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Abstract 

Propose:  Stress is a common problem globally. Prediction of stress in advance could help people take effective 
measures to manage stress before bad consequences occur. Considering the chaotic features of human psychological 
states, in this study, we integrate deep learning and chaos theory to address the stress prediction problem.

Methods:  Based on chaos theory, we embed one’s seemingly disordered stress sequence into a high dimensional 
phase space so as to reveal the underlying dynamics and patterns of the stress system, and meanwhile are able to 
identify the stress predictable time range. We then conduct deep learning with a two-layer (dimension and temporal) 
attention mechanism to simulate the nonlinear state of the embedded stress sequence for stress prediction.

Results:  We validate the effectiveness of the proposed method on the public available Tesserae dataset. The experi-
mental results show that the proposed method outperforms the pure deep learning method and Chaos method in 
both 2-label and 3-label stress prediction.

Conclusion:  Integrating deep learning and chaos theory for stress prediction is effective, and can improve the pre-
diction accuracy over 2% and 8% more than those of the deep learning and the Chaos method respectively. Implica-
tions and further possible improvements are also discussed at the end of the paper.
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Introduction
Stress is a universal experience that affects humans in 
different ways. It is the body’s natural response to chal-
lenging or threatening situations that require adaptation 
or coping. A wide diversity of brain areas collectively 
sense stressful stimuli, interpret them as real or potential 
threats, and activate the Sympathetic-AdrenoMedullar 
(SAM) axis and the Hypothalamus–Pituitary–Adrenal 
(HPA) axis, the two major components involved in the 
physiological stress response [1]. With such complex 
stress networks, we are able to adapt to the dynamic 
and challenging environments, facing various life events 
every now and then. However, when stressful stimuli are 

chronic and severe, our stress system will become emo-
tionally exhausted and overwhelmed, increasing greater 
risk for depression, heart disease, infectious diseases, etc. 
[2]. To prevent stress from detrimentally affecting health 
and well-being, it is quite important to aid individuals 
to know their stressful states, thereby enabling them to 
effectively manage the stress before bad consequences 
happen.

Psychological studies have suggested that chaos theory 
could offer a new paradigm for understanding human 
psychological phenomena and dynamic processes [3–8]. 
Chaos theory, proposed by Poincare [9] in the 1880s, 
aims to study highly complex and nonlinear dynamic 
systems that are sensitive to small changes in initial 
conditions. According to chaos theory, human mental 
state is not random or unpredictable, but rather follows 
some patterns that can be described by mathematical 
equations. These patterns are highly sensitive to initial 
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conditions, which means that small differences in the ini-
tial state can lead to big differences in the final outcome. 
This property is known as the butterfly effect, implying 
that short-term behavior of the system is predictable, but 
not the long-term behavior. With chaos theory, we could 
elaborate and reconstruct the seemingly disordered stress 
sequence in a low-dimensional phase space into a high-
dimensional phase space. Upon the reconstructed phase 
space, which encapsulates inherent patterns underlying 
the complex stress system, predictions of future stress 
and predictable time range could be well supported. 
Despite chaos theory demonstrating a strong vitality in 
human science research, it needs to model the complex 
system with a nonlinear equation. In practice, it is often 
difficult to determine accurate parameters and equations 
from the given stress sequence. Many times, we have to 
make predictions through approximation calculations, 
which will lead to false accumulation and affect the final 
prediction performance.

Presently, the availability of huge datasets for training 
and increase in computational power have made deep 
learning with Recurrent Neural Networks (RNN)-LSTM 
[10] a powerful tool for simulating the state of complex 
non-linear systems. These data-driven deep neural net-
works possess powerful global relation modeling capabil-
ities, and can approximate any continuously differentiable 
function with sufficient training data. They can adapt to 
different scenarios by adjusting parameters and weights 
according to the feedback and evaluation to make pre-
diction. Despite deep neural network models having 
achieved great success in algorithm design and practical 
applications, they rely on large-scale high-quality and 
representative data to train effectively and avoid overfit-
ting or underfitting. When the distributions of training 
and testing data differ, the prediction performance of 
the model will degrade greatly. As real-world data often 
comes from dynamic open environments rather than 
static closed environments, it is difficult to guarantee the 
same data distribution in such scenarios. In other words, 
the distribution of data is not static. Compared with the 
distribution of training data, the distribution of test-
ing data often exhibits unknown and difficult to observe 
behaviors, and this data shift constitutes a big challenge 
to deep learning methods. Another critical problem with 
deep learning networks is that they lack prior knowledge 
that can help them understand complex systems and gen-
eralize better.

The aim of this study is to investigate the validity of 
combining deep neural networks and chaos theory for 
stress prediction. Under the guidance of chaos theory, we 
enrich the modeling capability of deep neural networks 
by embedding inherent patterns underlying the complex 
chaotic stress system, and projecting one’s seemingly 

disordered low-dimensional stress sequence into a high-
dimensional phase space. On the reconstructed phase 
space, people’s stress dynamics can be defined as a non-
linear equation, which can be better predicted and gener-
alized. Also, with chaos theory, we are able to analyze and 
identify the predictable time range of chaotic stress sys-
tems, which is the maximum time interval for which reli-
able predictions can be made. According to chaos theory, 
the valid time range depends on the degree of sensitivity, 
complexity, and unpredictability of stress systems.

On the other hand, employing deep neural networks 
to learn from the data to simulate the non-linear cha-
otic stress system can hopefully overcome the difficulty 
in obtaining accurate parameters of the non-linear equa-
tions in the traditional chaos-based prediction methods.

In summary, the study makes the following 
contributions.

