
Bigram Semantic Distance as an Index of Continuous Semantic 
Flow in Natural Language: Theory, Tools, and Applications

Jamie Reilly1,2, Ann Marie Finley1,2, Celia P. Litovsky1,2, Yoed N. Kenett3

1Eleanor M. Saffran Center for Cognitive Neuroscience

2Department of Communication Sciences and Disorders, Temple University, Philadelphia, 
Pennsylvania USA

3Faculty of Faculty of Data and Decision Sciences, Technion Israel Institute of Technology, Haifa, 
Israel

Abstract

Much of our understanding of word meaning has been informed through studies of single 

words. High dimensional semantic space models have recently proven instrumental in elucidating 

connections between words. Here we show how bigram semantic distance can yield novel insights 

into conceptual cohesion and topic flow when computed over continuous language samples. For 

example, ‘Cats drink milk’ is comprised of an ordered vector of bigrams (cat-drink, drink-milk). 

Each of these bigrams has a unique semantic distance. These distances in turn may provide 

a metric of dispersion or the flow of concepts as language unfolds. We offer an R package 

(‘semdistflow’) that transforms any user-specified language transcript into a vector of ordered 

bigrams, appending two metrics of semantic distance to each pair. We validated these distance 

metrics on a continuous stream of simulated verbal fluency data assigning predicted switch 

markers between alternating semantic clusters (animals, musical instruments, fruit). We then 

generated bigram distance norms on a large sample of text and demonstrated applications of 

the technique to a classic work of short fiction, To Build a Fire (Jack London, 1908). In one 

application, we showed that bigrams spanning sentence boundaries are punctuated by jumps in 

semantic distance. We discuss the promise of this technique for characterizing semantic processing 

in real world narratives and for bridging findings at the single word level with macroscale 

discourse analyses.
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Introduction

Semantic memory operates both at the microscale level in representing the meanings 

of individual concepts and at the macroscale level when constructing meaning between 

concepts (Hills & Kenett, 2022; Jones et al., 2015; Kumar et al., 2021). Much of 

our understanding of conceptual knowledge has been informed through language-based 

paradigms involving production and/or comprehension of single words or meticulously 

controlled arrays of words. This pattern is evident across a wide range of experimental 

tasks such as blocked cyclic naming, semantic decision, lexical decision, priming, and 

picture-word interference (Binney et al., 2018; Capitani et al., 2003; Cutler, 1981; Farah 

& McClelland, 1991; Funnell et al., 2006; Grossman et al., 2004; Hillis & Caramazza, 

1991; Hodges et al., 1996; Kousta et al., 2011; Lupker, 1979; Pexman et al., 2016; 

Warrington, 1975; Woollams et al., 2008). Advantages gained in experimental control can, 

however, come at a cost to ecological validity. People do not communicate using single 

words. Language is an emergent system whose elements often combine in non-linear and 

unpredictable ways to convey meaning at different levels of discourse (Price et al., 2015; 

Westerlund & Pylkkänen, 2014, Marelli, Gagné, & Spalding, 2017).

Techniques leveraged from natural language processing have recently facilitated more 

widespread use of connected discourse (e.g., storybooks, podcasts, corpora) in studies of 

semantic processing (Baldassano et al., 2017; Deniz et al., 2019; Günther et al., 2019; 

Hartung et al., 2020; Huth et al., 2016; Jain & Huth, 2018; Johnson et al., 2022; Kumar, 

2021; Kumar et al., 2022; Mandera et al., 2015, 2017; Nastase et al., 2020; Popham et 

al., 2021a). A key advantage of such approaches is their capacity to extract distributional 

statistics (e.g., patterns of co-occurrence) about language by indexing vast numbers of words 

appearing in real world corpora (Baldassano et al., 2017; de Heer et al., 2017; Hartung et 

al., 2020; Huth et al., 2012; Jain & Huth, 2018; Naselaris et al., 2011; Popham et al., 2021b; 

Simony et al., 2016) to construct high-dimensional models of word meaning. Such models 

have fueled numerous recent advances across a wide range of psychological and linguistic 

sciences (Beaty et al., 2021; Beaty & Johnson, 2021; Gray et al., 2019; Hills & Kenett, 

2022; Johnson et al., 2022; Kenett, 2018, 2019; Kenett et al., 2017; Kumar et al., 2020; 

Olson et al., 2021), as well as within computational, clinical, and cognitive neuroscience 

(Anderson et al., 2019; Fernandino et al., 2016, 2022, Fu et al, 2022; Kenett & Faust,2019).

