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ARTICLE

SpliceVarDB: A comprehensive database of
experimentally validated human splicing variants

Patricia J. Sullivan,1,2,3 Julian M.W. Quinn,1 Weilin Wu,1 Mark Pinese,1,2 and Mark J. Cowley1,*
Summary
Variants that alter gene splicing are estimated to comprise up to a third of all disease-causing variants, yet they are hard to predict from

DNA sequencing data alone. To overcome this, many groups are incorporating RNA-based analyses, which are resource intensive, partic-

ularly for diagnostic laboratories. There are thousands of functionally validated variants that induce mis-splicing; however, this infor-

mation is not consolidated, and they are under-represented in ClinVar, which presents a barrier to variant interpretation and can result

in duplication of validation efforts. To address this issue, we developed SpliceVarDB, an online database consolidating over 50,000 var-

iants assayed for their effects on splicing in over 8,000 human genes. We evaluated over 500 published data sources and established a

spliceogenicity scale to standardize, harmonize, and consolidate variant validation data generated by a range of experimental protocols.

According to the strength of their supporting evidence, variants were classified as ‘‘splice-altering’’ (�25%), ‘‘not splice-altering’’ (� 25%),

and ‘‘low-frequency splice-altering’’ (�50%), which correspond to weak or indeterminate evidence of spliceogenicity. Importantly, 55%

of the splice-altering variants in SpliceVarDB are outside the canonical splice sites (5.6% are deep intronic). These variants can support

the variant curation diagnostic pathway and can be used to provide the high-quality data necessary to develop more accurate in silico

splicing predictors. The variants are accessible through an online platform, SpliceVarDB, with additional features for visualization,

variant information, in silico predictions, and validation metrics. SpliceVarDB is a very large collection of splice-altering variants and

is available at https://splicevardb.org.
Introduction

Next-generation sequencinghas successfullyprovideddiag-

noses formany rare genetic diseases and is becoming a cost-

effective approach inmany clinical areas. However, despite

the increasingly commonuse ofwhole-genome sequencing

(WGS), the most comprehensive DNA sequencing method

to date, diagnosis rates for rare genetic diseases remain

around 50%.1–3 Using RNA sequencing (RNA-seq) data in

addition toWGShas been shown to increase diagnosis rates

by up to an additional 35%4–6; contributing to this is the

identification of variants that cause mis-splicing. Splice-

altering variants affect pre-mRNA splicing, resulting in

altered structure, function, and regulation of their trans-

lated protein products.7 Although it is usually straightfor-

ward to predict the likely functional consequence of a

missense or nonsense variant on a transcript sequence, pre-

dicting whether a variant affects splicing (and what that ef-

fect is) canbemorechallenging since itmaydisruptorcreate

a large number of splicing motifs. Many in silico predictors

can provide valuable clues for predicting splicing alter-

ations, but in general, they lack the accuracy required to

avoid the need for experimental validation in a diagnostic

setting.8 Indeed, the American College of Medical Genetics

and Genomics (ACMG) guidelines do not recommend

declaring pathogenic or likely pathogenic status from in sil-

ico predictions alone.9

Experimental validation is thus commonly required to

determine the potential clinical significance of predicted
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splice-altering variants. However, in practice, this consti-

tutes a significant barrier to diagnosis since laboratory vali-

dation requires time, expertise, and expensive clinical

diagnostic services, without which the variants often

remain classified as variants of uncertain significance

(VUSs). Splicing validation methods such as RNA-seq and

RT-PCR analysis require access to an affected tissue of inter-

est, which may not be available, and nonsense-mediated

mRNA decay in the tissues can also mask splicing alter-

ations by degrading the mutation-carrying allele.7 Alterna-

tively, minigene assays can determine the effects of

knocked-in variants on a size-limited gene product, typi-

cally using the immortalized human embryonic kidney

cell line HEK293T.10 Recent innovations allow these to

be performed at scale with massively parallel reporter as-

says (MPRAs) that evaluate the effects of multiple variants

in cultured cell lines.11 Although many variant validations

by this method have been published, it is technically chal-

lenging and not yet feasible for large-scale non-contiguous

assays of variants of interest.12,13 Given these technical dif-

ficulties in validating putative splice-altering variants,

which can be crucial for clinical care, novel approaches

are needed.

