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Summary
By improving disease risk prediction, polygenic risk scores (PRSs) could have a significant impact on health promotion and disease pre-

vention. Due to the historical oversampling of populations with European ancestry for genome-wide association studies, PRSs perform

less well in other, understudied populations, leading to concerns that clinical use in their current forms could widen health care dispar-

ities. The PRIMED Consortium was established to develop methods to improve the performance of PRSs in global populations and in-

dividuals of diverse genetic ancestry. To this end, PRIMED is aggregating and harmonizingmultiple phenotype and genotype datasets on

AnVIL, an interoperable secure cloud-based platform, to perform individual- and summary-level analyses using population and statis-

tical genetics approaches. Study sites, the coordinating center, and representatives from the NIHwork alongside other NHGRI and global

consortia to achieve these goals. PRIMED is also evaluating ethical and social implications of PRS implementation and investigating the

joint modeling of social determinants of health and PRS in computing disease risk. The phenotypes of interest are primarily cardiome-

tabolic diseases and cancer, the leading causes of death and disability worldwide. Early deliverables of the consortium include methods

for data sharing on AnVIL, development of a common data model to harmonize phenotype and genotype data from cohort studies as

well as electronic health records, adaptation of recent guidelines for population descriptors to global cohorts, and sharing of PRS

methods/tools. As a multisite collaboration, PRIMED aims to foster equity in the development and use of polygenic risk assessment.
Introduction

As genomic technologies spur progress in several areas of

precision medicine, inequity in translating these advances

to diverse groups has become evident. The historical bias

in sampling for genome-wide association studies

(GWASs) hinders application of the results to diverse

groups, leading to inequity and bypassing potential scien-

tific opportunities such as identifying causal variants,

improving genetic risk prediction, and enhancing under-

standing of the genetic architecture of disease. Conse-

quently, one of the guiding principles of the National

Human Genome Research Institute (NHGRI)’s strategic

vision1 is ‘‘. to commit to systematic inclusion of under-

represented groups in future NHGRI programs and pro-

jects.’’ The American Society for Human Genetics has

also issued guidance stating that ‘‘benefits of genomic

medicine should be accessible to all people, and this
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requires focused efforts to address health inequities and re-

move barriers to increase representation of diverse commu-

nities in genetics and genomics research.’’2

Polygenic risk scores (PRSs) represent a summation of ge-

netic predisposition to disease susceptibility.3 While there

are many potential research and clinical applications of

PRSs, a major focus is on the use of PRSs to refine risk esti-

mation of common diseases beyond clinical risk factors

and family history.3 PRSs could have relevance for most in-

dividuals in a population by refining risk estimates for

common diseases early in the life course when prevention

may bemost effective.4,5 A PRS value in the top 5th percen-

tile of the population distribution for several adult-onset

cardiometabolic diseases and cancer may pose a relative

risk comparable to monogenic etiology for these condi-

tions.6 Individuals with high predicted polygenic risk

may benefit from heightened surveillance or risk mitiga-

tion interventions, a concept that is being prospectively
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tested for several conditions across geographically diverse

healthcare systems by the NHGRI’s electronic Medical Re-

cords and Genomics (eMERGE) Network.7 Given the likeli-

hood of widespread availability of PRSs in the near future,

somemedical professional societies have already identified

potential clinical implementation opportunities as well as

outstanding challenges.8,9

A major hurdle in the clinical use of PRSs is the lower

predictive performance among individuals from under-

studied groups, such as those of African, admixed, or other

diverse ancestry.10–14 For example, a 1-standard deviation

increase in a PRS for coronary heart disease was associated

with an odds ratio of 1.53 in European ancestry individuals

but only 1.27 in African ancestry individuals.10 Despite

several recent advances in PRS methodology, these differ-

ences in PRS performance remain, and are largely due to

significant underrepresentation of human diversity in

GWASs, the primary source data for PRS development.

