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Recent successes in artificial intelligence (AI) methods 
have enabled the impressive performance of machine 

learning (ML) models on health care–related tasks, in-
cluding radiology report analysis (1,2), medical image 
acquisition and reconstruction (3–5), image lesion de-
tection (6,7), and disease classification (8,9). However, 
real-world adaptation of such methods remains sparse. As 
of November 2022, there are 521 U.S. Food and Drug 
Administration–approved ML algorithms for clinical use, 
with 392 (75.2%) proposed for radiology applications 
(10). However, when compared with the progress made 
in other high-stakes domains including financial analytics 
and autonomous driving, practical AI implementation in 
health care settings lags behind (11,12).

Extensive prior work (13–16) has analyzed these trends 
and offers both empirical and qualitative evidence for the 
slow-moving headway in clinical AI implementation. 
Reyes et al (17) and Topol (18) highlight the need for in-
creased transparency in ML model training and interpret-
ability of prediction outputs. Kahn (19) emphasizes the 
importance of bias mitigation efforts in radiologic AI ap-
plications. Rowell and Sebro (20) examine AI use in the 
context of complex insurance cost practices and patient 
privacy standards. Whereas these works have introduced 
the challenges facing AI implementation in health care, 

there has been much less discussion on exactly how such 
implementation efforts should be structured to benefit 
clinical medicine.

A standardized and effective framework that answers 
this question remains an active area of exploration. Proc-
tor et  al (21) proposed guidelines for defining and op-
erationalizing implementation strategies across multiple 
facets of health care innovation. Such structured frame-
works are already in place for domains such as drug dis-
covery (22,23), telemedicine (24), and global health (25). 
Whereas similar regulatory initiatives for clinical AI ap-
plications have progressed (26), methods for clinical AI 
are still in their infancy with the potential for further im-
provement and expansion (27).

This review addresses this limitation in a stepwise ap-
proach, as follows: first, by analyzing existing health care 
data sources important for implementation of clinical AI; 
second, by introducing empirical end-to-end standard-
ized guidelines for how clinical teams can approach clini-
cal implementation of AI based on both evidence from 
recent literature and firsthand experience of members of a 
radiology department; third, by considering insights and 
constraints from stakeholders; and finally, by addressing 
research questions relevant to future work before scalable 
AI implementation in health care is achievable.

Despite recent advancements in machine learning (ML) applications in health care, there have been few benefits and improvements 
to clinical medicine in the hospital setting. To facilitate clinical adaptation of methods in ML, this review proposes a standardized 
framework for the step-by-step implementation of artificial intelligence into the clinical practice of radiology that focuses on three key 
components: problem identification, stakeholder alignment, and pipeline integration. A review of the recent literature and empirical 
evidence in radiologic imaging applications justifies this approach and offers a discussion on structuring implementation efforts to help 
other hospital practices leverage ML to improve patient care.
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The Role of Data Curation and Data Set Acquisition 
in Implementation of Clinical AI
The availability of health care data dictates the success of method 
development within ML research and its applications, particu-
larly in scaling deep neural networks. However, patient data is 
important in the implementation of clinical AI models.

Public Data Sets
Publicly released data sets enabled the development of so-called 
foundation models, which are AI algorithms trained on large 
amounts of data extracted from a large, diverse population 
(28,29). Foundation models can be subsequently tuned and op-
timized for specific tasks for commercial AI products. For tasks 
related to the health sciences, data sets such as the UK Biobank, 
ISARIC-COVID-19, and fastMRI+, among others, enabled 
work in disease prediction from genomic, health record, epide-
miologic, and image data (30–32). These data sets facilitate the 

Abbreviations
AI = artificial intelligence, ML = machine learning

Summary
Implementing machine learning algorithms in clinical settings is 
achievable through a generalizable framework to integrate artificial 
intelligence–empowered software into the clinical practice of radiology.

Essentials
 ■ Real-world, representative data acquisition enables effective 
machine learning (ML).