•	We integrate deep learning and chaos theory to 
address the stress prediction problem, where pre-
dictable time ranges and future stress levels are to 
be explored. A two-layer (dimension and temporal) 
attention mechanism is particularly designed to let 
the deep learner focus on the influential dimensions 
and time points in the reconstructed stress phase 
space based on chaos theory.

•	We investigate the validity of combining deep learn-
ing and chaos theory in terms of prediction perfor-
mance and the generalization ability of the proposed 
method. The experimental results on the Tesserae 
dataset show that (1) it could achieve 74.41% and 
69.23% accuracy in 2-label (unstressed/stressed) and 
3-label (unstressed/weak stressed/heavy stressed) 
stress prediction, outperforming the deep learning 
method and the Chaos method; (2) the designed two-
layer attention mechanism could help improve the 
prediction accuracy by more than 2.22% and 4.25% in 
2-label and 3-label stress prediction; (3) the proposed 
method also performed the best on another Studen-
tlife dataset among the three methods, about 1.12% 
and 2.39% higher than those of the deep learning and 
the Chaos method in 2-label stress prediction accu-
racy, and 2.95% and 5.1% higher in 3-label stress pre-
diction accuracy.

Related work
Stress prediction based on deep learning
Traditional stress prediction methods are mainly based 
on machine learning techniques such as Support Vector 
Machine (SVM), Logistic Regression (LR), Random For-
est, Naive Bayes, Decision Tree, etc. [11, 12].

The recent dramatic improvement in the field of deep 
learning has shifted the focus towards deep architectures 
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such as Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), Gated Recurrent Unit network 
(GRU), etc. to learn complex non-linear sequential pat-
terns of stress from a large collection of data. For exam-
ple, [13, 14] used LSTM to predict next day’s stress given 
student’s previous seven days’ multi-model data including 
daily behavioral survey, physiology data, mobile phone 
usage, and mobility data. Experimental results showed 
that LSTM could achieve better performance than the 
traditional SVM and LR based methods. [15] verified 
that LSTM could efficiently predict human mental stress 
given a sequence of sensory data collected from mobile 
phones. [16] further presented the transfer learning 
based on LSTM for user adaption to provide more accu-
rate prediction for new users. [17, 18] combined LSTM 
with a locally connected Multi Layer Perceptron (LC-
MLP) layer to automatically extract features from sensor 
data for stress prediction. [19] trained MLP, LSTM, and 
GRU in a participant-independent fashion to evaluate the 
effectiveness of stress prediction based on wearable sen-
sors in a natural environment. [20] designed a RNN and 
ensemble learning based stress prediction method, dem-
onstrating that multiple predictive models can be used to 
yield more accurate stress prediction performance.

In addition to recurrent networks, other neural net-
works such as Convolutional Neural Network (CNN) and 
memory networks were applied to handle different types 
of data for stress prediction. For instance, [21] applied 
CNN to users’ acceleration, blood volume pulse, electro-
dermal activity for stress prediction, and [22] employed 
a neural network with one hidden layer for stress pre-
diction, and proved that the deep learning model can 
be used to predict stress based on heart rate, skin con-
ductance, sitting position, g-forces sensors values. [23] 
applied deep learning architectures such as AlexNet, 
ResNet, and DenseNet on offline handwritten signa-
tures for stress prediction. [24] used Gaussian sampling 
for user-specific information, domain rules for low-fre-
quency data, and CNN-LSTM for high-frequency data to 
process different types of features. [25] performed gravi-
tational search algorithm (GSA) based feature selection 
with deep belief network (DBN) model (GSAFS-DBN) to 
predict stress among working employees. The proposed 
solution could select optimal features and classification 
process, outperforming other baseline models. [26] pro-
posed a deep joint memory network for modeling the 
dynamics of users’ emotions incurred by the extracted 
events from their social media posts, and learned users’ 
personality traits based on linguistic words and a fuzzy 
neural network for stress prediction.

To address the issue of missing and sparse data, [27] 
designed Data Completion with Diurnal Regularizers to 
recover incomplete sensor data from wearable devices, 

and then built a Temporally Hierarchical Attention Net-
work to encode daily and weekly behaviors hierarchi-
cally for stress prediction. Through multi-task learning, 
personalized stress prediction could be well supported 
[28–30].

Chaos theory and its applications to health psychology
The idea of dynamical chaos was first glimpsed by Poin-
caré [9] in the 1880s. In the early 1960s, meteorologist 
Lorenz recognized the chaotic behavior that small dif-
ferences in a dynamic system like the atmosphere could 
trigger vast and often unsuspected results in weather 
forecasts, and developed chaos theory to understand and 
model non-linear dynamic systems that are highly sensi-
tive to initial conditions, seemingly random but are actu-
ally deterministic [31]. More comprehensive discussions 
of chaos theory and chaotic analysis techniques can be 
found in [32–35].

In the context of health psychology, chaos theory has 
been recognized as a powerful tool to investigate com-
plex psychological phenomena [6, 8]. [36] showed that 
behavior problems, causal variables, and causal relation-
ships have complex nonlinear relationships in psycholog-
ical assessment, and using chaos phase space functions 
to simulate their nonlinear dynamic changes could bet-
ter help psychological assessment. With chaos theory, 
[37] uncovered the clinical evolution of patients with 
affective instability. [3] adopted chaos theory to analyze 
emotion dysregulation and emotional vulnerability in 
adults. It utilized the Lyapunov function to assess sub-
jects’ inconsistency in assessing their own mechanisms 
of emotional dysregulation under the butterfly effect. The 
experimental results demonstrated that the presence of 
initial instability to weak disturbances may herald future 
abnormal emotional functioning. [38] conducted a case 
study through a depression patient to present the but-
terfly effect in human mental states, showing that non-
linear dynamics and chaos theory could help understand 
human behaviors. [39] studied the dynamical structure 
of bipolar patients, and found that the self-evaluation 
emotional scores of the bipolar disorder patients can be 
described as a low-dimensional chaotic process. [5] con-
firmed that this kind of low-dimensional chaotic process 
also exists in unipolar depression.