Population differences in allele frequencies, linkage

disequilibrium, causal variant effect sizes, and gene-gene

or gene-environment interactions15 reduce the portability

of PRSs across groups.16 Several global GWAS meta-ana-

lyses have demonstrated the utility of large cohorts to

discover ‘‘genomic’’ associations17,18; however, individuals

of diverse genetic ancestries remain inadequately repre-

sented in such analyses. Thus, deployment of PRSs in their

present form carries the risk of exacerbating health

disparities.19 In response, and given the ethical and

scientific imperatives, funders such as the NHGRI and

National Cancer Institute (NCI) are taking steps to address

this concern.20

One such step is the creation of the Polygenic Risk

Methods in Diverse Populations (PRIMED) Consortium

by the NHGRI and the NCI to incorporate new GWAS

data and leverage methodologic and computational

advances to bridge the performance gap of PRSs in

diverse groups. The PRIMED Consortium has two pri-

mary objectives: (1) to bring together and harmonize

extant datasets with genotype and phenotype measures

from diverse ancestry groups in support of PRS develop-

ment and evaluation and (2) to develop new methods to

improve polygenic risk prediction across diverse groups

for a broad range of health and disease outcomes. The

consortium is aggregating data on the secure, scalable

Analysis Visualization and Informatics Lab-space

(AnVIL) platform established by the NHGRI21 for central-

ized analyses, as well as implementing coordinated anal-

ysis protocols for federated analyses across affiliated

studies and biobanks. Through the complementary

expertise of consortium members, the use of data and

other resources generated by programs such as the Clin-

ical Genome Resource (ClinGen)22 and All of Us,23 and

collaborations with partner programs such as eMERGE,7

PRIMED is developing, testing, and refining PRSs for

use in diverse groups. In this perspective, we describe

the PRIMED Consortium and organization of its activ-

ities and highlight methodological innovations and early
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products, with the goal of facilitating additional initia-

tives that aim to reduce inequity in genomic medicine.
Consortium structure and approach

PRIMED was established under a ‘‘diversity first’’ principle,

emphasizing use of non-European ancestry data in PRS

methods development and refinement, even if European

ancestry datasets are larger and more frequently used

(see RFA-HG-20-001 in web resources). The consortium

comprises seven study sites, a coordinating center (CC),

NIH program staff, and affiliate members (Figure 1A;

Table S1). Core and affiliate members span 49 institutions

in 12 countries (Figure 1B), collectively providing access to

data from >75 existing studies and consortia. Study sites

were selected based on ability to contribute datasets of

diverse, non-European genetic ancestry with a broad range

of phenotypes and genomic data, as well as member exper-

tise in population genetics and statistical genetics relevant

to PRS methodology. PRIMED investigators are affiliated

with and making use of data from other large-scale

precision health research programs focused on diversity,

including the Million Veteran Program, the All of Us

Research Program, and the NHLBI Trans-Omics for Preci-

sion Medicine (TOPMed) program. Additionally, PRIMED

is fostering collaborations with multiple biobanks across

the world.24 The CC serves the PRIMED Consortium in

supporting four main areas: data sharing, data harmoniza-

tion, analysis and methods, and program coordination.

NIH personnel are closely involved in shaping scientific di-

rection and goals and work with the PRIMED investigators

and the CC to facilitate the programmatic and scientific ac-

tivities of the consortium. External investigators with com-

plementary expertise and/or datasets to contribute are

eligible to join the consortium by application as affiliate

members (see web resources). An external scientific panel

of experts assists the NIH in assessing and guiding the

consortium.
Cloud-based data sharing and analyses

To achieve its goals related to PRS methods development

and evaluation, PRIMED is bringing together many large

datasets with genomic and phenotypic measures from

diverse ancestry groups. The scale and scope of data

sharing among PRIMED investigators within the con-

sortium poses both technical and policy challenges. As a

‘‘consortium of consortia,’’ PRIMED is analyzing individ-

ual- and summary-level data from numerous datasets,

many of which are publicly available via repositories

such as dbGaP, while others are contributed by the study

investigators for consortium use. Collectively, participants

in these studies and consortia identified for primary use in

PRIMED are from over 40 countries around the globe

(Figure S1; Table S2) and include many different ancestries,

nationalities, and racial and ethnic groups (see Table S3).

These data cover a broad range of phenotypes, genomic
nal of Human Genetics 111, 2594–2606, December 5, 2024 2595



Figure 1. Overview of the PRIMED Consortium structure and investigators
(A) The consortium includes study sites, coordinating center, NIH funders, committees, working groups, external advisors, affiliates, and
other partner programs/consortia.
(B) PRIMED investigators are located in 49 institutions across 12 countries.
data types, and diverse genetic ancestries, and they have

varying data use restrictions and access procedures.

