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ABSTRACT

Context. A well-known bottleneck for the core-accretion model of giant-planet formation is the loss of the cores into the star by type I
migration, due to the tidal interactions with the gas disk. It has been shown that a steep surface-density gradient in the disk, such as
the one expected at the boundary between an active and a dead zone, acts as a planet trap and prevents isolated cores from migrating
down to the central star.
Aims. We study the relevance of the planet trap concept for the accretion and evolution of systems of multiple planetary embryos/cores.
Methods. We performed hydrodynamical simulations of the evolution of systems of multiple massive objects in the vicinity of a planet
trap. The planetary embryos evolve in 3 dimensions, whereas the disk is modeled with a 2D grid. Synthetic forces are applied onto
the embryos to mimic the damping effect that the disk has on their inclinations.
Results. Systems with two embryos tend to acquire stable, separated and non-migrating orbits, with the more massive embryo placed
at the planet trap and the lighter one farther out in the disk. Systems of multiple embryos are intrinsically unstable. Consequently, a
long phase of mutual scattering can lead to accreting collisions among embryos; some embryos are injected into the inner part of the
disk, where they can be evacuated into the star by type I migration. The system can resume a stable, non-migrating configuration only
when the number of surviving embryos decreases to a small value (∼2–4). This can explain the limited number of giant planets in
our solar system. These results should apply in general to any case in which the type I migration of the inner embryo is prevented by
some mechanism, and not solely to the planet trap scenario.
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1. Introduction

The core-accretion model for the formation of giant planets
meets a serious problem. The cores of the planets, embedded in
the gas disk, should undergo type I migration towards the cen-
tral star (Ward 1997; Tanaka et al. 2002). The migration rate
increases linearly with the core’s mass. For masses of order of a
few Earth masses, the timescale for the engulfment of the core
into the star is much shorter than that for the accretion of a mas-
sive atmosphere and the transition to the status of a giant planet
(Pollack et al. 1996). Even the most recent models of giant-
planet formation, accounting for the positive feedback of migra-
tion on accretion (Alibert et al. 2005), require type I migration
rates that are at least 10 times slower than estimated by analytic
theory and measured in hydrodynamical simulations for cores
embedded in laminar disks.

The situation is very different in turbulent disks (Nelson
& Papaloizou 2003; 2004; Nelson 2005; Johnson et al. 2006).
The large scale fluctuations of the disk surface density un-
der MRI turbulence exert a stochastic torque onto the core.
Consequently, the evolution of the core’s semi major axis resem-
bles a random walk. For at least some of the cores, the dynamical
lifetime against collisions with the star can increase substantially
relative to the non-turbulent case, dominated by type I migra-
tion (Nelson 2005). However, the problem is that the stochastic
torque exerted by turbulent fluctuations also excites the orbital

eccentricities of cores and planetesimals. This inhibits accretion
because mutual planetesimal collisions become disruptive and
runaway growth (which is effective only when the core’s escape
velocity is large relative to the velocity dispersion of the plan-
etesimal population) is triggered only for bodies more massive
than about Ceres or Pluto. Thus, we are confronted with a co-
nundrum. If we invoke turbulence to solve the core’s type I mi-
gration problem, we cannot grow the core in first place; if we
invoke the core’s growth in a low-turbulent portion of the disk
(the so-called “dead zone”; Gammie 1996; Stone et al. 1998),
then we cannot avoid type I migration.

Some possibilities have been proposed in order to avoid
type I migration in non-turbulent (e.g. laminar) disks. Masset
et al. (2006b) found that, due to non-linear effects, the migra-
tion rate is strongly reduced (or even halted) for a core of about
10–20 Earth masses (M⊕), the exact value depending on disk
parameters. Paardekooper & Mellema (2006) found that inward
type I migration could be reduced or reversed in non-isothermal
discs, due to changes in the gas density in regions leading and
trailing the planet.

The “planet trap” concept, proposed by Masset et al. (2006a),
provides an alternative, appealing possibility, that we explore
more in detail in this paper. The planet trap results from the bal-
ance between the (negative) differential Lindblad torque, usually
responsible for type I migration (Ward 1997), and the (positive)
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coorbital corotation torque that is exerted if the planet is in a por-
tion of the disk characterized by a steep and positive density gra-
dient in the radial direction. The name “planet trap” comes from
the fact that planetary embryos, migrating towards the central
star, stop when they encounter the aforementioned density gra-
dient, as if they were captured into a trap (see figures in Masset
et al. 2006a or Fig. 2 in this work). Notice that a positive density
gradient in the disk also acts as a trap for small planetesimals
suffering gas-drag. In fact, elsewhere in the disk the gas orbits
around the star with sub-Keplerian speed because of a negative
pressure gradient. This forces the planetesimals to drift inwards.
However, at a positive density gradient, the pressure gradient is
also positive, so that the gas is super-Keplerian. Consequently,
planetesimals migrating inward because of gas drag would get
trapped at the point where the rotation profile transitions be-
tween sub and super-Keplerian values. This would clearly help
the buildup of a large core located at/near the planet trap.

A density gradient responsible for the onset of a planet trap
is expected to exist at the transition between the inner, turbulent
portion of the disk and the dead zone, because the dead zone
is characterized by a smaller transport coefficient (or turbulent
viscosity). This opens the intriguing possibility that giant-planet
cores form in the dead zone (where the dispersion velocities are
low and accretion can be effective) but are not lost by type I
migration because of the planet trap at the inner edge of the dead
zone.