1.1 What is semantic distance?

Semantic distance reflects the similarity (or dissimilarity) between two or more concepts 

distributed across an n-dimensional space, typically derived from analyzing large corpora of 

texts (Günther et al., 2019). There is no upward limit to the number of potential dimensions 

that comprise a semantic space. A researcher with an interest in arousal of curse words, for 

example, might quantify differences in the arousal ratings of curse words vs. neutral words 

(e.g., Reilly et al., 2020). In this simple example, arousal constitutes a one-dimensional 

semantic space.

Semantic distance is a relative rather than absolute construct. That is, semantic distance 

can only be interpreted relative to the unique semantic space used to derive that measure. 

Cognitive (neuro)scientists are typically interested in constructing semantic spaces that are 
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psychologically and/or neurobiologically plausible (Binder et al., 2016; Crutch et al., 2013; 

Reilly et al., 2021; Sacchett & Humphreys, 1992). An existential challenge for semantic 

space models is that the true dimensionality of human semantic memory is latent. My 

semantic network is qualitatively different than yours, and any viable model of semantic 

memory must have the flexibility to accommodate these differences (Kumar, 2021).

Two broad classes of semantic space models have risen to prominence over the past 

decade. Experiential models classify concepts along subjectively experienced dimensions 

(e.g., color, shape), such that words with similar characteristics are more semantically 

linked. In contrast, word embedding models are predicated upon the idea that in natural 

language, words that occur together are likely to be semantically related. Both models 

approach the challenge of specifying dimensionality in fundamentally different ways. In the 

following sections, we describe both types of models and how they capture meaning through 

multidimensional vectors.

1.2 Experiential semantic models

A core assumption underlying all semantic space models is that word meaning can be 

decomposed into numerous dimensions or features (for early iterations of feature-based 

approaches see Cree & McRae, 2003; Rosch, 1973). In experiential models, raters are 

typically asked to explicitly rate the salience of many target words across numerous 

orthogonalized dimensions. For example, a researcher might ask people to rate the salience 

of artichokes on color, visual imagery, and aggression. These ratings rely on our own 

subjective experience and as such, have been termed experiential (Binder et al., 2016; 

see also Wingfield, & Connell, 2022). Binder and colleagues (2016) have proposed 

perhaps the most extensive experiential model to date, characterizing words along 65 

sensorimotor, affective, and interoceptive dimensions. In an earlier model known as the 

Abstract Conceptual Feature space, Crutch et al. characterized English words along twelve 

dimensions (Crutch et al., 2013; Reilly et al., 2016; Troche et al., 2017). Both the Binder 

et al (2016) and Crutch et al (2013) experiential models tend to produce clusters that 

mirror classic Linnaean taxonomies. That is, similarities in color, sound, valence, danger, 

body morphology, and other traits form constellations of intercorrelated features that bound 

natural categories (see also Cree & McRae, 2003; Garrard et al., 2001; McRae et al., 

1999; Rogers et al., 2004). In an experiential semantic space, dogs and wolves have 

similar vector representations since they highly overlap in shape, color, sound, and other 

characteristics. However, experiential models do not typically account for contextual or 

thematic relatedness predicated upon co-occurrence. For this type of semantic relation, we 

turn to word embedding models, which quantify regularities in the linguistic contexts in 

which words co-occur (i.e., are embedded).