Due to the complexity and heterogeneity of data sharing

in PRIMED arising from the various sources of data, a data

sharing working group (WG) was created to develop pol-

icies and processes for data sharing both within the con-

sortium and with the broader scientific community. The

WG developed a data sharing policy (see web resources)

with two primary mechanisms for intra-consortium data

sharing: (1) coordinated dbGaP applications for data acces-

sible via dbGaP and (2) a consortium data sharing Agree-

ment for studies and datasets provided by study investiga-

tors for consortium use. Each of these mechanisms

establish a data sharing circle (i.e., a group of investigators

with permission to access the same data such that the data

can be shared among them collectively) that can be imple-
2596 The American Journal of Human Genetics 111, 2594–2606, Dec
mented on the AnVIL cloud platform via consortium

shared data workspaces, and collaborative analyses can

be performed using a single, centralized copy of the data.

However, some data are not shareable in centralized

consortium workspaces on the AnVIL cloud platform,

e.g., individual-level data from biobanks or datasets under

specific privacy laws such as the General Data Protection

Regulation in the European Union. In these cases, coordi-

nated analysis protocols are distributed for federated ana-

lyses to generate unrestricted summary-level data that

can be shared within the consortium on AnVIL (see the

supplemental methods for additional information).

The data sharing WG also facilitates sharing of con-

sortium-generated data products with the broader scienti-

fic community via AnVIL and/or specialized repositories

in alignment with NIH data sharing policies. The WG
ember 5, 2024



has engaged in policy discussions with NHGRI aimed at

clarifying the definition of genomic summary results

(GSRs) in the context of PRS development and is exploring

ways to share GSRs that require controlled access. These

conversations have prompted further internal policy dis-

cussion at NIH. When feasible, the consortium is releasing

GSRs, including PRS scoring files and GWAS statistics, on

the open access PGS Catalog25 and GWAS Catalog,26

respectively, noting in some cases this is not permissible

when contributing studies are designated as sensitive for

the purposes of GSR sharing (see web resources, NIH GSR

sharing policy). PRS performance metrics are also posted

to the PGS Catalog and a dynamic report of all PRIMED

PRS development or evaluation submissions to the PGS

Catalog is available on the public-facing consortium web-

site (see web resources). While the WG is exploring ways

to release individual-level derived consortium data prod-

ucts (e.g., harmonized phenotypes, imputed genotypes),

as a consortiummaking secondary use of pre-existing data-

sets, this is generally not allowable, e.g., due to the non-

transferability clause of the standard dbGaP Data Use Cer-

tification Agreement.

Phenotype harmonization

Extensive phenotype data are available from studies and

cohorts contributed by the study sites and derive from

two main sources: prospective cohort studies and clinic- or

hospital-based biobanks with linked electronic health re-

cord (EHR) data, such as those in the eMERGE Network.

Harmonizing such data is essential to conducting de novo

GWASs across genetically diverse groups for PRS construc-

tion and methods comparison, keeping in mind different

ascertainment strategies (self-report, diagnosis codes, physi-

cian adjudication) or phenotype definitions such as those

cataloged by eMERGE in the PheKB.27 Other considerations

include use of repeat measurements to reduce noise in

quantitative phenotypes, allowing better capture of true ge-

netic effects,28 and leveraging longitudinal data to develop

PRSs for incident (rather than prevalent) disease.

The consortium established a phenotype harmonization

WG to address the complexities that arise from combining

and harmonizing heterogeneous phenotype data across

many studies. The WG defined phenotype data standards,

formats, ontologies, and metadata requirements to enable

consortium-wide phenotypedata collection and subsequent

harmonization, taking into account procedures developed

in other consortia; e.g., from NHLBI’s TOPMed program,29

the NHLBI Pooled Cohorts Study,30 and eMERGE.27 The

WG identified priority traits and diseases based on public

health burden and study site expertise, which led to four

initial phenotype-domain sub-WGs (cancer, cardiometa-

bolic quantitative traits, cardiovascular disease, and diabetes

outcomes and complications) tasked with establishing

phenotype definitions and harmonization algorithms. The

WG coordinates harmonization efforts across studies, and

study sites upload harmonized phenotype data to the

AnVIL data workspaces maintained by the CC for sharing
The American Jour
with the broader consortium. The consortium developed

its own common data model for data uploaded to AnVIL

data workspaces to accommodate ongoing phenotype

harmonization efforts, heterogeneous study data, and

longitudinal observations (see initial consortium products

section).