Methodology
Let S = (s1, s2, . . . , sn) be a sequence of user’s daily stress 
levels, where si denotes the stress level at the i-th day 
( 1 ≤ i ≤ n ), and DOM(si) = {0, 1, 2, 3, 4, 5} , correspond-
ing to stress level unknown, no stress at all, very little 
stress, some stress, a lot of stress, and a great deal of stress. 
Our stress prediction task aims to address the following 
two subtasks: 
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(1)	 identify predictable time range m, within which 
reliable predictions can be made;

(2)	 predict daily stress levels (sn+1, sn+2, . . . , sn+m) on 
the next m days.

We address the first subtask by conducting chaos analy-
sis on the given stress sequence, and then leverage chaos 
theory and deep learning to address the second subtask. 
Before the discussion, let’s briefly review chaos theory 
and deep learning.

A brief introduction to chaos theory and deep learning
Chaos theory
Chaos theory is a branch of mathematics and science that 
studies the behavior of nonlinear dynamical systems [35]. 
In order to study the chaotic characteristics of nonlinear 
systems, it is important to firstly recover the dynamics of 
a system from a single observed variable [40], known as 
phase space reconstruction. Phase space reconstruction 
can be achieved based on Takens’ theorem [41], which 
guarantees that the reconstructed phase space is topolog-
ically equivalent to the original one as long as we choose 
a sufficiently large embedding dimension and an appro-
priate time delay. [42–45] provided methods for choosing 
the appropriate embedding dimension, and [46] pre-
sented the way for choosing an appropriate time delay.

In the reconstructed phase space, we can explore the 
complexity of the nonlinear system, and estimate the 
amount of chaos in the nonlinear system through the 
largest Lyapunov exponent. Here, the largest Lyapunov 
exponent is a quantity that characterizes the rate of sepa-
ration of infinitesimally close trajectories in the dynami-
cal system. It is a measure of the sensitivity to initial 
conditions or the predictability of the system [33]. Usu-
ally, if the value of the largest Lyapunov exponent is posi-
tive, the presence of chaos can be determined.

The time range for accurate prediction of a chaotic 
system can then be estimated as a function of the larg-
est Lyapunov exponent [32]. [47–51] provided methods 
for calculating the largest Lyapunov exponent based on 
equations and definitions. A further improvement of the 
method was made in [52].

Deep learning
Deep learning is a sub-branch of machine learning that 
uses artificial neural networks with multiple layers to 
learn from data. It can handle unstructured data such as 
images, texts, audio, and video, and learn features from 
the data automatically without human intervention. The 
history of deep learning can be traced back to the 1940s, 
when Warren McCulloch and Walter Pitts explored 
the idea of artificial neural networks and proposed the 
McCulloch–Pitts neuron [53]. In 1986, Geoffrey Hinton 

popularized the back-propagation algorithm for training 
multi-layer neural networks [54], which caused another 
upsurge in neural networks.

Afterwards, a series of neural networks such as Con-
volutional Neural Networks (CNN) [55] and Recurrent 
Neural Networks (RNN) [56] were subsequently pro-
posed. CNN [55] used convolutional layers to extract 
features from images, which was widely used for image 
classification, object detection, face recognition, etc. 
RNN [56] employed recurrent layers to process sequen-
tial data such as text, speech, and video. They can capture 
dependencies and context in the data. Some variants of 
RNN like Long Short-Term Memory Network (LSTM) 
[57] and Gated Recurrent Unit (GRU) [58] have been 
developed to overcome the problem of vanishing gradi-
ents, and learn dependencies in sequential data, which 
were widely used for natural language processing, speech 
recognition, etc.

Identification of predictable time range m (subtask 1)
Phase space reconstruction
We project the user’s original stress sequence 
S = (s1, s2, . . . , sn) into a high-dimensional phase space:

where Xk = (sk , sk+τ , . . . , sk+(d−1)τ ) ∈ R
d , τ is the time 

delay determining the distance between the two suc-
cessive points, sk and sk+τ , in the phase space, and d 
is the embedding dimension of the phase space for 
k = 1, 2, . . . , n− (d − 1)τ.

The setting of τ is to maximize the knowledge about 
sk+τ from sk and minimize the redundancy between 
sk+τ and sk . [46] presented a way to set τ by comput-
ing and minimizing the mutual information M between 
(s1, s2, . . . , sn−τ ) and (s1+τ , s2+τ , . . . , sn−τ+τ ) . The less the 
mutual information, the less dependence between the 
two variables.

where P(si) and P(sj) are the probabilities of si and sj in 
(s1, s2, . . . , sn−τ ) and (s1+τ , s2+τ , . . . , sn−τ+τ ) , respectively, 
and P(si, sj) is the joint probability distribution of si and 
sj . When M drops to the local minimum value for the first 
time, the corresponding value of τ is the optimal delay 
time τ.