1.3 Word embeddings, context, and co-occurrence

In contrast to experiential semantic models, embedding models capture semantic similarity 

based on shared environments. For example, dogs, collars, bones, frisbees, and leashes are 

all semantically bound via shared contexts. We learn through repeated exposure that the 

conditional probability of encountering a collar in the context of a dog is high. Common 

word embedding models such as LSA (Landauer & Dumais, 1997), Word2Vec (Mikolov 
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et al., 2013), GloVe (Pennington et al., 2014), ELMo (Peters et al., 2017), BERT (Devlin 

et al., 2018), and GPT-3 (Radford et al., 2018) attempt to capture this co-occurrence in 

language by modeling abstract vector representations such that words that co-occur more 

frequently have more similar vector representations.1 In embedding models, dogs and collars 

are thus closely linked (with similar vector representations), whereas dogs and platypuses, 

which do not frequently co-occur, have more dissimilar vector representations. Yet dogs and 

platypuses share many features (e.g., both are mammals), and thus are likely to share similar 

experiential semantic vector representations.

Word embeddings are typically derived through machine learning algorithms that require no 

subjective human judgments. Such models are typically trained on vast language corpora 

(i.e., collections of structured text such as books, newscasts, transcribed podcasts, or Twitter 

feeds). The outcome of this process is that each discrete token (e.g., word, n-gram, phrase) 

in a training corpus is characterized by a multidimensional array. However, unlike the 

labeled dimensions that comprise experiential semantic models, the dimensions derived from 

word embeddings are abstract mathematical constructs.

1.4 Inter-word Semantic Distance: A Continuous Bigram Model

Semantic space models have featured prominently in many recent language and 

neuroimaging studies (Bonner & Epstein, 2022; Binder et al., 2016; Crutch et al., 2013; 

Marelli, Gagné, & Spalding, 2017; Reilly et al., 2021; Wingfield and Connell, 2022). 

However, to our knowledge these models have not been applied to evaluate the flow 

of semantic information in continuous language. Consider, for example, the following 

sentence:

The quick brown fox jumped over the lazy dog.—After omitting closed class words 

(e.g., the), this sentence is composed of five lemmatized bigrams, including: 1) quick-brown; 

2) brown-fox; 3) fox-jump; 4) jump-lazy; 5) lazy-dog. When a semantic distance is assigned 

to each bigram, a vector of distances emerges. This vector is technically a continuous time 

series reflecting word-by-word conceptual shifts over the course of any language sample.

Many previous studies investigating semantic distance have employed ‘continuous bag 

of words’ (or CBOW) approaches that either abandon order information or alternatively 

analyze semantic distance for paradigms where computing continuous bigram distance 

would be senseless (e.g., word association). However, under a sequential bigram model, 

order is a critical factor reflecting dispersion of concepts over time. For example, a 

person experiencing severe mania or delirium might show markedly high semantic distance 

perceived by a listener as incoherent. In contrast, low variability in semantic distance could 

mark a narrowly focused, boring, or repetitive story. We recently reported evidence of 

such effects using a ‘bag of bigrams’ approach to spoken narratives produced by people 

with aphasia relative to age-matched controls (Litovsky et al., 2022). People with aphasia 

showed significantly lower bigram semantic distances relative to controls, and semantic 

1Many contemporary transformer models (e.g., BERT, GPT-3 use a combination of lexical co-occurrence and deep learning to extract 
semantic vectors. Thus, references to embedding models as ‘co-occurrence models’ is a misnomer.
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distances correlated strongly with offline neuropsychological measures of semantic memory 

functioning.

Our aims in the current study were to describe the development and implementation of 

a freely available R package designed to read, clean, tokenize, and append two novel 

metrics of semantic distance (i.e., experiential vs. embedding) to any continuous language 

sample. We derived norms for each of these semantic spaces and conducted a validation 

study demonstrating how jumps in semantic distance can mark cluster boundaries in a 

continuous stream of simulated category fluency data (i.e., blocks of musical instruments, 

fruits, animals). Finally, we demonstrate several novel applications of this continuous bigram 

model to a renowned work of short fiction, To Build a Fire (Jack London, 1908).

2 Methods

2.1 Overview

We first derived two novel semantic spaces (experiential and embedding) that provide 

the foundation for an open-source R package, titled ‘semdistflow’. This R package reads, 

formats, and then transforms any language transcript into a running vector of pairwise 

semantic distances. We derived distance norms for each semantic space, validated the 

spaces on a continuous vector of alternating semantic categories, and conducted a series 

of simulations on a work of short fiction. All scripts and data used here are available for 

download and use at https://osf.io/ryhfj/.