The location of the inner edge of the dead zone is very uncer-
tain. Models of disk chemistry (see for instance Ilgner & Nelson
2006a) suggest that only the region interior to 0.2 AU is active
(due to thermal ionization of potassium), with the dead zone ly-
ing outside this region. However, models accounting for the dif-
fusion of free charges from the upper, ionized layers of the disk
down to the mid-plane (Ilgner & Nelson 2006b; Turner et al.
2007) suggest that the magneto-rotational instability fills the
whole thickness of the disk up to at least 5 AU, under favourable
circumstances. Moreover, Chiang & Murray-Clay (2007) argued
that the boundary between the active zone and the dead zone
moves outward with time. A gas density gradient suitable for the
creation of a planet trap could also be caused by the partial de-
pletion of the inner few AUs of the disk by winds driven by the
magnetic field (Ferreira et al. 2006). Notice that there is a grow-
ing body of evidence for the existence of transition disks with
inner cavities of several AUs in size (see for instance Forrest
et al. 2004; Calvet et al. 2004, 2005; Bergin et al. 2004; Pietu
et al. 2006). So, the location of the planet trap is an open is-
sue, but it is not excluded that it can be several AUs away from
the central star. By considering that the planet trap might have
played a role in the formation of the cores of the giant planets
of our solar system, we implicitly assume that it was located at
about 5 AU.

The location and effectiveness of the planet trap depend on
the disk properties, but are the same for a large variety of em-
bryo’s masses. Thus, all planetary embryos tend to go to the
same location (see for instance Fig. 3 by Masset et al. 2006a).
Masset et al. conjectured that, for this reason, the planet trap
might be a sweet spot for the rapid accretion of a massive plan-
etary core from mutual collisions of embryos. However, they
did not test this conjecture with numerical simulations. Actually,
Fig. 3 by Masset et al. is very misleading. The figure super-
poses the evolution of many embryos of multiple masses, each
of which integrated separately. Neither direct nor indirect pertur-
bations among the embryos were taken into account. Thus, the
clustering of embryos at the planet trap can be artificial.

Terquem & Papaloizou (2007) took the opposite attitude
concerning the relevance of the planet trap. They argued that, in
a multi-embryo system, embryo-embryo scattering could move
the semi major axis of an embryo across the density gradient
into the inner disk, where type I migration would resume again.
Moreover they speculated that the interaction among the em-
bryos at the vicinity of the trap would excite their orbital ec-
centricities; embryos on eccentric orbits would only sample the
density gradient for a fraction of the orbit and, consequently,
they would feel a reduced corotation torque.

In summary, the actual role of the planet trap for the accre-
tion and preservation of giant-planet cores from a system of mul-
tiple planetary embryos is not clear, and different outcomes can
be legitimately expected. The purpose of this paper is to conduct
specific hydrodynamical simulations of the dynamics of massive
bodies in the vicinity of the planet trap. In Sect. 2 we start by pre-
senting the numerical scheme that we use in the simulations and
in Sect. 3 we describe our set-up for building the required sur-
face density gradient and identifying the location of the planet
trap. We then proceed in sequence, making the problem more
complex step by step. In Sect. 4 we investigate the dynamics of
two planetary embryos, initially on distant orbits, as a function
of their masses and mass ratio. In Sect. 5, we study the dynam-
ics of two embryos on unstable orbits, scattering off each other.
Finally, in Sect. 6, we consider a system with many (i.e. 10) plan-
etary embryos, initially of equal masses.

Several simulations of the dynamics of multiple proto-
planets in a gas disk have been presented in the literature.
Papaloizou & Szuszkiewicz (2005) studied the the migration-
induced resonance trapping in a system of two planets with
masses in the Earth mass range. McNeil et al. (2005), Cresswell
& Nelson (2006) and Terquem & Papaloizou (2007) stud-
ied the migration of multiple proto-planetary embryos. These
studies used either N-body integrators with fake forces that
mimic the planet-disk interactions (McNeil et al. 2005; Terquem
& Papaloizou 2007) or fully hydrodynamical simulations
(Papaloizou & Szuszkiewicz 2005) or both (Cresswell & Nelson
2006). In all cases, a classical laminar disk was considered, with-
out a planet trap. The general result is that, after an initial phase
during which some mutual collisions may be possible, the proto-
planets find a relative configuration that is stable, each object
locked in resonance with another. The full system collectively
evolves by type I migration towards the central star. The dif-
ference between our results and this general evolution will en-
lighten the role of the putative planet trap.

2. An hybrid numerical simulation scheme

Because some of our simulations will involve mutual scattering
and collisions among planetary embryos, it is important that the
simulations are done in three dimensions, namely allowing the
orbits to evolve also in inclination. In fact, it is well known that
in a co-planar system the ratio between collisions and scattering
events is artificially large (Chambers 2001), which invalidates
the first generation of planet accretion simulations done in two
dimensions. However, doing a fully three-dimensional simula-
tion of the evolution of the embryos and the disk would be pro-
hibitively expensive, from the computational point of view. For
this reason we have adopted a compromise approach, where the
embryos are allowed to evolve in three dimensions, the disk is
simulated with a two-dimensional grid, and fake damping forces
are applied on embryo inclinations.

