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ARTICLE

Phenotypic spectrum of dual diagnoses
in developmental disorders

Alys M. Ridsdale,1,4 Anna Dickerson,1,4 V. Kartik Chundru,1 Helen V. Firth,2,3 and Caroline F. Wright1,*
Summary
As more patients receive genome-wide sequencing, the number of individuals diagnosed with multiple monogenic conditions is

increasing. We sought to investigate the relative phenotypic contribution of dual diagnoses using both manual curation and computa-

tional approaches. First, we computed 1,003,236 semantic similarity scores for all possible pairs of 1,417 genes in the Developmental Dis-

orderGene2Phenotype (DDG2P) database usingHumanPhenotypeOntology terms.Next, for 62 probandswith twomolecular diagnoses

in the Deciphering Developmental Disorders study, we computed semantic similarity scores between the probands’ phenotypes and

DDG2P phenotypes associated with the two disorders and compared the results with manual attribution of proband phenotypes to

none, one, or bothof the genes.We found a spectrumof phenotypic similarity for dual diagnoses, both across all DDG2Pgenes andwithin

dual diagnosed probands, from phenotypically distinct through blended to indistinguishable conditions. Pairwise semantic similarity

scores between two DDG2P genes were a good predictor of the extent of phenotypic blending observed in probands. Dual diagnoses

involving genes linked with synergistic phenotypes can result in more extreme presentations while those involving antagonistic pheno-

types have spuriously high pairwise semantic similarity scores despite a potentially milder atypical presentation. We suggest that the

phenotypic contribution of twomolecular diagnosesmay contain discrete, synergistic, or antagonistic elements. Conceptual recognition

of this phenotypic spectrum is important for making a final clinico-molecular diagnosis and providing accurate genetic counseling.
Introduction

As exome andgenome sequencingbecomewidespreaddiag-

nostic tools, more and more patients and families with rare

conditions are receiving genetic diagnoses. For example,

�40% of children with severe developmental disorders can

now be diagnosed using a genome-wide approach.1,2 This

advance has resulted in challenges around variant interpre-

tation and complexities resulting from dual diagnoses,

where individuals have two separate monogenic condi-

tions.3–5 Individuals with two (or more) monogenic condi-

tions often pose a diagnostic conundrum for clinicians, as

their phenotypemay present as a novel mixture of two con-

ditions with particular phenotypes arising from one, both,

or neither causal variants. This confusion is exacerbated by

the lack of conceptual framework or agreed descriptive ter-

minology in the literature. A range of terms has been used

to describe individuals with two molecular diagnoses,

including dual, double, blended, distinct, overlapping, com-

posite, obscured, andmultilocus.3–8 These terms all describe

a different phenomenon from digenic inheritance, where

pathogenic variants in two interacting genes are required

for a disease to manifest.9–11

Most published studies investigating dual diagnoses to

datehavebeensmall, anda systematic theoretical evaluation

of phenotypic overlap and comparison with large

cohorts has not been performed. Here, we systematically

investigate the similarity between pairs of different develop-
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mental disorders using the Deciphering Developmental

Disorders (DDD) study and the Developmental Disorder

Gene2Phenotype (DDG2P) database.G2P is a publicly acces-

sible database designed for use in diagnostic variant filtering,

whichhas been actively clinically curated since 2012.12 Each

DDG2P entry associates an allelic requirement and a muta-

tional consequence at a defined locus with a developmental

disorder and confidence level.13 Using 62 DDD probands

with two DDG2P diagnoses, we compare computational

and manual approaches for attributing phenotypes to indi-

vidual conditions and suggest a conceptual framework for

describing the resulting phenotypic spectrum.
Subjects and methods

Calculation of theoretical pairwise semantic similarity

scores
The DDG2P database was downloaded from https://www.ebi.ac.

uk/gene2phenotype/ on October 10, 2022, and gene-disease

associations with ‘‘strong’’ or ‘‘definitive’’ levels of evidence were

retained.13 Human Phenotype Ontology (HPO) terms were

cross-referenced against the HPO Consortium ontology index, and

any obsolete HPO codes were updated or removed (https://raw.