 ■ Radiologists and other key stakeholders must work together for 
iterative and clinically informed use cases for ML in radiology.

 ■ Clinical implementation strategies involve the coordination of 
multidisciplinary teams and alignment with key institutional values.

 ■ Effectively characterizing the success of implementation of 
artificial intelligence in the clinical practice of radiology requires 
using user-centered metrics in real-world environments integrated 
with existing software and clinical workflows.

reproducibility of ML research and the development of both 
open-source and commercial AI technologies for implementa-
tion into patient care.

Publicly available data sets are not sufficient for the imple-
mentation of these algorithms into existing radiology work-
flows. This is because it is crucial to test prediction models on 
in-domain patient data (ie, in-house data) to mitigate the effects 
of bias and data distribution shift (ie, when training and test 
data sets are not from the same patient population) that are well-
studied in existing literature (8,19). Despite ongoing regulatory 
efforts by the U.S. Food and Drug Administration (26), existing 
ML models continue to generalize poorly to previously unseen 
patient populations, as documented by Belbasis and Panagiotou 
(33). Thus, even if commercial AI models demonstrate excellent 
performance on the large population on which they were ini-
tially trained, they may not exhibit similar performance on the 
smaller patient populations.

To overcome these challenges, it is beneficial for radiologists 
to test implemented AI solutions on their own patients and 
scans. Hesitancies with personal data collection may lead to re-
cruitment bias (34), which de Man et al (35) show can be ef-
fectively mitigated by implementing opt-out consent protocols. 
Patient-physician conversations surrounding data collection can 
also indirectly influence downstream care, introducing potential 
performance bias. These sources of bias may adversely impact 
both data acquisition and AI performance with respect to at-risk 
patient groups. Recognizing and attenuating the impact of these 
imperfections in data collection is therefore crucial.

Practice-specific Data Curation
In community clinics and resource-constrained settings, AI 
algorithms are poised to assist in patient care through radio-
graphic image interpretation (6,7,36), patient triage (37), and 
other applications (1). To enable effective clinical AI imple-
mentation, we strongly encourage radiologists to emphasize in-
house data acquisition as much as allowable given pre-existing 
resource constraints.

Table 1: Academic Biobanks

Biobank
Reference  
No.

No. of Patients  
Enrolled

Active  
Enrollment

Year  
Established

National Biobanks
 Finnish Biobank Cooperative  100 500 000 Yes 2017
 Kaiser Permanente Research Bank  101 400 000 Yes 2016
 UK Biobank  102 500 000 No 2006
 Biobank Japan  103 260 000 No 2003
Academic Biobanks
 Michigan Genomic Initiative  104 85 000 Yes 2021
 Colorado Biobank  105 220 000 Yes 2014
 Mayo Clinic Biobank  106 50 000 Yes 2009
 Mass General Brigham Biobank  107 135 000 Yes 2008
 Vanderbilt BioVU  108 26 000 Yes 2007
 UTHealth Biobank  109 200 000 Yes 2006
 Penn Medicine BioBank: PMBB  36 65 000 Yes 2010

Note.—ITHealth Biobank = University of Texas Health Science Center at Houston Biobank.
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Multiple commercial and open-source tools are increasingly 
available to facilitate data curation at both academic and com-
munity radiology practices (38). Of note, Micard et al (39) and 
Kuhn Cuellar et al (40) have introduced data management sys-
tems for medical image storage. Demirer et al (41) introduced 
a radiologist-friendly, no-code interface to streamline physician 
annotation of medical images, whereas Scherer et al (42) pro-
posed an imaging data platform specifically designed for distrib-
uted data sharing across multiple hospital sites.

Academic Biobanks
Academic biobanks are patient data sets collected by academic 
hospitals and affiliated research institutions (43). Example bio-
banks include the Penn Medicine BioBank, Mayo Clinic Bio-
bank, and University of Texas Health Science Center at Houston 
Biobank (UTHealth Biobank) (Table 1, Appendix S1). Figure 1 

shows an overview of the imaging data available in the Penn 
Medicine BioBank. There are many potential applications of the 
patient imaging data acquired from an academic biobank. For 
example, clinically informed image analysis can be used to iden-
tify patients with different common diseases (Fig 2).