Our hybrid (2D+3D) implementation is built on the
code FARGO by Masset (2000a,b). Each massive body is



A. Morbidelli et al.: Building planetary cores at a planet trap 931

identified by its three dimensional positions (x, y, z) and veloc-
ities (vx, vy, vz). As the disk is planar, each cell is identified by
the position of its center (xc, yc). The potential of the body-cell
gravitational interaction is therefore:

U = − GMm√
(x − xc)2 + (y − yc)2 + z2 + ε2

, (1)

where G is the gravitational constant (assumed to be 1), M is
the mass of the body (in solar masses), m is the mass of the
gas in the cell and ε is the so-called smoothing parameter, here
assumed to be 70% of the local thickness of the disk (H/r =
0.05 in all simulations presented in this paper). The smoothing
parameter is intended to mimic the thickness of the disk and not
the inclination of the planet. The functional form (1) has been
chosen in order to have an analytic function that tends to the
usual potential adopted in 2D simulations for vanishing z, and to
the correct Newtonian potential for z � ε. Moreover, because
the smoothing parameter that we adopt is larger than the Hill
radius and the Bondi radius of the embryos, we account for the
torque exerted on the planet by every cell of disk (e.g. with no
torque cut-off; see Masset et al. 2006b for a discussion).

With this potential, the planetary bodies suffer migration and
eccentricity damping, but the inclination is not affected because
the disk cannot support vertical waves. In reality, the disk also
damps the planet’s orbital inclination (Lubow & Ogilvie 2001).
Thus, following Tanaka & Ward (2004), we mimic this damping
effect by exerting an acceleration on the planet’s vz equal to

Fdamp,z = M

(
Σg

c4
s

)
Ω(2Ac

zvz + As
zzΩ) (2)

where Σg is the mean surface density of the gas on an annulus lo-
cated at the planet’s current radial distance, cs is the local sound
speed and Ω is the Keplerian angular velocity. The constants Ac

z
and As

z are given by Tanaka & Ward (2004). Tanaka & Ward’s
theory is linear, and valid for small inclinations (and eccentrici-
ties). More recently, Cresswell et al. (2007) studied the damping
of eccentricity and inclination with 3D numerical simulations
and found that, for large initial values of e and/or i, the damp-
ing is slower than predicted by the linear theory. However, the
similarity between the damping rates of e and i still holds. Thus,
here we tune empirically the coefficients Ac

z and As
z in (2) by a

multiplicative factor, so that the resulting damping on the incli-
nation occurs in most occasions on the same timescale of the
damping of the eccentricity, which is self-consistently computed
by our hydrodynamical code. After several tests, the multiplica-
tive factor was set equal to 0.1 (i.e. Tanaka and Ward formula
was divided by a factor of 10). As an example, Fig. 1 shows the
resulting evolution of the eccentricity and of the inclination after
two scattering events in one simulation that will be described in
Sect. 6. With this choice of the multiplicative factor, the damping
timescales of both quantities essentially coincide. We acknowl-
edge that, for small inclinations, the real damping rate of the in-
clination should be faster than the one that we impose. A faster
inclination damping rate would increase somewhat the probabil-
ity that embryos undergo mutual collisions, in particular in the
cases where the scattering phase is protracted (as in the multi-
embryo simulation of Sect. 6). Because in this paper we do not
intend to study the planet accretion rate from a quantitative point
of view, but rather to investigate the qualitative aspects of the dy-
namics of systems of embryos in the vicinity of a planet trap, we
think that having inclination damping rates that might be smaller
in some cases than the real ones should not be a severe limitation.

As in FARGO, the gravitational interactions among the mas-
sive bodies and their interactions with the star are integrated with

Fig. 1. The evolution of the eccentricity (black curve) and inclination
(in radians; gray curve) of an embryo undergoing scattering from other
objects in the system. Notice the good agreement between the damping
timescales of eccentricity and inclination after each major scattering
event.

a fixed time-step Runge Kutta integrator (Steiner 1996) of 5th or-
der. The choice of a fixed time-step is quite mandatory in the
architecture of the code, and, in principle, it may fail to give an
accurate evolution in case of very close encounters among the
embryos. However, the time-step, imposed by the so-called CFL
condition (Masset 2000a) for the correct simulation of the gas
dynamics, is very small, of order of 1/180 of the orbital period
at our unit of distance (a = 1), so that the simulation should be
correct in most cases. Again, we stress that we are more inter-
ested in this work on the qualitative dynamics of embryos in the
vicinity of the planet trap, rather than in its quantitative aspects
(which would not be accurate anyway given the limitations of
the two dimensional treatment of the gas disk).

Our implementation of the Runge Kutta algorithm searches
for physical collisions among the embryos. This is done by com-
puting, at each time-step, the hyperbolic arc of an embryo rela-
tive to each other one, and by confronting the minimal approach
distance along this arc with the physical sizes of the bodies. For
the physical radii, we assume for simplicity that the bulk density
of the objects is 2g/cm3 and that our unit distance is the astro-
nomical unit. If the unit of distance or the bulk density were
larger (smaller), the physical collisions would result less (more)
frequent than in our simulations. We assume that all collisions
are accretional. When two embryos collide, one embryo is sup-
pressed from the simulation, while the other one acquires the
sum of the masses and its velocity is changed so that the linear
momentum of the two colliding embryos is carried by the sur-
viving one.