githubusercontent.com/obophenotype/human-phenotype-ontology/

master/hp.obo).14Where absent,manual curationofHPO termswas

undertaken for genes with two diagnoses in the DDD study1 using

HPO terms observed in R20% of overlapping affected individuals

in DECIPHER. After this process, genes lacking any HPO codes
of Exeter, St Luke’s Campus, Magdalen Road, Exeter EX1 2LU, UK; 2East

Treatment Centre, Level 6, Addenbrooke’s Hospital, Hills Road, Cambridge

, Hinxton, Saffron Walden CB10 1RQ, UK

ember 7, 2024

ty of Human Genetics.

s.org/licenses/by/4.0/).

https://www.ebi.ac.uk/gene2phenotype/
https://www.ebi.ac.uk/gene2phenotype/
https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo
https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo
https://raw.githubusercontent.com/obophenotype/human-phenotype-ontology/master/hp.obo
mailto:caroline.wright@exeter.ac.uk
https://doi.org/10.1016/j.ajhg.2024.08.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2024.08.025&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Table 1. Statistical summary of DDG2P pairwise semantic similarity scores

Gene subsets No. of genes No. of pairs
Mean (SD) pairwise
similarity score

Minimum similarity
score

DDG2P genes with HPO terms assigned 1,417 1,003,236 0.311 (0.174) 0.004

DDG2P genes with R1 diagnosis in the DDD study 690 237,705 0.370 (0.175) 0.004

DDG2P genes with R8 diagnoses in the DDD study 153 11,628 0.419 (0.166) 0.004

DDG2P genes with R1 identical phenotypes 1,417 851,776 0.443 (0.112) 0.032

DDG2P genes with R1 antagonistic phenotypes 905 114,548 0.471 (0.100) 0.062

DDG2P genes with R5 identical phenotypes 1,400 90,451 0.563 (0.087) 0.210
were removed, and all remaining HPO codes for a gene were

amalgamated for all instances of that gene in the database, and

mode of inheritance terms were removed. Pairwise semantic

similarity scores from 0 to 1 were calculated for gene pairs from

HPO terms using the ontologySimilarity package (https://cran.

r-project.org/web/packages/ontologySimilarity/vignettes/ontology

Similarity-introduction.html) in R Studio v4.2.1, which uses Lin’s

expression of term similarity.15,16 Pairwise semantic similarity scores

for geneswith at least one opposing termwere flaggedbased on a list

of antagonistic HPO codes available from https://hpo.jax.org/app/;

any pair of genes linked with both antagonistic terms was flagged

as being antagonistic. Synergistic phenotypes were evaluated based

on pairs of genes where both contained either R1 or R5 identical

HPO terms.
Selection and curation of DDD probands with dual

diagnoses
The DDD study has UK Research Ethics Committee approval (10/

H0305/83, granted by the Cambridge South REC, and GEN/284/

12 granted by the Republic of Ireland REC). All probands underwent

high-resolution exon-arrayCGH and exome sequencing; the full

methods used in the DDD study have been described previously.17

A list of diagnosed probands was gathered fromWright et al.,1 using

only ‘‘pathogenic’’ or ‘‘likely pathogenic’’ variants based on clinical

assertion in DECIPHER (https://www.deciphergenomics.org/). Pro-

bands with a single diagnosis or >2 diagnoses were excluded, as

were thosewithpathogenicmultigenic structural variants and those

with pathogenic variants in genes lacking HPO terms in DDG2P.