Information about splice-altering variants is dispersed

across many research reports and online resources,

making retrieval difficult and time consuming. This disor-

ganization of information has also led to many

duplications of effort; for example, of the 257 splice-

altering variants validated by Wai et al.14 published in
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2020, at least 31 were present in the literature prior to pub-

lication, with one (a BRCA1 variant) published in 1995.15

Databases that have collated some splice-altering variants

exist but have size, usability, and currency limitations.

These databases do not indicate the true scale of variants

that have been validated for splice-altering potential

since, collectively, they contain only 1,295 variants

(DBASS3 n ¼ 338,16 DBASS5 n ¼ 601,16 MutSpliceDB n ¼
364,17 shared n ¼ 8). Furthermore, general variant data-

bases such as ClinVar18 do not require variants to be func-

tionally validated, affecting their reliability and utility for

analyzing a variant’s effect on splicing. The focus of our

study is on variant-induced mis-splicing, although there

is value in considering naturally occurring alternative

splicing events in variant interpretation. For this purpose,

we recommend consulting resources like OncoSplicing19

and SpliceVault.20

Here, we present SpliceVarDB, a comprehensive database

of variants functionally demonstrated to affect (or not

affect) splicing. SpliceVarDB aims to accelerate the diag-

nostic process for individuals with rare genetic diseases

by consolidating information about functionally validated

splice-altering variants into a central, accessible repository.

This online database enables researchers to quickly

access and evaluate previously validated variants, reducing

the need to validate suspected variants of interest.

SpliceVarDB can thus improve the accuracy and efficiency

of variant analysis to enhance the quality of clinical care.

This large resource also facilitates the development of

more accurate machine learning models for in silico

splicing predictors as it provides the high-quality training

data required for machine learning.
Material and methods

The variant collection was performed using Scopus to identify

published studies that performed the functional assessment of var-

iants with putative splice-altering potential. The following search

terms were required to be present in the article title, abstract, or

keywords: ‘‘splic*’’ and ‘‘mutation’’ or ‘‘variant’’ and ‘‘RNA-seq’’

or ‘‘minigene’’ or ‘‘cDNA’’ or ‘‘RT-PCR’’ or ‘‘splicing assay.’’

We note that almost 10,000 studies are returned using the above

search criteria, and not all papers were screened for inclusion in

the initial set of SpliceVarDB variants described here. Newer

studies were more likely to be included due to chronological sort-

ing. Studies were selected for inclusion based on manual abstract

review followed by manual determination that the study method-

ology was described sufficiently. Studies were included when they

presented results for both the variant and wild type through gel

electrophoresis visualization or sequencing to confirm splice alter-

ations. Some variants were excluded based on non-standard wild-

type allele presentation such as an unreported cryptic splice site

used over the canonical when no variants were present. For papers

with many validated variants (R50), variants were included if the

authors defined thresholds for splice-altering status and consistent

methodologies used for validation.

After accumulating over 1,000 variants that alter splicing from

smaller-scale publications, we altered our search terms to enrich
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the dataset for more unusual splice-altering variants. A subsequent

search focused on identifying publications featuring variants not

located at acceptor or donor splice sites to enhance the diversity

of SpliceVarDB. Consequently, we incorporated the following

search terms to augment our initial search criteria: ‘‘deep intronic’’

or ‘‘splicing enhancer’’ or ‘‘splicing silencer’’ or ‘‘branchpoint’’ or

‘‘pseudoexon.’’

