
LLNL-PRES-599952
This work has been authored by Lawrence Livermore National
Security, LLC under contract DE-AC52-07NA27344 with the U.S.
Department of Energy. Accordingly, the United States Government
retains and the publisher, by accepting this work for dissemination,
acknowledges that the United States Government retains a non-
exclusive, paid up, irrevocable, world-wide license to publish or
reproduce the disseminated form of this work or allow others to do so,
for United States Government purposes.

Progress on OpenMP Specifications
Wednesday, November 13, 2012

Bronis R. de Supinski
Chair, OpenMP Language Committee

Lawrence Livermore National Laboratory LLNL-PRES-599952
2

§  OpenMP 3.1 released in July 2011
§  OpenMP 4.0 is nearing completion

•  Welcome comments on first draft (“RC1”)
—  http://openmp.org/wp/openmp-specifications/
—  OpenMP Forum topic for comments through January 18, 2013

•  Planning on second draft (“RC2”)
—  Several topics almost but not quite done
—  Will be released middle of February 2013

§  Plan to work immediately after on OpenMP 5.0
§  Feedback from non-members always welcome

The OpenMP Language Committee
schedule will meet community needs

Lawrence Livermore National Laboratory LLNL-PRES-599952
3

§  OpenMP 3.1
•  Refine and extend existing specification
•  Do not break existing code
•  Minimal implementation burden beyond 3.0
•  Enacted 87 tickets total

§  OpenMP 4.0
•  Draft planned for SC12 (adopting time-based releases)
•  Address several major open issues for OpenMP
•  Do not break existing code unnecessarily
•  RC1 includes 31 tickets (several major ones)
—  Added support for SIMD directives
—  Significantly extended support for thread affinity
—  Added UDRs, sequentially consistent atomics, atomic swap
—  Added initial support for Fortran 2003

OpenMP 3.1 specification completed
and OpenMP 4.0 progressing

Lawrence Livermore National Laboratory LLNL-PRES-599952
4

§  New atomics support capture and write functionality
§  Add min and max reduction operators in C/C++
§  Extensions to OpenMP tasking model

•  Explicit task scheduling points (taskyield construct)
•  Ability to save data environment overhead
—  final and mergeable clauses
—  omp_in_final runtime library routine

§  Initial support for thread binding
§  Now allow intent(in) and const-qualified
types in firstprivate clause

§  Many clarifications, improvements to examples

Despite incremental nature, we added
several important items for OpenMP 3.1

Lawrence Livermore National Laboratory LLNL-PRES-599952
5

§  Use simd directive to indicate a loop should be SIMDized

§  Execute iterations of following loop in SIMD chunks

•  Region binds to the current task, so loop is not divided across threads
•  SIMD chunk is set of iterations executed concurrently by a SIMD lanes

§  Creates a new data environment
§  Clauses control data environment, how loop is partitioned

•  safelen(length) limits the number of iterations in a SIMD chunk
•  linear lists variables with a linear relationship to the iteration space
•  aligned specifies byte alignments of a list of variables
•  private, lastprivate, reduction and collapse have usual

meanings
•  Would firstprivate be useful?

Reminiscent of our roots, OpenMP 4.0
will provide portable SIMD constructs

#pragma omp simd [clause [[,] clause] …]

Lawrence Livermore National Laboratory LLNL-PRES-599952
6

§  Could rely on compiler to handle
•  Compiler could in-line function to SIMDize its operations
•  Compiler could try to generate SIMDize version of function
•  Inefficient default would call function from each SIMD lane

§  Provide declare simd directive to generate SIMD function

•  Invocation of generated function processes across SIMD lanes

§  Clauses control data environment, how function is used
•  simdlen(length) specifies the number of concurrent arguments
•  uniform lists invariant arguments across concurrent SIMD invocations
•  inbranch and notinbranch imply always/never invoked in a

conditional statement
•  linear, aligned, and reduction are similar to simd clauses

What happens if a SIMDized loop
includes function calls?