Detailedmanual curation of phenotypes in these probands was per-

formed using DECIPHER. Phenotypes were attributed to conditions

associated with none, one, or both contributing genes using

OMIM,18 GeneReviews,19 and DECIPHER20 augmented with litera-

ture-based searches; phenotypes thatwere either commonor subjec-

tive were excluded. The number of HPO terms attributed to neither

genewas the number ofHPO terms recorded for the probandminus

any that were attributable to either one or both genes based on

manual evaluation.
Results

Skewed bimodal distribution of pairwise semantic

similarity scores for DDG2P genes suggests potential

dual diagnoses could be distinct, blended, or

indistinguishable

We downloaded the DDG2P database of 1,940 genes

strongly linked with monogenic developmental disorders.
The American Jour
Following targeted curation of genes containing diagnostic

variants in the DDD study, we excluded any with zero

HPO terms annotated in the database. Of the remaining

1,417 genes (Table S1), the mean number of HPO terms

associated with each gene was 22 (range: 1–242), with

higher numbers observed for pleiotropic genes associated

with multiple different conditions. We then computed se-

mantic similarity scores for all possible pairwise gene

crosses (n ¼ 1,003,236), using all HPO terms linked with

each gene. The mean pairwise similarity score across all

genes was 0.311 (Table 1), and no gene had amean similar-

ity score>0.5 across all of its pairwise crosses. Semantic sim-

ilarity scores displayed a skewed bimodal distribution

(Figure1), suggesting that there are a sizablenumberof truly

distinct conditions with no phenotypic overlap (i.e., scores

near zero), as well as a larger number of conditions with

increasingly similar phenotypes that may be clinically

indistinguishable at thehighest level of similarity.A compa-

rable distribution was observed for smaller subsets of

DDG2P genes containing eitherR1 diagnosis (�690 genes)

or R8 diagnoses (top �150 genes) in the DDD study,

though with an increasing mean pairwise similarity score

that may reflect ascertainment bias. We noted a weak posi-

tive association between the number of HPO terms associ-

ated with a gene and the average similarity score for that

gene (log linear regression b ¼ 0.11, p < 2e-16).

We also investigated the pairwise semantic similarity

scores for all DDG2P genes associated with at least one

identical or opposing (antagonistic) phenotypes. For

both groups, we observed a much higher mean pairwise

similarity score versus the entirety of DDG2P (0.44 and

0.47 for identical and antagonistic, respectively; Table 1).

Notably, the scores were normally distributed around the

mean (Figure 1) rather than having a bimodal distribution

like the full DDG2P list, and there were no very low seman-

tic similarity scores. This result is somewhat paradoxical

for antagonistic phenotypes and suggests a potential issue

in the way opposing phenotypes are handled by the

scoring algorithm, i.e., the tree structure of HPO yields in

a higher theoretical similarity score between phenotypes

in closely related branches of the ontology regardless of

whether they are opposing or not. For example, the terms

‘‘microcephaly’’ (HP: 0000252) and ‘‘macrocephaly’’ (HP:

0000256) have a high similarly score of 0.88 despite being
nal of Human Genetics 111, 2382–2391, November 7, 2024 2383
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Figure 1. Pairwise semantic similarity scores between DDG2P genes
(A) Heatmap of all pairwise semantic similarity scores for all 1,417 DDG2P genes.
(B) Histogram of pairwise semantic similarity scores for all 1,417 DDG2P genes (red) and a subset with identical (R1, purple and R5,
green) or antagonistic (blue) HPO phenotypes. Semantic similarity scores were calculated using ontologySimilarity in R.
opposite phenotypes, as they fall closely within the HPO

tree under ‘‘abnormality of skull size.’’

Phenotypes in DDD probands with dual diagnoses can

mostly be attributed to one or both genes, and higher

pairwise semantic similarity scores correlate with

increasingly blended phenotypes

We identified 121 probands (2.7% of those diagnosed)

with composite diagnoses from the DDD study based on

clinical assertion of variant pathogenicity.1 Of those where

the inheritance was known, a third had one de novo variant

and a third had two, as expected based on the high burden

of de novo variants in developmental disorders. We

excluded 59 from further analysis due to missing data

(n ¼ 23) or multigenic variants (n ¼ 36), leaving 62 pro-

bands with two molecular diagnoses in DDG2P genes (Ta-

ble 2). Probands in this cohort were 42% female, with a

mean age of 7.8 years at recruitment and a total of 466 phe-

notypes (range: 1–21; median 7).Wewere able tomanually

attribute 428 phenotypes (92%) to either one (186; 43%) or

both (242; 57%) genes in the dual diagnoses; 13 pheno-

types were unattributable to either gene, and 25 were

excluded on the grounds of being common or subjective.