Studies that contributed a significant number of variants were

MFASS,21 MaPSy,12,22 SAVNet,23 and MiSplice.24

The following information was collected or manually deter-

mined from each study: the variant location (i.e., genomic loca-

tion and coordinates defined by the HumanGenomeVariation So-

ciety [HGVS]), the type of validation performed, tissue or cell line

of validation, the splicing element altered, and the reported conse-

quence of the variant on the transcript. Here, we utilize the stan-

dard splicing definitions of exon skipping, intron retention (where

the entire intron is retained), and pseudoexon inclusion. We also

employ the accepted terminology of ‘‘exon extension,’’ where part

of an intronic sequence is included, and ‘‘exon truncation,’’ where

part of an exonic sequence is excluded from the transcript. For

studies that did not report the genomic coordinates, we deter-

mined the coordinates using TransVar.25 Genomic coordinates

for variants reported using intervening sequence nomenclature

were determined by examination of RefSeq26 transcripts.

SpliceVarDB supports hg19 and hg38 genome builds, and variants

were converted between builds using liftOver and chain files pro-

vided by the UCSC Genome Browser.27 Variants were left normal-

ized, and the reference bases were checked for both reference ge-

nomes using bcftools norm28 to ensure alignment standardization.

We classified the variants into three categories: splice-altering,

low-frequency splice-altering, and ‘‘normal’’ splicing, using the

criteria established in Table 1. The thresholds used are predomi-

nantly based on those defined by the study itself. However, most

studies only defined criteria for splice-altering variants and did

not define criteria for variants that resulted in normal splicing;

therefore, we implemented stringent thresholds to define the

normal category to ensure a high-quality set of control variants.

Those that did not meet these criteria were classified as low-fre-

quency splice-altering variants with a wide range of sub-optimal

scores; these variants are still included in SpliceVarDB, and while

they could be splice-altering, they are not recommended for use

in training in silico prediction models. In situations where a

variant was validated multiple times, if at least one validation re-

turned splice-altering and another returned normal, the ‘‘conflict-

ing’’ category was applied. If low-frequency splice-altering was

observed in combination with splice-altering or normal, the low-

frequency splice-altering category was applied.

Genes and variant locations were obtained using GENCODE

v44.29 Splice regions were calculated as specific distances from

the closest canonical exon, including 50 and 30 untranslated re-

gions (UTRs). HGVS coordinates for intronic variants could be

used interchangeably.

The ClinGen dataset consisted of genes with a Gene-Disease

Clinical Validity of moderate or higher30 (downloaded January

20, 2024). COSMIC encompassed all tier 1 or 2 genes from

the Cancer Gene Census31 (downloaded May 29, 2024).

Gene2Phenotype (G2P) included genes from all panels with at

least a moderate confidence level32 (downloaded May 29, 2024).

Online Mendelian Inheritance in Man (OMIM)33 gene lists

included only genes with a phenotype mapping method of 3,

thus including only genes where the molecular basis for the disor-

der is known (genemap2.txt file generated May 31, 2022). The
urnal of Human Genetics 111, 2164–2175, October 3, 2024 2165



Table 1. The criteria and the threshold values used to categorize variants according to splice-alteration severity

Thresholds for inclusion in category

Dataset Value (x) Threshold reported by study Splice-altering Low-frequency
splice-altering

Normal

Literature transcript abundance change N/A x R 10% N/A x < 3%

SAVNet RNA reads AND/OR Bayes factor N/A x R 3 x R 5 OR x R 10 1 % x < 5 AND
3 % x < 10