We adopted the method proposed in [43] to determine 
the minimum embedding dimension value d. The basic 

(1)X(τ , d) = (X1,X2, . . . ,Xn−(d−1)τ )

(2)

M =

n−τ
∑

i=1

n
∑

j=1+τ

P(si, sj) · log2 P(si, sj)

−

n−τ
∑

i=1

P(si) · log2 P(si)−

n
∑

j=1+τ

P(sj) · log2 P(sj)



Page 5 of 15Li et al. Health Information Science and Systems (2024) 12:16

idea is that, since the chaotic sequence is the projection 
of the high-dimensional chaotic system in the one-dimen-
sional space, during the projection, some non-adjacent 
points in the high-dimensional space will become adjacent 
when projected into one-dimensional space, forming false 
nearest neighbors. When the embedding dimension gradu-
ally increases, the false nearest neighbors gradually disap-
pear. When the number of false nearest neighbors drops 
to 0, a suitable embedding dimension value is obtained. 
Let Xk(d) = (sk , sk+τ , . . . , sk+(d−1)τ ) be a vector in the 
phase space X(τ , d) . In this d-dimensional space, each 
vector Xk(d) has its nearest neighbor Xn(k ,d)(d) , where 
n(k , d) ∈ {1, . . . , n− (d − 1)τ } and n(k , d)  = k . The dis-
tance between Xk(d) and Xn(k ,d)(d) , denoted as Rk(d) , can 
be computed as:

where || · || denotes the Euclidean norm.
When the dimension of the phase space increases from d 

to ( d+ 1), the distance between the two points will change 
to:

Whenever Rk(d + 1) is much larger than Rk(d) , the two 
nearest neighbors can be regarded as false nearest neigh-
bors. The distance ratio r(k, d) of the nearest neighbors in 
the d-dimensional space and ( d + 1)-dimensional space 
can be computed as:

When r(k,  d) is larger than a threshold, Xk(d) and 
Xn(k ,d)(d) become false nearest neighbors. We calculate 
the average distance ratio of all nearest neighbor pairs in 
the d-dimensional space and ( d + 1)-dimensional space 
by:

When the false nearest neighbors gradually decrease 
along with the increase of d, the changes of r(k, d) and of 
E(d) tend to be stable. To measure the variation from d to 
( d + 1 ), we define:

(3)

Rk(d) = || Xk(d)− Xn(k ,d)(d) ||

=

√

√

√

√

∑

0≤j≤d−1

|sk+jτ − sn(k ,d)+jτ |
2

(4)Rk(d + 1) = || Xk(d + 1)− Xn(k ,d)(d + 1) ||

(5)
r(k , d) =

Rk(d + 1)

Rk(d)

=
||Xk(d + 1)− Xn(k ,d)(d + 1)||

||Xk(d)− Xn(k ,d)(d)||

(6)E(d) =
1

n− (d − 1)τ

n−(d−1)τ
∑

k=1

r(k , d)

When EV(d) stops changing at a certain value d0 , it 
means that the change of E(d) becomes stable, and the 
number of false nearest neighbors tends to 0. In this case, 
the result d0 is the minimum embedding dimension value 
we are looking for.

Largest Lyapunov exponent
The largest Lyapunov Exponent is an important factor for 
judging whether the sequence is chaotic. It indicates the 
average exponential divergence rate of adjacent trajecto-
ries in the phase space. A positive Lyapunov Exponent 
means that no matter how small the distance between the 
two trajectories in the initial state, the distance between 
them will increase exponentially over time. This is one 
of the most typical features of a chaotic system, so if the 
value of the largest Lyapunov Exponent is positive, the 
presence of chaos can be determined.

According to [32], the predictable time range of a cha-
otic system can be defined as the length of time before 
small differences in the initial state of the system begin 
to change exponentially, which is the reciprocal of the 
largest Lyapunov Exponent lmax of the stress sequence. 
Therefore, the predictable time range m can thus be 
inferred as:

where lmax is the slope of function D(q), i.e., the deriva-
tive of D(q) [52]:

Here, Xn(k ,d) is the nearest neighbor of Xk.

Prediction of stress levels on the next m days (subtask 2)
Figure  1 shows our chaos and deep learning 
based stress prediction framework. The stress 
sequence S = (s1, s2, . . . , sn) was firstly embedded 
with chaos dynamic patterns into a high d-dimen-
sional phase space X(τ , d) = (X1,X2, . . . Xn−(d−1)τ ) , 
where Xk = (sk , sk+τ , . . . , sk+(d−1)τ ) (for 
k = 1, 2, . . . , n− (d − 1)τ ). To ensure that our model 
can handle variable-length input sequences in long-
term prediction, we applied two ways of zero-padding 
in the input sequence. We added 0 before and after 
the input sequence respectively to make the sequence 
reach the longest input length (44 in this paper), and 
fed these two sequences into the model at the same 

(7)EV (d) =
E(d + 1)

E(d)

(8)m =
1

lmax
=

1

D′(q)

(9)

D(q) =
1

n− (d − 1)τ

n−(d−1)τ
∑

k=1

ln ||Xn(k ,d)+q − Xk+q||
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time for training. We enforced dimension attention 
upon each d-dimensional vector in X(τ , d) , and then 
fed the dimension-attended X1,X2, . . . Xn−(d−1)τ into 
respective LSTMs chained with temporal attention to 
learn the stress sequence representation.

Dimension attention. The dimension attention DA 
can be computed as:

where DA ∈ R
d , and WDA ∈ R

n−(d−1)τ×1, bDA ∈ R
1×1 are 

trainable parameters.
With dimension attention, we can get the dimension-

attended X1,X2, . . . Xn−(d−1)τ denoted as X ′(τ , d):

Then X ′(τ , d) = (X ′
1,X

′
2, . . . X

′
n−(d−1)τ

) is fed into LSTM:

(10)DA = tanh((X(τ , d))T ×WDA + bDA)

(11)X ′(τ , d) = X(τ , d)× DA

(12)hk = LSTM(hk−1,X
′
k)

Temporal attention. The temporal attention TA can be 
computed as:

where H = (h1, h2, . . . , hn−(d−1)τ ) , TA ∈ R
n−(d−1)τ×1 , 

and WTA ∈ R
hidden_size×1, bTA ∈ R

1×1 are trainable 
parameters, hidden_size is the size of hidden state of 
LSTM, in this study, hidden_size = 8.