2.2 Derivation of a Feature-based Semantic Space (SemDist15)

We created a 15-dimension experiential semantic space characterizing English words across 

a subset of sensorimotor features from the Lancaster Sensorimotor Norms (Lynott et al., 

2019) and social-emotional features from the AffectVec word sentiment norms (Raji & da 

Melo, 2020). The Lancaster norms reflect crowdsourced salience ratings for 40,000 English 

words on a 6-point Likert scale. AffectVec reports intensity ratings for 70,000 English words 

on a 0–1 scale across 239 affective dimensions. We extracted the following sensorimotor 

dimensions from the Lancaster norms: visual, auditory, gustatory, haptic, interoceptive, 

olfactory, and hand-arm. We extracted the following social-emotional dimensions from 

AffectVec: excitement, surprise, happiness, fear, anger, contempt, disgust, and sadness. 

Since these variables reflect different ranges and measurement scales, we z-transformed 

each individual dimension relative to its own mean and standard deviation. These procedures 

yielded a vector of z-scores reflecting the salience of each word. Throughout the remainder 

of this article, we refer to distance norms generated from this 15-dimension semantic feature 

space (hereafter SemDist15) as experiential.

2.3 Derivation of an Embedding Semantic Space (GloWCA)

We derived an embedding space using a well-established model, GloVe (Global Vectors 

for Word Representation; Pennington et al., 2014), trained on documents corresponding to 

written text2 within the Corpus of Contemporary American English (CoCA; Davies, 2009). 

We first split the corpus into a test set (N = 4,273 documents) and a training set (N = 

212,737 documents) and omitted all words appearing fewer than five times. We then trained 
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the model using the text2vec R package (Selivanov, 2020). At a learning rate of 0.05, the 

embedding model converged after 22 iterations resulting in a 300-dimension vector space 

spanning 394,115 unique words. We trimmed this large data file (2.2 Gb) by isolating 

only those entries with a corresponding lemma listed in the Subtlex-US word frequency 

norms (Brysbaert and New, 2009), resulting in 60,384 words, each characterized across 300 

hyperparameters. We hereafter refer to these embeddings as the Global Vectors of Written 
Contemporary American English (GloWCA). Throughout the remainder of this article, we 

refer to distance norms generated from GloWCA as embedding.

2.4 Text Cleaning Algorithm

To apply vector representations to each word in a language sample, we first isolated 

all content words and reduced them to their respective lemma forms. This cleaning 

algorithm involved multiple steps (see Table 1) followed by lemmatization of the remaining 

content words. Readers are invited to inspect all individual commands by visiting the 

R-package vignette for ‘semdistflow’ (Zuckerman, Reilly, Litovsky, & Finley, 2022).3 Table 

1 represents some of the primary procedures we implemented in this cleaning algorithm. 

The final product of these text cleaning and formatting procedures is a vector of sequential 

bigrams (i.e., each word paired with the next content word in the language sample) to which 

we append our experiential semantic space (SemDist15) and embedding semantic space 

(GloWCA) distance values.

2.5 Establishing Norms for Semantic Distance

In this analysis, we calculated semantic distances in a large sample of naturally occurring 

sequential bigrams relative to randomly paired words to establish norms for semantic 

distance in natural language. We calculated semantic distance via the cosine similarity 

measure. Cosine is a scalar value that measures the similarity of two vectors’ angles. 

For example, to calculate the experiential semantic distance of “quick” and “brown,” we 

calculated the cosine similarity of the 15-dimensional vectors of “quick” and “brown” 

represented in SemDist15. We transformed all semantic distances by subtracting the cosine 

similarity from 1. This procedure constrained each semantic distance to a range between 

zero and two, such that more dissimilar words were associated with greater distances, and 

more similar words were associated with smaller distances.

