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§  OpenMP 3.1 released in July 2011 
§  OpenMP 4.0 is nearing completion 

•  Welcome comments on first draft (“RC1”) 
—  http://openmp.org/wp/openmp-specifications/ 
—  OpenMP Forum topic for comments through January 18, 2013 

•  Planning on second draft (“RC2”) 
—  Several topics almost but not quite done 
—  Will be released middle of February 2013 

§  Plan to work immediately after on OpenMP 5.0 
§  Feedback from non-members always welcome 

The OpenMP Language Committee 
schedule will meet community needs 
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§  OpenMP 3.1 
•  Refine and extend existing specification 
•  Do not break existing code 
•  Minimal implementation burden beyond 3.0 
•  Enacted 87 tickets total 

§  OpenMP 4.0  
•  Draft planned for SC12 (adopting time-based releases) 
•  Address several major open issues for OpenMP 
•  Do not break existing code unnecessarily  
•  RC1 includes 31 tickets (several major ones) 
—  Added support for SIMD directives 
—  Significantly extended support for thread affinity 
—  Added UDRs, sequentially consistent atomics, atomic swap 
—  Added initial support for Fortran 2003 

OpenMP 3.1 specification completed 
and OpenMP 4.0 progressing 
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§  New atomics support capture and write functionality 
§  Add min and max reduction operators in C/C++ 
§  Extensions to OpenMP tasking model 

•  Explicit task scheduling points (taskyield construct) 
•  Ability to save data environment overhead  
—  final and mergeable clauses 
—  omp_in_final runtime library routine 

§  Initial support for thread binding 
§  Now allow intent(in) and const-qualified 
types in firstprivate clause 

§  Many clarifications, improvements to examples 

Despite incremental nature, we added 
several important items for OpenMP 3.1 
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§  Use simd directive to indicate a loop should be SIMDized 
 
§  Execute iterations of following loop in SIMD chunks 

•  Region binds to the current task, so loop is not divided across threads 
•  SIMD chunk is set of iterations executed concurrently by a SIMD lanes  

§  Creates a new data environment 
§  Clauses control data environment, how loop is partitioned  

•  safelen(length) limits the number of iterations in a SIMD chunk 
•  linear lists variables with a linear relationship to the iteration space  
•  aligned specifies byte alignments of a list of variables 
•  private, lastprivate, reduction and collapse have usual 

meanings 
•  Would firstprivate be useful? 

Reminiscent of our roots, OpenMP 4.0 
will provide portable SIMD constructs 

#pragma omp simd [clause [[,] clause] …] 
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§  Could rely on compiler to handle 
•  Compiler could in-line function to SIMDize its operations 
•  Compiler could try to generate SIMDize version of function 
•  Inefficient default would call function from each SIMD lane  

§  Provide declare simd directive to generate SIMD function 
 
 

•  Invocation of generated function processes across SIMD lanes 

§  Clauses control data environment, how function is used  
•  simdlen(length) specifies the number of concurrent arguments 
•  uniform lists invariant arguments across concurrent SIMD invocations 
•  inbranch and notinbranch imply always/never invoked in a 

conditional statement 
•  linear, aligned, and reduction are similar to simd clauses 

What happens if a SIMDized loop 
includes function calls? 

#pragma omp declare simd [clause [[,] clause] …] 
function definition or declaration 
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§  The loop SIMD construct workshares and SIMDizes loop 
 

•  Cannot be specified separately 
•  Loop is first divided into SIMD chunks 
•  SIMD chunks are divided across implicit tasks 
•  Not guaranteed same schedule even with static schedule 

§  Use parallel loop SIMD construct for a parallel region 
that only contains a loop SIMD construct 

•  Purely a convenience that combines separate directives  
•  Analogous to the combined parallel worksharing constructs 
•  Would a parallel SIMD construct (i.e., no worksharing) be useful? 

The loop SIMD and parallel loop SIMD 
combine two types of parallelism 

#pragma omp for simd [clause [[,] clause] …] 

#pragma omp parallel for simd [clause [[,] clause] …] 



Lawrence Livermore National Laboratory LLNL-PRES-599952 
8 

The declare simd construct supports 
SIMD execution of library routines 
§  Tell compiler to generate SIMD versions of functions 
#pragma omp simd notinbranch 
float min (float a, float b) { 
   return a < b ? a : b;  } 
 
#pragma omp simd notinbranch 
float distsq (float x, float y) { 
   return (x − y) ∗ (x − y);  } 

§  Compile library and use functions in a SIMD loop 
void minex (float *a, float *b, float *c, float *d) { 
  #pragma omp parallel for simd  
  for (i = 0; i < N; i++)  
    d[i] = min (distsq(a[i], b[i]), c[i]); 
} 

•  Creates implicit tasks of parallel region 
•  Divides loop into SIMD chunks 
•  Schedules SIMD chunks across implicit tasks 
•  Loop is fully SIMDized by using SIMD versions of functions  
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§  Control of nested thread team sizes (in OpenMP 3.1) 

§  Request binding of threads to places (in OpenMP 3.1) 

§  New extensions specify thread locations 
•  Increased choices for OMP_PROC_BIND 
—  Can still specify true or false 
—  Can now provide a list (possible item values: master, close or 

spread) to specify how to bind implicit tasks of parallel regions 
•  Added OMP_PLACES environment variable 
—  Can specify abstract names including threads, cores and sockets 
—  Can specify an explicit ordered list of places 
—  Place numbering is implementation defined 