With the temporal attention TA, we can get the overall 
information I of the input stress level sequence X(τ , d):

Through a final fully connected layer and Softmax, pre-
diction of stress level on the next ( n+ 1)-th day could be 
made.

where ŝn+1 represents the possibility of the user under 
different stress levels, Ws ∈ R

hidden_size×num_class and 
bs ∈ R

num_class×1 are trainable parameters, num_class is 
number of stress levels, in this study, num_class = 2 or 3.

With the predicted stress level ŝn+1 , we could then 
form a longer stress sequence S = (s1, s2, . . . , sn, ŝn+1) to 
predict the stress level ŝn+2 on the ( n+ 2)-th day. The pro-
cess repeated until stress levels (ŝn+1, ŝn+2, . . . , ŝn+m) on 
the next m days were predicted.

Performance study
Experimental setup
Dataset
A set of experiments were conducted on the publicly 
available Tesserae dataset [59], which enrolled 757 infor-
mation workers across the United States. During the 56 
days after enrollment, the participants were requested to 
fill out the ground truth questionnaire on a daily basis, 
which evaluates the participants’ daily stress at five stress 
levels (i.e. no stress at all, very little stress, some stress, a 
lot of stress and a great deal of stress). In the study, we 
selected 478 participants out of the 757 enrolled par-
ticipants, who completed the daily ground truth survey 
for over 45 days (80% of the total 56 days). Unreported 
stress level on a certain day was assigned a special 
label “unknown”. Table  1 details the dataset used in the 
experiments.

We applied fivefold cross validation to ensure every 
user was used for testing. Each time, 80% of the partici-
pants were for training, and the rest 20% of the partici-
pants were for testing.

Comparison methods
We compared our chaos and deep learning based stress 
prediction method with the following two methods.

(13)TA = Softmax(H ×WTA + bTA)

(14)I = H × TA

(15)ŝn+1 = Softmax(I ×Ws + bs)

Fig. 1  Chaos and deep learning based stress prediction framework
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•	Chaos method, which modeled the dynamic stress sys-
tem in the d-dimensional Euclidean space Rd through 
a continuous function Xk+1 = F(Xk) , where Xk ,Xk+1 
are two vectors in the reconstructed phase space 
X(τ , d) . Since F(·) is a continuous function, we can 
know that if Xn−(d−1)τ and Xj are close to each other 
( 1 ≤ j < n− (d − 1)τ ), then Xn−(d−1)τ+1 and Xj+1 
will also be close to each other in the phase space, 
signifying the pair-wise closeness of elements (e.g., 
the last elements sn+1 and sj+(d−1)τ+1 in Xn−(d−1)τ+1 
and Xj+1 ). By searching for q nearest neighbors of 
Xn−(d−1)τ , denoted as Xtop−n(k ,d) , in the phase space, 
the method approximated the stress level sn+1 by: 

 Like ŝn+1 , ŝn+2, ŝn+3, . . . , ŝn+m could be estimated 
one by one.

•	Deep learning method, which skipped the phase space 
reconstruction layer and dimension attention layer 
(Fig. 1), and fed the original stress sequence directly 
into chained LSTMs with temporal attention.

Evaluation metrics
We measured the performance of daily stress prediction 
and range stress prediction (i.e., all the daily prediction 
for the next m days) through the average accuracy, preci-
sion, recall, and F1-score of all classes:

(16)

ŝn+1 =
∑

Xj ∈

Xtop−n(k ,d)

�(Xj ,Xn−(d−1)τ ) · sj+(d−1)τ+1

where �(Xj ,Xn−(d−1)τ ) =
e−

1
2
||Xj−Xn−(d−1)τ ||

2

∑

Xq∈Xtop−n(k ,d)
e−

1
2
||Xq−Xn−(d−1)τ ||

2

Accuracy = (TP + TN)/(TP + FP + TN + FN);
Precision = TP/(TP + FP);
Recall = TP/(TP + FN);
F1-score = (2 × Precision × Recall)/(Precision + Recall)
where TP denotes the number of true-positive, FP 

denotes the number of false-positive, FN denotes the 
number of false-negative, and TN denotes the number of 
true-negative. Here, the true/false refers to the prediction 
outcome being correct or incorrect, while positive/nega-
tive refers to the predicted label belonging to the positive 
or negative class.

Test users’ “unknown” (unreported) real daily stress 
levels were not counted in the above calculations.

Experimental results
We performed the experiments on a 8-NVIDIA GeForce 
RTX-2080 machine. Batch size was set to 64 during the 
training process, and the learning rate was set to 0.001. 
Adam [60] was adopted as the training optimizer.

Predictable time range m
The predictable time range could be estimated based on 
Eq.  8 (in section “Largest Lyapunov exponent”). It var-
ied along with the length of the input stress sequence. 
As shown in Fig. 2, the longer the input stress sequence, 
the wider the predictable time range. However, when 
the input sequence length comes to around 35 days, the 
predictable time range (19 days) stops extending. This 
complies with the chaotic characteristic that short-term 
behaviors of the chaotic system are predictable, but not 
long-term behaviors.

Therefore, we made three test settings in the following 
performance study, as shown in Table 2.