Environmental factors and social determinants of health

Environmental exposure differences and gene-environment

interactions may influence the generalizability of PRSs. The

availability of data on social determinants of health (SDoH)

and environmental measures is expected to vary depending

on the cohort type and whether the cohort includes legacy

data only or has ongoing data collection. Prospectively

assembled cohorts may include lifestyle and exposure mea-

sures derived from surveys, but such variables are difficult to

ascertain in EHR-linked biobank cohorts, and income, edu-

cation, and geocode-based linkage with area-level metrics

have been used as surrogates for ‘‘environmental’’ expo-

sures.31 PRIMED investigators are exploring methods to

incorporate environmental measures and SDoH into both

the development and contextualization of PRSs32,33 and

the implementation of multivariable risk models that

include PRSs to evaluate whether such efforts can improve

PRS accuracy within and across groups.33

Due to the complexity of measuring SDoH and environ-

ment and the anticipated importance of these factors for

risk prediction, whether as effect modifiers, mediators,

and/or separate risk factors, the consortium established a

social determinants of health (SDoH) WG to identify and

define relevant SDoH and other environmental pheno-

typic measures to be considered for use in PRIMED. How-

ever, due to differences in availability and definitions of

SDoH and environmental measures across the legacy data-

sets used in PRIMED, harmonization is challenging. There-

fore, the focus of this effort has turned to identifying and

harmonizing variables within select cohorts in support of

specific projects. The WG oversees the harmonization

and documentation of SDoH variables selected for use in

these analyses and collaborates with the phenotype

harmonization WG to meet the consortium data stan-

dards. The SDoH WG is also tasked with developing a con-

ceptual framework to integrate PRSs and SDoH in risk pre-

diction models for diverse groups. The WG is working

closely with the methods WG to incorporate SDoH vari-

ables into PRS analyses and explore their impact on con-

struction, evaluation, and translation of PRSs in diverse

groups, with the intent of developing recommendations

on best practices for selection and use of these measures.

Genotype harmonization

Genomic data available from studies and cohorts contrib-

uted by the study sites include whole-genome sequencing,

genotyping array, genome-wide imputed data, and GSRs

including GWAS summary statistics, allele frequencies,

and genetic ancestry models—e.g., SNP-loadings from

principal components analysis (PCA). Harmonizing these
nal of Human Genetics 111, 2594–2606, December 5, 2024 2597



data is essential to ensure consistent representation of

variant information and to merge genomic information

across the various studies and cohorts for GWAS, meta-

analysis, and PRS development and evaluation. Harmo-

nizing genetic data requires careful consideration to

mitigate potential biases from heterogeneous genotyping

technologies, imputation approaches, and data types.

The genotype harmonization WG was established to

address the complexities of aggregating heterogeneous ge-

netic datasets by formulating quality control (QC) and

harmonization plans that include data standards, formats,

and metadata requirements to enable consortium-wide ge-

notype data collection and integration. All individual-level

genotype data are available in build GRCh38 (liftover is im-

plemented as necessary) and stored in VCF files (though

multiple copies of the data are allowable in different builds

or file formats). Individual-level genotype datasets are

accompanied by variant quality metrics (e.g., allele fre-

quencies, missing call rates, read depth, GQ scores, impu-

tation quality, etc.) and sample quality metrics (e.g.,

missing call rates, heterozygosity, average read depth,

coverage metrics, etc.). Array datasets are imputed to the

NHLBI’s TOPMed reference panel,34–37 and accompanying

info files with imputation quality metrics are provided. All

GWAS summary statistics are available in text files that

follow a specified data dictionary inspired by the data

format in the GWAS Catalog.38 The WG coordinates

harmonization efforts across studies, and study sites up-

load genotype data to AnVIL data workspaces maintained

by the CC for sharing with the broader consortium.