Probands with dual diagnoses exhibited the full spectrum

of phenotypic blending, ranging from distinct (five pro-

bands with phenotypes attributed solely to either gene)

through various levels of blended to completely indistin-

guishable (nine probands with all phenotypes attributed to

both genes) (Figure 2A). For example, one proband had

two pathogenic de novo variants in genes linked with two

distinct conditions, resulting in seven phenotypes attribut-

able to HDAC8 (Cornelia de Lange syndrome [MIM:

300882]) and just one attributable to PAX8 (congenital hy-

pothyroidism [MIM:218700]). In contrast, anotherproband

had two pathogenic variants in genes linked with highly
2384 The American Journal of Human Genetics 111, 2382–2391, Nov
overlapping conditions, and all their phenotypes were

potentially attributable to either NF1 (Neurofibromatosis-

Noonan syndrome [MIM: 601321]) or CBL (Noonan

syndrome-like disorder with or without juvenile myelomo-

nocytic leukemia [MIM: 613563]). There was no significant

correlation between the number of phenotypes attributed

either to the genes or proband and the proportion attributed

to either or both genes.

We next calculated semantic similarity scores between

the probands’ phenotypes and each of the individual genes

in their dual diagnoses and compared thiswith the pairwise

similarity score between those two genes (Figure 2B). There

was a positive correlation between the probands’ observed

phenotypes and the individual semantic similarity scores

for each individual gene in the dual diagnosis b ¼ 0.35,

p ¼ 0.007). The difference between semantic similarity

scores with the probands’ phenotype and individual genes

decreased as the pairwise similarity score between the two

genes increased (linear regression, b ¼ �0.44, p ¼ 1.41e-

05), suggesting that the presenting phenotype becomes

more blended with increasing similarity. We found a sur-

prisingly high concordance betweenmanual and computa-

tional approaches. Pairwise semantic similarity scores be-

tween the two diagnostic genes were negatively correlated

with the proportion of the probands’ phenotypesmanually

attributed solely toonegene (Figure2C;b¼ -1.01, p¼2.98e-

07) and positively correlated with the proportionmanually

attributed to both genes (Figure 2D; b¼ 1.14, p¼ 1.11e-07).