After processing the 4,273 texts in the CoCA test set using our text cleaning algorithm, 

we extracted 250,000 sequential bigrams to establish norms for semantic distances in 

naturally occurring language. In this Sequential Model, we derived estimates of experiential 

(SemDist15) and embedding (GloWCA) semantic distances. As a comparison (Random 

Model), we yoked the initial word of each bigram to another randomly selected word in the 

test set, yielding non-sequential bigrams.

2In NLP research, a document is typically defined as a discrete language sample. Examples of documents include novels, podcast 
transcripts, blog entries, or transcriptions of spoken language samples. We focused on English text and excluded all documents 
corresponding to spoken English transcriptions.
3R-package at https://github.com/Reilly-ConceptsCognitionLab/semdistflow
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2.6.1 Validation using simulated category fluency data

Semantic fluency tasks typically involve producing as many exemplars of a given category 

(e.g., animals) as possible over a fixed interval (Christensen & Kenett, 2021). People 

commonly employ foraging and other search strategies such as clustering and switching 

when producing a string of exemplars (Binney et al., 2018; Troyer et al., 1998; Troyer, 

2000; Ovando-Tellez et al., 2022). For example, a category such as animals might evoke 

a spontaneous clustering and switching strategy involving house pets switching to jungle 

animals, marine animals, etc. Successful verbal fluency, therefore, requires both effective 

semantic search within categories, as well as fluid executive functioning as needed to 

flexibly disengage when a particular category has been exhausted (Ovando-Tellez et al., 

2022). Verbal fluency has accordingly emerged as one of the most common metrics of 

executive and semantic processing employed in clinical neuropsychology.

The overarching structure of semantic category fluency in terms of alternating blocks of 

semantic clusters may offer a unique opportunity to validate our proposed continuous 

bigram model. We reasoned that semantic distance within semantic clusters will be low (e.g., 

dog, cat, hamster) relative to semantic distances for bigrams crossing switch boundaries 

(e.g., ‘dog – cat - hamster | saxophone -piano -trumpet…’). Thus, large jumps in semantic 

distance can potentially delineate switches in a continuous stream of category fluency data 

(for related work on segmenting fluency data using word embedding models see Alacam et 

al., 2022; Lundin et al., 2022).

We first generated a vector of 7500 continuous words composed of alternating 10-word 

blocks of animals, musical instruments, and fruits/vegetables randomly sampled with 

replacement from fixed lists (see OSF for lists). This vector was therefore, composed 

of 750 switches and 6750 within cluster exemplars, providing a fixed reference for 

exactly where switches occur (i.e., every tenth word), We applied the distme() function 

to the unlemmatized ordered word list, generating pairwise semantic distances for every 

running bigram. We then scaled (z-scored) the resultant distributions and recoded each 

running word pair as potentially either a within category cluster (coded as 0) or as a 

predicted switch between categories (coded as 1) using a threshold of z >1. We examined 

concordance between the actual distribution of switches (every tenth word) versus the 

predicted distribution of switches (marked by z-score distance jumps) using a variety of 

signal detection metrics from the ‘verification’ package (NCAR Research Applications 

Library, 2015) of R.

2.6.2 To Build a Fire (Jack London, 1908)—We hypothesized that sequential 

bigrams as naturally occurring within structured text are more semantically related than 

random bigrams. Semantic distance should on average be lower for sequential bigrams 

relative to randomly constructed bigrams (i.e., each word in the story paired with a random 

word in another database). We tested this hypothesis in the context of To Build a Fire, a 

novella published by the American author, Jack London, in 1908. This famous story (N = 

7,125 words) depicts a man hiking alone through the boreal forest of the Yukon Territory. 

The man is followed by a native dog (described as a wolf dog) unfazed by the deep snow 

and cold (−75° F). The dog casually follows the man from a distance as his attempts at 
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self-preservation by building a fire become increasingly more desperate. The man ultimately 

succumbs to hypothermia, and the story ends with the dog wandering off indifferently into 

the forest.

We first imported the original text into R and executed the cleaning algorithm described in 

Section 2.4. We computed semantic distances for the sequential bigrams from the original 

story. We then created a second random bigram vector consisting of each lemma of To Build 
a Fire in its original order randomly paired with an entry from the SemDist15 database. We 

derived experiential and embedding semantic distances for bigrams in both the sequential 

and random conditions.