Ethical and social implications

Ethical and social considerations—such as when to use

genetically inferred ancestry versus self-reported/ascribed

non-genetic population descriptors (e.g., race, ethnicity,

ancestry, background, tribal affiliation, primary language,

and/or religious heritage) and how best to account for

the effects of social, structural, and political factors—pro-

vide an important context for developing and evaluating

PRS methods. Recent work suggests that evaluating PRSs

within broad socially defined race/ethnicity categories

such as ‘‘Hispanic/Latino’’ maymask disparities in PRS per-

formance by genetic ancestry,39 highlighting the impor-

tance of careful consideration of population designation

and description in PRS development. Additionally, PRSs

constructed using data stratified based on continental

ancestry may have variable performance within such

groups12 and, problematically, foster misconceptions

regarding the biological basis of racial identity.40

The population descriptors, social and ethical implica-

tions (POPSEI) WG was established to identify, investigate,

and respond to ethical and social issues relevant to devel-

oping and evaluating PRSmethods across groups of diverse

genetic ancestry and raised by the integration of heteroge-

neous datasets (including those ascertained outside of the

US) encompassed by the consortium. Given the ethical

and methodological consequences of how populations
2598 The American Journal of Human Genetics 111, 2594–2606, Dec
are defined, described, and used, the POPSEI WG also dis-

cusses best practices and provides guidance and support

to the consortium on the selection, use, and discussion

of population descriptors in analyses and manuscripts

(see initial consortium products section).

While PRIMED is not directly investigating the clinical

implementation of specific PRSs, the data harmonization,

methodological, and analytical approaches recommended

by the consortium have broader scientific and social conse-

quences for how PRSs will be implemented and interpreted

in clinical settings and understood by affected individuals

and the public. The POPSEI WG works closely with other

PRIMED WGs and complementary groups within the

eMERGE Network to anticipate and address potential

consequences that might arise during PRS development,

validation, and clinical translation. Examples include

inappropriate use of PRSs in the commercial setting

(pre-implantation diagnosis, embryo selection, nutrition

counseling) or premature use of PRSs in the clinical setting.

To surface social and ethical considerations across multiple

contexts, the POPSEI WG is collecting use cases for a

manuscript focused on common applications of PRSs in

research and healthcare settings, highlighting best prac-

tices and practical concerns, with added emphasis on the

conceptualization and use of ancestry and on downstream

clinical implementation. Additionally, POPSEI is working

on a collaborative manuscript with eMERGE investigators

that addresses the considerations and concerns of PRS

development and implementation, drawing from the ex-

periences of both consortia. Addressing these issues will

also require educational programs for the public, affected

individuals, and providers. The consortium also provides

public-facing educational materials on the consortium

website and does regular public outreach through social

media, managed by the CC.
PRS methods development

A primary goal of the PRIMED Consortium is to develop

new methods to improve polygenic risk prediction, with

emphasis on diverse ancestry and admixed groups. Investi-

gators use innovations in statistical and population ge-

netics to improve PRS methods, develop new PRS models,

and explore PRS-trait/disease associations across different

age groups, environmental contexts, and diverse groups.