In U.S. facilities, academic biobanks are practice-specific and 
capture the attributes and variance of the patient population of 
the hospital. Missing or repeated values in these data sets also 
mirror the messiness of real-world patient data, for which imple-
mented algorithms and applications must be equipped to handle 
for any practical use (44).

Whereas biobanks have proven useful for certain academic 
hospitals, they are by no means necessary for clinical AI imple-
mentation in the average radiology practice. For satellite hospitals 
and community practices that share similar patient populations 
with the parent academic hospital, academic biobanks and their 

Figure 1: Overview of Penn Medicine BioBank (PMBB) imaging data. (A) Bar graph shows the number of studies within the Penn Medicine BioBank by imaging modal-
ity. The number of studies per Penn Medicine BioBank capita is the average number of studies per patient within the Penn Medicine BioBank. (B) Line graph shows the number 
of imaging studies acquired per year contained within the Penn Medicine BioBank by imaging modality. (C) Line graph of 1–CDF, where CDF is the cumulative distribution 
function. 1–CDF corresponds to the proportion of patients (by modality) according to number of examinations. (D) Histogram shows the time between sequential repeat 
imaging studies by patient for the four most common imaging modalities.
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subsets can serve as “pseudo-in-house” data 
sets. This can prove particularly useful in set-
tings used for implementation without the 
resources or infrastructure to systematically 
collect their own in-house test data.

A Proposed Framework for Clinical 
AI Implementation
A proposed three-step framework for clini-
cal AI implementation in an academic re-
search hospital environment focuses on the 
following central considerations: problem 
identification, stakeholder alignment, and 
pipeline integration. Table 2 summarizes this 
framework.

Step 1: Problem Identification
Over the past decade, the potential use cases 
of ML methods for multimodal breast nod-
ule detection and early detection of breast 
cancer has been explored (45,46). Given 
these studies, the Department of Radiology 
at the University of Pennsylvania developed 
the infrastructure necessary for the AI- 
assisted detection of breast cancer. However, 
it became clear that practicing radiologists 
had no interest in using the proposed tools 
even at the onset of clinical implementation. 
Through subsequent discussions with phy-
sician partners, this underuse was because 
ML-enabled image interpretation performed 
no better than radiologists, and there was no 
excess demand for image interpretation that 
could not already be met by radiologists. In 
addition to the risks and liability associated 
with automated performance and difficulty in 
widespread adaptation, these barriers limited 
the use of AI tools in this clinical setting.

This experience reinforced the importance 
of first identifying and naming the specific 
problem that a proposed ML approach will 
solve, which is a key step in implementation 
science that extends beyond clinical AI im-
plementation alone. Problem identification 
refers to the determination of real problems 
from the perspective of individuals in the tar-
get population for use. The ostensible prob-
lem addressed was to automate the detection 
of breast cancer with human expert–level ac-
curacy. However, from the perspective of the 
radiologists that diagnose breast masses daily, 
there was no problem with the accuracy of di-
agnoses, number of patient cases, or time of diagnoses. Thus, the 
addressed problem was no practical problem at all for the target 
population (ie, the breast radiologists).

Common guiding principles exist for problem identifica-
tion regarding clinical AI implementation. The U.S. Centers for 

Disease Control and Prevention introduced its Planning and Op-
erations Language for Agent-based Regional Integrated Simula-
tion framework for problem identification in public health (47), 
and Stannard (48) highlighted case studies on effective problem 
identification in evidence-based practices. Cumulatively, these 