N/A

MiSplice RNA Reads AND JAF x R 5 AND x R 0.05 x R 5 AND x R 0.05 N/A N/A

MFASS D Inclusion index x % �0.50 x % �0.50 0.03 % |x| < 0.5 |x| < 0.03

MaPSY Allelic ratio AND/OR p value |x|— R 1.5a AND x < 0.05 |x|— R 1.5 AND x < 0.05 |x| R 0.1 AND/
OR x R 0.05

|x| < 0.1

Values for splice-altering status reported by each original study are included. When multiple values are used for categorizing the variants within a dataset, both
criteria (AND) or one criterion (OR) is required to be satisfied. N/A,not applicable; JAF, junction allele frequency; D inclusion index, the change in the inclusion
index.
aAlternative criteria to the threshold reported by the study were used but not disclosed.
ClinGen Clinical Domain for the genes was determined by map-

ping the expert panel that curated the Gene-Disease Clinical Val-

idity to their ClinGen Clinical Domain Working Groups. HGVS

notation, GenomeAggregationDatabase (gnomAD) v2.1 allele fre-

quency,34 and variant effect predictor (VEP)35 most severe conse-

quence was obtained for all variants using Ensembl application

programming interface (API).36 Variant pathogenicity was deter-

mined by annotating variants with the clinical significance

(CLN_SIG) as determined by ClinVar18 (clinvar_20230923.vcf.gz).

To predict the rate of all splice-altering variants in SpliceVarDB

that might be classified as pathogenic or likely pathogenic (P/LP)

in the future, the upper limit is defined by the proportion that

were already classified as P/LP in ClinVar and splice-altering by

SpliceVarDB and the lower limit by the same restricted to OMIM

disease genes.

Genomic visualization elements of SpliceVarDB use Pro-

teinPaint37 and Integrative Genomics Viewer (IGV) visualiza-

tion.38 Variant information is obtained through the myVari-

ant (https://myvariant.info),39 myGene (https://mygene.info),39

and ClinVar18 APIs. Splicing in silico scores are calculated for In-

trome,40 Pangolin,41 and SpliceAI42 using the API for https://

spliceailookup.broadinstitute.org, which runs modified versions

of Pangolin and SpliceAI.
Results

Atotalof237 studieswere incorporated intoSpliceVarDB, re-

porting between 1 and 28,962 variants each (Table S1). At

the time of publication, SpliceVarDB (https://splicevardb.

org) contains 50,715 unique variants experimentally as-

sessed for splice-alteringpotential. Using thresholds defined

in Table 1, we recorded 13,673 (27.0%) splice-altering vari-

ants, 25,601 low-frequency splice-altering (50.5%) variants,

and11,358 (22.4%)normal variants (Table 2).Of theunique

variants identified, 34,530 (68%) were reported in MPRAs

(MFASS21 and MaPSy12,22), and 14,206 (28%) were variants

identified through large-cohort RNA-seq data, such as

The Cancer Genome Atlas (https://www.cancer.gov/tcga)

(SAVNet23 andMiSplice24). An additional 2,154 (4.2%) vari-

ants validated using various methods were manually

compiled from 233 studies (Figure 1A).
2166 The American Journal of Human Genetics 111, 2164–2175, Oct
Of the variants identified, 8,558 variants were valida-

ted more than once; 97% were replicates (Figure 1B), and

the remaining 3% were reported by multiple studies

(Figure 1C). Of the variants validated more than once, 83

were classified as conflicting, meaning that at least one

validation determined the variant to be splice-altering

whereas another determined the variant to be normal.

However, concordance between classifications was gener-

ally high, with the conflicting category only applying to

1% of replicates and 8% of variants validated using multi-

ple methods. The validation experiments were primarily

conducted with cell lines, accounting for 75% of the exper-

imental validation, compared to 25% that utilized clinical

tissue samples (Figures 1D and 1E).

At the time of publication, SpliceVarDB variants covered

8,362 genes. We referred to established online gene-disease

databases to assess the intersection between SpliceVarDB

genes and genes implicated in clinical conditions.

SpliceVarDB encompasses many of these genes, with

coverage ranging from 58.4% in OMIM to 67.8% in

ClinGen (Figure 2A). These genes span a broad range of dis-

ease categories, as evidenced by their presence across

various clinical domains in ClinGen (Figure 2B). Notably,

genes in SpliceVarDB most comprehensively represent

the hereditary cancer domain at 85%. In contrast, the pul-

monary domain had the lowest representation, with only

43% of its genes included. Furthermore, SpliceVarDB

includes several extensively validated genes, with 24

genes featuring over 100 functionally validated variants

(Figure 2C).