The methods WG was established as a central forum in

the consortium where members review existing literature

and methods, as well as introduce, develop, collaborate

on, and disseminate results from methods developed

across the consortium. The methods WG has identified

key methodological areas for discussion, development,

and innovation41; a brief description follows.
Methodological innovations

PRIMED investigators are testing a broad range of PRS

methods including pruning and thresholding (P&T) PRSs,
ember 5, 2024



which include a set of non-correlated genetic variants

meeting a certain significance threshold, and genome-wide

PRSs, whichmay include thousands tomillions of variants.3

The lattermay perform better for highly polygenic traits and

typically involve ‘‘shrinkage’’ of regression coefficients using

Bayesian methods or ‘‘penalized’’ methods such as Ridge

regression or Lasso.42–44 The consortium is investigating

numerous approaches to improve PRS performance that

include incorporating functional annotations to improve

the identification of causal variants and thus transfer-

ability,45–48 incorporating rare variants, statistical fine-map-

ping to overcome some of the barriers related to linkage

disequilibrium (LD) differences across groups,46,49 and the

use of genetic correlation and pleiotropy with related

traits.50–52

Amajor focus of PRIMEDhas been todevelopdifferent ap-

proaches to incorporate genetic ancestry information. PRS

methods that integrate GWAS results from groups of diverse

ancestries providemore accurate variant effect size estimates

by sharing information and leveraging ancestral differences

inLDpatterns across groups tofinemap the likely causal var-

iants. These multi-ancestry methods improve predictive ac-

curacy compared with methods utilizing GWAS results

from a single ancestry source.42 PRIMED is also developing

PRSs that are applicable to recently admixed individuals,

such as those who self-identify as African Americans and

Latinos, in whom admixture proportions can vary signifi-

cantly. PRS methods that utilize measures of local genetic

ancestry to allow for modeling of different effect sizes by in-

ferred ancestral haplotype53 are being explored as ameans of

estimating PRSs in the background of varying degrees of

admixture across groups/individuals.54 Furthermore, as

admixture is pervasive and individuals may not discretely

map onto distinct continental ancestry groups, recently

developedmethods that account for continuous representa-

tions of genetic ancestry in PRSs may prove useful. For

example, PRIMED investigators55 have demonstrated that

PRS accuracy decreases individual-to-individual along the

continuum of genetic ancestries, even within traditionally

labeled ‘‘homogeneous’’ genetic ancestry groups. This trend

can be represented as genetic distance from the PRS training

data, a measure negatively correlated with PRS accuracy.

These findings motivate the use of continuous genetic simi-

larity/distance in PRS interpretation, rather than discrete ge-

netic ancestry clusters.

Another important methodological consideration has

been developing approaches to combine non-genetic infor-

mation, such as environmental exposures and SDoH, with

PRSs tocreatecomprehensive riskpredictionmodels.This in-

cludes statisticalmodels that contain joint effects,model po-

tential mediation pathways, or investigate interactions.56–58

PRS associations with a trait may vary in different contexts,

such as across age groups,59 across strata defined by clinical

variables such as adiposity or smoking,60 or across strata

defined by different environmental, cultural, or social fac-

tors.32,33 PRIMED investigators are designing and perform-

ing analyses to evaluate such contextual interactions61 and
The American Jour
have introduced an approach (CalPred) to account for varia-

tion in PRS-trait associations across contexts bymodeling all

contexts jointly to produce prediction intervals that vary

across contexts.62 Because absolute risk of disease may be

themostmeaningful in informing clinical decision-making,

PRIMED investigators are also developing methods to

include PRSs in the computation of such risk estimates using

existing validated clinical algorithms or based on epidemio-

logical indices.63

Genetic ancestry inference

The methodsWG established a focused ancestry sub-WG to

develop analysis workflows for harmonized genetic ancestry

inference based on genetic similarity,64with a focus on iden-

tifying the bestmethods and reference panels to support PRS

development and evaluation. These genetic ancestry work-

flows are applied across study datasets by utilizing the

harmonized individual-level genotype data. PCA is applied

to reference panel genotype data to calculate SNP-loadings

for ancestry PCs, and all study datasets are projected onto

this harmonized PC space. Similarly, global65 and local66–68

ancestry inferencemodels are trained on reference panel ge-

notype data and then applied to the harmonized genotype

data for each study.

The choice of reference panel data is critical to the perfor-

mance of genetic ancestry analysis and has therefore been a

point of focus. From a global perspective, there are limita-

tions to existing genotype reference panels such as large

gaps in representation for many groups, including African,

Middle Eastern, Native American, and South Asian. This

sub-WG is currently working on comparisons of genetic

ancestry inference based on genetic similaritymeasures ob-

tained with commonly used reference panels (e.g., 1000

Genomes,69 Human Genome Diversity Project,70 PAGE

global reference panel71) and evaluation of their down-

streamimpactonPRSdevelopment andperformance.Addi-

tionally, the sub-WG is constructing and evaluating an

improved reference panel with better representation of

global genetic diversitybycombiningpublic andprivateda-

tasets. Genetic ancestry inference models developed with

this reference panel will be shared publicly.

