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ARTICLE

Profiling genetically driven alternative splicing
across the Indonesian archipelago

Neke Ibeh,1,2,3,4 Pradiptajati Kusuma,5 Chelzie Crenna Darusallam,5 Safarina G. Malik,5

Herawati Sudoyo,5 Davis J. McCarthy,2,3,6 and Irene Gallego Romero1,2,4,7,*
Summary
One of the regulatorymechanisms influencing the functional capacity of genes is alternative splicing (AS). Previous studies exploring the

splicing landscape of human tissues have shown that AS has contributed to human biology, especially in disease progression and the

immune response. Nonetheless, this phenomenon remains poorly characterized across human populations, and it is unclear how ge-

netic and environmental variation contribute to AS. Here, we examine a set of 115 Indonesian samples from three traditional island

populations spanning the genetic ancestry cline that characterizes Island Southeast Asia. We conduct a global AS analysis between

islands to ascertain the degree of functionally significant AS events and their consequences. Using an event-based statistical model,

we detected over 1,500 significant differential AS events across all comparisons. Additionally, we identify over 6,000 genetic variants

associated with changes in splicing (splicing quantitative trait loci [sQTLs]), some of which are driven by Papuan-like genetic ancestry,

and only show partial overlap with other publicly available sQTL datasets derived from other populations. Computational predictions of

RNA binding activity reveal that a fraction of these sQTLs directly modulate the binding propensity of proteins involved in the splicing

regulation of immune genes. Overall, these results contribute toward elucidating the role of genetic variation in shaping gene regulation

in one of the most diverse regions in the world.
Introduction

Pre-mRNA splicing is a critical and highly regulated process

through which multiple mRNA isoforms are produced

from a single gene through the excision of introns and liga-

tion of exons.1 While constitutive splicing yields identically

spliced mRNA isoforms, the process of alternative splicing

(AS) produces isoforms that differ from each other based

on their unique combinations of exons. AS is one of the reg-

ulatory mechanisms influencing the functional capacity of

genes, and the resulting alternatively spliced isoforms

contribute significantly to the protein diversity and func-

tional complexity observed in eukaryotic organisms.2 In hu-

mans, approximately 95% of multi-exon genes undergo

AS,3,4 andaberrantAShasbeen implicated inover15%ofhu-

man hereditary diseases and cancers.5,6 AS has been found

to be highly specific, with isoform expression regularly

restricted to certain tissues and cell types,4,7–10 although

the degree to which alternative isoforms are functional re-

mains unclear.11–13 Nevertheless, isoform-level transcrip-

tome analyses have revealed that splicing can play signifi-

cant roles in the cellular response to environmental cues,

including immune pressures.14–20 In humans, this natural

variation inAShasbeenhighlightedas aphenomenon influ-

encing complex traits and disease prevalence.21

AS is tightly regulated through an intricate protein-RNA

interaction network comprised of cis regulatory elements
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and trans-acting factors.22 Genetic polymorphisms can alter

these splicing regulatory elements and splice site usage

thereby influencing gene expression andproteinproducts.23

Splicingquantitative trait locus (sQTL) analysishasbecomea

leadingmethod for explicating these genotype-splicingasso-

ciations. sQTL analyses across multiple tissues have shed

light on the contributions of AS to a number of traits,

including breast cancer,24 Alzheimer disease,25 and schizo-

phrenia.26 The GTExConsortiumhas recently characterized

sQTLs in over 50humanhealthy tissues,9 providing anover-

view of baseline healthy variation. Such studies are vital for

advancing our understanding of gene regulation and disease

mechanisms. They provide a bridge between genetic varia-

tion and complex traits, contributing to the development

of innovativediagnostic tools andtherapeutic interventions.

Theunprecedented scale andgranularity of these analyses is,

however, frustrated by the fact that the majority of partici-

pants involved in these studies are of either European or un-

documented ancestry. This lack of diversity limits our collec-

tive understanding of variation in mRNA regulation and

howthese regulatorymechanismsmight, in turn, contribute

to human phenotypic diversity.

Multiple studies have sought to characterize the extent of

variation across humanpopulations inboth splicing and the

genetic mechanisms that regulate it, with existing data sug-

gesting that both genetic ancestry and environmental varia-

tion make substantial contributions to these traits. In
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lymphoblastoid cell lines (LCLs) from seven different global

populations, population differences in genetic ancestry ex-

plained 25% of differences between individuals in genes ex-

pressingat least two transcripts,27but expressiondifferences,

rather than splicing ones, accounted for the bulk of this ef-

fect. However, LCLs are known to trend toward a homoge-

neous pattern of gene expression that blunts the effect of in-

ter-individual diversity,28 and thus this numbermayprovide

a lower-bound estimate of the true amount of variation.

Indeed, the majority of AS events across GTEx tissues have

been recently attributed to differences in ancestry between

individuals rather than to other demographic drivers such

as age, sex, or BMI.29

The number of studies to map sQTLs is much more

limited, and even more so when considering populations

other than urban, genetically European cohorts; addition-

ally, most studies have used LCLs instead of primary tissue

(reviewed in Park et al.30). However, there are notable excep-

tions. A study of the response to infection in monocytes

from individuals of European and African descent living

in Belgium showed that genetic ancestry consistently

contributed to differences in splicing and highlighted the

role of archaic introgression from Neanderthals20 in partic-

ular. Recently, a separate study examining both expression

and splicing in whole blood in East African populations

has shown that overall, the genetic architecture of splicing

is shared between individuals of African and European

ancestry but nonetheless identified a substantial number

of sQTLs in individuals from Tanzania and Ethiopia that

have not been reported in European cohorts.31

Here, we focus on 115 previously described whole-blood

samples drawn from three traditional Indonesian popula-

tions32,33 that span the genetic ancestry cline that makes

up the region.34 We explore the prevalence and functional

significance of AS variation across this region of the world,

working toward deepening our understanding of the regu-

latory mechanisms that shape the landscape of immune

gene regulation across the Indonesian archipelago. To

elucidate the genetic variants influencing these splicing

events, we identify 6,405 cis-sQTLs (4,199 unique SNPs)

affecting 2,423 genes and investigate possible biological

mechanisms driving these observations. We discuss the

implications of these gene regulatory patterns on a global

scale, comparing our findings with those derived from Eu-

ropean samples. Finally, we characterize the landscape of

AS events across our groups of interest and investigate

the functional consequences of the differential isoform

usage between them. Thus, our work contributes to the

growing catalog of putative regulatory elements that shape

and influence AS in human populations.
Subjects, material, and methods

Dataset description and ethics statement

We used a previously published set of 115 (all male)

matched DNA and RNA data from three distinct Indone-
The American Jour
sian populations32 (available at the European Genome-

Phenome Archive: EGAS00001003671). The samples

span the main west-east axis of genetic diversity in the

Indonesian archipelago34,35: (1) the inhabitants of Menta-

wai (MTW, n ¼ 48), a small barrier island in western

Indonesia, are of West Island Southeast Asian-like genetic

ancestry; (2) the Korowai (KOR, n ¼ 19), from western

New Guinea Island, are of Papuan-like genetic ancestry;

while (3) the inhabitants of Sumba (SMB, n ¼ 48), a small

island east of theWallace line in central Indonesia, carry an

approximately 80/20 admixture of either ancestry. Previ-

ous work has shown that the Korowai individuals in the

data carry approximately 2% of archaic Denisovan intro-

gression.33 Both data collection and subsequent analyses

were approved by the institutional review board at the

Eijkman Institute (EIREC #90 and EIREC #126) and by

the University of Melbourne’s Human Ethics Sub-

Committee (approval 1851639.1). All individuals gave

written informed consent for participation in the study.