3. Simulation set up

In all our simulations, the disk extends from 0.4 to 3 in radius,
and the 2D grid has resolution 260 × 450 in radius and azimuth,
respectively. The disk aspect ratio is 5% at all radii. To set a
surface density profile with a positive gradient around a = 1 we
proceed as follows (see also Masset et al. 2006a). The viscosity
of the disk is set as a function of radius. More precisely, inside
r = 0.9 the viscosity ν is given with an α prescription (Shakura
& Sunyaev 1973), with α = 6 × 10−3. Between r = 0.9 and
r = 1.1, the viscosity decreases linearly as

ν = ν(r = 0.9) × (4.857 − r × 4.2857).
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Fig. 2. Top: the equilibrium surface density distribution of the disk, with
the steep surface density gradient at r = 1, obtained with the viscosity
and boundary conditions prescription illustrated in the text. Bottom: the
evolution of the semi major axis of a 10 M⊕ object, in the disk shown
on the left panel. The object is rapidly captured into the planet trap.
This simulation is used to determine the location of the trap, for the
subsequent runs.

In the disk beyond r = 1.1, the viscosity is given again with
an α prescription, but with α decreased by a factor 4.857−1.1 ×
4.2857 = 0.143 with respect to the inner disk.

In a first simulation, we let the disk evolve for 15 000 orbits
at a = 1, without any planetary body in it. The initial surface
density distribution increases linearly from 2.5× 10−4 at r = 0.4
to 1.7× 10−3 at r = 3 in the units specified above. The boundary
conditions preserve the surface density at the border of the grid,
and act as sources or sinks of mass. Under this setting and the
viscosity prescription described above, the disk evolves rapidly
to a new equilibrium configuration, illustrated in top panel of
Fig. 2, that exhibits the desired surface density gradient.

We then use the final gas distribution of this simulation as an
input for a new simulation, in which we release a 10 M⊕ core
at r = 1.25, with a small (e.g. ∼10−3) eccentricity and a null
inclination. The core evolves inward rapidly and gets caught at
the planet trap (see bottom panel of Fig. 2). Notice the accel-
eration of the inward migration, as the core approaches the trap,
already discussed by Masset et al. (2006a). Also, the evolution of
the semi major axis is not monotonic, but presents large oscilla-
tions, that become very pronounced after the capture in the trap.
This is due to the existence of a vortex, produced by a Rossby
instability at the summit of the surface density gradient, where

the vortensity has a local maximum (Masset et al. 2006a). The
planet trap is located inside the orbital radius of the vortex, at a
distance equal to a few times H/r. Thus, the synodic period be-
tween the core and the vortex is of order P× r/H, where P is the
orbital period, and corresponds to the oscillation period visible
in Fig. 2.

Because the planet trap mechanism is independent of the
planet’s mass, in the simulations of the following sections, when-
ever we need to place a planetary embryo in the trap, we simply
adopt as initial conditions the final output of the simulation in
the bottom panel of Fig. 2 and just reset the mass of the body.

4. Dynamics of two embryos on initially separated
orbits

Our first set of simulations accounts for two planetary embryos,
the more massive of which is initially placed at the trap. The
lighter embryo is placed initially at a = 1.35, on a quasi-circular
orbit (e ∼ 10−3) with an initial inclination of ∼10−2 radians. We
have done three simulations, with masses of the embryos pairs
equal to 10 and 5 M⊕, 5 and 2.5 M⊕, 2 and 1 M⊕. Figure 3 shows
two examples of evolution, from the first and the last simula-
tion. The outer object is represented by three curves, denoting
its perihelion distance, semi major axis and aphelion distance,
respectively, so that the evolution of the eccentricity can also be
captured by eye (when the orbit is circular the three curves are
superposed). For the inner embryo, only the semi major axis is
plotted versus time.

In all cases we observe that, after some inward migration,
the outer embryo stops. In none of the cases the outer embryo
reaches the planet trap. Thus, neither the conjecture by Masset
et al. (2006a) – namely that embryos cluster at the planet trap
and accrete with each other – nor that by Terquem & Papaloizou
(2007) – that embryos scatter each other off the trap, or become
eccentric and insensitive to the planet trap mechanism – appears
to be true.

The mechanism that stops the inward migration of the outer
embryo depends on the embryo masses. If the embryos are quite
small as in the 2–1 M⊕ simulation (as well as in the 5–2.5 M⊕
one, not illustrated here), the outer embryo is trapped in a mean
motion resonance with the inner one (the 4:5 resonance for the
case illustrated in the top panel of Fig. 3, for 1000 < t < 6000).
When resonance trapping occurs, the eccentricity of the outer
embryo is enhanced to a non-zero equilibrium value. The direct
perturbation of the inner embryo onto the outer one is crucial
in this dynamical evolution. To illustrate this, after 6050 orbits
(time marked by the leftmost vertical dashed line on the top
panel of Fig. 3), we suppress the direct perturbations between
the embryos. Immediately, the inward migration of the outer em-
bryo starts again, and the eccentricity is rapidly damped. After
6200 orbits (time marked by the rightmost vertical dashed line
on the top panel of Fig. 3), we switch on again the direct per-
turbations between the embryos. Then, the outer embryo is cap-
tured into the next mean motion resonance (the 5:6 resonance),
which leads to eccentricity excitation again.