The variants in SpliceVarDB were generally rare, on

average occurring at low frequencies in control datasets.

Splice-altering variants were more likely to be absent

from gnomAD, whereas variants classified as normal had

a median of two alleles present in gnomAD (Figure 3A);

however, this is still considered rare, corresponding to an

allele frequency of approximately 63 10�6. Exploring

the other end of the rarity spectrum, specifically common

variants with allele frequencies over 0.01, our analysis

identified 240 as normal and 26 as splice-altering.
ober 3, 2024

https://myvariant.info
https://mygene.info
https://spliceailookup.broadinstitute.org
https://spliceailookup.broadinstitute.org
https://splicevardb.org
https://splicevardb.org
https://www.cancer.gov/tcga


Table 2. Summary of variants in SpliceVarDB

Classification

Dataset Total Splice-altering Low-frequency splice-altering Normal

Literature 2,154 1,314 0 836

SAVNet 13,864 10,460 3,404 0

MiSplice 559 559 0 0

MFASS 28,962 1,468 17,357 10,115

MaPSY 5,595 208 4,868 459

Total 50,715 13,673 25,601 11,358

Criteria for classification determination is outlined in Table 1. The table did not include variants classified as conflicting as this classification was applied across
multiple validation types.
Most of the splice-altering variants included in

SpliceVarDB are not found in ClinVar,18 with only 11%

having a ClinVar entry; more than half of these were clas-

sified in ClinVar as P/LP (58%), with some classified as

benign or likely benign (B/LB; 6.4%) (Figure 3B). Notably,

splice-altering variants were significantly more likely

than normal variants to be classified as P/LP in ClinVar

(58% vs. 11%; Fisher’s exact test: p < 13 10�5). The low-

frequency splice-altering class of variants falls between

the splice-altering and normal classes regarding path-

ogenicity composition (Figure 3B). The variants in

SpliceVarDB were analyzed for their most severe conse-

quence as predicted by VEP, returning a high proportion

of missense and intronic variants (Figure 3C). Of the

splice-altering variants, 64% have high ormoderate impact

according to VEP, and 70% received a consequence related

to splicing. To capture variants that may be deemed path-

ogenic due to non-splicing mechanisms, analysis of the

ClinVar P/LP variants found that 98% of the normal class

had a non-splicing consequence of high or moderate

impact (e.g., stop gain or missense), compared to 21% of

the splice-altering class.

Various factors contribute to determining the pathoge-

nicity of a splice-altering variant. Among these factors,

the effect that a variant has on the transcript is critical in

assessing its clinical significance since not all splice-

altering variants damage the reading frame. Furthermore,

the gene that harbors the variant and the frequency of

that variant’s occurrence in other individuals (both unaf-

fected individuals and those with similar phenotypes)

also play a role in determining its pathogenicity classifica-

tion. The additional factors used to determine the clinical

significance of the variants present in ClinVar, such as pa-

tient and family history, are not publicly available. We

reasoned that previously classified variants could be used

to estimate the number of pathogenic splice-altering vari-

ants in SpliceVarDB. We predict that between 2,590 and

7,030 of the splice-altering variants that are not reported

in ClinVar will be P/LP (see material and methods).

SpliceVarDB may also be useful to refine the classification

of variants in ClinVar: those classified as VUSs (18%),

with conflicting interpretations of pathogenicity (11%),
The American Jo
or unclassified (7%) could potentially be upgraded due to

their splice-altering classification (Figure 3B).