Permission to conduct research in Indonesia was granted

by the Indonesian Institute of Sciences and by theMinistry

for Research, Technology, and Higher Education (RISTEK).

RNA-seq processing

For all 115 samples, raw RNA-sequencing (RNA-seq) reads

were assessed with FastQC (v.0.11.9)36 and pre-processed

with Trimmomatic v0.36,37 removing leading and trailing

bases with a Phred score below 20 prior to any further anal-

ysis. RNA-seq reads were aligned to GRCh38 Ensembl

release 110 using default STAR (v.2.7) settings38 with the

exception of -alignEndsType EndToEnd to remove soft-

clipping of the reads and -sjdbOverhang 100 for optimal

splice junction overhang length.

Differential alternative splicing analysis

For event-based quantification of local splicing variation,

we employed SUPPA2.39 SUPPA2 generates the percent

spliced-in (PSI) values for each splicing event across all

samples simultaneously using pseudoalignment-based

transcript quantification. First, standard local splicing var-

iations were computed using the SUPPA2 generateEvents

command, applied to the reference annotation (GRCh38

Ensembl release 110). Then, the sample-wise PSI values

for each event were calculated using transcript abundances

(TPMs) obtained from Salmon v1.9.0.40 These PSI values

denote the relative abundance of transcripts containing

an exon (or intron, in cases of retained introns [RIs]) over

the relative abundance of transcripts for the gene of inter-

est containing the exon/intron. PSI scores were computed

for five well-defined classes of AS events, namely, skipped

exons (SEs), RIs, mutually exclusive exons (MXEs), alterna-

tive 50 splice sites (A5SSs), and alternative 30 splice sites

(A3SSs). To ensure high confidence event calling, events

were restricted to protein-coding and lincRNA genes, the

percentage of exons with missing PSI values had to be

below 5% per sample, and average TPM within a popula-

tion had to be > 1.
nal of Human Genetics 111, 2458–2477, November 7, 2024 2459



To identify differential AS between the three groups, we

corrected PSI values for batch effects and other technical

confounders using fractional regression.29,41 Each splicing

event was fit with logit-transformed PSI values (glm func-

tion in the R stats package [R v4.3.3], setting family ¼ qua-

sibinomial(‘logit’)). We selected the following covariates as

the most relevant to incorporate into the model: RIN,

sequencing batch, age of donor, and blood cell type pro-

portions from previously computed32 estimates of the pro-

portion of CD8T, CD4T, natural killer (NK), B cells, mono-

cytes, and granulocytes in each sample. Using these

corrected PSI values, differentially spliced events were

identified by computing D PSI values between each pair

of sample groups. Only splicing events that were detected

in all groups were retained for differential testing (i.e., no

NAs), as recommended in the SUPPA2manual. Differential

events were deemed statistically significant if they had a jD
PSI j R 0.1 and FDR < 0.05.

In parallel, we conducted intron-based quantification of

splicing variation (necessary for sQTL mapping) using

LeafCutter,42 which identifies intron excision events

across samples. Intron clustering (representing alternative

intron excision events) was performed using default set-

tings of 50 reads per cluster and a maximum intron length

of 500 kb. For each intron cluster, the proportion of reads

supporting a specific intron excision event was calculated.

Intron excision ratios were then standardized across indi-

viduals and quantile normalized. LeafViz42 was used for

the annotation and visualization of intron clusters and

splicing events.

Comparative visualization of RNA-seq read alignments

We summarized exon- and junction-spanning RNA-seq

densities for all sample groups using MISO’s43 sashimi_plot

tool. Read densities for all exons were quantified using

RPKMunits.44 Junction reads were plotted as arcs spanning

the exons that the junction borders. Isoform structure was

obtained from the GFF annotation (GRCh38 Ensembl

release 110) of each splicing event. For ease of visualiza-

tion, intron lengths were scaled down by a factor of 30,

and exon lengths were scaled down by a factor of 4.

Isoform switching analyses

We identified instances of isoform switching by testing

each individual isoform for differential usage across the

three populations. Changes in isoform usage for a gene

are represented by the difference in isoform fraction values

(dIF), where IF ¼ isoform expression/gene expression.

Pseudoaligned transcript abundance and genomic

coordinates were aggregated with the R package IsoformS-

witchAnalyzeR.45 Prior to isoform switch testing, we filtered

out completely unused isoforms, single-isoform genes, and

genes with an average TPM level (in each population) < 1.

Confounding effects (RIN, sequencing batch, age, and

blood cell type proportions, as above) were accounted for

by applying the limma46 removeBatchEffect function to

the isoform abundance matrix. Statistical identification
2460 The American Journal of Human Genetics 111, 2458–2477, Nov
of isoform switches was conducted via DEXseq using

default settings.47 Isoforms were considered differentially

switched and retained for further analysis if the dIF > 0.1

and Benjamini-Hochberg-adjusted FDR < 0.05. We

consider the first population in the switch comparison as

the ground state and the second population as the

changed stated. For example, an up-regulated isoform in

Korowai versus Mentawai is one that is used more in Men-

tawai when compared to Korowai. We then translated the

coding sequences of the switching isoforms into amino

acids and predicted their coding capabilities, protein

structure, peptide signaling, and presence of protein

domain families using CPC2,48 IUPred2A,49 SignalP,50

and Pfam,51 respectively.

The functional consequences of each significant isoform

switch were evaluated by analyzing the annotation differ-

ences between the isoform(s) used more (switching up,

dIF > 0) and the isoform(s) used less (switching down,

dIF < 0). In other words, if a gene has at least one isoform

with a significant change in usage between the three pop-

ulations, the functional annotation of this isoform is

compared to that of the isoform(s) with the compensatory

change in usage. For genes with multiple significant

switching events, we compared the functional annotation

of all pairwise combinations of the isoforms involved. The

following functional properties were compared: isoform

coding potential, open reading frame (ORF) sequence sim-

ilarity, the presence or absence of protein domain families,

the presence or absence of signal peptides, the presence of

intrinsically disordered regions (IDRs; regions that lack a

fixed or ordered structure), and nonsense-mediated decay

(NMD) sensitivity. For sequence similarity comparisons,

we used the default minimum length difference cut-off

of 10 amino acids.45 Changes in protein domain or IDR

length are only reported if the shorter protein domain

(or IDR) is <50% of the length of the longer region.

cis-sQTL mapping

Aligned reads (GRCh38 Ensembl release 110) were used as

input to LeafCutter42 to obtain standardized and normal-

ized intron excision ratios (the number of reads defining

an excised intron over the total number of intron cluster

reads), which were then used as phenotypes for sQTLmap-

ping. We used QTLTools52 to test for an association be-

tween variants and intron ratios within a cis-region of 5

1 Mb of the intron cluster using 10,000 adaptive permuta-

tions. After observing that the vast majority (89%) of our

detected associations occurred within 250 kb of the intron

clusters, we restricted our analyses to this 250 kb window.

We controlled latent sources of variation using covariates

identified with the probabilistic estimation of expression

residuals (PEER) method.53 The number of PEER factors

was determined as a function of sample size, with the first

29 PEER factors (25% of our sample size) selected. The top

five genotyping principal components (PCs) were included

to account for population structure, since they account for

approximately 9% of the genotype variance observed, with
ember 7, 2024



diminishing returns for all subsequent PCs. Nominal

p values for each variant-phenotype pair were obtained

by testing the alternative hypothesis that the slope of the

linear regression model between genotype and excision ra-

tios deviates from 0.