Table 1  Dataset used in the experiments

Total users Gender Age Stress Sequence

Male Female <25 25-34 35-44 45-54 55-64 Total length Average missing ratio

1 295 183 49 205 132 7.60% 
(2.66/35)

66 26 9.47% (1.80/19)

Table 2  Three test settings in the performance study

Test setting Input (Predicted) output

Length Stress sequence Average missing ratio Length Stress sequence Average missing ratio

1 n = 35 days (s1, s2, . . . , s35) 7.60% (2.66/35) m = 19 days (s36, s37, . . . , s54) 9.47% (1.80/19)

2 n = 30 days (s1, s2, . . . , s30) 7.51% (2.25/30) m = 17 days (s31, s32, . . . , s47) 9.21% (1.57/17)

3 n = 25 days (s1, s2, . . . , s25) 7.36% (1.84/25) m = 12 days (s26, s27, . . . , s37) 9.05% (1.09/12)
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Daily and range stress prediction performance
We compared the 2/3-label daily and range stress pre-
diction performance of the three methods under input 
length n = 35 days and output length m = 19 days. The 
2-label assignment includes “unstressed” and “stressed”. 
The 3-label assignment includes “unstressed”, “weak 
stressed”, and “heavy stressed”.

Their range stress prediction behaviors for the next 
m = 19 days are presented in Table 3. As shown, the pro-
posed DL+Chaos method outperforms the Chaos and 
the DL methods for both 2-label and 3-label range stress 
prediction. The accuracy and F1-score of the DL+Chaos 
method achieve 74.41% and 71.59%, respectively, for 
2-label stress prediction, about 2.28% and 1.71% more 
than those of the DL method, and 9.72% and 9.92% more 
than those of the Chaos method. For 3-label stress pre-
diction, the accuracy and F1-score of the DL+Chaos 
method are 2.12% and 2.39% more than those of the DL 

method, and 8.38% and 3.43% more than those of the 
Chaos method. The results demonstrate the effectiveness 
of combining deep learning techniques and chaos analy-
sis on range stress prediction. By combining chaos theory 
and deep learning method, we can better discover the law 
behind the stress sequence in the reconstructed phase 
space and simulate this law through deep learning to bet-
ter predict stress levels.

Another observation we made from Table 3 is that for 
all three methods, the 3-label stress prediction perfor-
mance is lower than the respective 2-label prediction 
performance. This is expected since the former is more 
challenging than the latter. The accuracy and F1-score of 
the DL+Chaos method decrease by 5.18% and 26.05%, 
respectively, and the accuracy and F1-score of the DL 
method decrease by 5.02% and 26.73%, respectively. 
Comparatively, the performance of the Chaos method 
decreases by 3.84% and 19.56%, respectively, the least 
among the three methods. This may be because the data 

Fig. 2  Predictable time ranges when the length of the input stress 
sequence varies from 20 days to 55 days

Table 3  Range stress prediction performance, where input 
length n is 35 days and output stress length is 19 days

a Chaos (the Chaos method)
b DL (the Deep Learning method)
c DL+Chaos (the Deep Learning+Chaos method)

Bold values indicate the best experimental results in the experiment

Methods Label Acc. (%) Pre. (%) Rec. (%) F1. (%)

Chaosa 2-label 64.69 61.69 61.69 61.67

3-label 60.85 43.86 42.17 42.11

DLb 2-label 72.13 71.25 70.12 69.88

3-label 67.11 45.57 44.31 43.15

DL+Chaosc 2-label 74.41 73.10 71.22 71.59
3-label 69.23 46.20 46.28 45.54

Fig. 3  Daily stress prediction performance under input length n = 35 days
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distribution for 2-label prediction is about 1 (unstressed): 
2 (stressed), while the data distribution for 3-label pre-
diction is more bias, about 5 (unstressed): 10 (weak 
stressed): 1 (heavy stressed). Data-driven DL method and 
DL+Chaos method are thus more sensitive and affected 
by data distribution than the Chaos method.

Apart from range stress prediction for the next m 
days, we also investigate the daily stress prediction per-
formance. As illustrated in Fig. 3a and b, the DL+Chaos 
method has the best performance among the three 
methods.

Impact of input stress sequence length on range stress 
prediction performance
We examined the 2/3-label range stress prediction per-
formance of the three methods when the input length of 
the stress sequence varies from 35 days, 30 days, to 25 
days and the corresponding output length varies from 19 
days, 17 days, to 12 days (Table 2). From the results pre-
sented in Table  4, we find that the longest input length 
(35 days) yields the best range stress prediction perfor-
mance for all three methods, despite the number of days 
for prediction is the most (19 days). When the input 
sequence length is 35 days, for 2-label stress prediction, 

the accuracy of the three methods are more than 0.3% 
and 1.76% higher than when the input length sequence is 
30 and 25 days respectively, and for 3-label stress predic-
tion, the accuracy of the three methods are respectively 
more than 0.22% and 1.77% higher than when the input 
length sequence is 30 days and 25 days. This indicates the 
importance of learning the historical stress sequence for 
future stress prediction. More historical data could help 
predict future stress more effectively.

Impact of missing data on range stress prediction 
performance
According to Table  2, when input length n  =  35 days, 
the average missing ratio of the input stress sequence 
is 7.60%. To investigate the impact of missing data, we 
increase the missing ratio of the input stress sequence 
to 10%, 12%, and 14% by randomly setting some stress 
levels in the input sequence to 0. Table  5 present the 
range stress prediction performance results of the three 
methods, respectively. We can find that in 2-label stress 

Table 4  Range stress prediction performance when the 
input stress sequence length n varies from 35 days, 30 
days, to 25 days, and the corresponding output length var-
ies from 19 days, 17 days, to 12 days

Bold values indicate the best experimental results in the experiment

Methods Input Acc. (%) Pre. (%) Rec. (%) F1. (%)