Some regions are more likely to harbor splicing-altering

variants due to the motif present being essential for

splicing, such as the canonical acceptor and donor splice

sites. Regions including the latter motifs show a high pro-

portion (approximately 80%) of variants reaching the

threshold to be classified as splice altering (Figure 3E). Var-

iants affecting the canonical dinucleotides are generally

well-identified, making up 45% of the variants classified

as splice altering in SpliceVarDB (Figure 3E). However,

these only constitute a small part of the splicing landscape,

encompassing four nucleotides per excised intron (Figure

3F). Aside from the acceptor and donor, most splicing mo-

tifs do not have a specific distance from the intron-exon

boundary in which they must fall; nevertheless, most do

have a range of optimal distances. Variants that occur in

splicing motifs that do not have a strictly fixed location

are less likely to affect splicing than variants occurring in

a fixed location motif (Figure 3D). This is evident with

the branchpoint and polypyrimidine tract regions: both

motifs are essential for the recognition of the acceptor

splice site, but only 5.5% and 20% of variants falling in

those regions, respectively, are classified as splice-altering

(Figure 3E) due to the broad interval into which the motifs

may fall while still retaining their function (Figure 3D).

The most common transcript alteration caused by these

splice-altering variants was exon skipping (39%), with 14%

of variants reported to produce multiple splice-altered

transcripts (Figure 3G). This metric is not available for all

variants as MPRAs often do not report the effect of the

variant on the transcript.

Figure 4 shows an example of how SpliceVarDB can be

used to visualize and explore variants in a gene of interest;

in this case, COL4A5 (n ¼ 121) was examined. SpliceVarDB

generates a ProteinPaint37 lollipop plot to demonstrate the

locational distribution of variants (classified by whether

they affect or do not affect splicing) along the canonical

transcript. This distributional view can identify splicing

hotspot regions, compare variant outcomes at the same

location, and show how well covered the gene is regarding

splicing validation. The variants that match the search and
urnal of Human Genetics 111, 2164–2175, October 3, 2024 2167



Figure 1. Validation overview for SpliceVarDB variants
(A) UpSet43 plot of the methods used to validate splice-altering variants with set intersection size and individual set size plotted for the
combinations ofmethods. Intersections in blue demonstrate variants validated withmultiplemethods, but as replicates within the same
study, whereas yellow intersections are variants validated with multiple methods by different studies.
(B and C) Venn diagrams of the classification results for (B), variants validated in replicate, and (C), variants validated bymultiple studies.
Sections outlined in red are classified as conflicting.
(D and E) Tissue used for validation for (D), variants assayed using cell lines, or (E), variants validated using clinical tissue samples.
filtering criteria are displayed in an expandable variant ta-

ble (Figure 4). Each entry contains further variant informa-

tion, in silico prediction scores, validation details, and an

embedded IGV visualization.38 The IGV tracks display

nearby splicing motifs (both known and predicted) gener-

ated using Introme.40

SpliceVarDB offers gene search, variant search, and

filtering options based on validation method, variant loca-
2168 The American Journal of Human Genetics 111, 2164–2175, Oct
tion, and transcript outcome. It also caters for variants

proven not to affect splicing, with 11,358 negative variants

in the database. Variants can be uploaded to SpliceVarDB

through the ‘‘submit variants’’ function. Researchers can

submit published or unpublished variants; the latter en-

ables the capture of variants that are not sufficiently novel

for presentation in reports. These variants will be incorpo-

rated into SpliceVarDB following manual review.
ober 3, 2024



Figure 2. Gene information overview for SpliceVarDB
(A) Overlap between genes from online gene databases and SpliceVarDB. Colored bars depict the numbers of genes in the database and
SpliceVarDB, whereas dotted bars indicate the full number of genes in the indicated database.
(B) Overlap between genes in ClinGen Clinical Domains and SpliceVarDB. Colored bars depict the numbers of genes in the clinical
domain and SpliceVarDB, whereas dotted bars indicate the full number of genes in the domain.
(C) The variant counts for each gene with greater than 100 functionally validated variants. Variants functionally validated to alter
splicing are shown in red, while those that showed no splicing alterations compared to controls are shown in blue, and low-frequency
splice-altering variants are in purple.
For registered users, variants and their static annota-

tions can be downloaded from SpliceVarDB in a VCF-

like format, which can thus be easily incorporated into

variant annotation pipelines. We also provide an API

with endpoints for all information used to populate the

web page.
Discussion

Splice-altering variants are an important class of patho-

genic variants that can be overlooked due to difficulties

associated with predicting and validating their effect on

splicing. To address this issue, SpliceVarDB enables access

to thousands of variants already experimentally assessed

for splice-altering potential, providing researchers with in-

formation crucial to variant curation.