Identifying shared cis-sQTLs and differences in effect

sizes

We compared our Indonesian sQTLs to two European

whole-blood sQTL studies: GTEx v89 (n ¼ 670) and

BLUEPRINT8 (n ¼ 197) with freely available complete sum-

mary statistics. For both European studies, the sQTL map-

ping approaches that were employed are in line with those

used for our Indonesian data here, making comparisons

possible without extensive raw data reprocessing. Specif-

ically, both studies applied a linear modeling approach,

testing for associations with variants within 5 1 Mb of

each gene’s transcription start site (TSS). For consistency,

GTEx and BLUEPRINT sQTL sets were restricted to variants

within 250 kb of the TSS, and coordinates for the

BLUEPRINT data were converted from hg19 to hg38 using

the R package liftOver v1.26.0.54 Shared and population-spe-

cific sQTLs across Indonesian and European populations

were assessed using the multivariate adaptive shrinkage

(mash) approach implemented in the R package mashr.55

The input for mash consisted of sQTL effect sizes and their

standard errors (obtained from the QTLTools output). The

correlation structure among the null tests was estimated us-

ing a large, random subset of all tests (40%). For each intron

cluster within each gene, the SNP with the smallest p value

across all tested SNPs was retained in order to produce a

confident set of sQTLs. The data-driven covariance matrix

was constructed using this strong set, and posteriormean ef-

fect sizes were calculated by applying the mash model that

was built using the random set. sQTLs were considered

shared across populations if the magnitude of effect sizes

was within a factor of 0.5 between groups, and the sign

of the effect was the same. A local false sign rate (LFSR) <

0.05 was used as a threshold for significance.

Variance in sQTL genotype explained by local genetic

ancestry

Using all significant permutation-based sQTLs, we quanti-

fied the variance in sQTL genotype explained by modern

local genetic ancestry (LA). To do this, we adapted a

previously described approach,56 fitting a linear model

V ¼ a 3 PAP þ b for each variant. V is the genotype vector

and PAP is a covariate that represents the number of alleles

assigned to Papuan-like genetic ancestry. This analysis was

conducted using the 73 samples (30 Mentawai, 29 Sumba,

and 14 Korowai) with available 303 depth whole-genome

sequencing data.33 Variants were categorized as highly

correlated with LA if they had an absolute R2 > 0.7.

Gene ontology overrepresentation analysis

We tested for overrepresentation of GO and KEGG terms

using the R package clusterProfiler (v.4.0.5),57 setting the
The American Jour
gene universe as all tested genes. We used an FDR

threshold of 0.05 to identify significantly enriched

terms. For GO term representations across sGenes, we

employed REVIGO58 (parameters: allowed similarity ¼
0.9, database ¼ H.sapiens, semantic metric ¼ SimRel) to

remove highly redundant GO terms from clusterProfiler

output and visualize semantic similarity-based GO term

representations.

Estimation of sQTL variant pathogenicity

We intersected our sQTL SNPs with clinically annotated

variants in ClinVar (https://www.ncbi.nlm.nih.gov/

clinvar) to assess their possible pathogenicity. We consid-

ered two sets of variants for analysis—lead SNPs located

within the gene body and all sQTL SNPs that were located

directly within a splice junction.

Evaluating the impact of sequence variations on the

binding affinity of splicing RNA binding proteins

We used DeepCLIP to quantify the effects of SNPs on pro-

tein-RNA binding.59 Specifically, we used DeepCLIP’s pre-

trained models for 33 splicing-associated RNA binding

proteins (RBPs). These RBPs were chosen because they

have been previously characterized in eCLIP (enhanced

cross-linking and immunoprecipitation) studies from

HepG2 and K562 cell lines and have well-documented

roles in splicing regulation and spliceosome activity.60,61

Using the pre-trained models, we ran prediction in paired

sequence mode using all significant sQTL SNPs, with

10-bp flanking sequences on both sides. The output from

DeepCLIP is a set of binding profiles and overall scores

for the reference and variant sequences. The binding

profile scores range from 0 to 1 and indicate whether

regions of a sequence contain potential binding sites

(1) or if they are most likely to be random genetic

background (0).59

Colocalization analysis with genome-wide association

study hematological traits

Colocalization analyses were performed between sQTLs

and 13 hematological traits using coloc v5.2.3.62 We tested

for colocalization between our detected permutation-based

sQTLS and genome-wide association study (GWAS) loci

from a trans-ethnic study that included East Asian popula-

tions.63 We assumed a prior probability that a SNP is asso-

ciated with (1) the GWAS trait (p1, default ¼ 13 10�4), (2)

AS (p2, default ¼ 13 10�4), and (3) both the GWAS trait

and AS (p12, default ¼ 13 10�6). We identified robust co-

localization with the default threshold of CCV > 0.8 and a

ratio of CCV/DCV > 5, where CCV and DCV stand

for common causal variant and distinct causal variant,

respectively. The 13 hematological traits measured in the

East Asian populations were: basophil count, eosinophil

count, hematocrit, hemoglobin concentration, lympho-

cyte count, mean corpuscular hemoglobin, mean corpus-

cular hemoglobin concentration, mean corpuscular vol-

ume, monocyte count, myeloid white blood cell count,
nal of Human Genetics 111, 2458–2477, November 7, 2024 2461
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neutrophil count, platelet count, and red blood cell den-

sity. All GWAS summary statistics were obtained from the

GWAS catalog. The linkage disequilibrium r2 values were

calculated from our phased genotype data (115 samples).
Results

Characterizing differential alternative splicing events

between Indonesian populations

To characterize the splicing landscape across the Indone-

sian archipelago, we carried out AS analyses using paired-

end RNA-seq data generated from 115 previously described

male whole-blood samples.32 Samples were obtained from

three Indonesian populations: the people of Mentawai

(of genetically West Island Southeast Asian-like ancestry),

the people of Sumba (approximately 80%/20% admixed

between West Island Southeast Asian-like and Papuan-

like genetic ancestries33), and the Korowai of New Guinea

Island (of Papuan-like genetic ancestry; Figure 1A).

Across the three populations, we observed 38,611 AS

events in the Korowai, while the Mentawai and Sumba

groups had 39,728 and 39,769 AS events, respectively

(Figure S1A). This slight difference in total detected events

can be attributed to the smaller sample size of the Korowai

group (n ¼ 19). Our results show that the splicing events

across these three populations were generally shared. Spe-

cifically, 38,144 (94.2%) of all AS events were seen in all

three island groups, 1,337 events (3.3%) were shared be-

tween only two of the three groups, and 1,002 events

(2.5%) were found in just one of the three groups

(Figure 1B). We additionally observe that the Mentawai

and Sumba groups make up the majority of the pairwise

AS event sharing (74.1% of all events shared by any two is-

land groups, Figures S1B–S1F), although this is likely attrib-

utable to our increased power in these two groups relative

to the Korowai. To gain further insight into the detected

AS genes across all populations, as well as the genes

that contain the 1,002 population-specific AS patterns

(434 events in Mentawai, 447 events in Sumba, and 121

events in Korowai), we tested for their enrichment against

GO and KEGG pathways (Tables S1 and S2). Overlapping

enriched GO categories and KEGG pathways for the Koro-

wai population are related to nervous system function,

transmembrane transportation, and substance depen-

dence. In Mentawai, significantly enriched GO categories

are generally related to regulation of synaptic signaling;

however, no enriched KEGG pathways were detected. For

Sumba, enriched GO categories and KEGG pathways

include renal system processes, hormone transport, and

calcium signaling.

To better understand the splicing variation across

these populations, we conducted a differential AS analysis.