(a) 2-label range stress prediction

Chaos 35 days 64.69 61.69 61.69 61.67

30 days 64.39 62.05 62.26 61.43

25 days 62.93 60.63 61.20 60.45

DL 35 days 72.13 71.25 70.12 69.88

30 days 64.51 69.54 70.55 69.05

25 days 69.71 70.05 69.66 68.33

DL+Chaos 35 days 74.41 73.10 71.22 71.59
30 days 72.21 70.81 70.02 70.18

25 days 71.95 70.17 69.72 69.83

(b) 3-label range stress prediction

Chaos 35 days 60.85 43.86 42.17 42.11

30 days 60.63 44.27 42.03 41.24

25 days 59.08 40.51 40.40 39.25

DL 35 days 67.11 45.57 44.31 43.15

30 days 66.88 45.27 44.88 43.89

25 days 65.19 44.48 44.09 43.13

DL+Chaos 35 days 69.23 46.20 46.28 45.54
30 days 68.22 46.96 45.53 45.03

25 days 67.74 44.58 46.17 45.01

Table 5  Range stress prediction performance when the 
input stress sequence has different missing ratios

Missing ratio Input Acc. (%) Pre. (%) Rec. (%) F1. (%)

(a) Chaos

7.6 2-label 64.49 61.69 61.69 61.67

3-label 60.85 43.86 42.17 42.11

10 2-label 62.82 60.46 60.31 60.33

3-label 57.28 40.49 41.94 41.14

12 2-label 59.78 56.81 56.39 56.19

3-label 55.86 40.55 40.05 41.10

14 2-label 57.02 53.74 53.07 53.11

3-label 53.43 39.37 39.47 39.36

(b) DL

7.6 2-label 72.13 71.25 70.12 69.88

3-label 67.11 45.57 44.31 43.15

10 2-label 70.90 70.08 70.09 69.22

3-label 65.15 43.02 43.27 42.04

12 2-label 68.53 66.29 67.20 66.79

3-label 64.23 43.12 42.09 42.50

14 2-label 67.78 65.59 66.25 65.44

3-label 61.03 42.27 41.40 41.62

(c) DL+Chaos

7.6 2-label 74.41 73.10 71.22 71.59

3-label 69.23 46.20 46.28 45.54

10 2-label 73.64 72.31 70.86 71.09

3-label 67.06 45.88 46.89 45.83

12 2-label 72.18 70.45 69.71 69.82

3-label 69.51 46.43 46.83 46.43

14 2-label 73.03 71.81 69.58 69.90

3-label 64.38 49.06 46.72 45.25
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prediction, as the input missing ratio increases, the stress 
prediction accuracy and F1-score of the DL+Chaos 
method decrease by 2.23% and 1.17% at most, while the 
DL method decrease by 4.35% and 4.44% at most, and 
the Chaos method drop up to 7.67% and 8.56%. In 3-label 
stress prediction, the prediction accuracy and F1-score 
of the DL+Chaos method decrease by 4.85% and 0.3% 
at most, while the DL method decrease by 6.08% and 
1.53% at most, and the Chaos method drop up to 7.42% 
and 2.75%. The DL+Chaos method has less performance 
degradation than the DL method and the Chaos method 
in the face of increasing missing data. This suggests that 
our DL+Chaos method is more stable in terms of missing 
data.

Effectiveness of dimension attention and temporal attention 
on daily and range stress prediction performance
In the study, we designed two attention mechanisms 
(dimension attention and temporal attention) to learn 
and enforce the influence of specific phase space dimen-
sions and temporal order on stress prediction. To inves-
tigate their effectiveness, we conducted ablation studies 
by removing dimension attention and/or temporal atten-
tion. As shown in Fig.  4 and Table  6, removing dimen-
sion attention or temporal attention leads to a decrease 
in daily and range stress prediction performance, and 
removing both attention mechanisms brings a further 
drop in stress prediction performance. The accuracy can 
drop 2.22% (4.25%), 2.83% (6.07%) and 3.27% (7.87%) 
respectively when there is no dimension attention, no 
temporal attention, and neither for 2-label (3-label) 
prediction.

The results demonstrate the effectiveness of the two 
attention mechanisms since they could help the model 

focus on more important dimensions in phase space and 
more important time horizons.

Evaluation of the generalization ability of the prediction 
methods
To examine the generalization ability of the three meth-
ods, we conducted the experiments on another Studen-
tlife dataset [61]. The Studentlife dataset was collected 
from 48 Dartmouth college students over 10 weeks. The 
participants were asked to report their daily stress at five 
stress levels (i.e. feeling great, feeling good, a little stressed, 
definitely stressed, stressed out). In the experiments, we 
selected 32 users who reported their daily stress levels for 
more than 20 days.

Fig. 4  Effectiveness of dimension attention and temporal attention of the DL+Chaos method

Table 6  Range stress prediction performance of the 
DL+Chaos method when removing dimension attention 
and/or temporal attention

a w/o DA (without dimension attention)
b w/o TA (without temporal attention)
c w/o DA &TA (without both dimension attention and temporal attention)

Bold values indicate the best experimental results in the experiment

Attentions Label Acc. (%) Pre. (%) Rec. (%) F1. (%)

w/o DAa 2-label 72.19 70.84 70.52 70.90

3-label 64.98 45.36 44.48 43.49

w/o TAb 2-label 71.58 70.75 70.67 70.02

3-label 63.16 45.61 45.88 44.09

w/o DA &TAc 2-label 71.14 69.63 69.62 69.20

3-label 61.36 41.89 41.34 39.43

with DA &TA 2-label 74.41 73.10 71.22 71.59
3-label 69.23 46.20 46.28 45.54
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We calculated the predictable time ranges, as shown 
in Fig.  5. When the input stress sequence length is 30 
days, the predictable time range reaches a maximum of 
10 days. Thus, we conducted the experiments under the 
condition that the input sequence length is 30 days. To 
expand the experimental data, we regarded the user’s 
data every 40 days as a sample. In this way, we obtained 
a total of 637 samples. We applied fivefold cross valida-
tion, and ensured that different samples generated from 
the same user only appeared in the same fold. The experi-
mental results of 2/3-label daily and range stress predic-
tion on the Studentlife dataset are presented in Fig.  6 
and Table 7. We can find that our proposed DL+Chaos 
method outperforms the Chaos and the DL method on 
both daily and range stress prediction. In 2-label range 
stress prediction, the accuracy of the three methods 
(the Chaos method, the DL method and the DL+Chaos 
method) are 79.35%, 80.62% and 81.74% respectively, the 
accuracy of the DL+Chaos method is 2.39% and 1.12% 

