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ARTICLE

Primary cartilage transcriptional signatures
reflect cell-type-specific molecular
pathways underpinning osteoarthritis

Georgia Katsoula,1,2,3 John E.G. Lawrence,4,5 Ana Luiza Arruda,1,2 Mauro Tutino,2 Petra Balogh,6

Lorraine Southam,2 Diane Swift,7 Sam Behjati,5,8 Sarah A. Teichmann,5,9 J. Mark Wilkinson,7,10,*
and Eleftheria Zeggini2,3,10,*
Summary
Translational efforts in osteoarthritis are hampered by a gap in our understanding of disease processes at the molecular level. Here, we

present evidence of pronounced transcriptional changes in high- and low-disease-grade cartilage tissue, pointing to embryonic processes

involved in disease progression.We identify shared transcriptional programs between osteoarthritis cartilage and cell populations in the

human embryonic and fetal limb, pointing to increases in pre-hypertrophic chondrocytes’ transcriptional programs in low-grade carti-

lage and increases in osteoblastic signatures in high-grade disease tissue.We find that osteoarthritis genetic risk signals are enriched in six

gene co-expression modules and show that these transcriptional signatures reflect cell-type-specific expression along the endochondral

ossification developmental trajectory. Using this network approach in combination with causal inference analysis, we present evidence

of a causal effect on osteoarthritis risk for variants associated with the expression of ten genes that have not been previously reported as

effector genes in genome-wide association studies in osteoarthritis. Our findings point to key molecular pathways as drivers of cartilage

degeneration and identify high-value drug targets and repurposing opportunities.
Introduction

Osteoarthritis is the most prevalent degenerative joint dis-

order, affecting over 500 million individuals worldwide.1 It

is a complex disease, mainly characterized by loss of carti-

lage integrity and low-grade inflammation in tissues sur-

rounding the joint.2 Management strategies focus on

pain relief and joint replacement surgery.3 An in-depth un-

derstanding of the molecular processes leading to disease

onset and progression is necessary for the development

of disease-modifying therapies.

Genome-wide association studies (GWASs)have identified

over 100 independent risk signals for osteoarthritis.4

Although several high-confidence effector genes have been

identified,4–10 the translational andbiological insight poten-

tial of resolving GWAS signals remains largely unfulfilled. A

limiting factor is sample size and, hence, power of carti-

lage-specific functional genomics datasets. A further chal-

lenge resides in understanding how the biologically diverse

effector genes contribute to osteoarthritis and which path-

ways are implicated in cartilage degeneration. Communities

of co-expressed genes can be associated with disease pro-

cesses, and genes with high network connectivity can be

highly informative for disentangling disease architecture.11
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The value of network approaches in understanding

complex diseases lies in the fact that disease phenotypes

result from the interplay of various pathobiological pro-

cesses rather than solely from the dysfunction of individ-

ual effector genes.12 For example, gene co-expression

analysis has revealed that the genetic risk of type 2 dia-

betes (T2D) converges on an RFX6-mediated network

that reduces insulin secretion by b cells.13 Gene co-

expression networks have also been widely utilized in

studying complex neurological conditions including

autism spectrum disorder (ASD) and schizophrenia

(SCZ), pointing to networks of synaptic plasticity genes

with a causal role for ASD14 and networks of genes

involved in brain development leading to atypical

cortical connectivity in individuals at high risk for

SCZ.15 In the context of osteoarthritis, a network diffu-

sion approach has been used to prioritize genes associ-

ated with joint damage in mice osteoarthritis models

in the OATargets database.16 The protein products of

several known osteoarthritis risk genes (COLGALT2,

RUNX2, PLEC, MGP, TGFB1, GDF5) as well as genes

residing in osteoarthritis risk loci (SMAD3, CDC5L)

have also been suggested to participate in protein-pro-

tein interaction networks related to extracellular matrix
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(ECM) organization, tissue development, and cellular

response to growth factor stimulus.17 These findings

stress the utility of network approaches for providing

mechanistic insight in osteoarthritis. A well-powered

study of gene co-expression networks in osteoarthritis

is still missing.

Cartilage is an avascular tissue, inwhich the dominant cell

type is the chondrocyte. Articular cartilage is a non-self-re-

newing tissue that forms the articulating element at the

ends of adjacent bones within synovial joints. In contrast,

growth plate cartilage, usually only present during skeleto-

genesis, facilitates skeletal growth and bone formation

during endochondral ossification.18 This process entails

the differentiation of multipotent mesenchymal cells into

lineage-committed chondroprogenitors, which themselves

differentiate into immature, resting chondrocytes.19 These

subsequently undergo a rapid proliferation (proliferating

chondrocytes) before entering a transitional phase, known

as pre-hypertrophy.20 Finally, chondrocytes rapidly increase

in size to become hypertrophic, before becoming calcified

and subsequently replaced by bone, resulting in skeletal

growth.

Articular chondrocyte phenotype alterations, such as

initiation of hypertrophic differentiation and matrix

calcification, have been linked to the degradation of

cartilage in the course of osteoarthritis in mice and

in vitro chondrocyte models.21–25 Osteoarthritis chondro-

cytes shift from the normally quiescent articular cartilage

phenotype to a more proliferative growth-plate-like

phenotype seen during limb development.26,27 Single-

cell RNA sequencing (scRNA-seq) has been recently em-

ployed in a small number of individuals with osteoar-

thritis to characterize chondrocyte heterogeneity,28–32

with only partial agreement on the identified cell type

populations. A consensus map of cartilage composition

in osteoarthritis is still missing.

Here, we perform a comprehensive gene expression

study of paired, macroscopically intact (low-grade)

and degraded (high-grade) ex vivo knee osteoarthritis

cartilage collected at the point of joint replacement sur-

gery across 300 individuals. We combine our data

with publicly available scRNA-seq data from osteoar-

thritis cartilage and explore cell type heterogeneity be-

tween disease grades. We further utilize scRNA-seq of

the developing human embryonic and fetal hindlimb

and shed light on the transcriptional changes underly-

ing the key pathological process of hypertrophic differ-

entiation in osteoarthritis. We identify deregulated

transcriptional programs during disease progression, re-

flecting causal mechanisms in osteoarthritis phenotypes

and specific cell types along the chondrocyte develop-

mental trajectory. Lastly, we pinpoint putative causal

effects on the risk of osteoarthritis phenotypes associ-

ated with variants linked to the expression of ten pre-

viously unreported genes in the largest osteoarthritis

GWAS meta-analysis to date,4 highlighting potential

druggable targets.
2736 The American Journal of Human Genetics 111, 2735–2755, Dec
Methods

Study samples
We recruited individuals with osteoarthritis undergoing total

knee replacement for osteoarthritis with no history of significant

knee surgery (apart from meniscectomy), knee infection, or

fracture and no malignancy within the previous 5 years. It

was further verified that no individual had been treated with cor-

ticosteroids (systemic or intra-articular) within the previous

6 months or any other drug associated with immune modula-

tion. The matched cartilage samples were isolated from the

weight-bearing parts of the joint to ensure that biomechanical

loading did not influence within-pair differences in gene expres-

sion and were scored macroscopically using the International

Cartilage Repair Society (ICRS) scoring system.33 From each indi-

vidual, we obtained one cartilage sample of ICRS grade 0 or 1 de-

noting low-grade osteoarthritis degeneration (‘‘low-grade sam-

ple’’) and one sample of ICRS grade 3 or 4 denoting high-grade

osteoarthritis degeneration (‘‘high-grade sample’’). Informed

consent was given from all study participants, and samples

were collected under Human Tissue Authority license 12182

and National Research Ethics Service approval 15/SC/0132 and

20/SC/0144, South Yorkshire and North Derbyshire Musculoskel-

etal Biobank, University of Sheffield, UK. The biobank is overseen

by a steering committee, which includes two lay members. The

lay members reviewed this project proposal prior to its initiation

and had the opportunity to comment upon andmake edits to the

study design, as did the Sheffield Lay Advisory Panel for Bone

Research. The conduct of the biobank and its outputs are also re-

viewed by the biobank lay committee members.
Description and justification of population descriptors
RNA-seq data were obtained from individuals of European

ancestry based on available matching genotype data.10 The

matching genotype data were used to help determine whether in-

dividuals were most genetically similar to a European reference

panel and, if so, were included in the study. The rationale of this

descriptor was based on the fact that osteoarthritis GWAS data pre-

dominantly included individuals of European ancestry, and we

aimed for consistency between the ancestry of our RNA-seq sam-

ples and the population from which the GWAS data were derived.