We identified 419 significant (jD PSI j R 0.1 and FDR <

0.05) differential AS events betweenMentawai and Sumba,

515 events between Korowai and Mentawai, and 738

events between Korowai and Sumba (Figures 1C and 1D).
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These differences are in line with previously reported

gene expression and methylation patterns across these

groups, with the Korowai vs. Sumba comparison yielding

the most differentially expressed genes and differentially

methylated probes, closely followed by Korowai vs. Menta-

wai.32 These findings suggest that the Korowai population

might be driving a lot of the observed inter-island vari-

ability, with the Sumba and Mentawai populations exhib-

iting higher levels of shared homogeneity, although we

cannot confidently disambiguate whether these differ-

ences are caused by genetic or environmental factors.

Given the ancestry proportions across these groups, we

would expect to observe the highest number of differential

AS events between the Korowai andMentawai populations

instead of the Korowai and Sumba populations. We hy-

pothesize that there are complex gene-by-environment in-

teractions at play, where differences in the local environ-

ments at each sampling site might be contributing to

these patterns, including the shared subsistence agricul-

ture lifestyle of the inhabitants of both Mentawai and

Sumba.32

We found that differentially alternatively spliced (DAS)

genes between Korowai and Sumba are related to mRNA

processing (e.g., SLTM, BARD1 [MIM: 601593], DYRK1A

[MIM: 600855], CDK11A [MIM: 116951], QKI [MIM:

609590], and RNPS1 [MIM: 606447]), splicing regulation

(e.g., RBM23, TRA2B [MIM: 602719], TMBIM6 [MIM:

600748], MBNL1 [MIM: 606516], HNRNPH1 [MIM:

601035], RNPS1, and PTBP2 [MIM: 608449]), and cell cycle

signaling (e.g., MRE11 [MIM: 600814], BRIP1 [MIM:

605882], DONSON [MIM: 611428], ZWILCH [MIM:

609984], and CDC14B [MIM: 603505]), indicating poten-

tial population-based differences in post-transcriptional

regulatory patterns (Table S3). While DAS genes between

Korowai and Mentawai were not enriched for either GO

or KEGG terms, we found that DAS genes between Menta-

wai and Sumba were enriched for transcription corepressor

(e.g., DPF2 [MIM: 601671], ATF7IP [MIM: 613644], MTA1

[MIM: 603526], HDAC9 [MIM: 606543], and SF1 [MIM:

601516]) and coactivator (e.g., MED24 [MIM: 607000],

KMT2C [MIM: 606833], SMARCA2 [MIM: 600014],

MED12 [MIM: 300188], and ACTN1 [MIM: 102575]) activ-

ity (Table S3). Overall, these findings indicate that the DAS

genes between these populations are predominantly im-

pacting aspects of cell division and regulation of gene

expression.

Characterization of Indonesian cis-sQTLs in whole blood

To understand the genetic regulation of AS across our Indo-

nesian populations, we performed a cis-sQTL mapping

analysis using all 115 samples. sQTLs were mapped using

linear regression to quantify the association between the

intron excision ratios and SNP genotypes (subjects, mate-

rial, and methods). Splice ratios from a total of 49,122

splice clusters (i.e., overlapping introns that share a splice

donor or acceptor site) were included in the sQTL analysis.

We detected a total of 6,077 cis-sQTLs affecting 1,977 genes
ember 7, 2024
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Figure 1. Characterization of differential AS across Indonesian populations
(A) Geographical location of the three sampling sites (n ¼ 115).
(B) Schematic diagram of the five AS events profiled with SUPPA2. Horizontal bar plots correspond to the event categories to the left and
illustrate the sharing of AS events across the three island groups (i.e., the splicing event either occurs in all three groups, in only two of
the three groups, or in only one group). The x axis is log10 transformed.
(C) UpSet plots summarize the DAS gene intersections for the three pairwise comparisons. Only significant events (jD PSI jR 0.1, FDR<
0.05) are shown.
(D) For each population pair, the distributions of D PSI values are plotted for each splicing category (A3SS, A5SS, MXE, RI, and SE). The
direction of the arrows indicate whether the alternatively spliced exon is excluded more or included more in each sample (i.e., exon
exclusion levels). In the case of an MXE event, if the strand is positive, then the inclusion form includes the first exon and excludes
the second; if the strand is negative, then the inclusion form includes the second exon and skips the first.
at an FDR level of 0.01, comprising 3,658 unique SNPs

(Tables S4 and S5). Positional enrichment of significant

sQTL SNPs confirmed that sQTLs are located within or

near the introns that they regulate, with 56% of SNPs

occurring within 5 kb of the LeafCutter-defined splicing

cluster (Figure 2A). Additionally, 67% of sQTLs are located
The American Jour
in non-coding genomic regions (Figure S2). This observa-

tion is consistent with previous research suggesting that

most variants that fall in close proximity to splice junc-

tions influence splicing regulatory functions.30,64

GO enrichment analysis of sGenes (genes with a

significant sQTL) revealed enrichment for numerous
nal of Human Genetics 111, 2458–2477, November 7, 2024 2463
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Figure 2. Indonesian cis-sQTL characteris-
tics
(A) Meta-cluster representation of the posi-
tion of sQTLs across LeafCutter-defined
intron clusters.
(B) Shared and unique sGenes across the
Indonesian and European datasets.
(C) Pairwise sharing of sQTLs between the
datasets evaluated by mashR.
(D) Distribution of effect sizes for Indonesia-
specific sQTLs.
(E) Linear regression between the number of
QTL minor alleles and number of inferred
Papuan alleles reveals nine sQTLs (across
11 sGenes) largely driven by Papuan-like ge-
netic ancestry (R2 > 0.7).
(F) An sQTL that is strongly correlated with
Papuan-like genetic ancestry. Plot shows the
relationship between the number of in-
ferred Papuan alleles and sQTL minor al-
leles.
(G) Genotype plot of the DNM3 Papuan-
driven sQTL event. For this AS event, the
junction with the most significant associa-
tion to the SNP (rs10752946) is depicted
with bold numbers across all three geno-
types, and these numbers represent the pro-
portion of reads spanning the junction (i.e.,
normalized count values). The thickness of
each intron-spanning curve is proportional
to the displayed normalized counts.
immune-related pathways, including immune-response-

regulating signaling (e.g., THEMIS2 [MIM: 617856],

ERMAP [MIM: 609017], GBP2 [MIM: 600412], VAV3

[MIM: 605541], FCRL3 [MIM: 606510], AIM2 [MIM:

604578], and FCGR3A [MIM: 146740]), immune-

response-activating signaling (e.g., DENND1B [MIM:

613292], MAPKAPK2 [MIM: 602006], CR1 [MIM:

120620], NLRC4 [MIM: 606831], NAGK [MIM: 606828],

IFIH1 [MIM: 606951], and PRKCD [MIM: 176977]),

phagocytosis (e.g., VAV3, NCF2 [MIM: 608515], C4BPA

[MIM: 120830], DYSF [MIM: 603009], MARCO [MIM:

604870], and CD302 [MIM: 612246]), regulation of

innate immune response (e.g., GBP2, ADAR [MIM:

146920], FCRL3, IFI16 [MIM: 147586], AIM2, and CFH

[MIM: 134370]), and interleukin-1 beta production

(e.g., IFI16, AIM2, NLRC4, CASP8 [MIM: 601763], GHRL

[MIM: 605353], and CX3CR1 [MIM: 601470]), high-

lighting the impact of splicing on immune-related genes

(Figure S3; Table S6). Indeed, some of the strongest sQTL

signals are present in immune-related genes such as

TRIM58 (MIM: 620527) and ERMAP (Figures S4A and
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S4B). TRIM58 is additionally impli-

cated in malignancies such as lung

cancer, liver cancer, and pancreatic

ductal adenocarcinoma65–68 and is

involved in innate immunity and

cell proliferation.65,69 ERMAP is a B7

family immune regulator that has

been found to promote the phagocy-
tosis of tumor cells70–72 and encodes the protein respon-

sible for the Scianna blood group system.73

Given that themajority of sQTL studies to date have pro-

filed European populations, we wanted to compare the

overlap between our detected sQTLs and previously pub-

lished datasets. We focused our comparison on two large

studies of whole blood, namely GTEx v89 (n ¼ 670) and

BLUEPRINT8 (n ¼ 197). We found that sQTL effects are

largely shared between the two European datasets, but

they are not shared to the same extent with the Indonesian

data. Out of 4,550 unique sGenes (among the three data-

sets), 330 (7.3%) are shared across all datasets, 364 are de-

tected in both European cohorts but not in the Indonesian

data (8%), and 1,008 (22.2%) are solely in the Indonesian

data; similar values were private to both GTEx and

BLUEPRINT, suggesting either incomplete power to detect

sQTLs across studies, winner’s curse, or a genuine poor

generalizability of sQTLs across studies (Figure 2B). To bet-

ter estimate shared and population-specific effects and

ascertain the degree of sharing between our detected Indo-

nesian sQTLs and the European sQTLs, we applied a



multivariate adaptive shrinkage model, mashr. Using an

LFSR cut off of 0.05, an sQTL is considered shared if the ef-

fect sizes share the same sign and fall within a factor of 0.5

of each other. As with the more naive approach above,

sQTL effects are largely shared across European datasets

(Figure 2C). Additionally, we detected 312 Indonesia-spe-

cific (LFSR < 0.05) SNP-sGene pairs (Figure 2D). These

Indonesia-specific sQTLs identified by mashr had higher

minor allele frequencies (MAFs) across the Indonesian

samples compared to the European samples (p ¼ 1.52e-

08, p ¼ 2.96e-09, Figure S5), while the shared sQTLs had

equally high MAFs between both populations (p ¼ 0.077,

p ¼ 0.081). To determine whether this Indonesia-specific

signature is driven by Indonesia-specific variants, we calcu-

lated the proportion of Indonesian sQTLs that did not

occur in the European sQTL databases because the MAF

of the variant was too low in the European samples.

GTEx and BLUEPRINT include variants with MAFs R

0.01, while we tested those with an MAF above 0.05 to ac-

count for diminished power as a consequence of our sam-

ple size. Across all Indonesia-specific sQTLs, we found that

87/312 (28%) were not tested in the European datasets due

to a European MAF that is below 0.01. Notably, for these

87 SNPs, the mean MAF difference between our Indone-

sian samples and individuals of non-Finnish European

ancestry (gnomAD74) is 0.314. In line with previous

eQTL analyses carried out on this set of samples,33 we

also observe significantly larger effect sizes of Indonesian-

specific sQTLs within Indonesia than we do in the

European datasets (ANOVA, p < 2.2e-16; Figure 2D), again

suggestive of incomplete power across all considered data-

sets and highlighting the importance of establishing larger

cohorts for QTL mapping in general.

While there was no evidence of enrichment of GO or

KEGG terms across these Indonesia-specific genes, many

genes with sQTLs are implicated in signal regulation

(e.g., IRF1 [MIM: 147575] and SIRPB1 [MIM: 603889])

and oncogene pathways (e.g., RAP1A [MIM: 179520],

RAP1B [MIM: 179530], FES [MIM: 190030], and DNM3

[MIM: 611445]). In spite of our limited sample size, these

findings suggest a distinctive and distinguishable (relative

to previously characterized European data) Indonesian

sQTL signal, as we would expect sharing between GTEx

and BLUEPRINT to also be negatively impacted by the

relatively low sample size in BLUEPRINT and their distinct

processing pipelines. By profiling the differences and sim-

ilarities across these groups, we can more accurately char-

acterize the gene regulatory mechanisms underlying diver-

sity in genetic traits, highlighting the value of trans-ethnic,

trans-environment QTLmapping tomaximize discovery of

gene regulatory variation across humans.29,31

After quantifying sQTL-level differences between the

Indonesian and European cohorts, we wanted to assess

the extent to which variance in sQTL genotype is driven

by LA inmodern Indonesians. Specifically, using LA haplo-

type information for each significant sQTL, we investi-

gated whether there was a correlation between the inferred
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ancestral source of the genotype and gene splicing (sub-

jects, material, andmethods).We found nine sQTLs (across

11 sGenes) that show strong evidence (R2 > 0.7) of being

driven by Papuan-like genetic ancestry (Figure 2E,

Table S7). Although small and likely underpowered due

to the very limited representation of Papuan-like genetic

ancestry in our dataset, this set included several immune

genes, one of which was DNM3 (Figure 2F). Otherwise

known as Dynamin-3, DNM3 is a microtubule-associated

gene that plays a fundamental role in membrane traf-

ficking and the regulation of vesicle formation in cells75

and has been implicated in various functions related to

the development and colony formation of megakaryo-

cytes.76–78 Human DNM3 contains 21 exons with at least

five of its exons being alternatively spliced to generate

several isoforms.79 The Papuan-driven sQTL event that

we identified for DNM3 is a skipping event of exon 17

(b ¼ 0.55, q value ¼ 3:53 10�4) associated with the SNP

rs10752946, which lies within intron 20 of DNM3

(Figures 2F, 2G, and 3A). The canonical isoform for this

gene, ENST00000627582.3, includes exon 17 and encodes

a protein made up of 863 amino acids (GRCh38 Ensembl

release 110). Conversely, isoform ENST00000367731.5 is

the product of the AS event that excludes exon 17, result-

ing in a loss of four amino acids that do not appear to have

a significant impact on protein structure predictions made

with AlphaFold. Our results indicate that the Korowai sam-

ples have a higher rate of exon 17 exclusion/skipping

(22.5%) than the Mentawai (7.6%) and Sumba (7.5%)

groups; in other words, a higher proportion of expressed

DNM3 isoforms in the Korowai group exclude exon 17.

Indonesian whole-blood cis-sQTLs colocalize with

hematological GWAS traits

To shed light on the potential interplay between gene

splicing regulation and complex traits, we sought to

explore whether the Indonesian sQTLs colocalized with

any hematological GWAS traits. Using coloc, a Bayesian

test for genetic colocalization, we performed colocalization

analyses between all significant sQTLs and 13 blood-

related traits using summary statistics from a trans-ethnic

study, which included 151,807 East Asian participants.63

Overall, we identified 45 unique sGenes (3.4% of all signif-

icant sGenes) that colocalized with 12 different traits, from

a total of 68 significant GWAS trait-sGene pairs (File S1).