Dual diagnoses involving genes linked with antagonistic

phenotypes may have milder atypical presentations

while those linked with synergistic phenotypes may be

more severely affected

There was no overall difference in the number of HPO

terms between individuals in the DDD study with dual
ember 7, 2024



Table 2. DDD probands with dual DDG2P diagnoses

DECIPHER ID
Age (yrs) at
recruitment Sex

No. of
HPO
terms Gene 1 Gene 2

Pairwise
similarity
score for
gene 1
and gene 2

Similarity
score for
proband HPO
terms versus
gene 1

Similarity
score for
proband HPO
terms versus
gene 2

No. of
proband
HPO terms
manually
attributed
to gene 1

No. of
proband
HPO terms
manually
attributed
to gene 2

No. of
proband
HPO terms
manually
attributed to
both genes

No. of
proband HPO
terms manually
attributed to
neither gene

No. of
proband
HPO terms
(common/
subjective)
manually
excluded

258830 11.0 female 18 TCF12 CDK13 0.800 0.733 0.616 0 5 12 0 1

271137 11.0 male 9 MBD5 CHD2 0.743 0.686 0.672 1 0 7 0 1

291190 13.0 female 7 SHANK2 PPP2R5D 0.698 0.494 0.452 0 4 3 0 0

291341 10.0 female 6 ZC4H2 SYNGAP1 0.619 0.146 0.143 3 1 2 0 0

303270 19.0 female 6 NF1 CBL 0.619 0.621 0.611 0 0 6 0 0

270803 9.3 female 10 BPTF QRICH1 0.615 0.525 0.451 2 0 8 0 0

261175 7.8 male 9 FLNA ZBTB20 0.603 0.450 0.373 1 0 8 0 0

299681 4.5 male 2 YWHAG STAG1 0.600 0.673 0.494 0 0 2 0 0

307458 2.1 male 4 TAOK1 SLC6A1 0.594 0.737 0.441 0 0 3 0 1

300981 2.3 male 10 DNMT3A PTEN 0.593 0.553 0.502 1 0 6 0 3

286914 6.8 male 6 POU3F3 EHMT1 0.588 0.581 0.440 0 1 4 0 1

271406 7.2 male 2 IQSEC2 SMC1A 0.584 0.589 0.425 0 0 2 0 0

272920 3.8 male 3 IQSEC2 SMC1A 0.584 0.688 0.535 0 0 3 0 0

272921 8.4 male 1 IQSEC2 SMC1A 0.584 0.536 0.298 0 0 1 0 0

272922 9.9 male 2 IQSEC2 SMC1A 0.584 0.472 0.243 0 0 2 0 0

300851 0.8 male 6 PPP2R5D FGFR3 0.583 0.554 0.495 1 0 5 0 0

295136 1.3 female 3 EEF1A2 NF1 0.579 0.404 0.331 0 1 1 1 0

266333 1.7 female 7 SMARCA4 ANKRD11 0.577 0.514 0.421 1 1 4 0 1

293170 3.1 male 2 KIDINS220 CC2D2A 0.572 0.610 0.593 0 1 1 0 0

276438 8.3 female 5 NAA15 CHD3 0.569 0.474 0.398 1 0 3 0 1

273503 11.0 male 6 TAOK1 ZEB2 0.551 0.731 0.445 2 2 2 0 0

278939 3.4 male 11 PACS1 RAD21 0.548 0.547 0.444 1 2 7 0 1

280956 12.0 female 11 NFIX SMARCA2 0.545 0.476 0.386 1 2 7 1 0

271955 2.4 male 6 SCN2A TBL1XR1 0.542 0.501 0.337 0 3 3 0 0

265387 5.6 male 7 CTCF FBN2 0.529 0.493 0.212 4 0 3 0 0

300478 2.3 male 8 PBX1 RAF1 0.515 0.732 0.373 0 0 8 0 0

(Continued on next page)