To ensure accurate heritability estimates, we used the EUR linkage

disequilibrium (LD) 1000 Genomes reference panel,34 which is

appropriate for European-ancestry populations. This choice mini-

mizes potential biases that could arise from population stratifica-

tion when analyzing genetic associations.
Fetal limb tissue collection
To explore links between osteoarthritis and fetal developmental

programs, we utilized data from our atlas of endochondral ossifica-

tion.35 For this study, first-trimester human fetal tissue was

collected from an elective termination of pregnancy procedure

at Addenbrooke’s Hospital, Cambridge, UK, through the ethically

approved Wellcome-MRC Cambridge Stem Cell Institute and

Department of Clinical Neurosciences tissue bank (REC-96/085).

Written, informed consent was given for tissue collection by the

individuals in accordance with The Declaration of Helsinki

2000. Fetal age (post-conception weeks [PCWs]) was estimated us-

ing the independent measurement of the crown rump length

(CRL) using the formula PCW (days) ¼ 0.9022 3 CRL (mm) þ
27.372.
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Fetal tissue dissection and dissociation
Detailed methods for tissue dissection can be found in our previ-

ous publication.35 In brief, for long bone samples, femora, tibiae,

and fibulae were dissected from the fetal hind limbs by a specialist

bone and soft tissue pathologist (P.B.) under a microscope using

sterile microsurgical instruments. Each sample was then processed

into single-cell suspensions. Other limb samples were processed

whole (first-trimester whole-limb samples and second-trimester

bone samples). The tissue was digested in a 5 mg/mL Liberase TH

working solution prepared from Liberase TH powder (Sigma

5401135001) and 13 phosphate-buffered saline (PBS) on a

shaking platform (750 rpm) at 37�C for 30 min. The tissue was

gently agitated using a P1000 pipette after 15 min. 5 mL 2% fetal

bovine serum (FBS) in PBS was then added to stop the dissociation

prior to second-stage digestion with 0.25% trypsin solution for a

further 30 min at 37�C, with pipette agitation every 5 min. Cells

were then spun down at 750g at 4�C for 5 min and resuspended

in 50–200 mL of 2% FBS in PBS. Fetal cells were then loaded for

scRNA-seq).
Bulk RNA-seq of osteoarthritis cartilage samples and

preprocessing
RNA was extracted using Qiagen AllPrep RNA Mini Kit, following

the manufacturer’s instructions as previously described in Stein-

berg et al.10 Samples were collected and sequenced in 5 sequencing

batches and processed uniformly. Poly(A)-tailed RNA was isolated

from total RNA using Illumina’s TruSeq RNA Sample Prep v.2 kits,

while for cohort 5, a SMART-Seq Ultra Low Input RNA Kit was

used. RNA fragmentation and library preparation were performed

according to standard Illumina protocols. The libraries were

sequenced on the Illumina HiSeq 2000 and HiSeq 4000 (75 bp

paired ends) as well as Novaseq6000 (cohort 5), yielding a

median of 80.8 million reads per sample (interquartile range

[IQR]: 70,110,708–91,380,240). The raw data of batches 1–3

have been deposited to the European Genome/Phenome Archive

(EGA) (EGA: EGAD00001005215, EGA: EGAD00001003355, and

EGA: EGAD00001001331). Summary statistics of data quality

across all sequencing batches are available in Table S1 and

Figure S1.

We aligned the reads to the reference genome Ensembl GRCh38

release 105 (cDNA and non-coding) using STAR version 2.7.9a.36

Reads were summarized to genes using featureCounts (Subread

2.0.3) software,37 and different gene biotypes were evaluated.29

We further projected STAR alignment files to the reference tran-

scriptome using RSEM software38 and generated the count matrix

by aggregating the results on the gene level as previously

done (https://github.com/broadinstitute/gtex-pipeline/blob/master/

rnaseq/src/aggregate_rsem_results.py). We additionally marked opti-

cal duplicates using Picard Tools (https://broadinstitute.github.io/

picard/) and dupRadar software.39 Extensive quality control (QC)

was additionally performed using RseQC v.4.0.0 software.40 All the

above steps were performed in a snakemake pipeline.41 We per-

formed an initial sample-level QC excluding samples that had an

RNA integrity number <5, a percentage of uniquely mapped reads

<70%, a percentage of reads mapping to genomic features <40%,

a percentage of reads mapping to intronic regions or rRNA >30%,

a percentage of reads that failed RseQC strandness check >30%,

and <10 million reads. We excluded 77 samples according to the

above criteria. For individuals with bilateral knee replacement, we

excluded one pair of matched samples each (3 samples), keeping

only the sample pair with the best quality (Figure S1).
The American Jour
For downstream exploratory analyses, the count matrix was

normalized using trimmed mean of M (TMM) normalization.42

We filtered lowly expressed genes using the filterByExpr function

from edgeR.43 We kept genes that were expressed with at least 10

counts for at least 158 samples (representing the 70%of the smallest

group being high-grade osteoarthritis cartilage – 226 samples after

initial sample-level QC), detecting expression for a total of 16,993

genes. Outlier samples were identified and excluded (18 samples)

from further downstream analysis using robust principal-compo-

nent analysis (PCA) and taking into consideration the first three

principal components (PCs; PcaGrid method rrcov R package).44

The final number of samples after the exclusions was 498, derived

from a total of 300 individuals. We performed dimensionality

reduction of the resulting count matrix using PCA and checked

for the presence of batch effects. This analysis showed that PC1, ex-

plaining 28.91%of variation in the data, corresponds to sequencing

batch, while PC2, explaining 11.01% of variation, corresponds to

the cartilage degradation grade (Figures S2 and S3). Summary statis-

tics of characteristics of the osteoarthritis cohort as well as aggregate

data on individuals’ demographic information and sample quality

metrics included in the study after QC can be seen in Table S1. All

the analyses after generation of the count matrix were performed

using R v.4.1.3 and Bioconductor v.3.1.
scRNA-seq data from osteoarthritis cartilage
We obtained publicly available scRNA-seq data from Fan et al.,32

accessed through NCBI’s Gene Expression Omnibus (GEO) under

accession ID GEO: GSE255460. Utilizing the integrated object pro-

vided by the authors, we re-annotated cell type clusters using

broader labels to minimize the effects of highly correlated or rare

cell types, which can compromise the accuracy of deconvolution

methods.45 We assessed data quality by examining key metrics,

including total counts, gene numbers, and the percentage of mito-

chondrial gene counts (Figure S8). Cells selected for deconvolution

analysis met criteria of having between 500 and 7,000 genes with a

mitochondrial fraction below 0.25. After QC, a total of 62,611 cells

were retained for analysis. Annotated cells, along with their repre-

sentative gene markers and uniform manifold approximation and

projection (UMAP) representations created using Scanpy,46 are

shown in Figures S9 and S10.
scRNA-seq of fetal tissues and preprocessing
Single-cell data were obtained from the fetal single-cell atlas of

endochondral ossification.35 This includes 18 long bone samples

dissected from three fetuses aged 7–9 PCWs, embryonic limbs in-

tegrated with fetal limb data from another 14 embryos (5–9

PCWs),47 and fetal bone marrow data from 9 embryos (12–19

PCWs).48 These data are available via the European Nucleotide

Archive (ENA) via the accession number ENA: PRJEB28278 (fetal

long bone samples) and via ArrayExpress (first-trimester whole-

limb samples: ArrayExpress: E-MTAB-8813; second-trimester

bone marrow samples: ArrayExpress: E-MTAB-9389).

Briefly, single-cell suspensions were loaded onto a Chromium

103 Genomics single-cell 30 v.2 library chip as per the manufac-

turer’s protocol (103Genomics; PN-120233), aiming for a cell cap-

ture recovery of 5,000 cells per channel. cDNA sequencing li-

braries were prepared according to the manufacturer’s protocol

and sequenced on an Illumina Hi-seq 4000 (2 3 50 bp paired-

end reads).

Raw sequence reads in FASTQ format from fetal, pediatric,

and organoid samples were processed and aligned to the
nal of Human Genetics 111, 2735–2755, December 5, 2024 2737
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GRCh38-1.2.0 human reference transcriptome using the

CellRanger v.3.0.2 pipeline (103 Genomics), available at http://

cf.10xgenomics.com/supp/cell-exp/refdata-cellranger-GRCh38-3.

0.0.tar.gz, with default parameters. The resulting expression

matrices were processed with the SoupX package (v.1.3.0) for R

to estimate and remove cell-free mRNA contamination prior to

analysis with v.3 of the Seurat package.49,50 In addition, each

run was processed with the Scrublet pipeline,51 with cells called

as doublets subsequently removed from analysis.