Seven of these genes colocalized with three traits simulta-

neously. Of these, FCGRT (MIM: 601437), which encodes

the neonatal Fc receptor (FcRn) colocalized with red blood

cell density, hemoglobin concentration, and hematocrit,

whileMAEA (MIM: 606801), a macrophage erythroblast at-

tacher, colocalized with mean corpuscular hemoglobin,

mean corpuscular volume, and red blood cell density. We

also found that the LA-driven sQTL at DNM3 significantly

colocalizes with hemoglobin concentration (H4 ¼ 0.837,

H4/H3 ¼ 8.445), a trait that refers to the amount of

hemoglobin protein present in a specific volume of blood

(Figure 3B).
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Figure 3. Splicing regulation in DNM3
(A) Sashimi plot illustrating the skipped exon event (exon 17) in DNM3. Isoform expression was summarized using the MISO frame-
work.43 The numbers over each curved line represent the junction spanning reads. The canonical isoform for DNM3 is provided. The
labels E16, E17, and E18 represent exons 16, 17, and 18, respectively.
(B) Statistically significant GWAS colocalization between the LAI-driven sQTL in DNM3 (rs10752946) and the GWAS hemoglobin con-
centration trait63 measured in East Asian populations.
Assessing the pathogenicity of cis-sQTL variants

Given the growing awareness of the role of splicing in ge-

netic disease and the ancestral diversity biases in existing

sQTL datasets, we intersected sQTL SNPs with clinically an-

notated variants in ClinVar.We considered two sets of SNPs:

(1) all lead sQTL SNPs within the gene body and (2) all sQTL

SNPs falling within splice junctions. Across both SNP sets,

the analysis yielded 120 total hits with 116 of these having

benign or likely benign status, three variants of uncertain

significance (VUSs), and one variant with a GWAS disease

trait classification (Table S8). The three VUSs occur in

KLRC4 (rs139613925, in-sample alternative allele frequency

0.481 [MIM: 602893]), HADHB (rs2303893, in-sample alter-

native allele frequency 0.366 [MIM: 143450]), andDENND3

(rs2289001, in-sample alternative allele frequency 0.307

[MIM: 617503]). The protein encoded by KLRC4 belongs

to the natural killer group 2 family of receptors. These

receptors are primarily expressed on NK cells and some sub-
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sets of T cells, where they play important roles in the recog-

nition and regulation of immune responses.80 The HADHB

gene product, MTP-beta, plays a central role in the break-

down of long-chain fatty acids within mitochondria.81

DENND3 plays a role in regulating intracellular vesicle traf-

ficking and has been implicated in cancer where dysregula-

tion of vesicle trafficking pathways can contribute to

tumor progression and metastasis.82,83 The GWAS variant,

rs2763979 (in-sample alternative allele frequency 0.468),

occurs in HSPA1B (MIM: 603012) and has reported associa-

tions with cancer (p value ¼ 23 10�14, European popula-

tion, n ¼ 475,312)84 and systemic lupus erythematosus

(SLE [MIM: 152700], p value ¼ 63 10�6, Thai population,

n ¼ 4,088).85

cis-sQTL SNPs influence splicing-RBP binding affinity

We used a deep-learning convolutional neural network,

DeepCLIP, to predict the effect of our sQTLs on RBP-RNA
ember 7, 2024



Figure 4. sQTL impact on RBP binding affinity
(A) Mean-difference plots for 9 of the 33 splicing-RBPs. Each point represents a pair of 21-bp-long sequences centered on the lead sQTL
SNP (ref/alt alleles). The y axis depicts the difference between the DeepCLIP reference sequence score and the DeepCLIP variant sequence
score, while the x axis depicts the average between these two scores. Horizontal green and blue lines represent the 95% and 99% con-
fidence intervals (CIs), respectively. Points that are outside of the 99% CI are colored blue. CNN filters predicted by DeepCLIP, ranked by
score, are provided for each protein.
(B) DeepCLIP binding profiles for HNRNPM and PTBP1. The variant-reference sequence pairs in question are circled in panel A.
(C) Normalized expression (TPM) of the 33 chosen splicing-associated RBPs.
binding as a possible mechanism of action. We employed

DeepCLIP’s pre-trained models for 33 splicing-associated

RBPs with well-documented roles in splicing regulation

and spliceosome activity60 and assessed the impact on

their binding abilities across all 3,658 significant lead

SNPs within 250 kb of the nearest splice site, adding

10-bp flanking sequences on both sides. For each refer-

ence-alternative allele pair and each RBP, we obtained

binding profiles indicating the likelihood of RBP binding

(for the respective protein) along the RNA sequence (File

S2). These binding affinity scores, ranging from 0 to 1,

can be interpreted as the strength of RBP binding.59 For

each RBP, we observe that most sQTL SNPs are not pre-

dicted to significantly increase or decrease RNA binding af-
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finity, as their difference scores (reference score � alterna-

tive score) tend to fall within the range (99% CI) of likely

values (Figures 4A and S6). However, globally, we find

that 59.6% of all sQTLs fall outside of the 99% CI for at

least one RBP, suggesting that these sQTls might impact

the binding affinity of at least one of these 33 splicing

RBPs (File S2). For RBPs with very uniform motifs, such

as EWSR1 (Ewing sarcoma protein),86 the introduction of

sQTL SNPs has a marked effect on the sequence binding

scores, yielding large differences in predicted binding affin-

ity between the reference and the alternative allele

(Figure S6).

Conversely, we also observe RBPs with only one or two

outliers, suggesting a biologically significant impact of
nal of Human Genetics 111, 2458–2477, November 7, 2024 2467
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Figure 5. Global isoform switching analysis and functional consequences
(A) For each pairwise group comparison, the consequences of all significant isoform switching events are described. Specifically, the
annotation differences between the up-regulated isoform (dIF > 0) and the down-regulated isoform (dIF < 0) are summarized. The first
population in the switch comparison is the ground state, and the second population is the changed stated. Thus, an up-regulated iso-
form in the KOR vs. MTW comparison, for example, is one that is used more in MTW relative to KOR. KOR, Korowai; MTW, Mentawai;
and SMB, Sumba.
(B) Venn diagram of the number of genes with overlapping isoform switching events and functional consequences (FDR < 0.05) across
all pairwise comparisons.

(legend continued on next page)
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the sQTL SNP on RBP activity (Figures 4A and 4B). Specif-

ically, for the HNRNPM protein, which is moderately

expressed within our dataset (Figure 4C), we predict

a 0.71 increase in binding affinity at rs6433311 (A > G,

Figure 4B), which is an sQTL for DYNC1I2 (MIM:

603331); in our data, the G allele at rs6433311 is associated

with an effect size of �1.174 relative to the A allele (indi-

cating exon exclusion, Figure S7A) and segregating at a fre-

quency of 0.739. The predicted increase in HNRNPM bind-

ing as a consequence of this A > G intronic variant is

consistent with previous findings that HNRNPM recog-

nizes GU-rich cis-elements, primarily in introns.87–89

HNRNPM is a member of the heterogeneous nuclear ribo-

nucleoprotein family involved in RNA processing,

including pre-mRNA splicing and mRNA transport,90 and

has been found to promote exon skipping across various

experimental conditions.89,91–93 DYNC1I2, as a compo-

nent of the dynactin complex,94 may indirectly influence

RNA transport within the cell, potentially interacting

with HNRNPM-associated mRNA complexes during trans-

port. In addition, we predict a 0.73 decrease in the binding

affinity of PTBP1 at rs27291 (G> A, Figure 4B), which is an

sQTL for LNPEP (MIM: 151300); in this case, the A allele at

rs27291 in our data is associated with an effect size of 0.672

(indicating exon inclusion) and segregating at an allele fre-

quency of 0.434. PTBP1, also known as polypyrimidine

tract binding protein 1, plays crucial roles in AS, mRNA sta-

bility, mRNA localization, and translation initiation.95–98

Containing four highly conserved RNA binding domains

that recognize short pyrimidine-rich sequences,99 this

splicing factor regulates AS by inducing exon skip-

ping.100–102 Thus, a decrease in the binding activity of

this protein may result in higher exon inclusion, which

is in line with the positive effect size that we observe at

this splicing junction (Figure S7B).