Standardized PRS evaluation, comparison, and

reporting

PRIMED is building on existing frameworks to organize

standardized comparisons across different PRS methods

and models using harmonized data contributed to AnVIL

as well as via analysis protocols distributed to biobank part-

ners. Given the breadth of investigator expertise and access

to data from many diverse studies and biobanks, PRIMED

is uniquely positioned to perform standardized comparisons

of PRS methods and models across numerous traits,

contexts, and groups. To encourage rigor in PRS develop-

ment, validation, evaluation, and reporting, and to facilitate

benchmarking that ensures robust PRSs are available for

diverse groups, PRIMED has adopted the polygenic risk

score reporting standards (PRS-RS)72 developed jointly by
nal of Human Genetics 111, 2594–2606, December 5, 2024 2599



Figure 2. The PRIMED common data model
Each colored box represents a table, and lines represent links between tables. The subject table (purple) captures information on each
subject/participant and is the linking point to the other components of the data model. The population descriptor table (orange) cap-
tures detailed population descriptor information on each subject. The phenotype dataset tables (dark pink) provide phenotype dataset
metadata and provide links to the phenotype domain tables (light pink) which are tabular data files containing individual-level pheno-
type data for specified harmonized variables in a wide-format familiar to cohort studies; unharmonized phenotype data can be shared in
tabular data files pre-harmonization. The genotype tables (blue) capture sample metadata and group samples into sets, corresponding to
genotype datasets. Genotyping technology-specific dataset tables provide metadata describing key features of the genotype dataset, and
file tables provide file paths to individual-level genotype data files (e.g., VCFs) linked to datasets. Genomic summary result tables (teal)
include analysis tables that capture metadata about analyses that generated the GSRs and file tables provide file paths to tabular data files
containing the GSR data linked to analyses.
ClinGen22and thePGSCatalog.25Further, buildingoffof the

PRS-RS, the methodsWG aims to develop improvedmetrics

for PRS evaluation and benchmarking that are applicable to

diverse groups and individuals.
Initial consortium products

PRIMED common data model

To enable rapid data harmonization and analysis for non-

EHR linked cohort studies, the consortium developed a

data model (Figure 2) that stores phenotype data following

the more familiar structure of cohort data (i.e., text files

where rows are participant observations and columns are

variables). For EHR sources, data are extracted and trans-

formed into cohort datasets and subsequently formatted

to the PRIMED common data model in an analysis-ready

structure. This proved most practical to support analyses

on AnVIL and simplify data sharing agreements for EHR-

based studies and biobanks, as they could extract a harmo-

nized cohort dataset with the required variables, rather

than share their entire EHR data. A future effort to support

other programs and consortia would be to design cloud-

based platforms that natively support the deidentified

observational medical outcomes partnership (OMOP, see

web resources) data model, which is used by the All of Us

program and UK Biobank. The PRIMED common data

model also captures structured metadata that ensures
2600 The American Journal of Human Genetics 111, 2594–2606, Dec
that individual-level genotype datasets and GSR can easily

be combined across studies for subsequent analyses. File

paths to data files in the AnVIL data workspaces are

provided to enable programmatically passing files into

analysis workflows. The PRIMED common data model is

available on GitHub (see web resources) encoded as JSON

files. The CC maintains version updates to the data model

as well as companion workflow description language

(WDL) workflows in a collection on Dockstore (see web

resources) that can be used to validate that data uploaded

to AnVIL workspaces conform to the specifications.
Adaptation of recent guidelines for population

descriptors to global cohorts

The PRIMED POPSEI WG produced two key products,

initially for internal use only and now being prepared for

dissemination: (1) recommendations for the use of popula-

tion descriptors in PRIMED and (2) a data model designed

to accommodate heterogeneity of descriptor availability

and use among the extant data collections being aggre-

gated in the consortium. TheWG recommendations incor-

porate those recently advanced by the National Academies

of Sciences, Engineering, and Medicine (NASEM, see web

resources), including how to report inferred genetic

ancestry or similarity and distinguish those inferences

from self-reported (or ascriptively assigned) identifiers

such as race/ethnicity, the latter associated with social,
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cultural, environmental, and political factors. Addition-

ally, the WG developed a component of the PRIMED

data model (Figure 2) that provides a flexible approach

to collating and combining datasets with different popula-

tion descriptors. This model uses the NASEM framework

for distinguishing descriptors (e.g., ‘‘country of recruit-

ment’’) from labels (e.g., ‘‘US,’’ ‘‘France’’; see also

Table S3), which encourages analysts to describe and

combine groups in a consistent way. Notably, this data

model allows an individual to have multiple descriptors

and labels and does not enforce a single harmonization

strategy for the entire consortium, which would be imprac-

tical given the heterogeneity of data sources in PRIMED.