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

1
1
1
,
2
3
8
2
–
2
3
9
1
,
N
o
ve
m
b
e
r
7
,
2
0
2
4

2
3
8
5



Table 2. Continued

DECIPHER ID
Age (yrs) at
recruitment Sex

No. of
HPO
terms Gene 1 Gene 2

Pairwise
similarity
score for
gene 1
and gene 2

Similarity
score for
proband HPO
terms versus
gene 1

Similarity
score for
proband HPO
terms versus
gene 2

No. of
proband
HPO terms
manually
attributed
to gene 1

No. of
proband
HPO terms
manually
attributed
to gene 2

No. of
proband
HPO terms
manually
attributed to
both genes

No. of
proband HPO
terms manually
attributed to
neither gene

No. of
proband
HPO terms
(common/
subjective)
manually
excluded

290989 4.1 male 21 GNB2 NAA15 0.497 0.763 0.538 2 4 11 0 4

264530 7.3 male 4 ATRX SETD5 0.495 0.486 0.352 0 1 3 0 0

281373 22.0 female 7 NAA15 PRMT7 0.473 0.699 0.381 0 3 4 0 0

264597 10.0 female 14 ANKRD11 PDHA1 0.463 0.507 0.405 2 2 10 0 0

307561 7.5 male 6 ATRX MED13 0.461 0.411 0.363 2 0 4 0 0

275085 16.0 male 21 ADNP EBF3 0.454 0.464 0.356 5 0 16 0 0

306054 3.5 female 4 COL1A1 IQSEC2 0.446 0.541 0.407 2 0 2 0 0

269481 5.5 male 4 OPHN1 HSPG2 0.443 0.510 0.276 1 0 3 0 0

305998 6.4 male 11 GRIN2A SETD5 0.441 0.547 0.538 1 7 3 0 0

272998 16.0 female 10 SLC13A5 SETD5 0.439 0.690 0.538 1 3 5 1 0

271765 2.9 male 7 MED13L DMD 0.437 0.436 0.189 4 0 2 0 1

271952 8.3 female 6 PTEN SIN3A 0.424 0.449 0.357 0 0 6 0 0

283972 20.0 female 12 POLR1C SAMHD1 0.406 0.738 0.163 2 0 10 0 0

304477 16.0 female 11 HDAC8 PAX8 0.393 0.460 0.367 7 1 0 1 2

305580 6.4 female 8 WDFY3 MAN1B1 0.392 0.379 0.234 2 3 1 0 2

278908 9.5 male 5 TRIP12 CDK13 0.391 0.691 0.530 0 1 4 0 0

276430 2.6 male 4 NRXN1 ASH1L 0.379 0.461 0.218 0 1 3 0 0

280286 13.0 male 5 KMT2E TAB2 0.358 0.395 0.370 2 0 2 1 0

259242 8.4 male 5 PTCHD1 COL1A1 0.334 0.768 0.340 2 1 1 0 1

264155 13.0 female 6 NF1 ITPR1 0.311 0.447 0.239 4 1 1 0 0

269952 6.8 female 7 SRCAP DCX 0.305 0.309 0.307 3 1 3 0 0

260920 9.2 female 6 SOX11 TRIP12 0.294 0.504 0.353 1 0 5 0 0

264822 6.3 female 10 MYCN SETD1B 0.294 0.364 0.347 1 3 6 0 0

286794 1.4 male 3 SHH STS 0.290 0.610 0.061 2 0 1 0 0

265526 10.0 male 3 ARMC9 BRIP1 0.285 0.374 0.257 2 0 1 0 0

304171 1.8 male 6 PTPN11 NRXN1 0.256 0.391 0.202 3 0 3 0 0
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versus single diagnoses (mean 7.4, p > 0.8). However, the

five probands with all attributable phenotypes linked

solely to one gene had more phenotypes than the others

with dual diagnoses (mean 10.2, p < 0.05), suggesting a

more diverse phenotype, while the nine with all attribut-

able phenotypes linked to both genes had fewer (mean

3.8, p< 0.001). We hypothesized that some dual diagnoses

might be less severe or have fewer phenotypes than single

diagnoses due to the two conditions having antagonistic

effects that cancel each other out, e.g., short versus tall stat-

ure. Mapping opposing phenotypes onto DDG2P gene

pairs, we identified two DDD probands with partially

antagonistic dual diagnoses in our cohort, both of whom

fitted with our hypothesis: one had pathogenic variants

in ANKRD11 (linked with hypertelorism [MIM: 148050])

and SMARCA4 (linked with hypotelorism [MIM: 614609])

but no evidence of abnormal eye morphology; the other

had pathogenic variants in HSPG2 (linked with microgna-

thia [MIM: 255800]) and OPHN1 (linked with mandibular

prognathia [MIM: 300486]) but no evidence of abnormal

jaw morphology.

We also investigated dual diagnoses comprising genes

linked with synergistic phenotypes where we hypothe-

sized that the probandsmight havemore pronounced phe-

notypes. Most conditions were linked with intellectual

disability or global developmental delay for which severity

is often not annotated. However, we identified several pro-

bands with dual diagnoses linked with quantitative syner-

gistic phenotypes that were more pronounced than DDD

probands diagnosed with either single condition. For

example, one dual diagnosed proband had an occipital

frontal circumference (OFC) of �6.83 standard deviations

(SDs) and pathogenic variants in ANKRD11 (MIM:

148050) and PDHA1 (MIM: 312170), both of which are

linked with microcephaly (mean OFC of �1.2 SD and

�4.0 SD for DDD probands with single diagnoses in these

two genes, respectively). Another proband had an OFC

of þ6.31 SD and pathogenic variants in PPP2R5D (MIM:

616355) and FGFR3 (MIM: 602849), both of which are

linked with macrocephaly (mean OFC of þ2.3 SD

and þ0.2 SD for DDD probands with single diagnoses in

these two genes, respectively).
Discussion

We have shown that dual genetic diagnoses make a small

but important contribution to phenotypic diversity within

monogenic developmental disorders. An individual pro-

band with two molecular diagnoses may present with fea-

tures that range from distinct phenotypes uniquely attrib-

utable to one or other gene, to overlapping phenotypes

attributable to either gene that are ultimately indistin-

guishable when the two conditions become sufficiently

similar (Figure 3). This complete spectrum was predicted

using pairwise semantic similarity scores between DDG2P

genes and recapitulated in probands with dual diagnoses
nal of Human Genetics 111, 2382–2391, November 7, 2024 2387
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Figure 2. Comparison of manual and computational approaches gene-phenotype attribution in 62 DDD probands with dual
diagnoses
(A) Proportion of phenotypes (y axis) for individual probands (x axis) manually attributed to either one gene (orange), both genes (blue),
or neither gene (white); ordered by increasing proportion of phenotype attributable to both genes.
(B) Semantic similarity scores (y axis) for individual probands (x axis), comparing pairwise scores between the two genes (black line) with
scores between each individual gene and the proband’s phenotype (top and bottom of gray boxes); ordered by increasing pairwise se-
mantic similarity scores.

(legend continued on next page)
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in the DDD study and has not been fully articulated previ-

ously. We have also shown that dual diagnoses involving

conditions linked with antagonistic phenotypes may

result in absent phenotypes in a proband while those

with synergistic phenotypes may result in more extreme

phenotypes, either of which could make clinical confirma-

tion of the diagnosis more challenging. Finally, we have

shown that there is a linear correlation between the extent

of phenotypic blending in the proband and the pairwise

semantic similarity score between two genes contributing

to a dual diagnosis.

Previous large-scale studies have found higher rates of

dual (or more) diagnoses than we examined here. The

most comprehensive to date identified 153 (8.5%) in

1,792 diagnosed probands with multiple potentially rele-

vant genetic findings5; another identified 101 (4.9%) in

2,076 diagnosed probands and also showed that semantic

similarity scores were significantly lower among probands

in whom the phenotype resulted from two distinct disor-

ders.4 We took a conservative approach to defining

affected individuals, and included only 121 (2.7%) of

4,484 probands diagnosed with two genetic conditions

by clinical assertion, which is likely to be an underestimate

based on burden analyses.21 A further 561 (12.5%) of those

with single diagnoses were thought to have only a partial

diagnosis for their condition, suggesting potentially a sec-

ond missing diagnosis. In addition, a total of 360 (6.5%) of

5,502 probands diagnosed based on automated variant

classification in addition to clinical assertion were pre-

dicted to have a dual diagnosis.1 The true fraction of pro-

bands with dual monogenic diagnoses is unclear, and

finding them depends heavily upon both the diagnostic

workflow and the clinical assessment process. Some

probands could justifiably be tested using multiple non-

overlapping gene panels and are thus more likely to be

diagnosed with several distinct conditions. Moreover,

although the difference between dual diagnoses that

constitute two independent conditions (in which each ge-

notype alone is sufficient to cause disease) and those that

are actually digenic (in which strictly both genotypes are

dependent upon the other to cause disease) remains a rele-

vant distinction, many apparently fully penetrant condi-

tions may actually be incompletely penetrant and require

additional variants for the condition to manifest. For

some probands, it is plausible that two or more large-effect

variants may be required to push the individual above a

threshold for clinical presentation, consistent with an oli-

gogenic disease model.22 In contrast, other probands may

reach that same threshold with just one of those variants,

depending upon other polygenic or environmental risk

factors, consistent with a monogenic disease model with

two independent diagnoses.
(C) Proportion of a proband’s phenotype manually attributed to only
two genes (x axis); linear regression performed in R, 95% confidence
(D) Proportion of a proband’s phenotypemanually attributed to both
genes (x axis); linear regression performed in R, 95% confidence inte
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One unexpected finding of our study was the high