Genome-wide isoform switching analysis reveals

significant changes in functional protein domains as a

consequence of fluctuations in isoform usage

To better assess the functional implications of our detected

splicing events, we conducted an isoform switching anal-

ysis across each of the three pairwise group comparisons

(Mentawai vs. Sumba, Korowai vs. Sumba, and Korowai

vs. Mentawai). Isoform switching is defined as the change

in relative abundance of different isoforms from the same

gene between conditions. Isoforms were considered

differentially switched and retained for further analysis if

the difference in isoform fraction (D IF) >0.1 and FDR <

0.05. In total, we identified 165 significant isoform

switches across 110 genes between Korowai andMentawai,

244 switches across 158 genes between Korowai and
(C) The isoform switch in IL18RAP. Exons with annotated domains ar
expression (TPM), isoform expression, and isoform usage are plotted.
(with KOR as the reference) is denoted by the asterisks.
(D) Changes in isoform switches against changes in gene expression
FDR < 0.05) isoform switches are colored accordingly.
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Sumba, and 100 switches across 66 genes between Menta-

wai and Sumba (Tables S9 and S10). Altogether, these

events impacted 239 unique genes and 389 unique iso-

forms. Then, to ascertain the potential biological impact

of these isoform switches, we tested for changes in the

functional properties of the transcripts at the sequence

level. These properties included the coding potential of

the transcripts, the functional domains and signal peptides

(that are either present or absent), the presence of intrinsi-

cally disordered regions, or IDRs (regions that lack a fixed

or ordered structure), the sensitivity of the transcript to

NMD, and the similarity of the ORF sequences between

transcripts. For every detected isoform switch in a given

gene, the annotations for the most-used isoform (D IF >

0.1) and the least-used isoform (D IF< 0.1) were compared.

Differences in the annotations between the up-regulated

isoform and the down-regulated isoform were categorized

as isoform switches with predicted functional conse-

quences (Figure 5A).

Across all switching events between the three Indone-

sian populations, the most frequent functional conse-

quences of isoform switching were changes in ORF

sequence similarity (36.7%), protein domains identified

(23%), and coding potential (21.4%, Files S3–S6). When

focusing on switches between Korowai and either Menta-

wai or Sumba, isoforms expressed at higher levels in the

Mentawai or Sumba groups were more likely to contain

an additional domain, with 14.8% of all switching events

resulting in a protein domain gain in the up-regulated iso-

form, while 7.1% resulted in a domain loss in the up-regu-

lated isoform (Figure 5A). Furthermore, for up-regulated

isoforms in the Sumba population (Korowai vs. Sumba

andMentawai vs. Sumba), a greater number of switches re-

sulted in the increased usage of a coding transcript (15%)

as opposed to a non-coding transcript (6.8%). Interest-

ingly, when compared to the Korowai population, iso-

forms up-regulated in the Sumba population are more

likely to have an IDR gain (9.2%) rather than an IDR loss

(5%) and are also more likely to be coding, whereas the in-

verse is true for isoforms unregulated in theMentawai pop-

ulation vs. the Korowai population (Figure 5A). IDRs act

as a flexible point of contact for protein-protein interac-

tions and are often enriched in protein products that

play a critical role in signaling, regulation, and molecular

recognition.103–105

We also found that the number of these functionally sig-

nificant switches, and the extent of overlap between pair-

wise comparisons, varied greatly. For the Mentawai vs.

Sumba comparison, we detected statistically significant

isoform switching events with a functional consequence

across 36 genes, 106 genes for Korowai vs. Sumba, and
e colored, and those without are black boxes. Normalized IL18RAP
Error bars indicate 95% confidence intervals. Level of significance

(x axis) for each pairwise comparison. Significant (D IF > 0.1 and
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77 genes for the Korowai vs. Mentawai comparison

(58.3%, 68.8%, and 73.2% of all isoform switches in each

comparison; Figure 5B). The overlap in functionally signif-

icant switching genes was greatest between the pairs

involving the Korowai group, with the Mentawai vs.

Sumba comparison sharing very few switching genes

with either of the other two pairs. Moreover, there were

no functionally significant switching genes that were

shared across the three sets.

Manyof the significant isoform switching events occurred

ingenes that play critical roles in the immune response, such

as IL18RAP (MIM: 604509),which exhibited themost signif-

icant isoform switching event across all comparisons

(q value ¼ 53 10�27; Table S9). The IL18RAP protein (inter-

leukin-18 receptor accessory protein) serves as a receptor

accessory protein for interleukin-18 (IL-18), a cytokine

involved in immune responses and inflammation.106 As

such, IL18RAP is a crucial component of the IL-18 receptor

complex, and the dysregulation of IL18RAP expression has

been implicated in various diseases, including autoimmune

disorders, inflammatory conditions, and cancer.107 In our

data,weobservepreferential usageof the longer IL18RAP iso-

form (ENST00000264260.6) in theMentawai group (isoform

switch q value¼ 1:83 10�8), while the Sumba and Korowai

groups exhibit preferential usage of the shorter isoforms

ENST00000409369.1 and ENST00000687160.1 (Figure 5C).

Notably, the ENST00000264260.6 isoform contains a

signal peptide at the third exon, while isoforms

ENST00000409369.1 and ENST00000497795.1 do not.

Signal peptides play a key role in directing proteins to

their appropriate cellular locations. Thus, higher usage

of the IL18RAP signal peptide-containing isoforms

(ENST00000264260.6 and ENST00000687160.1) might be

indicative of an up-regulation of IL18RAP protein trans-

location. Furthermore, isoforms ENST00000264260.6,

ENST00000409369.1, and ENST00000687160.1 contain

immunoglobulin domainsIg_2 (PF13895) and Ig_6

(PF18452),which play essential roles in antigen recognition,

cell adhesion, receptor-ligand interactions, and structural

stability.108 Higher isoform usage of these isoforms might

therefore influence structural stability and protein diversity.

In addition, we looked for evidence of significant iso-

form switching across our 11 detected Papuan ancestry-

driven sGenes such as DNM3. We observed statistically sig-

nificant isoform switching that also resulted in functional

domain changes in BST1 (MIM: 600387; Figure S8A). BST1

(bone marrow stromal cell antigen 1) is an immune gene

that facilitates pre-B cell growth and regulates leukocyte

diapedesis in inflammation.109 The isoform switch in

BST1 reveals increased usage of the ENST00000265016.9

isoform within the Sumba group (isoform switch

q value ¼ 1:33 10�4) while Korowai samples exhibit a

higher isoform fraction of the ENST00000514989.1

isoform. The ENST00000514989.1 isoform is non-

coding, which means that a switch in isoform usage

results in a loss of coding potential. Interestingly, the

ENST00000265016.9 isoform contains a rib hydrolase
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domain at exons 1–8, which is essential for BST1 enzy-

matic activity as an NADþ glycohydrolase.110
Most differentially expressed genes are not

differentially spliced

Our isoform switching analyses illustrate how critical AS is

for the diversification of gene expression at both the

mRNA and protein levels (Figures 5A and 5D). To assess

the extent to which splicing and transcriptional regulation

are linked across each pairwise comparison, we intersected

the differentially spliced genes with previously reported32

differentially expressed genes in the same groups. We

found that differentially spliced genes were very rarely

differentially expressed, with only 13 (Fisher’s exact test

p ¼ 9.7e-04), 65 (Fisher’s exact test p ¼ 1.1e-07), and 39

(Fisher’s exact test p ¼ 2.1e-06) shared genes across both

tests for the Mentawai vs. Sumba, Korowai vs. Sumba,

and Korowai vs. Mentawai comparisons, respectively

(Figure S8B). In other words, for most genes, we observe

changes in the mRNA splice variants produced without a

reciprocal change in total expression. These results support

previous findings of independent regulation of gene

splicing and expression.21,111–114
Discussion

It is well established that AS influences various biological

functions.2,4,7–10,21 Studies of the link between genotypic

and splicing diversity in humans, however, have not yet

sampled the breadth of genetic and environmental diver-

sity that characterizes our species, making it challenging

to assess the degree to which population-specific forces

contribute to splicing variation. In this work, using a set

of 115 samples from three traditional island populations

spanning the region’s genetic ancestry cline, we charac-

terize the global AS landscape across these populations

and identify genetic variants that are associated with

splicing (sQTLs), thereby providing a comprehensive map

of genetically regulated AS events in human whole blood.

