
Lawrence Livermore National Laboratory BRdeS-1

Science & Technology Principal Directorate - Computation Directorate

SC11 OpenMP Language Committee Report

November 15, 2011

Bronis R. de Supinski

OpenMP Language Committee Chair

Center for Applied Scientific Computing

Performance Measures x.x, x.x, and x.x

2

OpenMP is a vibrant growing organization

 ARB membership at an all-time high

• 13 permanent members (implementers)

 Most recent addition is Nvidia

• 8 auxilliary members (user institutions)

 Most recent addition is TACC

 Actively pursuing new specifications

• OpenMP 3.1 released in July 2011

• Significant progress already on OpenMP 4.0

• Planning always extends beyond the next specification

• Feedback from non-members always welcome

 International Workshop on OpenMP (IWOMP) going strong

3

OpenMP 3.1 specification recently finished and

work on the following one is already begun

 OpenMP 3.1

• Refine and extend existing specification

• Do not break existing code

• Minimal implementation burden beyond 3.0

• Enacted 87 tickets total

 OpenMP 4.0 (?)

• Draft planned for SC12 (adopting time-based releases)

• Address several major open issues for OpenMP

• Do not break existing code unnecessarily

• Already have passed 4 tickets

 Added UDRs, atomic swap

 Addressed some small questions on atomics

4

Despite incremental nature, we added

several important items for OpenMP 3.1

 Extend atomics to support capture and write functionality

 Add min and max reduction operators in C/C++

 Extensions to OpenMP tasking model

• Explicit task scheduling points (taskyield construct)

• Ability to save data environment overhead

 final and mergeable clauses

 omp_in_final runtime library routine

 Initial support for thread binding

 Now allow intent(in) and const-qualified types in

firstprivate clause

 Many clarifications, including improvements to examples

5

The final clause combines with new tasking

concepts to reduce tasking overhead

 Recognizing an existing concept and creating three new ones

• An undeferred task is a task for which execution is not

deferred with respect to its generating task region

• An included task is an undeferred task that is sequentially

included in generating task region (executed immediately)

• A merged task has the same data environment, including

ICVs, as its generating task region

• A final task forces its descendant tasks to be included

 New extensions to the task construct

• The mergeable clause suggests the task may be merged

• The final(expr) clause if true results in a final task

#pragma omp task if(0)

6

Additional kind of atomic operations

addresses an obvious deficiency

 Currently cannot capture a value atomically

int schedule (int upper) {

 static int iter = 0; int ret;

 ret = iter;

 #pragma omp atomic

 iter++;

 if (ret <= upper) { return ret; }

 else { return -1; } //no more iters

}

 Atomic capture provides the needed functionality

int schedule (int upper) {

 static int iter = 0; int ret;

 #pragma omp atomic capture

 ret = iter++; // atomic capture

 if (ret <= upper) { return ret; }

 else { return -1; } // no more iters

}

7

Adding initial high-level affinity support to the

OpenMP 3.1 specification, more planned for 4.0

 Control of nested thread team sizes (in OpenMP 3.1)

 Request binding of threads to resources (in OpenMP 3.1)

 Plan additional choices (compact, spread, a list) for 4.0

 Restrict the processor set for program execution

 Can also specify lists, groupings

 Planning new runtime library routines to observe and to

control bindings (get_place, get/set_place_partition)

 Considering environment variables to:

• Control thread placement within a processor set

• Control initial placement of shared data

• Adapt data placement at runtime

export OMP_NUM_THREADS=4,3,2

export OMP_PROC_BIND=TRUE

export OMP_PLACES 0,1,2,3,8,10,12,14

8

User Defined Reductions (UDRs) are a major

addition already adopted for OpenMP 4.0

 Use declare reduction directive to define new operators

 New operators used in reduction clause like predefined ops

 reduction-identifier gives a name to the operator

• Can be overloaded for different types

• Can be redefined in inner scopes

 typename-list is a list of types to which it applies

 combiner expression specifies how to combine values

 identity can specify the identity value of the operator

• Can be an expression or a brace initializer

#pragma omp declare reduction (reduction-identifier :

typename-list : combiner) [identity(identity-expr)]

9

A simple UDR example

 Declare the reduction operator

#pragma omp declare reduction (merge : std::vector<int> :

 omp_out.insert(omp_out.end(), omp_in.begin(), omp_in.end()))

 Use the reduction operator in a reduction clause

void schedule (std::vector<int> &v, std::vector<int> &filtered) {

 #pragma omp parallel for reduction (merge : filtered)

 for (std:vector<int>::iterator it = v.begin(); it < v.end();

it++)

 if (filter(*it)) filtered.push_back(*it);

}
 Private copies created for a reduction are initialized to the

identity that was specified for the operator and type

 Default identity defined if no identity clause present

 Compiler uses combiner to combine private copies

 omp_out refers to private copy that holds combined value

 omp_in refers to the other private copy

10

We are actively discussing several

major topics for OpenMP 4.0 and beyond

 Initial work to support Fortran 2003

 Development of an error model

• The done directive

• Callbacks for integrated error handling

 Interoperability and composability

• Interactions between thread models

• Interfaces to support interactions with distributed models

 Refinements to the OpenMP tasking model

• Specifying task dependencies (think data flow)

• Task reductions, task-only threads, omp while

 Affinity (previous slide)

 Sequentially consistent atomic operations

 How to specify subarrays in C

11

We are considering these and several other

topics for OpenMP 4.0 and beyond

 Other topics being considered for OpenMP 4.0

• Transactional memory and thread level speculation

• Additional task/thread synchronization mechanisms

• Extending OpenMP to Fortran 2003

• Extending OpenMP to additional languages

• Incorporating tools support

• Other miscellaneous extensions

 How can you help shape the future of OpenMP?

• Attend IWOMP, become a cOMPunity member

• Lobby your institution to join the OpenMP ARB

• Contact me and beg ;-)