Figure 2: Comparisons of principal component distributions of six artificial intelligence–extracted image-
derived phenotype (IDP) metrics (36), calculated from abdominal CT in 1276 anonymized patients from the 
Penn Medicine BioBank. These image-derived phenotypes included liver CT attenuation, spleen CT attenu-
ation, liver volume, spleen volume, visceral fat volume, and subcutaneous fat volume. Using principal com-
ponent analysis (PCA), the principal component of these image-derived phenotypes was extracted and its 
distribution was plotted as a histogram for patients stratified by different clinical diagnoses. Bar graphs show 
different image-derived phenotype principal component distributions in patients without diagnoses (gray 
bars) versus in patients diagnosed with (A) obesity (n = 91), (B) obstructive sleep apnea (n = 201), and (C) 
hypertension (n = 1082) (Fig 2 continues).
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studies raise important questions that inform 
our own institutional practices: Who is im-
pacted by the problem at hand? And what ev-
idence exists to quantify and characterize the 
impact? The process of answering these ques-
tions through relevant interviews, analysis, 
and literature reviews provides a generalizable 
framework for robust problem identification.

From experience at the University of 
Pennsylvania, clarifying the problem that AI 
implementation will solve revolves around 
one of the following four objective tenets: un-
satisfactory diagnostic accuracy or therapeutic 
efficacy (18), long time to diagnosis or low 
therapeutic efficiency (8), high costs or low 
revenue (3), and inefficiencies in patient care 
and cumbersome legacy systems (37). Most 
AI implementation solutions should attempt 
to improve on at least one of these pressure 
points. For adequate progress tracking, quan-
titative data are necessary, including time 
scales, patient surveys, changes in relative 
value units, and application-specific efficacy 
metrics.

The task of problem identification is inher-
ently tied to interdisciplinary communication 
and collaboration. Communication must be 
both documented and frequent to allow for 
iterative problem identification. Similarly, if 
proposed solutions are intended for patients, 
it is equally important to communicate with 
patients. Effective problem identification is 
a task that should evolve to ensure problem-
solution alignment for researchers, clinicians, 
and other relevant stakeholders.

Step 2: Stakeholder Alignment
Parallel to problem identification is aligning 
proposed solutions with the goals and values 
of key stakeholders: institutional leaders, radi-
ologists, and the referring clinicians (49). The 
stakeholder alignment step is similar to prob-
lem identification: To gain tractable support 
for clinical AI implementation, it is impor-
tant to convince both clinicians and hospital 
leadership, who often have different needs 
and goals.

Institutional leaders are important stake-
holders behind any plan for implementation. 
For example, conversations with departmen-
tal directors and chairs at the University of Pennsylvania allowed 
for a better understanding of the shared guiding principles for 
institutional stakeholders. We found that framing the proposed 
implementation strategies through the lens of revenue generation 
and cost reduction at the level of the health care enterprise was 
crucial in getting stakeholder buy-in. Any initiative, whether re-
lated to AI implementation or not, must be sustainable without 

excessive consumption of the hospital’s limited resources. Of 
note, larger academic institutions often provide many clinical 
services that enable resource pooling and opportunities for ad-
aptation of technologies that could yield net  negative revenue, 
particularly in the short term. It is also crucial to investigate algo-
rithm implementation strategies in community-based hospitals 
and practices in terms that make financial sense, cognizant that 

Figure 2 (continued): Image-derived phenotype principal component distributions in patients without 
diagnoses (gray bars) versus in patients diagnosed with (D) nonalcoholic fatty liver disease (NAFLD; n = 
429) and (E) diabetes (n = 790). (F) Genitourinary diseases (n = 1202), which are not clinically associ-
ated with these image-derived phenotype metrics, were not associated with a statistically significant different 
principal component distribution compared with healthy patients (P = .12). P values were calculated with 
statistical analyses comparing distributions of patients with and without disease diagnoses, with a two-sample 
Kolmogorov-Smirnov test for goodness of fit.
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there may not be complementary institutional initiatives to pro-
vide a financial buffer.