Cells with fewer than 300 genes and greater than 7,500 genes

expressed were filtered out, as well as those in which mitochon-

drial genes represented 10% or greater of total gene expression

(Figure S12). To account for variations in cell cycle stage, Seurat’s50

CellCycleScoring function was applied on the remaining cells to

produce a quantitative estimation of the cell cycle stage. Logarith-

mic normalization was then performed prior to data scaling,

which used the cell cycle score, mitochondrial gene expression

level, and total unique molecular identifiers (UMIs) per cell as

regression variables.

The final developmental atlas included 249,151 cells spanning

5–17 PCWs.35 For cell clustering, we used the top 2,000 highly var-

iable genes, selected using Seurat’s FindVariableFeatures function.

Dimensionality reduction was performed using PCA on these

highly variable genes. Cells were subsequently visualized using

UMAP plots and clustering performed using the Seurat implemen-

tation of the Louvain algorithm (Figure S13). Differential gene

expression testing between clusters was performed using the Wil-

coxon rank-sum test within Seurat’s FindMarkers function. Finally,

cluster annotation was performed based on known cell-type-spe-

cific genes from the literature.
Power estimation of differential gene expression

between osteoarthritis cartilage tissue grades
We estimated the statistical power to detect differential gene

expression between low- and high-grade osteoarthritis cartilage

along with sample size requirements using powsimR52 (v.1.2.3).

To this end, we simulated counts using a negative binomial distri-

bution framework and estimated the mean-dispersion relation-

ship from the data (count matrix containing 272 low-grade osteo-

arthritis cartilage samples). For parameter estimation, we used the

total number of detected genes after QC (16,993), their respective

lengths, and TMM value normalization42 under the assumption of

negative binomial distribution. We set up the simulations speci-

fying the following parameters: (1) sample sizes ranging from 10

to 1,000 samples; (2) expected percentage of differentially ex-

pressed (DE) genes set to 30%, as determined by previous

studies10,53; (3) effect size (log2 fold change [log2FC]) sampled

from a narrow gamma distribution, also in agreement with previ-

ous observations10,53; and (4) mean, dispersion, and their relation-

ship estimated from the low-grade cartilage count matrix. The li-

brary sizes for the simulations were sampled from our data. We

performed 50 simulations of differential gene expression using

the limma-voom54 differential testing method and TMM normal-

ization42 under the assumption that 100% of replicates per group

express the phenotypic differences in gene expression. To this

end, we estimated the proportions and error rates at an alpha nom-

inal level of 0.05 stratified by mean gene expression (mean log2
counts per million [log2CPMs]) and log2FC and evaluated themar-

ginal and conditional (log2FC and mean expression) true positive

rate (TPR) and false discovery rate (FDR) (Figure S4). We further

evaluated the simulations using powsimR functions that report
2738 The American Journal of Human Genetics 111, 2735–2755, Dec
summary metrics such as the receiver operator characteristic

(ROC) curve as well as the accuracy, F1 score, and Matthews corre-

lation coefficient. This analysis showed that the FDR was

controlled at the nominal level of 0.05 across all sample sizes

(Figure S5).

Differential gene expression between osteoarthritis

cartilage tissue grades
We performed differential expression analysis55 between low- and

high-grade cartilage using linear mixed models from limma block-

ing for the individual ID on filtered counts and voom54 transfor-

mation (observational-level weights) as proposed for RNA-seq

data.54 The voom-limma pipeline was followed by applying the

TREAT56 (testing significance relative to a FC threshold) criteria

(FC >1.2 in either direction) to calculate the t statistics, log2FC,

and adjusted p values for all genes (Table S2). We further evaluated

the distribution of DE genes among Ensembl57 biotypes

(Figure S6). We compared the results of differential expression

analysis to those of 13 other RNA-seq and microarray studies

that have performed similar analyses (for protein coding genes

and long non-coding RNAs [lncRNAs]) with a smaller number of

biological replicates after summarizing their respective results to

the Ensembl57 Gene stable IDs (see supplemental methods).

We conducted a differential gene expression analysis, adjusting

for cell type proportions derived from the deconvolution analysis,

to identify genes that are DE between conditions independent of

variations in cell type composition (Table S4). The updated model

for differential expression included all original covariates, with the

addition of cell type proportions, except for the proportion of reg-

ulatory chondrocytes, which was excluded due to the introduc-

tion of collinearity. To validate our findings, we performed a corre-

lation analysis comparing these results with those obtained from

the original model, which adjusted for individual identity and

sequencing batch. The effect sizes (logFC) and significance

(adjusted p value) of genes found to be DE in both models were

highly correlated, with Spearman r values of 0.93 for logFC and

0.8 for adjusted p values.

Enrichment analyses
Gene set enrichment was performed on the results of differential

gene expression using fgsea (v.1.20.0) software,58 ranking the

genes by their effect size (log2FC). Overrepresentation analysis

was performed separately for upregulated and downregulated DE

genes using the enrichr and enrichGO (for Gene Ontology59 biolog-

ical processes) functions from ClusterProfiler60 (v.4.2.2). Reac-

tome61 and Hallmark gene sets62 were retrieved from the molecu-

lar signatures database (MSgDB v.7.5.1)63 (Figure S7). For both

enrichment approaches, we restricted our analyses to gene sets

sized from 10 to 1,500 genes. For all overrepresentation analyses,

the background was set to include all the genes detected after

QC. Gene sets with an FDR-adjusted p value <0.05 were reported

as significant.

Deconvolution analysis of bulk RNA-seq using

osteoarthritis chondrocyte signatures
To identify chondrocyte cell types in low- and high-grade cartilage

samples, we conducted a deconvolution analysis of bulk RNA-seq

data using AutoGeneS (v.1.0.3)64 and publicly available single-cell

data from weight-bearing osteoarthritis cartilage provided by Fan

et al.32 After performing QC, we re-annotated the cell types using

the integrated dataset to achieve a broader classification, informed
ember 5, 2024
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by cartilage literature and reported marker genes. Representative

marker genes for each chondrocyte type are shown in

Figure S6. Chondrocyte signatures were automatically identified

from 4,000 highly variable genes using the function

ag.optimize(ngen ¼ 5,000, seed ¼ 0, nfeatures ¼ 400, mode ¼
’fixed’, offspring_size ¼ 100). The model was then applied to

bulk RNA-seq data to estimate the proportions of specific cell types

through regression analysis.

Analysis of shared transcriptional programs between

osteoarthritis tissue and fetal osteochondral tissue
The CellSignalAnalysis python package was used to search for

shared transcriptional programs between all fetal limb cell clusters

(scRNA-seq) and bulk transcriptomes generated from osteoar-

thritis cartilage tissue as previously described65 (Figure S14). In

brief, this method models the bulk RNA-seq data as a weighted

linear combination of the single-cell transcriptomes based on a

constrained generalized linear model. In contrast to deconvolu-

tion, it does not quantify the cellular composition but rather esti-

mates the major cellular signals (transcriptional programs) present

in the bulk transcriptomes when the single-cell reference and bulk

RNA-seq samples are different. This difference is quantified

through the allocation of an ‘‘unexplained signal,’’ which repre-

sents the model’s intercept term and is used to limit spurious asso-

ciations. The relative contribution of each single-cell reference

subtype to the bulk transcriptomes is calculated per sample (opti-

mized beta values of the generalized linear model), and library size

normalization is then performed to make the estimations compa-

rable across samples. Goodness of fit is calculated using theMcFad-

den’s pseudo R-squared value.65 Results were visualized using the

ggplot2 package for R.66

Construction of weighted gene co-expression network

and module identification in osteoarthritis cartilage
We conducted weighted gene co-expression analysis67 (WGCNA)

so as to find genes that show coordinated up- or downregulation

between low- and high-grade osteoarthritis cartilage. We con-

structed a signed co-expression network using gene expression

data regressed for known batch effects (sequencing batch). Re-

gressed gene expression was generated using the removeBatchEffect

function from the limma package68 (Figure S15).We selected a soft

threshold power of 7 to ensure scale-free topology (R2 ¼ 0.88). We

employed a robust version of WGCNA (rWGCNA) to minimize

outlier influence on the network construction, as previously im-

plemented14 (see supplemental methods; Figure S16). Module ei-

gengenes were defined for each module, representing the gene

expression value for a module that is comparable to the module’s

PC1. We further calculated module membership (defined as kME)

for each gene using the signedKME function from the WGCNA R

package by providing the table of biweight midcorrelation be-

tween each gene and each module eigengene. Intramodular con-

nectivity was further calculated using the intramodularConnectivity

function from the WGCNA R package.