Conversely, if the embryos are massive, as in the 10–5 M⊕
simulation, the outer embryo is repelled by the inner one through
indirect perturbations, that is through the modifications in the
disk surface density created by the first embryo. To demonstrate
the dominant role of the indirect perturbation, again we suppress
the direct perturbations between the embryos after 4200 orbital
periods (time marked by the vertical dashed line in the bottom
panel of Fig. 3). The evolution of the bodies does not change



A. Morbidelli et al.: Building planetary cores at a planet trap 933

Fig. 3. The evolution of two embryos in presence of a planet trap. The
outer body is represented by three curves, denoting perihelion distance,
semi major axis and aphelion distance of its orbit. The inner embryo is
initially placed at the trap. Because its eccentricity remains small only
the evolution of its semi major axis is plotted. Top panel: the masses
of the inner and outer embryos are 2 and 1 M⊕ respectively. Bottom
panel: the masses of the inner and outer embryos are 10 and 5 M⊕
respectively. The vertical dashed lines show the times at which the di-
rect perturbations between the embryos are switched off and on, respec-
tively. See text for discussion.

significantly in this case. Notice also that the eccentricity of the
bodies remains small all the time. Thus, the outer embryo is not
captured in a mean motion resonance with the inner one.

To investigate which kind of indirect perturbation repels the
outer embryo in this case, we compare in Fig. 4 the surface den-
sity profile of the disk in this simulation (black curve) with the
one obtained in the 2–1 M⊕ simulation (gray curve). In the case
of the 2–1 M⊕ simulation, the surface density profile is essen-
tially the unperturbed one, shown on the top panel of Fig. 2. The
little “bump” visible at r ∼ 1.2 is due to the aforementioned
vortex. The outer embryo is in a region of the disk where the
surface density profile is flat, so that it would suffer type I mi-
gration unless it is restrained by a resonance with the inner em-
bryo. In the case of the 10–5 M⊕ simulation, the surface density
profile is strongly modified. The “bump” due to the vortex is
more pronounced. Also, the torque exerted by the inner embryo
on the outer disk forces the surface density to acquire a posi-
tive gradient at equilibrium in the 1.2–1.8 radial range. This pro-
duces a new planet trap, in which the outer embryo is eventually
captured.

Fig. 4. Radial profiles of the azimuth-averaged disk surface densities
in the case of the 10–5 M⊕ simulation (black curve), of the 2–1 M⊕
simulation (gray curve) and in absence of embryos (dashed curve). The
radial location of each embryo is reported with a filled circle, with size
proportional to the object’s physical radius. The ordinate of each cir-
cle is arbitrary, and has been chosen so to please each embryo on the
corresponding surface density curve, for illustrative purposes.

In all the simulations described above, the inclination of the
outer embryo damps continuously and exponentially, down to
values of order 10−4 radians or smaller. This is due to the fact
that close encounters with the inner embryo do not occur, and
that neither mean motion resonance trapping nor the indirect
perturbations excite the inclination. Consequently, the damping
effect exerted by the disk, forced through the prescription (2),
dominates the evolution of the inclination.

The lesson that we derive from these experiments is that, at
least in these configurations, the planet trap is effective to prevent
type I migration of a system of two embryos. Close approaches
and collisions between embryos do not occur. Thus, the growth
of the embryos can be due only to the sole accretion of small
planetesimal, as in a classical oligarchic growth mode (Kokubo
& Ida 1998). The case of a reversed mass ratio between the em-
bryos (i.e. the case where the outer one is the more massive) will
be discussed in the second part of the next section.

All the simulations illustrated above have been conducted
in the framework of a laminar disk. It is interesting to investi-
gate how the embryos’ dynamics can be affected by large scale
turbulent fluctuations in the disk. Strong turbulence might in
principle destroy the planet trap mechanism, or inhibit resonant
trapping and isolation of the two massive bodies. Turbulence
is expected to arise in the disk due to Magneto-Rotational-
Instabilities (MRI; e.g. Balbus & Hawley 1991). Full MHD sim-
ulations are beyond the scope of this paper, but we can mimic
the effect of MRI turbulence adding a stochastic planar torque of
suitable amplitude on the embryos in our laminar hydrodynami-
cal simulations. The recipe that we follow for the generation of
the stochastic torque is that implemented by Ogihara et al. (2007;
see formulae 5–7 in that paper). In turn, Ogihara et al. implemen-
tation is based on the scheme proposed in Laughlin et al. (2004),
which was calibrated on the results of MHD simulations. Notice,
however, that MRI turbulence does not only induce fluctuations
in the gas density distribution, but also in the gas velocity field.
These velocity fluctuations may affect the horseshoe streamlines
in the corotation region (Papaloizou et al. 2004), and therefore
the magnitude of the corotation torque. Consideration of this ef-
fect goes beyond the scope of this paper, so the fluctuations in
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Fig. 5. The continuation of the simulation in the top panel of Fig. 3,
but adding the effects of turbulent fluctuations in the gas surface density
distribution of relative amplitude of about 1%. The vertical dashed line
marks the time when the stochastic (turbulent) torque is switched on.

the velocities are neglected in these approximate implementa-
tions of the stochastic torque.

