
OpenMP in the Petascale Era:
Does OpenMP need a more powerful

set of features for tasks?

Eduard Ayguadé
Universitat Politècnica de Catalunya
Barcelona Supercomputing Center

SC’11 – OpenMP BOF

Eduard Ayguadé. OpenMP BOF. November 2011 2

Q1: Share your experiences with tasking in OpenMP

•  Teaching @ Computer Science School (UPC), Barcelona (Spain)

•  “Parallelism” (3rd course undergraduate) and “Algorithms and Parallel Programming
Models” (master degree): “shape” vs. “reshape” minds
•  Tasking is the natural way for expressing parallelism for the algorithms they are

used to write (lists, trees, graphs, …). Loop worksharing presented as a compact
way to express tasks coming out of loops with granularity control

Eduard Ayguadé. OpenMP BOF. November 2011 3

Q1: Share your experiences with tasking in OpenMP

•  Teaching @ Computer Science School (UPC), Barcelona (Spain)

•  “Parallelism” (3rd course undergraduate) and “Algorithms and Parallel Programming
Models” (master degree): “shape” vs. “reshape” minds
•  Tasking is the natural way for expressing parallelism for the algorithms they are

used to write (lists, trees, graphs, …). Loop worksharing presented as a compact
way to express tasks coming out of loops with granularity control

•  OmpSs as the programming model used in current EU projects (hybrid MPI)

•  TEXT: Scalapack, PLASMA, SPECFEM3D, LBC, CPMD PSC, PEPC, LS1 Mardyn,
Asynchronous algorithms, Microbenchmarks
•  Montblanc: YALES2, EUTERPE, SPECFEM3D, MP2C, BigDFT, PEPC, SMMP,

QuantumESPRESSO, ProFASI, COSMO, BQCD
•  Other initiatives: GROMACS, GADGET, WRF, …

Eduard Ayguadé. OpenMP BOF. November 2011 4

Q1: Share your experiences with tasking in OpenMP

•  Teaching @ Computer Science School (UPC), Barcelona (Spain)

•  “Parallelism” (3rd course undergraduate) and “Algorithms and Parallel Programming
Models” (master degree): “shape” vs. “reshape” minds
•  Tasking is the natural way for expressing parallelism for the algorithms they are

used to write (lists, trees, graphs, …). Loop worksharing presented as a compact
way to express tasks coming out of loops with granularity control

•  OmpSs as the programming model used in current EU projects (hybrid MPI)

•  TEXT: Scalapack, PLASMA, SPECFEM3D, LBC, CPMD PSC, PEPC, LS1 Mardyn,
Asynchronous algorithms, Microbenchmarks
•  Montblanc: YALES2, EUTERPE, SPECFEM3D, MP2C, BigDFT, PEPC, SMMP,

QuantumESPRESSO, ProFASI, COSMO, BQCD
•  Other initiatives: GROMACS, GADGET, WRF, …

Top down, potentials and hints rather
than how-to’s,

Tools for taskification, performance
prediction and debugging

Bottom up and being in total control

Fork join, data parallel, explicit data
placement

Eduard Ayguadé. OpenMP BOF. November 2011 5

Q2: Opinion on the importance of tasking (now and future)

•  Exploitation of unstructured parallelism

•  Not just loop/data parallelism

Eduard Ayguadé. OpenMP BOF. November 2011 6

Q2: Opinion on the importance of tasking (now and future)

•  Exploitation of unstructured parallelism

•  Not just loop/data parallelism
•  What do we need for Tera/Exa? More asynchrony, avoid global synchronizations

and let the runtime orchestrate tasks based on dependences detected at runtime
•  Large amounts of lookahead: instantiate work even if it can not be executed now

Eduard Ayguadé. OpenMP BOF. November 2011 7

Q2: Opinion on the importance of tasking (now and future)