Functional characterization of co-expression modules
We evaluated the association of consensus module eigengenes

(from regressed expression data with the removal of known tech-

nical covariates) with cartilage grade. To find modules that are

significantly associated with osteoarthritis progression, we used

linear mixed models blocking for the individual identifier as

done for differential expression testing. A module was considered
The American Jour
significantly associated with cartilage grade if it had an FDR-cor-

rected p value <0.05. We further evaluated module correlation

with other technical and biological covariates using Pearson corre-

lation (Figure S17). We further performed enrichment analyses for

Gene Ontology59 biological processes using overrepresentation

analysis as described for DE genes (Table S8), using the total num-

ber of genes used to construct the network as background. Mod-

ules were further tested for enrichment for knee-related osteoar-

thritis GWASs,4 lists of genes with functional genomics evidence

of involvement in osteoarthritis, microRNA, transcription factor

(TF) targets69 (Tables S6, S7, and S10; Figures S17 and S18), and

protein-protein interaction networks (StringDB70) (see supple-

mental methods; Table S10). We further looked at protein-protein

interactions mediated solely by physical association using the

StringDB,70 Intact,71 and Bioplex72 databases.

The enrichments for GWAS osteoarthritis traits, including knee

osteoarthritis, osteoarthritis at any site, and total knee and total

joint replacement, were assessed using MAGMA (v.1.10) soft-

ware.73 To this end, we calculated a gene-based association score

based on the distance of the associated variant to the transcription

start site of the genes present in the co-expression modules.

MAGMA was run specifying a 35 kb upstream and 10 kb down-

stream window as previously done to capture both gene body

and regulatory regions74–76 and genome build 37 to match the

GWAS summary statistics (see supplemental methods). p values

underwent correction for multiple testing using across all modules

and traits, and gene set-trait associations with an FDR-corrected p

value <5% were defined as significant. The modules that showed

significant enrichment for GWAS osteoarthritis traits were priori-

tized for further analyses (correlation between prioritized modules

seen in Figure S19).

We employed LD score regression to partition heritability.14,77

This approach allowed us to break down the heritability of the

tested osteoarthritis phenotypes across distinct functional cate-

gories represented by the prioritized gene co-expression modules.

Leveraging data from the GWAS summary statistics from the same

meta-analysis4 and ancestry-matched LDmodeling from the 1000

Genomes reference panel,34 we quantified the proportion of the

overall genome-wide heritability that can be attributed to genetic

variants within explicitly defined functional categories.77 We

calculated the partitioned heritability with stratified LD score

regression using 10 kb windows around genes contained in each

module as previously done.14,77 Enrichment was also calculated

as the ratio of SNP heritability attributed to each module

compared to the proportion of total SNPs within that module.

These categories were added to the full baseline model of 53 cate-

gories of broad regulatory functions described in Funicane et al.77

to enhance model accuracy. The final model included all 53 cate-

gories and the six prioritized modules. Module enrichments with

an FDR-corrected p value <0.05 (across traits and number of prior-

itized modules) were considered significant (Table S9).

To identify genes associated with mouse musculoskeletal (MSK)

phenotypes upon perturbation in the prioritized modules, we uti-

lized data from two curated databases, including the International

Mouse Phenotyping Consortium (IMPC)78 and the Rat Genome

Database.79 To define the MSK phenotypes, we incorporated the

subsequent mouse knockout (KO) characteristics associated

with MSK terms "bone," "muscle," "cartilage,’’ ‘‘skeleton," "osteo,"

"arthritis," "limb," "muscular," "joint," "body size," "growth," "skel-

etal," "stature," and "height." To assess whether the observed num-

ber of genes associated with MSK phenotypes within each priori-

tized module was significantly higher than expected by chance,
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we conducted a one-sided Fisher’s exact test using the total num-

ber of genes in the co-expression network analysis as the back-

ground. Modules with an FDR-corrected p value <0.05 were re-

ported to have significant enrichment.

Last, we checked the presence of genes targeted by drugs and

further examined the ones in the ‘‘approved’’ or ‘‘approved inves-

tigational’’ phase among drugs in DrugBank80 v.5.1.10 (Table S13).
Causal inference analysis
To assess the causality of the expression of the co-expressed genes

within the six prioritizedmodules,we performed two-sampleMen-

delian randomization (MR) analyses81 (Table S12).We used expres-

sion quantitative trait locus (eQTL) summary statistics from low-

grade and high-grade cartilage10 as the exposure and knee-related

osteoarthritis GWAS summary statistics4 as the outcome. We used

theMR-Base-curated TwoSampleMR R package (v.0.5.7).82 To define

independent instrumental variables (IVs) for each gene in each of

the studied tissues, we conducted LD-based clumping on the

eQTL variants using a strict threshold of R2 ¼ 0.001 over a 10 Mb

windowon either side of the index variantwith the European refer-

ence LD panel from 1000 Genomes.

To ensure that the selected IVs are strongly associated with the

exposure, we selected only the ones with an F-statistic larger

than ten, which was estimated as ðbeta2 =se2Þ; 81where beta is the

effect size estimate and se the corresponding standard error. In

the case of only one strong IV, we employed the Wald ratio

method to infer causality. If more than one IV was available,

then the inverse-variance-weighted (IVW) method was applied

along with the weighted median and the MR-Egger methods.

The latter was only applied if more than three independent IVs

were available. To test for heterogeneity, we calculated the

Q-statistics. For IVs not included in the outcome GWAS, we con-

ducted an LD-based proxy search on the European ancestry 100

Genome reference panel using the R package LDlinkR (v.1.3.0).

Finally, to define evidence of causality, we used the FDR-adjusted

p value of the IVW or Wald ratio results.
Scoring the expression of osteoarthritis genemodules in

fetal data and osteoarthritis adult cartilage
Module gene expression per single-cell population was calculated

using the Seurat AddModuleScore function.50,83 The genes of the

prioritized modules were provided as input (six gene lists) along

with the fetal single-cell Seurat object using default parameters.

This function calculates the average expression of the module

genes on a per-cell basis and then subtracts the aggregated expres-

sion of control gene sets. Briefly, first the average (aggregated)

expression of all genes in the scRNA-seq dataset is calculated,

and genes are ranked according to their average expression

and binned into 25 bins (default). Then, 100 genes are extracted

from the same bin for each gene that belongs to the gene sets of

interest, here being the prioritized modules, to form the control

set. Using this approach, two matrices are created: one containing

the mean expression of control genes for each cell (control scores)

and one containing the mean expression of all genes per module

for each cell (feature scores). The control scores are then subtracted

from the feature ones to get the final cell scores (close to zero dif-

ference corresponding to no enrichment of the genes in the mod-

ules in a cell). The average expression of gene modules in mesen-

chyme, Schwann cell precursors, and osteochondral tissue,

together with classical marker genes, was visualized using the

Seurat DotPlot function.
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Results

Sample size and power

We collected paired (from within the same knee joint),

macroscopically intact (low-grade), and degraded (high-

grade) knee osteoarthritis cartilage from 300 individuals

undergoing knee replacement surgery. We performed

deep RNA-seq and compared the transcriptional profiles

across 272 low-grade and 226 high-grade osteoarthritis

cartilage samples (198 pairs isolated from the same knee

joint) following QC (Figures 1 and S1–S3; Table S1; supple-

mental methods). Compared to earlier studies, this

amounts to a more than 2-fold increase in sample

size10,53 and a concomitant jump in power. Here, we

have the power to detect �68% (compared to 55% of the

largest study to date53) of all DE genes between low- and

high-grade osteoarthritis cartilage at 5% FDR. We investi-

gated the sample size required to attain 80% power to

detect DE genes and found that more than 900 samples

per cartilage group would be needed for an exhaustive

characterization of transcriptomic differences in osteoar-

thritis (Figures S4 and S5). In addition to marginal power,

we also estimated conditional power by stratifying genes

based on their expected log2FCs, as effect size is a

commonly used metric to evaluate biological relevance.56

We find that, with the current sample size, we can confi-

dently (>99% conditional power on effect size) detect dif-

ferential expression for genes with effect sizes correspond-

ing to a 1.2-fold change in either direction.
Transcriptional changes in primary osteoarthritis

cartilage

We identify 3,304 genes to be upregulated and 3,485 genes

to be downregulated in high-grade compared to low-grade

osteoarthritis cartilage (FDR-adjusted p < 0.05, FC > 1.2)

(Figures 2A, 2B, and S6; Table S2). Of these, 1,175 genes

have not been previously reported to be DE in osteoar-

thritis cartilage (527 protein-coding genes and 479

lncRNAs)10,53,84–95 (Table S2). We find enrichment of DE

genes in biological pathways with links to osteoar-

thritis10,53 (Figure S7; Table S3). The strongest enrichment

among downregulated genes in high-grade cartilage

was observed for embryonic morphogenesis (normalized

enrichment score [NES] ¼ �1.83, FDR-adjusted p ¼
1.93 3 10�6) and Gene Ontology terms related to cartilage

and limb development (Figure S7). These findings suggest

that chondrocytes could be undergoing a differentiation

process similar to those taking place during limb develop-

ment in the early stages of cartilage degradation.
Distinct chondrocyte dynamics, vascularization, and

immune cell infiltration in osteoarthritis

To gain insights into how chondrocyte populations

may differ between low- and high-grade cartilage, we per-

formed a deconvolution analysis using scRNA-seq data

from the cartilage of individuals with osteoarthritis32
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Figure 1. Overview of the study design
(Figures S8–S10). These samples were sourced from weight-

bearing regions of articular cartilage, in line with the bulk

RNA-seq data.