We have continued the simulation presented in the top panel
of Fig. 3, implementing the stochastic torque on both embryos.
We have done three simulations, with γ = 10−1, 10−2 and 10−3,
where γ is the dimensionless parameter identified by Ogihara
et al. as indicator of the “turbulence strength”, corresponding
approximately to the relative amplitude of the fluctuations of
the gas density field (Fig. 5 presents the result for γ = 10−2).
In all cases, the stochastic torque does not destroy the planet
trap mechanism. The inner embryo keeps oscillating around
a = 1.13. This is in agreement with the similar tests performed
by Masset et al. (2006a), although with a simpler recipe for the
stochastic torque. The trapping of the outer embryo in the mean
motion resonance is inhibited in the cases with γ = 10−1 and
10−2. In fact, the embryo leaves the 5:6 resonance as soon as
the stochastic torque is switched on, and is not trapped perma-
nently in any other mean motion resonance. Thus, it migrates
stochastically towards the inner embryo, until it has a close en-
counter with it. In the example of Fig. 5 the close encounter scat-
ters the inner embryo into the inner part of the disk, whereas the
lighter embryos is scattered onto an orbit with much larger semi
major axis and eccentricity (see however Sect. 5 for a more de-
tailed discussion of the outcome of embryo-embryo scattering).
In the case of reduced turbulence strength (γ = 10−3), however,
the outer embryo is not released from the resonance. We do not
show a figure for this case, because the evolution of the system
is indistinguishable from that shown in the top panel of Fig. 3.

The MHD simulations of Laughlin et al. (2004) suggest
that γ should be of order 10−3 to 10−2 in the active zone of the
disk, although large uncertainties exist. In the dead zone, how-
ever, the turbulence strength should be much smaller. Recall that
the planet trap should be positioned at the transition between
the active and the dead zone. Thus, the outer embryo, which
is beyond the planet trap location, should evolve in the dead
zone. Although waves generated by the density fluctuation in the
live zone can propagate into the dead zone, we expect that the
stochastic perturbations on the outer embryo have a reduced in-
tensity. Therefore, from the experiments above, we expect that it
is unlikely that the outer embryo could escape trapping in mean
motion resonances with the inner embryo. Notice also that the
strength of mean motion resonances scales with the square root

Fig. 6. The evolution of two embryos on initially close, unstable orbits,
in the vicinity of a planet trap. Each body is represented by three curves,
denoting perihelion distance, semi major axis and aphelion distance of
its orbit. The time is plotted in logarithmic scale in order to enlighten
the early phase of mutual scattering between the two embryos.

of the embryo masses so that, for more massive embryos, the iso-
lation mechanism should be even more robust against the effects
of turbulence.

5. Dynamics of two embryos on unstable,
scattering orbits

If the embryos are locked into a mutual mean motion resonance,
their orbital separation remains constant. However, if at the same
time the embryos are growing by accretion of planetesimals,
they can become too massive for their orbital separation to be
stable. In fact, the minimal orbital separation that allows stabil-
ity depends on the masses of the bodies (Gladman 1993). Thus
– despite the results of the previous section – we can expect that
the embryos eventually can achieve a phase of mutual scattering.

To explore the outcome of an instability phase in the vicinity
of the planet trap, we have done a new series of three simula-
tions, in which the inner embryo (2 M⊕) is placed at the trap,
and the outer one (1 M⊕) is placed at a ∼ 1.17, close enough
to the inner embryo to be unstable from the beginning of the
simulation. The initial eccentricity and inclination of the outer
embryo are again of order 10−3 and 10−2 radians, respectively.

An example evolution from one of these simulations is illus-
trated in Fig. 6. At the first close encounter, the embryos acquire
eccentric orbits, that are much more separated in semi major axis
than the initial ones. Then, there is a competition between two
processes: the damping of the eccentricities of the embryos ex-
erted by the disk (Tanaka & Ward 2004) and the excitation of
the eccentricities due to the repeated mutual encounters between
the embryos. The first process (eccentricity damping) is more ef-
fective. Thus, the eccentricities of both embryos decay, and the
objects become dynamically decoupled (no close encounters are
possible any more). The outer embryo starts to suffer an inward
type I migration, until it is trapped into a mean motion resonance
(the 6:7 in this case) which, as in the previous section, increases
the eccentricity up to a new, equilibrium value. A stable config-
uration is achieved, characterized by an orbital separation larger
than the one from which the simulation was started (the final
semi major axis of the outer embryo stabilizes at 1.26, while it
started at 1.17).
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Fig. 7. As in the left panel of Fig. 3, but for reversed values of the
masses.

This kind of evolution is common to two out of three of our
simulations, and suggests that embryos can increase their orbital
separation as they grow, through short instability phases of mu-
tual scattering, followed by eccentricity damping and resonance
trapping. The situation is similar to that found in the simula-
tions of runaway growth of embryos in particle disks (Kokubo
& Ida 1996), where it was also noticed that the mutual orbital
separation of the embryos increases with the embryos’ masses.
However, in one of our simulations the evolution is different. The
outer, lighter embryo is scattered inward, into the inner part of
the disk, as expected by Terquem & Papaloizou (2007), where it
will be free to migrate towards the central star. In this case the
planet trap retains only the more massive embryo.

In all simulations, the scattering events excite the inclination
of the more massive embryo to ∼0.05 radians and the inclination
of the less massive embryo to ∼0.1 radians. After each scattering
event, the inclination is damped exponentially, as imposed by
Eq. (2).