The three-tier system for classifying splice-altering vari-

ants used by SpliceVarDB harmonizes data from multiple

studies and allows researchers to interpret variants at a

glance. This classification is based on a threshold set for

each functional assay performed (defined in Table 1).

Most studies only defined criteria for splice-altering vari-

ants and did not define criteria for variants that resulted

in normal splicing; therefore, we implemented stringent

thresholds to define the normal splicing category to ensure

a high-quality set of control variants. Variants that fell be-
The American Jo
tween the normal and splice-altering classifications were

placed into a low-frequency splice-altering category to

ensure they were still captured in SpliceVarDB and avail-

able for analysis and interpretation at the researcher’s

discretion. This category is likely to contain hypomorphic

(partial loss of function) variants, which often contribute

to disease,44 as well as variants that cause a higher inci-

dence of altered splicing in a different tissue to the one

sampled.45 Validation results are accompanied by informa-

tion on the tissue or cell line utilized whenever feasible.

Various reports indicate discrepancies in splice-altering

variant validation across tissues,5,46,47 and thus we recom-

mend users assess the relevance of the tissue or assay in

relation to a variant of interest.47 The tissue used for valida-

tion is especially important for interpreting variants in

alternatively spliced exons or affecting splicing regulatory

elements due to their tissue-specific nature.48

SpliceVarDB is not an exhaustive resource of all variants

experimentally tested for splice-altering potential. Some var-

iants may have been missed; for example, the publications

thatwere returnedusing the searchtermswere toonumerous

to be comprehensively analyzed. In addition, some publica-

tions may also have been excluded due to their lacking a

required search term in their article abstract, title, or

keywords, which we observed was the case for cohort

analysis studies involving (but not centered on) splic-

ing.49 SpliceVarDB accepts submissions of published and
urnal of Human Genetics 111, 2164–2175, October 3, 2024 2169



Figure 3. Variant information overview for SpliceVarDB
(A) Allele count distribution for each SpliceVarDB classification.
(B) Proportion of SpliceVarDB classification’s variants in each ClinVar clinical significance category. Proportion was calculated to include
all variants present in ClinVar as the denominator. B/LB, benign/likely benign; VUS, variant of uncertain significance; P/LP, pathogenic/
likely pathogenic.

(legend continued on next page)
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Figure 4. SpliceVarDB online display
Lollipop plot showing the variant distribution in COL4A5 (n¼ 121) generated using ProteinPaint.37 Variants are shownwith reference to
the canonical transcript with exons represented by white boxes (to scale), introns as the space between boxes (not to scale), and the UTRs
shown in gray. Variants proven to alter splicing are shown in red, while those that showed no splicing alterations compared to controls
are shown in blue; low-frequency splice-altering variants are shown in purple, and variants with conflicting interpretations are in gray.
Colored regions of the exons represent protein domains. The variants are shown in a searchable table, with each variant entry expand-
able to show variant information, in silico scores, and validation details. The IGV plot displays the variant (highlighted in the color cor-
responding to the classification) and nearby splicing elements.
unpublished variants validated for splice-altering potential

as a form of crowdsourcing validation that will help capture

variants missed by our literature searches. Smaller-scale
(C) Most severe VEP consequence for all variants present in SpliceVarD
impact. Consequences with less than 50 variants are not shown.
(D) Splice-altering variant count for each splicing region as defined
Colors of the splicing regions are aligned with the feature shown in
(E) Splicing classification of the variants in each splicing region (defin
region. Variant color key is as defined in (A).
(F) Cartoon depiction of the splicing region locations (with exon sh
splicing regions shown in the histogram in (D). To show splice-alter
(G) UpSet43 plot of the transcript changes observed due to the splice
each variant, represented by the red connected filled-in dots. Diagram
red lines indicating the exclusion of exonic sequence and red boxes i
tract.