This analysis identified pre-fibrotic, pre-hypertrophic,

and regulatory chondrocytes in both low- and high-grade

cartilage, along with infiltrating macrophages and vascular

endothelial cells (Figures 3A and 3B). These findings indi-

cate that the differences observed between disease grades

are likely due to variations in the proportions of these cell

types. In particular, we find increased proportions of pre-

fibrotic chondrocytes andmacrophages in high-grade oste-

oarthritis cartilage compared to low-grade cartilage. This

indicates that fibrocartilage formation (characterized by

aberrant collagen expression) and inflammation are more

prevalent in high-grade cartilage (Figure 3B). This finding

is consistent with evidence pointing to the formation of

cartilage of an inferior quality in an attempt to repair degen-

erated/injured articular cartilage.96 Conversely, low-grade

cartilage presents higher proportions of pre-hypertrophic

chondrocytes, regulatory chondrocytes, and vascular endo-

thelial cells. This suggests that less damaged cartilage is un-

dergoing more active formation and maintenance pro-

cesses, indicative of a healthier or less degenerated state.

Regulatory chondrocytes play a role in maintaining carti-

lage homeostasis, responding to environmental cues, and

potentially modulating inflammation and repair.28 Mean-

while, the increased presence of vascular endothelial cells

may point to neovascularization, a response to injury or

inflammation.

We then used the cell type proportions estimated

through deconvolution to identify DE genes and processes

that are independent of cell type composition. We

observed a reduction in the number of DE genes (3,747

vs. 6,789), which likely reflects the isolation of changes

in gene regulation that occur consistently across cell types

between low- and high-grade cartilage (Table S4). Upon

exploring the biological processes enriched among these

genes, we found nervous system processes, in addition to
The American Jour
immune responses, to be upregulated in high-grade carti-

lage. This finding suggests that high-grade cartilage

may exhibit increased neuroinflammatory activity, poten-

tially contributing to disease progression and severity

(Figure 3C). Downregulated genes in high-grade cartilage

maintained enrichment for processes related to embryonic

morphogenesis and limb development, along with regula-

tion of protein synthesis (Figure 3C). This pattern may

indicate that these developmental and maintenance path-

ways are active in the early stages of the disease across cell

types and become downregulated as the disease progresses,

possibly reflecting a shift in the tissue’s developmental tra-

jectory. Extracting the leading edge of the embryonic

morphogenesis term, we find several genes with crucial

functions in cartilage development and pattern formation,

including HOX genes (HOXA3, HOXA4, HOXA5, HOXA9,

HOXA10, HOXA11, HOXA13, HOXD3, HOXD4,HOXA3,

HOXD9, HOXD13), SOX genes (SOX6, SOX7, SOX8,

SOX9), and several growth factors (GDF5, GDF7, TGFB3,

BMP5) (Figure S11). These genes are typically associated

with developmental processes rather than healthy

non-self-renewing adult cartilage, suggesting that their

downregulation in high-grade cartilage could indicate a

suppression of these developmental programs after being

reactivated as a putative compensatory response at an

earlier stage.

Shared transcriptional programs between limb

development and osteoarthritis

There is some evidence to suggest that during osteoar-

thritis, chondrocytes undergo a phenotypic change toward

states that resemble those found during endochondral

ossification.21,27,97 While the precise recapitulation of fetal

cell states in osteoarthritis is not biologically likely, we

postulated that common transcriptional programs (cellular

signals) may exist between the two, driving common bio-

logical processes such as chondrocyte hypertrophy and os-

teoblastogenesis. The progression from healthy adult
nal of Human Genetics 111, 2735–2755, December 5, 2024 2741



A B

Figure 2. Differential gene expression between low- and high-grade osteoarthritis cartilage
(A) Volcano plot of differentially expressed (DE) genes between low- and high-grade osteoarthritis cartilage with respect to logarithmic
fold change (log2FC) and significance (FDR-adjusted p value). Each dot represents a gene. Blue dots represent DE genes. Highlighted are
the top 20 DE genes between low- and high-grade osteoarthritis cartilage.
(B) Heatmap of gene expression (log2CPM) of the top 30 DE genes between low- and high-grade osteoarthritis cartilage.
cartilage to early and then advanced osteoarthritis may be

marked by an increasing presence of transcriptional pro-

grams associated with fetal endochondral ossification.

We therefore applied the python package CellSignalAnaly-

sis, trained on the fetal limb development scRNA-seq data-

set derived from PCWs 5–17,35 to the bulk RNA-seq data of

osteoarthritis tissue. This fetal dataset encompasses cells

from multiple lineages, such as lateral plate mesoderm

(including osteochondral cells), glia, endothelial cells, stri-

ated and smooth muscle cells, adipose cells, and hemato-

poietic cells.35

We find that the largest fraction of the transcriptome in

both low- and high-grade osteoarthritis cartilage is attrib-

uted to hypertrophic chondrocytes’ transcriptional pro-

grams (Figure 4). Notably, in both tissues, the hypertrophic

chondrocyte signatures are more pronounced compared to

those of articular chondrocytes, which are the primary cell

type in healthy articular cartilage.98 This finding suggests

that osteoarthritis chondrocytes have already started un-

dergoing the process of hypertrophic differentiation before

damage is macroscopically observed in early disease stages.

We next compared the cell type contribution between

the bulk transcriptomes of low- and high-grade osteoar-

thritis cartilage. We find increased cellular signals from

articular, hypertrophic, and pre-hypertrophic chondro-

cytes in low-grade compared to high-grade osteoarthritis

cartilage. The increased articular chondrocyte cellular sig-

nals may reflect the lesser degree of degradation within
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the low-grade osteoarthritis cartilage. The elevated signals

from hypertrophic and pre-hypertrophic chondrocytes

indicate that chondrocytes in low-grade cartilage are un-

dergoing a more active transition from pre-hypertrophic

to hypertrophic states compared to those in high-grade

cartilage. Conversely, early and mature osteoblast signals

are increased in high-grade cartilage (Figure 4). Osteo-

blastic signatures have not been previously reported in

osteoarthritis cartilage.28–32 Considering that osteophyte

formation and subchondral bone sclerosis are features of

osteoarthritis progression, this suggests that osteoblasts

have putative roles in these processes. Other fetal cell types

contributed only minor signals to the overall bulk tran-

scriptome, including fibroblasts, macrophages and adipo-

genic cells (Figure S14). There was no difference between

the two categories in the fraction of the transcriptome

that could not be explained by fetal cellular signals. Over-

all, these results support a key role of growth-plate tran-

scriptional programs in the progression of osteoarthritis

in cartilage.

A consensus co-expression network of osteoarthritis

cartilage

To look deeper into the perturbed transcriptional networks

during osteoarthritis progression, we studied coordinated

gene deregulation and constructed a cartilage consensus

gene co-expression network (Figures S15 and S16). We

identify 55 gene co-expression modules or communities
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Figure 3. Differential cell type abundance between low- and high-grade cartilage
(A) Relative proportions of cell types present in bulk transcriptomes of high-grade and low-grade osteoarthritis cartilage samples ob-
tained from deconvolution analysis (p values were generated using pairwise Wilcoxon rank-sum tests with FDR correction).
(B) Expression of representative marker genes used for cell type classification between low- and high-grade osteoarthritis cartilage (vari-
ance-stabilized-transformed [vst] gene expression counts after regression of the known batch effect).
(C) Bar plot of top 10 upregulated and top 10 downregulated Gene Ontology (GO) biological processes between low- and high-grade
cartilage after adjustment for cell type proportions. Processes involved in skeletal system development and embryonic morphogenesis
remain downregulated in high-grade cartilage after adjusting for cell type composition (top terms are highlighted in bold). p value is
adjusted by FDR.
of genes with similar expression patterns (supplemental

methods; Figures S16F and S16G; Table S6) (size ranging

from 60 to 759 genes). Of these, 27 are upregulated and

24 are downregulated in high-grade osteoarthritis cartilage

(linear mixed model, FDR-adjusted p < 0.05). We find that

the association of these modules with cartilage grading

(low-grade vs. high-grade osteoarthritis cartilage) is highly

specific, with little to no association with biological and

technical variables (Figure S17; Table S6). We examined po-

tential regulatory relationships captured by the consensus

co-expression by overlapping known curated TF-target in-

teractions69 with the identified modules. We found 488

matching edges reflecting captured TF-target interactions.