Although revenue generation is a priority for many institu-
tional stakeholders, many departmental leaders are also interested 
in secondary community benefits to either the health care system 
or the greater scientific community. Most academic biobanks pro-
vide operable data to institution-affiliated researchers. It is equally 
important to align implementation efforts with nonsupervisory 
parties. Of course, clinicians and users of implemented AI strat-
egies seek to improve the quality, ease, and efficiency of health 
care. In many radiology practices with large volumes of imaging 
studies, radiologist users seek to optimize the practical user experi-
ence to avoid additional user-facing computer applications, mouse 
clicks, and other extra steps in workflows. To streamline patient 
care, users also seek to minimize downtime and technical errors 
with respect to software latency and service outages. Adapted from 
our own experience, risk stratification questions for stakeholders 
to better characterize these potential sources of risk are in Table 3.

Accomplishing these goals requires the expertise of a mul-
tidisciplinary team of engineers and product managers to use 
clinical data from hospital sources and implement AI algorithms 
into clinical practice. Initial efforts often require rapid expansion 
of clinical implementation and oversight teams when establish-
ing roles for project managers, directors, support staff, and steer-
ing committees.

Finally, whereas the primary focus of this article is on a sub-
group of key stakeholders in clinical AI implementation, AI 
implementation will impact technologists, equipment operators, 
support staff, and hospital administrators. For example, patients 
and patient advocacy groups also seek to use AI algorithms that 
are trustworthy, equitable, and easy for patients to understand 
(50). The influence of AI solutions on these roles emphasizes the 
importance of interdisciplinary collaboration (21,51).

Step 3: Pipeline Integration to Enable Algorithm Validation in 
Hospital Systems
Clinical pipelines are necessary for the proper validation of pro-
posed ML algorithms. Prior studies by Argent et al (52) and Yu 
et al (53) have argued for real-world validation from a data per-
spective because model inputs in practical clinical scenarios may 
be imprecise and have missing data values.

Our empirical experiences suggest that the greatest value 
added from validation in existing clinical pipelines is the ability 
to define and quantify user-centered metrics for successful imple-
mentation. Metrics optimized during training and reported after 
testing do not necessarily correspond to metrics that best reflect 
human expert objectives, as explored in detail by Park et al (54). 
For example, Zhao et al (7) reported that maximizing the struc-
tural similarity index measure to train models in computer vision 
applications can excessively smooth images and therefore reduce 

Table 2: A Proposed Framework for Clinical AI Implementation

Step No. Title Summary
1 Problem identification Defining the problem that clinical artificial intelligence (AI) will solve must come from the perspective 

of the target users. This step requires iterative feedback and close collaboration with clinicians.
2 Stakeholder alignment Institutional support involving an interdisciplinary team of administrators, researchers, clinicians, 

trainees, and corporate staff is required for any concerted effort in the deployment of AI. Major 
challenges must be overcome in financial justification and alignment with the individual (and 
sometimes conflicting) priorities of team members.

3 Pipeline integration Metrics used to define successful deployment must be user-centered and quantify clinician and 
stakeholder satisfaction in addition to improvements in quality of care. Furthermore, they must be 
assessed in real-world environments integrated with existing software and clinical workflows.

Table 3: Risk Stratification Questions to Ask Potential Commercial AI Vendors

Consideration Question to Ask
Commercial vendor  

assessment
What are the characteristics and size of the data set or sets and their patients that were used to train and test 

the commercial AI algorithm? Can the commercial vendor share the validation statistics, and whether 
algorithm validation was performed by a third party?

Risk stratification What guarantees are provided with respect to software downtime and probability of system failures?
Commercial implementation 

resources
Will the commercial AI vendor also assist with workflow integration? If so, to what extent? What 

computing staff and resources are needed from the purchasing radiology practice’s end?
Site-specific validation Is the commercial AI vendor willing to validate and refine their product to meet minimally acceptable 

performance standards on test data provided by the purchasing radiology practice before the final 
purchase?

Third-party insights Are there other radiology practices that have implemented the commercial AI software? If so, what is their 
contact information?