Our detection of AS revealed that the most frequent

splicing event types were skipped exon events (50.1%),

and the least frequent were retained intron events

(3.5%). While these proportions are expected in higher eu-

karyotes,29,115–120 it is important to note that short-read al-

gorithms for detecting AS events are less likely to misas-

semble skipped exon events and can therefore identify

them with high accuracy, but they suffer from poor preci-

sion with respect to RI detection.121,122 Accurately disam-

biguating real splicing events from background noise

(such as partial transcript processing) is greatly facilitated

by long-read sequencing technologies, which enable

much more precise discovery and reconstruction of

full-length isoforms, significantly improving the character-

ization of functional transcripts.123 Thus, for future iso-

form-specific AS studies, the application of long-read tech-

nologies should be prioritized.
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We conducted a global differential AS analysis between

these groups and detected over 1,500 significant events

across all comparisons with Mentawai and Sumba exhibit-

ing the lowest number of differential events (i.e., the high-

est level of AS similarity). Given that these two populations

share very similar proportions of West Island Southeast

Asian-like genetic ancestry, while the Korowai are of

Papuan-like genetic ancestry, our results suggest that

ancestral differences might play a role in driving some of

the variation in splicing across these populations. Interest-

ingly, our cis-sQTL mapping analysis revealed nine sQTLs

driven by LA differences between groups. Furthermore,

we detected population-specific patterns of splicing regula-

tion at a global scale, identifying 312 Indonesia-specific

SNP-sGene pairs with no evidence of shared effects with

European sQTLs. Although our analysis is limited by our

sample size, these findings suggest that AS variation be-

tween populations reflects a complex interplay between

genetic and environmental factors.

As a means of characterizing the phenotypic conse-

quence of AS variation across these Indonesian samples,

we investigated whether GWAS signals for hematological

traits measured in East Asian participants colocalized

with Indonesian sQTLs. Of the 13 GWAS traits examined,

45 unique sGenes showed strong evidence of colocaliza-

tion with 12 distinct traits. Although colocalization anal-

ysis alone is not a sufficient means by which causal genes

can be defined, the Papuan-driven splicing gene DNM3

significantly colocalized with hemoglobin concentration,

indicating its potential role in regulating this trait, and is

a notable observation given the role of high altitude corri-

dors in the settlement of New Guinea Island.124

To further bridge the gap between our identified sQTLs

and their functional consequences, we employed a deep-

learning model, DeepCLIP, to predict changes in RBP bind-

ing affinity.We found that the DeepCLIP predictions of the

impact of sQTL SNPs on RBP binding dynamics correlated

with the direction of effects that were observed at these

splice junctions. In particular, we predicted a potential in-

crease in HNRNPM binding affinity at rs6433311 (A > G,

DYNC1I2) while our sQTL mapping analysis showed that

the G allele at rs6433311 is associated with an effect size

of �1.174 relative to the A allele. LeafCutter-predicted

skipping junctions (exon skipping events) yield negative

effect sizes, while inclusion junctions (exon inclusion

events) yield positive effect sizes. Therefore, the predicted

increase in binding affinity of a splicing factor that pro-

motes exon exclusion89,91–93 should be associated with a

negative effect size at this SNP, which is indeed what we

observe. For another splicing factor, PTBP1, DeepCLIP

analysis highlighted a potential binding disruption at the

rs27291 G > A mutation in LNPEP. In our data, the A allele

of this sQTL SNP is associated with an effect size of 0.672,

which is indicative of increased exon inclusion. Given the

role PTBP1 plays in suppressing exon inclusion (thereby

promoting exon exclusion),100–102 the predicted reduction

in PTBP1 activity directly correlates with a positive effect
The American Jour
size for this sQTL and a higher exon inclusion rate for in-

dividuals harboring the rs27291 A allele. While these re-

sults are consistent with previous findings that sQTLs

disrupt the binding affinity of core and auxiliary splice pro-

teins,21,125 it is important to note that we have not con-

ducted any experimental validation of the predicted pro-

tein binding activity, thereby limiting our ability to

evaluate the accuracy of the deep-learning predictions.

Nonetheless, our results highlight the molecular mecha-

nisms through which genetic variants impact splicing

and demonstrate the value of applying deep learning

methods to refine our collective understanding of the con-

sequences of human genetic variation.

We also explored evidence of functionally significant

isoform switching events across the three populations,

identifying frequent changes in protein domains (domain

gain/loss), NMD status, and ORF sequence similarity. We

observed the greatest number of isoform-switching genes

in comparisons involving the Korowai population, in

line with the population-level AS differences we identified

with SUPPA2. Notably, we report that when an isoform

switch occurs between the Korowai group and the Sumba

or Mentawai groups, the up-regulated isoforms in Sumba

or Mentawai are more likely to (1) contain an additional

protein domain, (2) contain a signal peptide, and (3) gain

a complete ORF. Our analysis identified several significant

isoform-switching events in genes critical for the immune

response, including IL18RAP and BST1. In IL18RAP, we

observed preferential usage of different isoforms across

populations, with potential implications for protein trans-

location and structural stability. Similarly, in BST1, isoform

switching resulted in changes in coding potential and the

presence of functional domains, highlighting the impor-

tance of AS in immune regulation and disease processes.

As previous studies have reported,126–128 we find that a

large subset of genes exhibit isoform switches without sig-

nificant changes in their global expression levels. Such

genes would typically be overlooked in RNA-seq studies

that strictly focus on differential gene expression, thereby

limiting critical biological insight. Irrespective of the

global expression levels of a gene, changes in the relative

expression of its isoforms influence protein abundance,

which in turn modulates cellular processes. Furthermore,

we detect minimal overlap between differentially ex-

pressed genes and DAS genes, indicating that the genetic

control of splicing and transcription are independent, as

previously observed.16,20,21,29,129–131 Indeed, across our

Indonesian dataset, splicing and expression affect different

pathways, as DE and DAS genes were enriched for distinct

biological processes and molecular functions. DAS genes

were mostly involved in processes related to post-tran-

scriptional regulation, DNA replication, and cell-cycle

signaling. In contrast, DE genes were enriched in regula-

tory pathways related to the adaptive immune response

and nervous system function.32 Together, this study pro-

vides a comprehensive catalog of genetically regulated AS

events in whole-blood Indonesian samples and adds to
nal of Human Genetics 111, 2458–2477, November 7, 2024 2471



our knowledge of genomic and regional drivers of gene reg-

ulatory variation across the Indonesian archipelago.
Data and code availability

Genome-wide significant and nominal test statistics for all sQTL

tests are provided as supplementary tables and are publicly available

on Figshare: https://melbourne.figshare.com/projects/Profiling_

genetically_driven_alternative_splicing_across_the_Indonesian_

Archipelago/204111. Analysis code is available at https://gitlab.

svi.edu.au/igr-lab/indo_splicing.
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