These interactions spanned 34 modules (Figure S18).

To identify central transcriptional regulators of cartilage

degeneration in knee osteoarthritis, we ranked module

genes by their connectivity (both in the whole network
The American Jour
and within each module) due to evidence pointing out

that genes with high network connectivity are enriched

for disease heritability.11 We found that known osteoar-

thritis effector genes4 had higher intramodular connectiv-

ity compared to all other genes in the network (Wilcoxon

p ¼ 0.013). In contrast, there was no significant difference

in the inter-modular connectivity (Wilcoxon p ¼ 0.25).

This indicates that the modules and module-specific met-

rics capture the disease biological processes better than

the whole network.

We next looked specifically at the most connected genes

encoding for TFs within the identified modules. We find

that several have important roles in chondrogenesis

and embryonic limb morphogenesis (DLX5, HOXA9,

TBX4, HOXC10) and cell differentiation/proliferation

(MYC, FOS, NFIA, ERG, FOXC1, FOXC2, FOXO1, FOXO3)

(Figure 5). TBX4 and ERG have previously been identified
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Figure 4. The relative contribution of
single-cell-derived signals from fetal limb
tissue in explaining the bulk transcrip-
tomes of 226 high-grade and 272 low-
grade osteoarthritis cartilage samples
The relative contribution of each signal to
each bulk RNA-seq sample is shown on
the y axis. Each signal/sample combina-
tion is represented by a single point and
boxplots showing the distribution with
median (middle line), first and third quar-
tiles (box limits), and 1.5 times the inter-
quartile range (whiskers). p values gener-
ated by the two-sided Wilcoxon rank-sum
test of significant difference between the
contribution of cellular signals to low-
and high-grade osteorthritis cartilage tran-
scriptomes are displayed above each pair
of cell type plots. Color scale represents
mean expression within a cluster. ns,
non-significant.
as effector genes for osteoarthritis.4 TBX4 is known to be

specific in hindlimb (posterior limb giving rise to legs)

development in both mice and humans,47,99 while ERG

has been proposed to have key roles in the development

and function of both transient and permanent carti-

lages.100 TBX4 is also among the hub genes of the module

that showed the highest upregulation in low-grade carti-

lage (linear mixed model beta ¼ �0.071, FDR-adjusted

p ¼ 6.6 3 10�69) and showed specific enrichment for pro-

cesses related to embryonic morphogenesis and cartilage

development. These results further support the role of

developmental processes in osteoarthritis and provide evi-

dence for the involvement of specific TFs and their regula-

tory networks.
Co-expression modules are enriched for osteoarthritis

genetic risk signal

We prioritized modules capturing causal processes for oste-

oarthritis development by evaluating their enrichment for

osteoarthritis risk variants within or in close proximity to

module genes using MAGMA73 (methods). To this end,

we utilized summary statistics from the largest GWAS

meta-analysis on osteoarthritis to date (826,690 individ-

uals).4 We identified significant enrichment for six mod-

ules (FDR-adjusted p< 0.05) among knee osteoarthritis, to-

tal knee, and total joint replacement phenotypes

(Figures 6A and 6B; Table S7). This demonstrates that the

average genetic association of genes with osteoarthritis in

each of these modules is higher than the mean genetic as-

sociation among all other genes in the captured gene space

(gene drivers of this association within eachmodule can be

seen in Table S7). Out of the six prioritized modules, we

find three to be upregulated and three to be downregulated

in high-grade compared to low-grade osteoarthritis carti-

lage (Figures 6C and S17). Correlations between prioritized

modules are shown in Figure S19.
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We identify three modules enriched for knee osteoar-

thritis genetic risk (GWAS N ¼ 396,054): the cartilage

development module (top hub genes: FAM78B, WNK2,

and TBX4; FDR-adjusted p ¼ 0.0006), a module reflective

of transcription regulation by RNA polymerase II (top

hub genes: SETD5, OTUD7B, and SRSF4; FDR-adjusted

p¼ 0.011), and a module representative of endoplasmic re-

ticulum (ER) stress (top hub genes: DNAJB11, SPCS2, and

HM13; FDR-adjusted p ¼ 0.012) (Figure S17; Table S8).

Upon closer inspection of the gene-gene interaction pat-

terns within those modules, we find several captured TF-

target relationships including regulons of known TFs,

including SMAD3, SIX4, YY1, MECP2, and NFE2L2 (tran-

scription regulation module) and NFIA and AR (cartilage

development module) (Figure S20).

Three modules show enrichment for the risk of total

knee replacement surgery (GWAS N ¼ 252,041): an ECM

module (top hub genes: MRC2, FMOD, and PLBD1; FDR-

adjusted p ¼ 0.046), a module enriched for Wnt signaling

genes (top hub genes: DUSP2, TSC22D2, and MYC; FDR-

adjusted p ¼ 0.021), and a module reflective of chromatin

modification processes (top hub genes:NIPBL,UBXN7, and

PUM1; FDR-adjusted p¼ 0.021) (Figure 6A). The ECMmod-

ule is also enriched for genetic risk of total joint replace-

ment (GWAS N ¼ 368,576) (FDR-adjusted p ¼ 0.007),

with several fibrosis gene markers (S100A4, THY1, FAP,

COL1A2, COL3A1, FMOD) in its co-expression network,

suggesting that increased fibrosis is associated with knee/

joint replacement risk.

In order to glean further insight into the genetic signals

explained by the prioritized modules, we partitioned

GWAS heritability77 into the genes from each of the six

modules (Figures 6D and 6E; Table S9). We find that the

cartilage development module shows specific enrichment

for knee osteoarthritis genetic risk (2.06-fold, FDR-adjusted

p ¼ 2.29 3 10�2), accounting for 1.70% of SNP-based her-

itability and containing 0.83% of the SNPs. The ECM
ember 5, 2024



−

A B

Figure 5. Network connectivity of genes encoding for transcription factors
(A) Within-module (intramodular) and between-module (inter-modular) connectivity based on consensus co-expression networks; top
25 genes encoding for transcription factors with the highest intramodular connectivity are labeled.
(B) Fold change of transcription factor genes shown in (A) between low- and high-grade cartilage. Highlighted in bold are known oste-
oarthritis effector genes.
module is enriched for knee replacement surgery risk (3.56-

fold, FDR-adjusted p ¼ 8.41 3 10�4), accounting for 3.12%

of SNP-based heritability despite only containing 0.88% of

the SNPs. We find that the transcription regulationmodule

is enriched in common genetic variation for all three tested

phenotypes (knee osteoarthritis: 1.94-fold, FDR-adjusted

p ¼ 7.58 3 10�3; total knee replacement: 2.14-fold, FDR-

adjusted p ¼ 2.29 3 10�2; total joint replacement: 1.90-

fold, FDR-adjusted p ¼ 2.29 3 10�2), accounting for

>2.6% of SNP-based heritability across phenotypes

(2.99% total knee replacement, 2.71% knee osteoarthritis,

2.66% total joint replacement) and containing 1.39% of

SNPs. This module may be reflective of regulatory pro-

cesses affecting the chondrocyte phenotype with a driving

role in osteoarthritis. Our findings demonstrate the utility

of gene co-expression networks in assigning common ge-

netic variation patterns to particular biological functions.

We evaluated module enrichment for known osteoar-

thritis risk genes. These include curated lists of high-con-

fidence effector genes (with three or more lines of evi-

dence in support of their involvement in disease),

putative effector genes (with at least one line of evidence)

as defined by Boer et al.,4 and genes with at least one

eQTL in high- or low-grade cartilage53 (Figure 6F;

Table S10). The ECM and the cartilage development mod-

ules show the strongest enrichment for putative effector

genes in osteoarthritis (FDR-adjusted p ¼ 0.002 and

0.021, respectively). The ECM module is also the only

one enriched for high-confidence osteoarthritis effector

genes (FDR-adjusted p ¼ 1.9 3 10�5), reflecting the impor-

tant role of ECM remodeling in knee osteoarthritis patho-

genesis.101 Effector genes within the enriched modules
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include several TFs (NFATC1, FOSB, CREBBP, TWIST1,

SMAD3) and TF targets (CIC, LAMC1, KMT2D, COL27A1,

TEAD1, HDAC7) (Figure S20).

