratch clause declares one or more list items to be available in the new device data
environment.

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 12	

	

Syntax

The syntax of the scratch clause is as follows:

scratch(list)

Description

If a corresponding list item of the original list item is in the enclosing device data environment,
the new device data environment uses the corresponding list item from the enclosing device data
environment.

If a corresponding list item is not in the enclosing device data environment, a new list item with
language-specific attributes is derived from the original list item and created in the new device
data environment. This new list item becomes the corresponding list item to the original list item
in the new device data environment.

Restrictions

• If overlapped variables are used the behavior is unspecified.

2.9.6.2 mapto clause

Summary

The mapto clause declares one or more list items to be available in the new device data
environment. Each new corresponding list item is initialized with the original list item's value.

Syntax

The syntax of the mapto clause is as follows:

mapto(list)

Description

The mapto clause provides a superset of the functionality and restrictions provided by the
scratch clause.

On entry to the region each new corresponding list item is initialized with the original list item's
value.

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 13	

	

Restrictions

C/C++
• For variables of non-array type, the map initialization is a bitwise copy.

C/C++
Fortran

• The map initialization is done, as if by assignment.

Fortran

2.9.6.3 mapfrom clause

Summary

The mapfrom clause declares one or more list items to be available in the new device data
environment, and causes the original list item to be assigned the corresponding list item's value
after the end of the region.

Syntax

The syntax of the mapfrom clause is as follows:

mapfrom(list)

Description

The mapfrom clause provides a superset of the functionality and restrictions provided by the
scratch clause.

The original list item is assigned with the corresponding list item's value after the end of the
region.

Restrictions

2.9.6.4 map clause

Summary

The map clause provides both mapto and mapfrom functionality for each list item.

Syntax

The syntax of the map clause is as follows:

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 14	

	

map(list)

Description

The map clause provides a superset of the functionality and restrictions provided by the mapto
and mapfrom clauses.

Restrictions

Changes to section 3.2 Execution Environment Routines

Add to list of routines after p[115:27]:

• the omp_set_device_num routine.

• the omp_get_device_num routine.

Add after [141:3]

3.2.21 omp_set_device_num

Summary

The omp_set_device_num routine assigns the value of the device-num-var ICV, which
determines the default device number.

Format

C/C++
void omp_set_device_num(int device_num);

C/C++
Fortran

subroutine omp_set_device_num(device_num)
integer device_num

Fortran

Binding

The binding task set for an omp_set_device_num region is the generating task.

Effect

The effect of this routine is to set the value of the device-num-var ICV of the current task to the
values specified in the argument.

Cross References:

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 15	

	

• device-num-var, see Section 2.3 on page 30.
• omp_get_device_num, see Section 3.2.22 on page X.
• OMP_DEVICE_NUM environment variable, see Section 4.3 on page 168

3.2.22 omp_get_device_num

Summary

The omp_get_device_num routine returns the value of the device-num-var ICV, which
determines the default device number.

Format

C/C++
int omp_get_device_num(void);

C/C++
Fortran

integer function omp_get_device_num()
Fortran

Binding

The binding task set for an omp_get_device_num region is the generating task.

Effect

The omp_get_device_num routine returns the value of the device-num-var ICV of the current
task.

Cross References:

• device-num-var, see Section 2.3 on page ##.
• omp_set_device_num, see Section 3.2.21 on page ##.
• OMP_DEVICE_NUM environment variable, see Section 4.3 on page ##.

OpenMP	
 Technical	
 Report	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 November	
 2012	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 page	
 16	

	

Changes to Chapter 4

Add after [153:28]

• OMP_DEVICE_NUM sets the device-num-var ICV that controls the default device
number.

Add new section 4.10 OMP_DEVICE_NUM

The OMP_DEVICE_NUM environment variable sets the device number to use in target
constructs by setting the initial value of the device-num-var ICV.

The value of this environment variable must be a positive integer value.

Cross References:

• device-num-var ICV, see Section 2.3 on page ##.
• target constructs, Section 2.9

	

