

® Teaching @ Computer Science School (UPC), Barcelona (Spain)

® “Parallelism” (3 course undergraduate) and “Algorithms and Parallel Programming
Models” (master degree): “shape” vs. “reshape” minds

® Tasking is the natural way for expressing parallelism for the algorithms they are
used to write (lists, trees, graphs, ...). Loop worksharing presented as a compact
way to express tasks coming out of loops with granularity control

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 2 @ g

® Teaching @ Computer Science School (UPC), Barcelona (Spain)

® “Parallelism” (3 course undergraduate) and “Algorithms and Parallel Programming
Models” (master degree): “shape” vs. “reshape” minds

® Tasking is the natural way for expressing parallelism for the algorithms they are
used to write (lists, trees, graphs, ...). Loop worksharing presented as a compact
way to express tasks coming out of loops with granularity control

® OmpSs as the programming model used in current EU projects (hybrid MPI)

® TEXT: Scalapack, PLASMA, SPECFEM3D, LBC, CPMD PSC, PEPC, LS1 Mardyn,
Asynchronous algorithms, Microbenchmarks

® Montblanc: YALES2, EUTERPE, SPECFEM3D, MP2C, BigDFT, PEPC, SMMP,
QuantumESPRESSO, ProFASI, COSMO, BQCD

® Other initiatives: GROMACS, GADGET, WREF, ...

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 3 @ Conter 11

Q1: Share your experiences with tasking in OpenMP

® Teaching @ Computer Science School (UPC), Barcelona (Spain)

® “Parallelism” (3 course undergraduate) and “Algorithms and Parallel Programming
Models” (master degree): “shape” vs. “reshape” minds

® Tasking is the natural way for expressing parallelism for the algorithms they are
used to write (lists, trees, graphs, ...). Loop worksharing presented as a compact
way to express tasks coming out of loops with granularity control

® OmpSs as the programming model used in current EU projects (hybrid MPI)

® TEXT: Scalapack, PLASMA, SPECFEM3D, LBC, CPMD PSC, PEPC, LS1 Mardyn,
Asynchronous algorithms, Microbenchmarks

® Montblanc: YALES2, EUTERPE, SPECFEM3D, MP2C, BigDFT, PEPC, SMMP,
QuantumESPRESSO, ProFASI, COSMO, BQCD

® Other initiatives: GROMACS, GADGET, WREF, ...

Bottom up and being in total control

Fork join, data parallel, explicit data
placement

—)

Top down, potentials and hints rather
than how-to’s,

Tools for taskification, performance
prediction and debugging

Eduard Ayguadé. OpenMP BOF. November 2011

® Exploitation of unstructured parallelism

® Not just loop/data parallelism

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 5 C(Contar Puting

Centro Nacional de Supercomputacion

@ 50 '.\"-i 0
- 1A v

¢ - ”
! L%
[B B R BB B

L V) o i i N

L gl (98
et

® Exploitation of unstructured parallelism

® Not just loop/data parallelism

® What do we need for Tera/Exa? More asynchrony, avoid global synchronizations
and let the runtime orchestrate tasks based on dependences detected at runtime

® Large amounts of lookahead: instantiate work even if it can not be executed now

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 6 C(Camter

® Exploitation of unstructured parallelism

® Not just loop/data parallelism

® What do we need for Tera/Exa? More asynchrony, avoid global synchronizations
and let the runtime orchestrate tasks based on dependences detected at runtime

Large amounts of lookahead: instantiate work even if it can not be executed now

® Locality optimizations / latency tolerance

* Letthe runtime do optimizations that are hard for programmers: reuse,
prefetch, overlap data transfers (MPI/OpenMP, OpenMP/accelerator), ...

a2

1a
ercomputing

Eduard Ayguadé. OpenMP BOF. November 2011 7 @ CZ..:eN, -

oLl

® Exploitation of unstructured parallelism

Not just loop/data parallelism

® What do we need for Tera/Exa? More asynchrony, avoid global synchronizations

and let the runtime orchestrate tasks based on dependences detected at runtime
Large amounts of lookahead: instantiate work even if it can not be executed now

® Locality optimizations / latency tolerance

* Letthe runtime do optimizations that are hard for programmers: reuse,
prefetch, overlap data transfers (MPI/OpenMP, OpenMP/accelerator), ...

® Handling resource heterogeneity

® Tasks encapsulating work to be offloaded to accelerators

® Compatibility with proprietary low level technologies (lot of efforts devoted here!)

Let the FUNTIM@ make decisions about scheduling (core/accelerator’...):
autotuning, dynamic resource allocation and load balancing

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 8 @ Z::’:::‘f""’"";"

® Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 9 C(§‘;‘.’.$::"""’"""’

tro Nacional de Supercomputacion

é’ G) ’4:3 3

N
Lo

e L S e

7 1' |) gel JENLE ¥
\ ot

® Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]
{ function or code block }

Annotation of function To compute dependences To allow concurrent execution of
declarations or definitions commutative tasks (reductions)

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 10 @ §::$::°""’"""’

® Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]
{ function or code block }

Annotation of function To compute dependences To allow concurrent execution of
declarations or definitions commutative tasks (reductions)

Task implementation for a GPU device

The compiler parses CUDA kernel invocation syntax Support for multiple implementations of a task
pragma omp target device ({ smp | cuda }) \
[implements (function_name)] \

{ copy_deps | [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] }

Ask the runtime to ensure data is accessible in the
address space of the device

1a
puting

a2

iperco

Eduard Ayguadé. OpenMP BOF. November 2011 11 @ enter

0 Nacional de Supercomputacién

coom
3

® Programmer giving information to the runtime (“hints”) to the runtime and not
coding “howtos”

pragma omp task [input (...)] [output (...)] [inout (...)] [concurrent (...)]
{ function or code block }

Annotation of function To compute dependences To allow concurrent execution of
declarations or definitions commutative tasks (reductions)

Task implementation for a GPU device

The compiler parses CUDA kernel invocation syntax Support for multiple implementations of a task
pragma omp target device ({ smp | cuda }) \
[implements (function_name)] \

{ copy_deps | [copy_in (array_spec ,...)] [copy_out (...)] [copy_inout (...)] }

Ask the runtime to ensure data is accessible in the
address space of the device

#pragma omp taskwait [on (...)] [noflush]

Relax consistency to main program

Wait for sons or specific data availability

arcelon:

B: lona
Eduard Ayguadé. OpenMP BOF. November 2011 12 @ Contar Puting

entro Nacional de Supercomputacion

é. 5) ’s:? 0

N
Lo

memmpemanemse—

® Better control of the threads in the team

#pragma omp parallel VS. #pragma omp parallel parallel_threads(n)

#pragma omp single

® ... and also for the implicit parallel region
OMP NUM THREADS=n and OMP PARALLEL TASKS=m

Eduard Ayguadé. OpenMP BOF. November 2011

® Better control of the threads in the team

#pragma omp parallel VS. #pragma omp parallel parallel_threads(n)
#pragma omp single

® ... and also for the implicit parallel region
OMP NUM THREADS=n and OMP PARALLEL TASKS=m

® Task aggregation:

® Inrecursive programs final and mergeable already here

® In unbounded loops with task no solution yet

o)
Eduard Ayguadé. OpenMP BOF. November 2011 14 @Zﬁ;ﬁ'ﬁ""’“""’)

Want to try OmpSs?

Visit us @ booth 235
Download @ pm.bsc.es

Barcelona
Eduard Ayguadé. OpenMP BOF. November 2011 15 C(g«;%:om::nng