RC1 significantly extends initial high-
level affinity support of OpenMP 3.1 

export OMP_NUM_THREADS=4,3,2 

export OMP_PROC_BIND=TRUE 
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§  Added a new clause to the parallel construct 

•  Overrides OMP_PROC_BIND environment variable 
•  Ignored if OMP_PROC_BIND is false 

§  New run time function to query current policy 
 
§  New policies determine relative bindings 

•  Assign threads to same place as master 
•  Assign threads close in place list to parent thread 
•  Assign threads to maximize spread across places 

Affinity support now supports targeting 
thread binding to specific parallel regions 

proc_bind(master | close | spread) 

omp_proc_bind_t omp_get_proc_bind(void); 



Lawrence Livermore National Laboratory LLNL-PRES-599952 
11 

§  Objective: Maximize memory bandwidth of outer parallel 
region and exploit shared data of inner parallel region 

§  Solution: Use spread on outer region, close on inner 
•  Can use list (spread, close) for OMP_PROC_BIND 
•  Can use proc_bind clause on each region 

An example show how to use for  
nested parallelism of depth two 
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§  Use declare reduction directive to define new 
operators 

§  New operators used in reduction clause like predefined ops 

§  reduction-identifier gives a name to the operator 
•  Can be overloaded for different types 
•  Can be redefined in inner scopes 

§  typename-list is a list of types to which it applies 
§  combiner expression specifies how to combine values 
§  identity can specify the identity value of the operator 

•  Can be an expression or a brace initializer  

User Defined Reductions (UDRs) are 
a major addition in OpenMP 4.0 

#pragma omp declare reduction (reduction-identifier : 
typename-list : combiner) [identity(identity-expr)] 
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A simple UDR example 
§  Declare the reduction operator 
#pragma omp declare reduction (merge : std::vector<int> :  
   omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end())) 

§  Use the reduction operator in a reduction clause 
void schedule (std::vector<int> &v, std::vector<int> &filtered) { 
  #pragma omp parallel for reduction (merge : filtered) 
  for (std:vector<int>::iterator it = v.begin(); it < v.end(); it++)  
    if ( filter(*it) )  filtered.push_back(*it); 
} 

§  Private copies created for a reduction are initialized to the 
identity that was specified for the operator and type 
•  Default  identity defined if identity clause not present 

§  Compiler uses combiner to combine private copies 
•  omp_out refers to private copy that holds combined value 
•  omp_in refers to the other private copy 
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§  Added to list of base language versions 
§  Have a list of unsupported Fortran 2003 features 

•  List initially included 24 items (some big, some small) 
•  List has already been reduced to 18 items 
•  List in specification reflects approximate priority 
•  Priorities determined by importance and difficulty 

§  Strategy: Gradually reduce list 
•  Already removed procedure pointers, renaming operators on 

the USE statement, ASSOCIATE construct, VOLATILE 
attribute, pointer INTENT and structure constructors 

•  Hope to remove others in RC2 
•  Expect some items will remain unsupported  in OpenMP 4.0 

OpenMP 4.0 will include initial 
support for Fortran 2003 
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§  Adds one easily shown construct 

•  Implicit task scheduling point at end of region; current task is 
suspended until all child tasks generated in the region and 
their descendants complete execution  

•  Similar in effect to a deep taskwait  
—  3.1 would require more synchronization, more directives 

§  More significant tasking extensions planned for RC2 
•  Will add concept of task dependence 
•  Two forms being considered 

4.0 adds the taskgroup construct to 
support simpler task synchronization 

#pragma omp taskgroup 
{ 

 create_a_group_of_tasks (could_create_nested_tasks); 
} 
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OpenMP 3.1 atomic operation additions 
address an obvious deficiency 
§  Previously could not capture a value atomically 

int schedule (int upper) { 
   static int iter = 0; int ret; 
   ret = iter; 
   #pragma omp atomic 
      iter++; 
   if (ret <= upper) { return ret; } 
   else { return -1; }  //no more iters 
} 

§  Atomic capture provides the needed functionality 
int schedule (int upper) { 
   static int iter = 0; int ret; 
   #pragma omp atomic capture 
      ret = iter++;     // atomic capture 
   if (ret <= upper) { return ret; } 
   else { return -1; }  // no more iters 
} 

§  Atomic swap in 4.0 performs capture followed by write 
§  Added seq_cst clause for atomics in 4.0; removes need for flush… 
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§  Support for accelerators based on TR1 (next talk) 
§  The cancel construct provides initial error model support 

•  Very close for parallel and worksharing regions 
•  Provides algorithmic advances when applied to tasks 
•  Anticipate callbacks for integrated error handling in OpenMP 5.0 

§  Ongoing work to support Fortran 2003 fully 
§  Task dependencies extend the OpenMP tasking model 
§  How to specify subarrays in C 

•  Basically done but lack use case in RC1 
•  Will be useful for accelerators and task dependencies 

§  Probably some refinements/extensions to affinity support 

We anticipate that RC2 will address 
several major topics not in RC1 
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§  Topics on the table for OpenMP 5.0 
•  Support for memory affinity 
•  Refinements to accelerator support 
•  Transactional memory and thread level speculation 
•  Additional task/thread synchronization mechanisms 
•  Completing extension of OpenMP to Fortran 2003 
•  Interoperability and composability 
•  Incorporating tool support 

§  Help us shape the future of OpenMP 
•  Attend IWOMP, become a cOMPunity member 
•  Lobby your institution to join the OpenMP ARB 

We are considering several other 
topics for OpenMP 5.0 and beyond  