The American Jo
variant publications will likely become less prominent as

high-throughput analysis methods will be increasingly

favored due to their ability to assess variants at scale.11
B. Variants are colored according to the severity of the determined

in the X axis (distance to the intron-exon boundary in brackets).
(F).
ed in brackets) as represented as a proportion of all variants in the

own as the large central rectangle) with colors aligned with the
ing variant frequency comparative to size, sections are to scale.
-altering variants. Multiple transcript changes can be reported for
s depicting splicing outcome events are shown at the top left, with
ndicating the inclusion of intronic sequence. PPT, polypyrimidine
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However, RNA results from a tissue of interest will remain a

high-quality resource that directly enumerates the splicing

outcomes expected in patients. Indeed, as many studies

have described the diagnostic yield and variant elucidation

benefits gained from performing RNA-seq,4–6,49 we expect

to see further RNA analyses performed. To predict the

consequence of splice-altering variants that are not in

SpliceVarDB, we recommend considering the consequence

of nearby splice-altering variants and/or catalogs of

rare cryptic splice junctions like OncoSplicing19 and

SpliceVault.20

We envision SpliceVarDB will also be of considerable use

in research areas outside of variant curation. One particular

use of high-quality validated results of particular impor-

tance is the development of in silico splicing prediction

tools. These tools areproducedbymethods suchasmachine

learning that depend critically on the quality of the training

data.50 Experimentally validated variants, both confidently

with andwithout evidence for altering splicing, provide the

high-quality training data necessary for such prediction

tools. For example, variants from SpliceVarDB formed the

training data for the ensemblemachine learning splice pre-

dictor Introme.40 This dataset enabled us to make Introme,

which has half the false positive rate compared to other

leading splice-prediction tools.40 These variants have also

been used as a truth set for comprehensive in silico bench-

marking of the leading splice-altering prediction tools.40

We also envisage SpliceVarDB will reduce the duplication

of validation efforts for splice-altering variants, helping to

prioritize experimental resources on unvalidated variants

of interest to advance knowledge in the field. Splice-altering

variants are also emerging as a prime target for personalized

therapies51 through antisense oligonucleotide (ASO) ap-

proaches to counter or correct splicing.52 Clearly, a resource

such as SpliceVarDBwould be significantly useful for select-

ing candidate variants for such therapy development. User

interface elements such as the IGV integration allow rapid

visualizationof nearby splicing elements and gene architec-

ture, providing useful information in the design of ASOs.

Furthermore, ProteinPaint plots can be used to view nearby

variants amenable to splicing correction, expanding the

utility of these often n ¼ 1 gene therapy approaches.37

In summary, we have created a resource that details a

very large collection of variants validated for splice-altering

potential. This is particularly interesting given the relative

lack of consolidated information on splice-altering vari-

ants, despite their undeniable importance in identifying

rare disease cause and understanding cancer behavior.

This resource can be easily expanded to accommodate

new knowledge and is available with an interactive plat-

form at https://splicevardb.org.
Data and code availability

The data generated by this study are available at https://

splicevardb.org. The browsing of data in the SpliceVarDB website
2172 The American Journal of Human Genetics 111, 2164–2175, Oct
is free to all users. Downloading the SpliceVarDB annotations is

free for research use in an academic setting, requires a fee-free li-

cense in a private or public diagnostic laboratory, and requires a

commercial license in a commercial setting. Additional informa-

tion is provided in the user registration portal.

The website code is available at https://github.com/CCICB/

SpliceVarDB under an AGPLv3 license.

The code used to generate the figures in the paper is available at

https://github.com/CCICB/SpliceVarDB.
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