We investigated known protein-protein interactions

from StringDB70 and found significant enrichment within

all six prioritized modules (FDR-adjusted p< 0.05). This in-

dicates that the prioritized modules contain more interac-

tions (edges) than one would expect from a random collec-

tion of proteins and is a further line of evidence that

their gene products participate in common biological pro-

cesses, providing a foundation for disentangling regulatory

relationships.

Lastly, we investigated the presence of genes that show a

MSK phenotype upon perturbation in the IMPC78 and Rat

Genome79 databases (Table S11), and find that 41% of

genes in all prioritized modules show amouseMSK pheno-

type (transcription regulation: 168, chromatin modifica-

tion: 154, ECM: 93, cartilage development: 70, Wnt

signaling: 63, ER stress: 62). For five out of six modules

(transcription regulation, chromatin modification, ECM,

cartilage development, Wnt signaling) the observed num-

ber of genes associated with a mouse MSK phenotype was

significantly higher than expected by chance (one-sided

Fisher FDR adjusted p < 0.05, Figure 6F). This finding

further supports the functional relevance of the identified

modules for knee osteoarthritis.

To better understand the role of the prioritized transcrip-

tional networks in osteoarthritis, we performed two-sam-

ple MR analysis in all eGenes (genes with at least one sig-

nificant eQTL in either low- or high-grade cartilage

tissue) within the six prioritized modules (methods). We

identify 14 unique eGenes that have a causal association
nal of Human Genetics 111, 2735–2755, December 5, 2024 2745
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Figure 6. Co-expression modules that show enrichment for osteoarthritis GWAS signals and their functional annotation
(A) Significant enrichment is observed for knee osteoarthritis risk and total joint and total knee replacement surgery among 6 prioritized
modules.
(B) Top 5 Gene Ontology biological processes for the prioritized modules depicted in (A).
(C) Module-level differential expression between low- and high-grade osteoarthritis cartilage. Bar plot of b values from linear mixed ef-
fect model of module eigengene association with disease status (FDR-corrected p < 0.05).
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with osteoarthritis (Figure S21). Out of those, 10 are newly

reported, as their eQTL regulation has not previously been

causally linked to osteoarthritis in GWASs.4 (Table S12).

These are involved in immune response and cell signaling,

enzymatic processes and metabolism, cellular processes

and development, DNA repair, and protein trafficking.

Their respective mouse model KO phenotypes78,79,102

included skeletal/limb changes (MIA3, P4HA2), growth/

body size (MIA3, REV1, AGA, GABBR1), aging/mortality

(RHBDL3, PAM), neurological (RHBDL3, GABBR1, AGA,

CD4), and the immune system (CD4). These results point

to the relevance of the identified causal associations for

these genes and their transcriptional networks in osteoar-

thritis biology.

Osteoarthritis co-expression modules are enriched for

distinct cell types in the developing skeleton

In order to understand if the prioritized co-expression net-

works reflect the expression of specific cell types, we eval-

uated their enrichment among cell types found in both

osteoarthritis cartilage and the developing fetal limb.35

Through scoring module expression at the single-cell level

(methods), we first examined their expression in cell

populations identified in weight-bearing osteoarthritis

cartilage.32

We found that that pre-hypertrophic and hypertrophic

chondrocyte signatures are specifically expressed by the

cartilage development module, indicating its specificity

to these chondrocyte subtypes (Figure S22). Additionally,

pre-hypertrophic chondrocytes’ genes are expressed in

the Wnt signaling, ECM, and ER stress modules, under-

scoring the importance of these pathways in regulating

pre-hypertrophic chondrocytes during osteoarthritis. The

ECM module is mainly expressed in pre-fibrotic and pre-

hypertrophic chondrocyte subtypes, with little to no

expression in regulatory chondrocytes and other non-

chondrocyte populations (Figure S22). This pattern sug-

gests that the ECM module is particularly relevant to cells

actively engaged in cartilage matrix production and re-

modeling, emphasizing its specificity to matrix-producing

chondrocytes in osteoarthritis.

By evaluating module expression in single-cell fetal data,

we find that the six prioritized gene co-expressionmodules

exhibit distinct expression patterns during the endochon-

dral ossification developmental trajectory (Figure 7). The

multipotent mesenchyme of the limb highly expresses

both transcription regulation (low-grade osteoarthritis)

and chromatin modification (high-grade osteoarthritis)

gene modules, possibly reflecting the highly proliferative

nature of these tissues (Figure 7). Two of the modules upre-

gulated in low-grade osteoarthritis (cartilage development

and Wnt signaling) are strongly and specifically expressed

by developing chondrocytes (Figure 7). In particular, the

cartilage development module, showing the largest

upregulation in low-grade vs. high-grade osteoarthritis

cartilage, presents increased activity across the chondro-

progenitor / early resting / resting / proliferating /
The American Jour
pre-hypertrophic chondrocyte trajectory. By contrast,

two high-grade modules (ECM and ER stress) were weakly

expressed by chondrocytes of the fetal limb tissue, with

higher expression in fetal articular chondrocytes and peri-

chondrium (ECM module only) and in osteoblasts (both

modules). These findings suggest that changes in chondro-

cyte homeostasis during the early stages of cartilage degra-

dation in osteoarthritis may share some biological similar-

ities with the process of chondrocyte development during

endochondral ossification,27,103 with high-grade disease

sharing similarities with bone remodeling, and with the

replacement of cartilage with bone.27

Drug targets and repurposing opportunities

We find that 112 genes among the prioritized modules are

targets of known drugs in the approved or approved inves-

tigational phase (targeted by 263 unique compounds from

DrugBank80), presenting a clinical opportunity for drug re-

purposing in knee osteoarthritis (Table S13). Six out of 112

genes were also among the module genes driving the ge-

netic association with osteoarthritis (MAGMA gene

drivers; Table S7; Figure S23) (including among others

the potassium calcium-activated channel subfamily M

alpha 1 [KCNMA1], the phosphoinositide-3-kinase regula-

tory subunit 3 [PIK3R3], the complement factor H [CFH],

and the apolipoprotein D [APOD]), and two were among

the genes identified to be causally associated with osteoar-

thritis through MR (CD4, GABBR1) (Tables S13 and S14).

GABBR1 (transcription regulation module), which codes

for a receptor of the gamma-aminobutyric acid (GABA)

inhibitory neurotransmitter, is targeted by two approved

drugs (baclofen and vigabatrin). Baclofen, a drug used

for muscle spasticity, has a potential role in the treatment

of collagen-induced arthritis (CIA) based on mouse exper-

iments.104 Vigabatrin has been found to attenuate

chondrocyte hypertrophy and protect against injury-

induced osteoarthritis in mice through the inhibition of

4-aminobutyrate aminotransferase.105

KCNMA1 (cartilage development module), coding for

calcium-activated potassium channel subunit alpha-1, is

abundantly expressed in articular cartilage and suggested

to be involved in osteoarthritis progression. KCNMA1 is

targeted by five approved drugs (chlorzoxazone, bendro-

flumethiazide, cromoglicic acid, diazoxide, Trimebutine).

Several calcium channels are also among the approved

drug targets in the transcription regulationmodule. Specif-

ically, CACNB1, CACNB2, and CACNB4 are all targeted by

Levomenthol, an organic compound used to treat minor

pain. Levomenthol is currently in phase 2/3 for the treat-

ment of pain in knee osteoarthritis.80

Isoprenaline, a b-adrenergic agonist targeting PIK3R3

(transcription regulation module), is in an approved

investigational stage for bradycardia and heart block.80

Isoprenaline has also been found to inhibit interleukin

(IL)-1b-mediated genotoxicity and ECM degradation by

downregulating MMP1, MMP3, MMP9, and ADAMTS5 in

in vitro and in vivo osteoarthritis models.106
nal of Human Genetics 111, 2735–2755, December 5, 2024 2747
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CFH and APOD (Wnt signaling module) are both tar-

geted by copper (approved investigational phase), which

is mainly used for supplementation. CFH is also targeted

by zinc-containing inorganic compounds (zinc, zinc ace-

tate, zinc chloride; approved investigational phase). Of

note, genetically predicted high levels of both copper

and zinc are positively associated with osteoarthritis,

with the regulation of their levels having been proposed

as a promising prevention strategy for osteoarthritis pro-

gression.107 Therefore, each of these medications offers a

potential avenue for repurposing studies in knee

osteoarthritis.
Discussion

Large-scale functional genomics studies in osteoarthritis-

relevant tissues, and the insights they can offer to improve

our understanding of disease processes, have been lacking.