#pragma omp declare simd [clause [[,] clause] …]
function definition or declaration

Lawrence Livermore National Laboratory LLNL-PRES-599952
7

§  The loop SIMD construct workshares and SIMDizes loop

•  Cannot be specified separately
•  Loop is first divided into SIMD chunks
•  SIMD chunks are divided across implicit tasks
•  Not guaranteed same schedule even with static schedule

§  Use parallel loop SIMD construct for a parallel region
that only contains a loop SIMD construct

•  Purely a convenience that combines separate directives
•  Analogous to the combined parallel worksharing constructs
•  Would a parallel SIMD construct (i.e., no worksharing) be useful?

The loop SIMD and parallel loop SIMD
combine two types of parallelism

#pragma omp for simd [clause [[,] clause] …]

#pragma omp parallel for simd [clause [[,] clause] …]

Lawrence Livermore National Laboratory LLNL-PRES-599952
8

The declare simd construct supports
SIMD execution of library routines
§  Tell compiler to generate SIMD versions of functions
#pragma omp simd notinbranch
float min (float a, float b) {
 return a < b ? a : b; }

#pragma omp simd notinbranch
float distsq (float x, float y) {
 return (x − y) ∗ (x − y); }

§  Compile library and use functions in a SIMD loop
void minex (float *a, float *b, float *c, float *d) {
 #pragma omp parallel for simd
 for (i = 0; i < N; i++)
 d[i] = min (distsq(a[i], b[i]), c[i]);
}

•  Creates implicit tasks of parallel region
•  Divides loop into SIMD chunks
•  Schedules SIMD chunks across implicit tasks
•  Loop is fully SIMDized by using SIMD versions of functions

Lawrence Livermore National Laboratory LLNL-PRES-599952
9

§  Control of nested thread team sizes (in OpenMP 3.1)

§  Request binding of threads to places (in OpenMP 3.1)

§  New extensions specify thread locations
•  Increased choices for OMP_PROC_BIND
—  Can still specify true or false
—  Can now provide a list (possible item values: master, close or

spread) to specify how to bind implicit tasks of parallel regions
•  Added OMP_PLACES environment variable
—  Can specify abstract names including threads, cores and sockets
—  Can specify an explicit ordered list of places
—  Place numbering is implementation defined

RC1 significantly extends initial high-
level affinity support of OpenMP 3.1

export OMP_NUM_THREADS=4,3,2

export OMP_PROC_BIND=TRUE

Lawrence Livermore National Laboratory LLNL-PRES-599952
10

§  Added a new clause to the parallel construct

•  Overrides OMP_PROC_BIND environment variable
•  Ignored if OMP_PROC_BIND is false

§  New run time function to query current policy

§  New policies determine relative bindings

•  Assign threads to same place as master
•  Assign threads close in place list to parent thread
•  Assign threads to maximize spread across places

Affinity support now supports targeting
thread binding to specific parallel regions

proc_bind(master | close | spread)

omp_proc_bind_t omp_get_proc_bind(void);

Lawrence Livermore National Laboratory LLNL-PRES-599952
11

§  Objective: Maximize memory bandwidth of outer parallel
region and exploit shared data of inner parallel region

§  Solution: Use spread on outer region, close on inner
•  Can use list (spread, close) for OMP_PROC_BIND
•  Can use proc_bind clause on each region

An example show how to use for
nested parallelism of depth two

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

p0

p1

p2

p3

p4

p5

p6

p7

Initial

spread

close

Lawrence Livermore National Laboratory LLNL-PRES-599952
12

§  Use declare reduction directive to define new
operators

§  New operators used in reduction clause like predefined ops

§  reduction-identifier gives a name to the operator
•  Can be overloaded for different types
•  Can be redefined in inner scopes

§  typename-list is a list of types to which it applies
§  combiner expression specifies how to combine values
§  identity can specify the identity value of the operator

•  Can be an expression or a brace initializer

User Defined Reductions (UDRs) are
a major addition in OpenMP 4.0

#pragma omp declare reduction (reduction-identifier :
typename-list : combiner) [identity(identity-expr)]