higher than that of the Chaos method and the DL method 
respectively, and the F1-Score of the DL+Chaos method 
is 6.86% and 4.23% higher than that of the Chaos method 
and the DL method respectively. In 3-label range stress 
prediction, the accuracy of the three methods (the Chaos 
method, the DL method and the DL+Chaos method) are 
39.32%, 41.47% and 44.42% respectively, the accuracy of 
the DL+Chaos method is 5.1% and 2.95% higher than 
that of the Chaos method and the DL method respec-
tively, and the F1-Score of the DL+Chaos method is 
13.56% and 5.09% higher than that of the Chaos method 
and the DL method respectively.

The results demonstrate the potential of the DL+Chaos 
method for more datasets compared to the pure Chaos 
method and the DL method.

Discussion
The study investigates the validation of combining deep 
learning and chaos theory for stress prediction. The 
experimental results on the publicly available Tesserae 

Fig. 5  Predictable time ranges when the length of the input stress 
sequence varies from 20 to 40 days

Fig. 6  Daily stress prediction performance on the Studentlife dataset under input length n = 30 days

Table 7  Range stress prediction performance on the Stu-
dentlife dataset, where input length n is 30 days and out-
put stress length is 10 days

Bold values indicate the best experimental results in the experiment

Methods Label Acc. (%) Pre. (%) Rec. (%) F1. (%)

Chaos 2-label 79.35 47.95 52.47 50.49

3-label 39.32 31.56 33.60 28.03

DL 2-label 80.62 61.20 56.00 53.12

3-label 41.47 39.07 41.97 36.50

DL+Chaos 2-label 81.74 63.86 60.47 57.35
3-label 44.42 42.52 44.35 41.59
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Fig. 7  Temporal and dimension attention matrix of two users
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dataset show that leveraging deep learning and chaos 
theory can improve the stress level prediction perfor-
mance over a period of time, compared with the pure 
deep learning method and Chaos method. While the per-
formance result is promising, a number of issues about 
combining deep learning and chaos theory for stress pre-
diction still remain and deserve further study.

Personalized stress prediction. In this study, we only 
consider using user’s historical stress levels to predict 
future stress states. However, users’ stress perception 
could be affected by various external factors and per-
sonal characteristics, such as personality traits, previous 
experiences, coping skills, social supports, etc. Figure  7 
illustrates the dimension and temporal attention mat-
rics of two users in the study. The darker the color, the 
greater the attention, signifying the importance for stress 
prediction. We can find that the attentions do not con-
centrate on certain specific parts. The attention of user 1 
focuses more on the period closer to the predicted date, 
while the attention of user 2 focuses more on the earlier 
stage. To address the diversity, a personalized stress pre-
diction framework, taking various stress related factors 
into account, is needed. These factors could be reflected 
as relevant parameters in the prediction model or built 
into the reconstructed high-dimensional personalized 
phase space.

Providing interpretable stress prediction results. A criti-
cal issue that deep learning faces is its interpretability. 
Deep neural networks are often considered as black-box 
models, meaning that their internal workings are hidden 
or difficult to explain. Recently, some studies have tried 
to address the interpretability of deep learning by per-
turbing the input to find out which parts of the input are 
important, calculating the importance of each input fea-
tures to the network output, or visualizing a part of the 
parameters of the neural network to try to understand 
some structures inside the neural network [62]. In con-
trast, chaos theory attempts to describe the evolution 
process of nonlinear systems through attractors, frac-
tals, self-similarity and other characteristics, and tries 
to describe the impact of small differences in inputs on 
output. Leveraging the characteristics of chaos theory, we 
might be able to provide interpretable stress prediction 
results.

Adjusting the prediction model in an evolutionary 
fashion. As shown in Figs. 3 and 6, we may find that the 
performance of our stress prediction model appears to 
be deteriorating with time. This may be because one’s 
stress response is a complex psychological phenomenon 
that is affected by many internal or external factors. The 
behaviors and characteristics of one’s stress may change 
over time. In order to make the model adapt to changes 
in people’s psychological states, in the future, we need to 

consider evolving the model over time through knowl-
edge distillation, few-shot learning, etc. With these meth-
ods, the model could be flexibly adjusted according to 
new incoming data, helping people manage and reduce 
stress better.

Conclusion
Chaos theory offers a unique perspective for understand-
ing human mental states, while deep learning serves as a 
powerful tool for simulating the nonlinear state of human 
stress states. In this study, we validate the effectiveness of 
integrating deep learning and chaos theory for stress pre-
diction. The experimental results on the publicly avail-
able Tesserae dataset show that the proposed method 
outperforms the pure deep learning method and Chaos 
method in both 2-label (unstressed/stressed) and 3-label 
(unstressed/weak stressed/heavy stressed) stress predic-
tion, achieving 74.41% and 69.23% of accuracy in 2-label 
and 3-label stress prediction, which are over 2% and 8% 
more than those of the deep learning and the Chaos 
method, respectively. We are currently leveraging chaos 
theory to address the interpretability problem of deep 
learning so as to provide interpretable stress prediction 
results.
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