Because they involve some scattering, we present in this sec-
tion also simulations of two embryos initially on separated orbits
as in Sect. 4, but in which the more massive embryo is origi-
nally the outer one. We have done three simulations of this kind,
with masses of the embryos pairs equal to 1 and 2 M⊕, 1 and
2.5 M⊕, 5 and 10 M⊕. An example evolution is given in Fig. 7,
taken from the first of these simulations, but common to all of
them. Because it is less massive, the inner embryo cannot pre-
vent the migration of the outer embryo by trapping it in an outer
mean motion resonance. One could expect that the inner embryo
is pushed inwards from the trap by the outer embryo. However,
this does not occur, because the corotation torque at the planet
trap is stronger than the Lindblad torque felt by the outer em-
bryo (see Fig. 1 in Masset et al. 2006a), despite the latter being
more massive. What happens is that the orbit of the inner embryo
tends to become eccentric when the outer one is trapped into a
resonance. Eventually the resonant configuration is broken, and
the two embryos have close encounters with each other. A possi-
ble outcome of the close encounter phase is a switch of position
between the two bodies, with the more massive embryo taking
the position of the lighter one at the planet trap. At this point, the
evolution is analogous to that illustrated in Fig. 6. In some cases,
the inner lighter embryo is scattered into the inner disk, while
the outer, more massive embryo is scattered onto an orbit with
large semi major axis and eccentricity. The eccentricity of the or-
bit of the more massive embryo is eventually damped and type I

Fig. 8. The evolution of the semi major axes of 4 cores with masses
equal to 5, 10, 14 and 14 M⊕ for the initially innermost to the outermost
one. The 5 M⊕ core is initially placed at the planet trap. The system is
unstable and evolves to a configuration where one of the most massive
cores takes the position at the trap.

migration brings it into the planet trap. In none of our three sim-
ulations we have observed a stable configuration with the lighter
embryo at the planet trap and the more massive embryo at larger
distance from the star.

Therefore, these results suggest that stable, non-migrating
configurations of embryos, in which the the innermost object is
the least massive one, should be rare. This is quite in contrast
with the mass hierarchy of the cores of the giant planets of our
solar system, where it seems (although the error bars are large)
that the core of Jupiter is less massive than that of Saturn, which
is in turn less massive than that of Uranus or Neptune (Guillot
1999). As a confirmation that a system of 4 cores with masses
increasing with heliocentric distance is unlikely to be stable, we
placed a 5 M⊕ core at the planet trap (a ∼ 1.13), one core of
10 M⊕ at a ∼ 1.27 and two cores of 14 M⊕ at a ∼ 1.45 and
a ∼ 1.67 respectively. These core masses are consistent with
those inferred for the current cores of the giant planets, given the
large uncertainties. We did 2 simulations, with slightly differ-
ent initial locations of the cores. Both showed similar evolutions
(see Fig. 8 for one example). The second embryo pushed its way
towards the planet trap, and eventually destabilized the inner em-
bryo. The lightest embryo was scattered into the inner part of the
disk, and the second lightest one was scattered outward, beyond
the two most massive cores. One of the most massive cores even-
tually took the place at the planet trap.

If the current cores of the giant planets have indeed masses
that increase with heliocentric distance, the experiments above
suggest one of the two possibilities: (i) either the core of Saturn
completed its growth after that Jupiter had already acquired a
substantially massive atmosphere, and similarly for Uranus rel-
ative to Saturn or (ii) the core of Jupiter and (partially) that of
Saturn have been eroded by convective motion in the massive
atmospheres of these giant planets, and they were significantly
more massive when they formed (so that the mass hierarchy that
allows stability was respected).

6. Dynamics of a system of multiple embryos

The results of the previous sections show that a system with
two planetary embryos tends to find a stable configuration in
which the bodies are isolated from each other. However, the
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Fig. 9. The evolution of the semi major axes of 10 embryos of 1 M⊕
each in the vicinity of the planet trap. The big red and black dots mark
three collision events recorded in this simulation.

simulations with the 4 cores of the giant planets suggest that,
with increasing number of bodies, the evolution can be more
chaotic. Indeed, in more crowded systems of planetary embryos,
we may expect that the dynamics is very different, as embryos
can have more difficulties in finding a mutual orbital spacing that
is large enough to ensure stability.

In this section we present a simulation with 10 embryos, each
of one Earth mass. The inner one is placed at the planet trap at
a ∼ 1.13. The others are placed at increasing semi major axes, so
that the initial orbital separation between two adjacent embryos
is equal to 5 mutual Hill radii. The outermost planetary embryo
is therefore placed at a = 2. The initial eccentricities of all em-
bryos are of order 10−3. The initial inclinations are of order 10−2

radians, and the longitudes of the ascending node are alternated
by 180 degrees, relative to the neighboring embryo.

The evolution of the embryos is illustrated in Fig. 9. As ex-
pected, the system evolves much more chaotically than in the
previous simulations. While the embryos at, or close to, the trap
tend not to migrate, the outermost ones drift towards the star
by type I migration. Some resonance trapping occurs, but these
resonant phases do not remain stable for long time. Mutual scat-
tering therefore dominates the dynamics and lasts for a much
longer time than in the simulations with only two embryos pre-
sented in the previous sections. The embryo at the planet trap
can be kicked out of the trap and its place can be taken by an-
other embryo. There are episodes where two embryos share the
same orbital semi major axis, in a relative tadpole motion (for in-
stance the brown and light blue embryos between t ∼ 1000 and
t ∼ 2000, or the brown and the red embryos between t ∼ 13 500
and t ∼ 15 000). Planets on mutual tadpole orbits have already
been observed in the simulations by Cresswell & Nelson (2006).
We also find cases of embryos temporarily on a mutual satellite
motion (the red and the blue embryos between t ∼ 5500 and
t ∼ 7500, and the red and green embryos between t ∼ 10 000
and t ∼ 11 500). These episodes are well visible, as they are
characterized by large oscillations of the semi major axes of the
concerned embryos. To our knowledge, this is the first simula-
tion in which planets are found to trap each other in satellite
motion. A satellite capture requires some kind of energy dissi-
pation, presumably due to the interaction of the objects with the
disk. Given the limited resolution of the grid used for the hydro-
dynamical calculation, we cannot exclude that the dissipation is

artificially large, so that episodes of satellite motion might be
much more rare in reality.