Lawrence Livermore National Laboratory LLNL-PRES-599952
13

A simple UDR example
§  Declare the reduction operator
#pragma omp declare reduction (merge : std::vector<int> :
 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

§  Use the reduction operator in a reduction clause
void schedule (std::vector<int> &v, std::vector<int> &filtered) {
 #pragma omp parallel for reduction (merge : filtered)
 for (std:vector<int>::iterator it = v.begin(); it < v.end(); it++)
 if (filter(*it)) filtered.push_back(*it);
}

§  Private copies created for a reduction are initialized to the
identity that was specified for the operator and type
•  Default identity defined if identity clause not present

§  Compiler uses combiner to combine private copies
•  omp_out refers to private copy that holds combined value
•  omp_in refers to the other private copy

Lawrence Livermore National Laboratory LLNL-PRES-599952
14

§  Added to list of base language versions
§  Have a list of unsupported Fortran 2003 features

•  List initially included 24 items (some big, some small)
•  List has already been reduced to 18 items
•  List in specification reflects approximate priority
•  Priorities determined by importance and difficulty

§  Strategy: Gradually reduce list
•  Already removed procedure pointers, renaming operators on

the USE statement, ASSOCIATE construct, VOLATILE
attribute, pointer INTENT and structure constructors

•  Hope to remove others in RC2
•  Expect some items will remain unsupported in OpenMP 4.0

OpenMP 4.0 will include initial
support for Fortran 2003

Lawrence Livermore National Laboratory LLNL-PRES-599952
15

§  Adds one easily shown construct

•  Implicit task scheduling point at end of region; current task is
suspended until all child tasks generated in the region and
their descendants complete execution

•  Similar in effect to a deep taskwait
—  3.1 would require more synchronization, more directives

§  More significant tasking extensions planned for RC2
•  Will add concept of task dependence
•  Two forms being considered

4.0 adds the taskgroup construct to
support simpler task synchronization

#pragma omp taskgroup
{

 create_a_group_of_tasks (could_create_nested_tasks);
}

Lawrence Livermore National Laboratory LLNL-PRES-599952
16

OpenMP 3.1 atomic operation additions
address an obvious deficiency
§  Previously could not capture a value atomically

int schedule (int upper) {
 static int iter = 0; int ret;
 ret = iter;
 #pragma omp atomic
 iter++;
 if (ret <= upper) { return ret; }
 else { return -1; } //no more iters
}

§  Atomic capture provides the needed functionality
int schedule (int upper) {
 static int iter = 0; int ret;
 #pragma omp atomic capture
 ret = iter++; // atomic capture
 if (ret <= upper) { return ret; }
 else { return -1; } // no more iters
}

§  Atomic swap in 4.0 performs capture followed by write
§  Added seq_cst clause for atomics in 4.0; removes need for flush…

Lawrence Livermore National Laboratory LLNL-PRES-599952
17

§  Support for accelerators based on TR1 (next talk)
§  The cancel construct provides initial error model support

•  Very close for parallel and worksharing regions
•  Provides algorithmic advances when applied to tasks
•  Anticipate callbacks for integrated error handling in OpenMP 5.0

§  Ongoing work to support Fortran 2003 fully
§  Task dependencies extend the OpenMP tasking model
§  How to specify subarrays in C

•  Basically done but lack use case in RC1
•  Will be useful for accelerators and task dependencies

§  Probably some refinements/extensions to affinity support

We anticipate that RC2 will address
several major topics not in RC1

Lawrence Livermore National Laboratory LLNL-PRES-599952
18

§  Topics on the table for OpenMP 5.0
•  Support for memory affinity
•  Refinements to accelerator support
•  Transactional memory and thread level speculation
•  Additional task/thread synchronization mechanisms
•  Completing extension of OpenMP to Fortran 2003
•  Interoperability and composability
•  Incorporating tool support

§  Help us shape the future of OpenMP
•  Attend IWOMP, become a cOMPunity member
•  Lobby your institution to join the OpenMP ARB

We are considering several other
topics for OpenMP 5.0 and beyond