calculated semantic similarity scores between opposing

phenotypes. This effect is likely to be driven by the prox-

imity of antagonistic phenotypes within the directed

acyclic graph underlying the HPO, whereby two antago-

nistic terms may have the same parent term. However,

this misleadingly high similarity presents a major limita-

tion when clustering genes or probands based on HPO

terms, as any true signal arising from phenotypic similarity

may be obscured by apparent similarity between opposing

phenotypes. Indeed, such similarity scores could drive

spurious associations and point toward shared biology

where none exists. In constrast, absent phenotypes result-

ing from antagonistic dual diagnoses likely results in lower

similarity scores between the proband’s phenotypes and

those linked with each individual condition. We therefore

urge developers of semantic similarity scores to flag antag-

onistic phenotypes to alert users and implement an appro-

priate method to negate the proximity of the terms within

the HPO tree and reduce the scores.

Our study has some important limitations. Most

notably, we were forced to group phenotypes by gene to

enable pairwise semantic similarity scores to be computed

and compared against phenotypes in the DDD probands.

While this had no effect for the majority of DDG2P genes

that are only associated with one condition, it resulted in

some pleiotropic genes being mis-represented in the

dataset. Conditions caused by variants in the same gene

with different modes of inheritance or pathomechanisms

were grouped together despite sometimes resulting in

completely different phenotypes. Although this issue

could potentially be remedied by computing pairwise se-

mantic similarity scores for gene-condition dyads,23 this

approach would pose difficulties for the definition of

discrete conditions in both the literature and DDD pro-

bands. ‘‘Lumping versus splitting’’ is an ongoing debate

in genomic medicine,24 and both approaches have advan-

tages and disadvantages. Focusing on genes also limited

our ability to include multigenic structural variants asso-

ciated with known syndromes, which are not currently

included within DDG2P but meant that �30% of clini-

cally asserted dual diagnoses in the DDD study were

excluded. We were also limited by incomplete and incon-

sistent phenotyping, both of the DDD probands and the

condition within the DDG2P database. We anticipate

that the latter will be improved in future through the

use of more systematic and automated curation of the

literature.25

In conclusion, we have shown that phenotypes linked

with pairs of developmental disorders lie on a spectrum

of similarity from distinct through blended to indistin-

guishable. Individuals with dual molecular diagnoses
one gene (y axis) versus pairwise semantic similarity scores for the
intervals shown.
genes (y axis) versus pairwise semantic similarity scores for the two
rvals shown.
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Figure 3. Conceptual overview of dual diagnoses
Three classes of dual diagnoses are suggested, based on phenotypic
overlap between two theoretical developmental disorders (A and
B): distinct conditions (left) with no or very limited phenotypic
overlap in which individual proband phenotypes may be clini-
cally apportioned to one or other diagnosis; blended conditions
(middle) with a moderate level of phenotypic overlap; and indis-
tinguishable (right) with highly similar conditions in which indi-
vidual proband phenotypes cannot be clinically apportioned into
either diagnosis.
may therefore present with broader or more pronounced

phenotypes than those with either of the contributing

single monogenic diagnoses. Semantic similarity scores

between contributing pairs of genes may help determine

the level of phenotypic blending. Importantly, probands

with dual diagnoses linked with antagonistic phenotypes

may have less severe or completely absent phenotypes,

and their semantic similarity scores may be misleading.

Our findings suggest that an objective similarity scale

could be helpful for confirming diagnoses, determining

the level of phenotypic overlap between different condi-

tions and counseling patients about recurrence.
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