Due to the protracted phase of mutual encounters, three mu-
tual collisions happen in this simulation. Two involve the embryo
whose evolution is shown in red, and one the embryo whose evo-
lution is shown in black. The collision events are marked by the
big red and black dots respectively.

The evolution of the embryos calms down at t ∼ 21 000. At
this time, 4 of the 7 surviving embryos have been kicked into
the inner part of the disk (a ≤ 1). These embryos do not mi-
grate significantly, because the surface density of the inner disk
in our simulation is very low. If the inner disk had been more
massive, these embryos would have started a monotonic inward
type I migration, as in Cresswell & Nelson (2006) simulations,
and would have eventually been eliminated by a collision with
the star. The black embryo (which has grown to 2 M⊕) has taken
the place at the planet trap. It seems to prevent the migration of
the red embryo (3 M⊕) and magenta embryo (1 M⊕) outside of
its orbit, similarly to what we have seen in the previous sections.
Because the red embryo is the most massive, it might be possible
that a continuation of this simulation could show an exchange
between the orbits of the red and the black embryos, similarly to
what happened to the red and magenta embryos at t ∼ 21 000.

Throughout the evolution, the inclinations of the embryos are
excited by the scattering events, up to a few tenths of a radian,
and then damp exponentially, until the next scattering event oc-
curs. Figure 1 shows the evolution of the inclination of one of
the embryos.

The comparison of this simulation with those of Cresswell &
Nelson (2006) is quite instructive. Here, because of the presence
of the planet trap, which is an effective obstacle to migration,
the embryos cannot find as easily a mutual stable orbital spac-
ing. Thus the scattering phase is much more protracted in time,
and collisions are more likely to occur. In addition, in Cresswell
and Nelson simulations, all the embryos eventually drift towards
the central star, while here three embryos are saved from mi-
gration, at the trap or just beyond it. Therefore, the planet trap
appears to be an effective mechanism to prevent type I migration
of some embryos, even in originally crowded systems. In these
systems, the presence of the trap helps mutual collisions to oc-
cur and favors the growth of larger objects, even if not in the way
envisioned in Masset et al. (2006a). Also, the trap acts like a fil-
ter, in the sense that, out of many initial embryos, only a few are
allowed to survive in a stable non-migrating configuration. As
long as the system is too crowded, stability cannot be achieved,
and the number of embryos has to decay through collisions, ejec-
tions or injections into the inner disk. Eventually, a single planet
trap helps the formation and the preservation of a few cores. This
result may provide an explanation of why our solar system has
only a limited number of giant planets, and no intermediate mass
(of few Earth masses) planets in between them.

7. Conclusions

We have conducted a series of hydrodynamical simulations of
the evolution of planetary embryos in a gas disk. The simula-
tion scheme allows the embryos to evolve in three dimensions,
whereas the disk is modeled with a 2 dimensional grid. A damp-
ing force on the inclinations of the embryos is applied. The disk
has been built with a positive density gradient at r ∼ 1, so that a
“planet trap” (Masset et al. 2006a) is produced at r ∼ 1.1.

Our simulations show that, because the planet trap is an ob-
stacle to type I migration, a crowded system of embryos can not
drift in concert towards the central star, preserving the relative
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mutual separations among the embryos. Instead, the system be-
comes violently unstable. Collisions between embryos become
possible. Some embryos can be scattered into the inner part of
the disk, where the planet trap mechanism is not effective any
more to prevent their migration. The system stabilizes when the
number of embryos behind the planet trap decreases down to a
few. This may explain why our solar system has only a small
number of giant planets.

A system with two (probably a few) embryos tends to find
a stable, non-migrating configuration. The embryo at the planet
trap restrains the other embryo(s) from migrating, through the
action of its outer mean motion resonances, or (if its mass is
large enough) through indirect perturbations. In this configura-
tion, the embryos can continue to increase their mass in solid
elements only by accreting small planetesimals, in a classical
oligarchic growth regime. If they become too massive with re-
spect to their orbital separation, they can acquire new, more sep-
arated orbits that are again stable and non migrating. This hap-
pens through a short phase of instability, during which mutual
encounters emplace the objects onto orbits with more separate
semi major axes and larger eccentricities, followed by aphase of
eccentricity damping exerted by the disk. During the instability
phases, the more massive embryo typically manages to take po-
sition at the planet trap, the lighter embryo(s) being emplaced on
an orbit at larger semi major axis. Thus, the fact that in our solar
system Jupiter is the giant-planet with the smallest core suggests
that (i) either the completion of the cores of Saturn, Uranus and
Neptune occurred after Jupiter had already acquired a substantial
mass of gas in its envelope (possibly opening a gap and moving
the planet trap to the outer edge of its gap), or (ii) that the the
core of Jupiter (and partially that of Saturn) was originally more
massive and was substantially eroded by convective motion in
its atmosphere.

These results and considerations should not be limited to the
planet trap scenario. Their validity should be more general. They
should apply to any case in which some mechanism prevents an
inner embryo to have a free type I migration.
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