Model elasticity Can patient data sets and radiologist feedback be fed back into model training for continuous AI learning 
that evolves with changes in the patient population?
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the ability for clinical detection 
of smaller lesions at imaging. 
Classifier models in ML are also 
typically scored using threshold-
agnostic functions, such as the 
area under the receiver operating 
characteristic curve. However, 
real-world applications are more 
interested in fine-tuning thresh-
olds so that trade-offs between 
model sensitivity, specificity, 
and predictive power are in ac-
cordance with clinician priorities 
and error tolerances as assessed 
through direct human-computer 
interfacing. Exact user-centered 
metrics used to assess the impact 
of implemented AI solutions will 
largely depend on the specific ap-
plication and iterative conversa-
tions with end users.

Another important consid-
eration in real-world validation 
is determining how ML models 
will interface with medical im-
aging data. Whereas the specific 
implementation details largely 
vary from site to site, there are 
generally three conserved frame-
works for pipeline design: on-
scanner, cloud-based pre–picture 
archiving and communication 
system, and cloud-based co–pic-
ture archiving and communica-
tion system (Fig 3). At a high 
level, on-scanner implementa-
tion allows ML models to have 
easy access to raw data, enabling 
physics-based image reconstruc-
tion (55) and improvements to scanner outputs by using infor-
mation from both data and environmental variables. On-scanner 
applications are typically offline and therefore often feature faster 
inference times and more secure data transfer. However, they are 
largely limited by an intrinsic difficulty in scaling ML models over 
time and keeping software up to date with vendor-led changes to 
acquisition parameters, hardware, and internal software. This issue 
is addressed by moving AI data interfacing to cloud-based environ-
ments, where models trade access to hardware data for scalability, 
easier interfacing for researchers, and the ability to work with more 
interpretable medical imaging data alongside additional data types 
such as laboratories, medical records, and patient demographic in-
formation. However, cloud-based environments need to be able 
to process data from any scanner in an unbiased manner, which 
is often difficult in practice. Whereas scanner-based implementa-
tion has been studied, the cloud-based co–picture archiving and 
communication system ML framework has the greatest empirical 
success according to Elahi et al (56).

In most practical cases, the space of possible interfacing op-
portunities is limited by both who is developing an ML model 
and what is its intended use case. For example, MRI reconstruc-
tion algorithms that aim to reconstruct anatomic images from 
sparsely sampled data take raw scanner data and parameters as 
input and therefore are exclusively implemented via scanner-based 
ML (4,5). Whereas general open-source frameworks and applica-
tion programming interfaces have become increasingly available 
(57,58), optimizing on-scanner ML relies on an understanding 
of vendor-specific software and hardware and requires close col-
laboration with manufacturers. Conversely, methods in medical 
image segmentation often do not require access to raw scanner 
data and could therefore benefit from cloud-based implementa-
tion frameworks (36).

In addition to the engineering efforts of effective pipeline in-
tegration, this step of clinical AI implementation offers an op-
portunity for internal validation and is where data acquisition 
proves useful. Whereas AI solutions may be U.S. Food and Drug 

Figure 3: Overview of common frameworks for integrating machine learning and medical imaging. (A) Artificial intel-
ligence (AI) models interface directly with raw acquired data and are implemented on a per-scanner basis (Fig 3 continues).
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Administration–approved, ex-
ternally validated performance 
rarely translates into clinical 
practice (33). The human-in-
the-loop interactions between 
clinical users and AI models may 
differ across practices. There-
fore, hospital-specific qualifi-
cation of these algorithms is 
necessary (59). The extent to 
which independent evaluation 
of these workflows is possible 
will depend on the institution-
specific availability of resources, 
and it remains an open prob-
lem in the field of clinical AI 
implementation.

In many cases, pipeline in-
tegration can be accomplished 
with the aid of commercial ven-
dor teams after the purchase of 
AI systems. We have found that 
these teams can work together 
with existing information tech-
nology staff at clinical sites to 
help overcome the technologic 
barriers associated with imple-
mentation of AI.