Here, we analyze transcriptional alterations between paired
2748 The American Journal of Human Genetics 111, 2735–2755, Dec
low- and high-grade disease cartilage tissue samples from

300 individuals with knee osteoarthritis at unprecedented

power. We identify transcriptional programs that are de-

regulated in disease and refine our understanding of its mo-

lecular pathophysiology by identifying coordinated gene

expression changes. We find enrichment of osteoarthritis

genetic risk in distinct co-expression modules, reflective of

both specific biological processes and cell types in osteoar-

thritis cartilage as well as transcriptional similarities to the

developing fetal limb. We find genetic risk enrichment of

cartilage co-expression networks for knee osteoarthritis, to-

tal joint replacement, and knee replacement surgery and

identify putative causal effects for variants linked to the

expression of ten previously unreported genes in the largest

osteoarthritis GWAS to date.4

One of the key findings of our study is the identification

of fetal endochondral ossification transcriptional programs

in adult osteoarthritis cartilage. This finding highlights the

possibility of similar biological changes during the pro-

cesses of endochondral ossification and osteoarthritis of
ember 5, 2024



the knee, a concept that has recently gained attention. For

example, Richard et al.108 provide a model of human knee

evolution, suggesting that genetic variation in functionally

constrained regulatory elements plays a pivotal role in joint

disease. These regulatory elements, which are essential for

knee development, structure, andmaintenance, have likely

evolved under both positive and purifying selection pres-

sures. However, modern genetic drift and pleiotropy may

disrupt these constraints, contributing to an increased risk

of osteoarthritis. Our findings align with this model, as we

observe the presence of fetal transcriptional programs

within prioritizedmodules (i.e., those enriched for osteoar-

thritis genetic risk), particularly noting that the module

reflective of cartilage development exhibits the greatest ge-

netic enrichment for knee osteoarthritis risk. This suggests

that the proposed aberrant reactivation of knee develop-

mental programs in the non-self-renewing adult cartilage

may not only be a pathological hallmark but could also be

a potential consequence of evolutionary pressures that

have shaped these regulatory elements over time. Comple-

menting these insights, Rice et al.109 further demonstrated

that osteoarthritis-associated methylation QTLs (mQTLs)

are active during skeletogenesis, underscoring the develop-

mental origins of osteoarthritis genetic risk and empha-

sizing the need to consider early molecular events in trans-

lational strategies.

Our findingsmay have broader implications for complex

diseases. For example, research into neuropsychiatric dis-

orders has shown that significant genetic risk is linked to

prenatal developmental stages. A study by Walker

et al.110 identified numerous eQTLs and splicing QTLs

(sQTLs) in mid-gestational human brains, revealing that

genetic liabilities for SCZ and ASD are associated with pre-

natal-specific regulatory regions. Similarly, research into

Alzheimer disease (AD) has demonstrated that patient-

derived induced neurons exhibit a downregulation of

mature neuronal properties and an upregulation of pro-

genitor-like pathways, reflecting a hypo-mature neuronal

identity.111 Additionally, a study on systemic sclerosis

(SSc) found that the loss of adipose tissue and its transition

tomyofibroblasts plays a crucial role in the development of

dermal fibrosis, suggesting that similar cellular transitions

might underlie other degenerative processes.112 These ex-

amples underscore how developmental gene networks

and cellular transitions impact disease susceptibility and

progression.

Previous studies in mice have demonstrated that chon-

drocyte hypertrophic differentiation takes place in

response to joint instability and that hypertrophic chon-

drocytes (marked by COL10A1 and MMP13 expression)

may be involved in degradation of the cartilage ma-

trix.113–116 Building on these insights from mice, we pro-

vide large-scale molecular evidence that similar processes

occurring during joint development are recapitulated dur-

ing osteoarthritis in humans. Our study refines this under-

standing by pinpointing specific cell populations involved

in cartilage degeneration. We find that increased pre-hy-
The American Jour
pertrophic and hypertrophic transcriptional programs are

already present at lower cartilage degradation (more pro-

nounced than those of articular chondrocytes). This sug-

gests that low-grade cartilage may undergo hypertrophic

differentiation earlier than previously recognized. We

further find that osteoblasts’ transcriptional programs are

enriched in high-grade cartilage, pointing to a putative

transition to bone. This indicates that the change in

cellular phenotype that occurs through osteoarthritis pro-

gression may be driven by biological mechanisms closely

linked to those at play during endochondral ossification.

We find that gene co-expression modules that exhibit

increased expression in low-grade osteoarthritis (cartilage

development and Wnt signaling modules) are representa-

tive of transcriptional programs expressed in fetal resting,

proliferating and pre-hypertrophic chondrocytes (both

modules), and hypertrophic chondrocytes (Wnt signaling

only). This is in agreement with ectopic initiation of chon-

drocyte hypertrophy playing a key role in osteoarthritis

pathogenesis.27 In particular, a module reflective of carti-

lage developmental processes is strongly enriched for

knee osteoarthritis genetic risk and represents a transition

from chondroprogenitors to the formation of pre-hyper-

trophic chondrocytes. Given the capacity of this popula-

tion to initiate hypertrophic differentiation,117 a process

driving osteoarthritis cartilage remodeling,97 this co-

expression network likely captures critical transcriptional

changes from the articular to the growth-plate transcrip-

tional program. It is important to note that the presence

of endochondral ossification programs does not fully eluci-

date the specific trajectories occurring during osteoarthritis

progression. Evidence suggests that chondrocytes might

also transdifferentiate into osteoblasts, potentially driving

both cartilage degradation and ectopic bone formation.118

This adds complexity to our understanding of chondrocyte

behavior in osteoarthritis, indicating that multiple path-

ways are likely to contribute to disease progression and

stressing the need for well-powered multi-omics studies.

In high-grade osteoarthritis cartilage, which represents

more advanced degeneration, we find upregulation of the

ECM module. The latter is mainly reflective of fibrosis and

osteoblasts’ transcriptional programs and shows enrich-

ment for total knee and joint replacement risk. This indi-

cates an association between changes in the ECM and

more severe disease progression or pain, which is associated

with surgical intervention. This finding is in line with the

role of ECM degradation in knee osteoarthritis pathogen-

esis2 and the replacement of cartilage with bone in

advanced osteoarthritis stages.27

We identify drug repurposing opportunities for genes in

the prioritizedmodules, including ion channels and adren-

ergic signaling targets. Ion channels have been proposed as

attractive targets for pain management in individuals with

osteoarthritis.119 Adrenergic receptors (a2a and b2) and the

inhibition of their catabolic effects in cartilage have been

suggested to be an appealing approach for osteoarthritis

treatment.120
nal of Human Genetics 111, 2735–2755, December 5, 2024 2749



We have compared low- and high-grade cartilage in indi-

viduals with end-stage osteoarthritis. As a result, the re-

ported transcriptional variations may be distinct from

the molecular alterations related to early changes associ-

ated with osteoarthritis susceptibility. In addition, we

used samples from both the tibia and femur, which pre-

vents us from determining if the identified fetal-like pro-

grams are more prevalent in one location or equally signif-

icant in both. Although the single-cell data analyzed here

cover a wide range of gestational ages, they do not capture

the full extent of limb development, mainly due to the

ethical and logistical considerations of working with hu-

man embryonic and fetal tissue. Additionally, in the

context of tissues, such as cartilage and bone, the breadth

of single-cell capture can be limited, with a relatively low

number of these cells sequenced following dissociation.

This is due to the challenge of liberating single cells from

matrix-rich tissue, which requires harsh enzymatic diges-

tion and a delicate balance between liberation and over-

treatment, resulting in cell stress and/or death. Neverthe-

less, the atlas used here does cover a significant portion

of cellular differentiation in these lineages, successfully

capturing cells ranging from mesenchymal progenitors to

COL10A1-expressing hypertrophic chondrocytes and

from perichondrial cells through to BGLAP-expressing os-

teoblasts. All samples in the current study were derived

from individuals of European ancestry. Functional geno-

mics data from diverse global populations will be necessary

going forward.121

In this work, we generate a comprehensive transcrip-

tional characterization of osteoarthritis primary cartilage

tissue. The data enhance our understanding of gene net-

works enriched for the genetic risk of osteoarthritis,

generate new insights into biological processes underpin-

ning disease development and progression, and identify

high-value drug targets and repurposing opportunities.

Our findings demonstrate the value of integrating gene

network analysis, GWASs, and single-cell data to disen-

tangle key transcriptional and genetic regulators in osteo-

arthritis as an exemplar complex disease.
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