Furthermore, retention of detailed population information

and deferring harmonization until the analysis stage pro-

vides flexibility and is intended to reduce the tendency

to conceptualize all populations in terms of continental

ancestry groups. GSRs are reported with a single popula-

tion descriptor used for analysis and multiple labels to

reflect the diversity of individuals included. Both products

could inform the practices of other consortia working with

similar biomedical data.
Analytic tools

PRIMED members are developing analysis workflows writ-

ten in WDL that implement tools and pipelines for PRS

methods and related analyses such as genetic ancestry infer-

ence and GWAS. The methods WG has developed an inte-

grated toolkit and pipeline (admix-kit) for generating simu-

lated admixed genotype data73 and has shared synthetic

cohorts in an AnVIL workspace for use inmethods develop-

ment and testing. Additionally, the harmonization WGs

have developed data processing workflows for QC, harmo-

nization, and imputation. The workflows for analysis, data

processing, and simulation developed in PRIMED are

openly available to the broader research community via

the PRIMED Organization Dockstore and/or GitHub repos-

itories (see Table S4 and web resources), from which they

can be deployed directly on AnVIL or in other computing

environments compatible with WDL.
Future directions

Increasing representation of diverse groups in GWASs re-

quires significant investment in community engagement

and cohort assembly.24 In this perspective we provide in-

sights into the PRIMED Consortium design and organiza-

tion of activities to facilitate initiatives that aim to reduce

inequity in genomic medicine and highlight early results

from consortium activities. Future directions of the con-

sortium include continuing collaborations among con-

sortium study sites as well as with outside groups to in-

crease the size of available datasets for individuals of

diverse genetic ancestries. Collaborative projects with the

eMERGE Network include incorporating PRSs into multi-

variable models that include environmental factors/
The American Jour
SDoH and other clinical risk factors, generating absolute

disease risk estimates in individuals from diverse groups,

articulating ethical and social considerations for PRS devel-

opment and implementation, and adapting to the avail-

ability of new PRSs as well as revisions of prior PRS inter-

pretation. Methods development will continue to be an

active area for innovation, and examples of proposed/

ongoing work include combining dynamically updated

lifetime risk factor trajectories with PRSs to better inform

lifetime risk, incorporating information from relevant en-

dophenotypes to improve PRS predictive performance for

outcomes, and developing methods to generate PRSs that

integrate rare and common variants. The consortium is

also exploring ways to measure and integrate multiple

axes of diversity, for example by developing reference

panels from expanded and well-curated diverse ancestry

groups that better represent the full spectrum of global ge-

netic diversity and can be dynamically updated to incorpo-

rate future data; using genetic distance and genetic neigh-

bors to estimate uncertainty in individual predictions from

PRSs, regardless of genetically inferred ancestry and self-

identified ethnicity; and benchmarking different PRS

methods that utilize local or global genetic ancestry mea-

sures. Finally, the consortium will continue to explore cur-

rent practices, ongoing issues, and potential solutions for

the use of race, ethnicity, and genetic ancestry in PRSs

through the lens of ethical and social implications.
Conclusion

The PRIMED Consortium has established infrastructure for

secure, collaborative genomic research across datasets, insti-

tutions, and investigators to accelerate the development of

methods for generating PRSs that can quantify polygenic

risk across diverse genetic ancestries, including individuals

who are recently admixed. Early deliverables of the con-

sortium includemethods for data sharingonAnVIL, a secure

cloud-based environment; development of a common data

model to harmonize phenotype and genotype data from

cohort studies as well as EHRs; adaptation of recent guide-

lines for population descriptors to global cohorts; and

sharing of analyses and tools. The consortium serves as a

template for multisite collectives that aim to lessen health

and healthcare disparities and extend advances in genomic

medicine to diverse groups in the US and across the world.24
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Data and code availability

Theworkflows developed by PRIMED (see Table S4) are available in

the PRIMED Dockstore Organization: https://dockstore.org/

organizations/PRIMED. Each workflow listed in the Dockstore or-

ganization has a link to the corresponding GitHub repository with

code available. No new source datasets are associated with this pa-

per. dbGaP accessions for the pre-existing source data associated

with this paper are listed in Table S3. When permissible under

NIH data sharing policy, PRS models and evaluations generated

by the consortium are deposited into the PGS Catalog. Links to

PGS Catalog records associated with PRIMED publications are

available on the PRIMED website: https://primedconsortium.org/

publications/published.
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