Data Curation
There are several approaches 
that do not require large 
amounts of data curation to val-
idate and adapt commercial AI 
tools for successful implementa-
tion. One popular method in 
radiographic applications is im-
age harmonization, which projects medical imaging data from 
community hospitals into the image space used to train an ML 
model (60,61). However, such methods require access to the 
data used to train and test the model of interest. A more practi-
cal solution is model fine-tuning, which takes an existing public 
model previously trained on a large corpus of data and optimizes 
its performance on a substantially smaller data set derived from 
the community hospital. Model fine-tuning can enable strong 
predictive performance in settings with limited data and re-
sources (1,5,36), with Candemir et al already offering a promis-
ing solution (62). Affordable, resource-optimized methods for 
model fine-tuning were viable in a variety of potential practice 
settings (63,64). These techniques require access to transparent 
model parameters and careful documentation of available data 
and models to tune available AI models for use in settings where 
they are most needed. Whereas model parameters are often not 
released publicly, the U.S. Food and Drug Administration and 
other regulatory parties have strongly advocated for this prac-
tice in recent years (26). Finally, if fine-tuning the model is not 
possible, recording test-time performance on patient data may 

offer valuable empirical metrics to quantify the impact of imple-
mented AI solutions after pipeline integration. Whereas many 
hospital practices may be unable to devote large volumes of re-
sources toward institutional validation, any degree of validation 
is better than no validation at all.

The Role of AI in Medicine
Recent advancements in AI performance and implementation 
in subsets of consumer markets have sparked speculation that AI 
may replace health care workers in the future. Instead, we argue 
that clinical AI implementation is more likely to augment patient 
health care and should be designed with the goal of working to-
gether with clinicians and their patients. Longoni (65) and Rich-
ardson et al (66) show that patients generally distrust AI compared 
with human experts for their medical care because of a lack of 
personalized care and a desire for human empathy and under-
standing. Shuaib et al (67) discuss the ethical and liability con-
cerns unique to high-stakes AI applications, such as patient care, 
and recommend against the adaptation of AI models that operate 
independently of human supervision.

Figure 3 (continued): (B) Machine learning models have access to the processed image outputs from the individual  
scanners before they are sent to the central picture archiving and communication system (PACS) server (Fig 3 continues).
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Kundu (68) and Juluru et al (69) proposed several potential 
use cases in remote patient and prescription adherence monitor-
ing among other related tasks. In accordance with Park et al (70) 
and Paranjape et al (71), the same generative models that power 
advancements in protein folding can also generate practice imag-
ing cases for clinician trainees, and even augment training data 
sets for other ML applications (72,73). AI may also be readily 
used for supportive oversight and lower-stakes tasks such as au-
tomated resource allocation (74), triage (37,70,71,75), clinical 
pipeline supervision (76), and patient follow-up (8) that may 
not require direct human-algorithm interfacing.

Finally, clinical AI implementation in radiology practices is es-
pecially poised for high-value impact in resource-limited settings, 
such as in rural communities across the globe with few radiolo-
gists. Firsthand experiences from Elahi et al (56) and Ciecier-
ski-Holmes et al (77) demonstrate that the major challenges to 
clinical AI implementation unique to these environments are 
more related to establishing appropriate digital infrastructure 
and support networks to enable AI-assisted clinical medicine. In 
the settings where human experts are limited, AI diagnostic tools 

have crucial roles in interpreting 
patient data that is either read 
by machines or not read at all.

Research Directions for 
Future Work
The U.S. Food and Drug Ad-
ministration recently proposed 
a set of guidelines and impor-
tant strategic directions for im-
plementing AI tools in clinical 
practice (26). Such directions 
include improving both the 
AI compatibility and capabili-
ties for internal validation of 
radiology digital infrastructure 
(Fig 4).