•  Exploitation of unstructured parallelism

•  Not just loop/data parallelism
•  What do we need for Tera/Exa? More asynchrony, avoid global synchronizations

and let the runtime orchestrate tasks based on dependences detected at runtime
•  Large amounts of lookahead: instantiate work even if it can not be executed now

•  Locality optimizations / latency tolerance

•  Let the runtime do optimizations that are hard for programmers: reuse,
prefetch, overlap data transfers (MPI/OpenMP, OpenMP/accelerator), …

Eduard Ayguadé. OpenMP BOF. November 2011 8

Q2: Opinion on the importance of tasking (now and future)

•  Exploitation of unstructured parallelism

•  Not just loop/data parallelism
•  What do we need for Tera/Exa? More asynchrony, avoid global synchronizations

and let the runtime orchestrate tasks based on dependences detected at runtime
•  Large amounts of lookahead: instantiate work even if it can not be executed now

•  Locality optimizations / latency tolerance

•  Let the runtime do optimizations that are hard for programmers: reuse,
prefetch, overlap data transfers (MPI/OpenMP, OpenMP/accelerator), …

•  Handling resource heterogeneity

•  Tasks encapsulating work to be offloaded to accelerators
•  Compatibility with proprietary low level technologies (lot of efforts devoted here!)

•  Let the runtime make decisions about scheduling (core/accelerator/…):
autotuning, dynamic resource allocation and load balancing

Eduard Ayguadé. OpenMP BOF. November 2011 9

Q3: Present your ideas for enhancing it

•  Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

Eduard Ayguadé. OpenMP BOF. November 2011 10

Q3: Present your ideas for enhancing it

•  Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”
pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]
 { function or code block }

To compute dependences To allow concurrent execution of
commutative tasks (reductions)

Annotation of function
declarations or definitions

Eduard Ayguadé. OpenMP BOF. November 2011 11

Q3: Present your ideas for enhancing it

•  Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

Task implementation for a GPU device
The compiler parses CUDA kernel invocation syntax Support for multiple implementations of a task

Ask the runtime to ensure data is accessible in the
address space of the device

pragma omp target device ({ smp | cuda }) \
 [implements (function_name)] \
 { copy_deps | [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] }

pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]
 { function or code block }

To compute dependences To allow concurrent execution of
commutative tasks (reductions)

Annotation of function
declarations or definitions

Eduard Ayguadé. OpenMP BOF. November 2011 12

Q3: Present your ideas for enhancing it

•  Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

Task implementation for a GPU device
The compiler parses CUDA kernel invocation syntax Support for multiple implementations of a task

Ask the runtime to ensure data is accessible in the
address space of the device

pragma omp target device ({ smp | cuda }) \
 [implements (function_name)] \
 { copy_deps | [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] }

Wait for sons or specific data availability
Relax consistency to main program

#pragma omp taskwait [on (...)] [noflush]

pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]
 { function or code block }

To compute dependences To allow concurrent execution of
commutative tasks (reductions)

Annotation of function
declarations or definitions

Eduard Ayguadé. OpenMP BOF. November 2011 13

Q3: Present your ideas for enhancing it (cont.)

•  Better control of the threads in the team
 #pragma omp parallel vs. #pragma omp parallel parallel_threads(n)
#pragma omp single

•  … and also for the implicit parallel region
OMP_NUM_THREADS=n and OMP_PARALLEL_TASKS=m!

Eduard Ayguadé. OpenMP BOF. November 2011 14

Q3: Present your ideas for enhancing it (cont.)

•  Better control of the threads in the team
 #pragma omp parallel vs. #pragma omp parallel parallel_threads(n)
#pragma omp single

•  … and also for the implicit parallel region
OMP_NUM_THREADS=n and OMP_PARALLEL_TASKS=m!

•  Task aggregation:

•  In recursive programs final and mergeable already here

•  In unbounded loops with task no solution yet

Eduard Ayguadé. OpenMP BOF. November 2011 15

Want to try OmpSs?

Visit us @ booth 235
Download @ pm.bsc.es