Robust Detection of Data 
Distribution Shift
Successful implementation ne-
cessitates detecting input data 
outside of the training data 
distribution. Allen et al (78) re-
ported that over 90% of ML us-
ers found U.S. Food and Drug  
Administration–cleared AI al-
gorithms to have unexpectedly 
poor predictive performance on 
their own data compared with 
the data used for model train-
ing and U.S. Food and Drug 
Administration clearance. In 
medical imaging applications, 
harmonization techniques have 
attempted to project data sets 
from out-of-domain to in-do-

main, although such methods inherently alter input images and 
therefore the information content (60,61,79,80). Other methods 
have been proposed (81,82), but evidence for their adaptation 
into clinical workflows remains limited. Detecting data distribu-
tion shift is important for understanding algorithmic limitations 
and determining model lifetime among others. Furthermore, in 
global health applications where there is often insufficient in-
domain training data and an overall lack of resources, researchers 
need to be able to characterize and potentially improve out-
of-domain generalization of model performance. For example, 
MacLean et al (36) demonstrated that data augmentation with 
patient subsets identified by unique clinical features could im-
prove segmentation model performance in data with the same 
clinical features without sacrificing overall performance.

Interpretability of ML Methods
Despite recent advancements in model reasoning by Wei et al 
(83) and Lample et al (84), trade-offs between model complex-
ity and explainability are well-documented in related work (85–
87). Explainability may take the form of explicit human-level 

Figure 3 (continued): (C) Models communicate with the picture archiving and communication system server to obtain 
relevant inputs for AI interpretation.
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reasoning (83,84) or providing model uncertainty quantification 
(88–90) based on current directions in ML research.

Clinical data can be unclear and conflicting, and laboratory 
values outside the so-called normal range are not always causes for 
concern in medicine. The learned expertise of clinicians to synthe-
size information in the context of a clinical picture is not replicable 
in existing ML methods. For broad clinical adaptation, physicians 
must be able to interpret ML outputs and understand the associ-
ated reasoning process to contextualize them with the available 
patient information (8).

A Standardized Framework for Machine Intelligence 
Reporting
Existing black-box approaches in ML are not conducive to 
continual learning or to effectively mitigate bias (19,91,92). 
In addition to improving the explainability of ML models, AI 
algorithms in health care need standardized, interinstitutional 
reporting frameworks that detail important attributes of each 
implemented AI algorithm (26). Many companies have imple-
mented such internal organizational standards, and the recent 
introduction of so-called model cards, which detail important 
metadata about ML models (and their associated training data) 
to improve ML documentation, have gained tractable adapta-
tion among ML researchers (93–96). Using model cards and 
other successful software documentation frameworks from other 
fields may help improve existing guidelines for radiology.

Fortunately, adapting existing infrastructure in health care 
may also assist in standardization. For example, Rubin et  al 
(97) introduced the common data element in clinical radiology. 
Common data elements may be used to define queryable meta-
data that can describe an ML model’s training process, pertinent 
features of its training data, key dependencies, test evaluation, 
and performance. Together with associated work by Belbasis 
et  al (33) and Heil et al (98), Mongan et  al (99) proposed a 
framework of core common data elements to AI reporting in 
clinical medicine. In the immediate future, our goal is to imple-
ment such a framework for better reproducibility standards and 
trustworthiness of ML applications in patient health care.

Data and Code Availability
Data related to the Penn Medicine BioBank are available to 
investigators on request. The code used to generate Figures 1 
and 2 is available on a Github repository (https://github.com/
michael-s-yao/PennMedBiobankAIDeployment).

Conclusion
Implementation of clinical artificial intelligence (AI) in radiology 
practices is a challenging process with important considerations 
in a rapidly evolving space. Nonetheless, there are common prin-
ciples to guide implementation efforts derived from both empiri-
cal analysis and insights from other medical fields. Empowered 
by the increased availability of different forms of radiologic data, 
AI algorithm implementation involves identifying the problems 
in health care for which there may exist machine learning–based 
solutions, aligning these solutions with key clinical stakeholders, 
and verifying that these solutions work seamlessly in real-world 
clinical practices. Ultimately, these steps can serve to standardize 
the implementation of AI technologies and consequently improve 
patient care in radiologic practices.
Data sharing: Data generated or analyzed during the study are available from the cor-
responding author by request.
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