2.6.3 Semantic Distance across Sentence Boundaries in To Build a Fire—
Here we tested the hypothesis that sentences constitute micro-topics with higher semantic 

relatedness (low semantic distance) within a sentence than between adjacent sentences. 

We tested this prediction by contrasting semantic distances (embedding and experiential) 

for sequential bigrams within sentences (within condition) relative to bigrams that broke 

across a sentence boundary (switch condition). We first cleaned the text of To Build a Fire 
using the procedures described in Section 2.4. We then coded each bigram as either within 

(non-adjacent to a period) or as a switch trial. Switch bigrams consisted of the final word of 

one sentence paired with the initial word of the following sentence.

3. Results

3.1 Norms for Bigram Semantic Distance

Tables 2 and 3 summarize descriptive statistics for experiential and embedding semantic 

distances for sequential bigrams in naturally ordered text (Sequential Model) versus 

artificially generated bigrams constructed via random word pairings (Random Model). We 

assigned categorical ranges (‘low’, ‘medium’, ‘high’) by referencing the interquartile range 

for each condition. The first and fourth quartile constitute ‘low’ and ‘high’ distance, whereas 

the middle quartiles (Q1 to Q3) reflect medium or expected distances.

Figure 1 reflects density plots for both semantic spaces (N = 250,000 each). The distribution 

of bigram semantic distances generated by the GloWCA embedding model was tightly 

clustered and leptokurtic relative to the experiential semantic distance distribution whose 

variance was over four times higher.

3.2 Category fluency validation

We simulated a continuous stream of category fluency data consisting of 7500 words with 

blocks of alternating 10-word clusters in a fixed order (i.e., animals, musical instruments, 

fruits/vegetables). This ‘actual’ time series consisted of 6750 words within clusters and 

749 switches (i.e., there is no semantic distance or switch for the final word in the 

series). We coded all bigrams as either within cluster (z < 1) or as constituting a switch 

point between clusters (z >= 1) using their scaled cosine distance. Table 4 and Figure 2 

represent comparisons of the predicted distribution of binary events (switches and clusters) 

to the actual distribution of events. Overall classification accuracy was similar between the 

Reilly et al. Page 8

J Exp Psychol Gen. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiential (semdist15, 91.5%) and embedding spaces (GloWCA, 90.9%) with a medium 

tetrachoric correlation (.36) between the two predicted time series.

3.3 Bigram Distance in To Build a Fire: Proof of Concept

Table 5 reflects semantic distances for sequential and random bigrams in To Build a Fire. 

There was a very large effect of text structure (i.e., ordered wording) on embedding-based 

semantic distances. That is, sequential bigrams in the original text had significantly lower 

semantic distance relative to random bigram pairings [Welch-Satterthwaite t(6333.2) = 

57.61, p < .001, Cohen’s d = 1.41 (very large effect)]. This effect of text structure was 

weaker for experiential semantic distances (SemDist15) as evident by a small to medium 

effect for sequential relative to random bigrams [Welch-Satterthwaite t(6381.2) = 12.57, p < 

.001, Cohen’s d = .32 (small to medium effect)].

Figure 3 illustrates the distribution of semantic distances across all bigrams of the original 

story. Note, the random bigram model reflected pairing of a target word in its original 

position within To Build a Fire with another word randomly selected from the SemDist15 

database. The guidelines in Figure 2 reflect boundaries for low, medium, and high distance 

generated in the norming study (see Tables 2 & 3).

3.4 Semantic Distance for Bigrams across Sentence Boundaries in To Build a Fire

Semantic distances differed for sequential bigrams within sentences (N = 5200) relative 

to bigrams split across sentence boundaries (N = 768) across both the embedding 

and experiential models. Experiential (SemDist15) distance had a mean cosine distance 

normalized from 0–2 (0 is identical) for within-sentence bigrams (mean Cosine distance 

= .86) relative to the between-sentence (switch) condition (mean Cosine distance = .80), 

t(487.89) = 3.09, p =.002, Cohen d=.18, small effect.4 Embedding (GloWCA) distances 

were also slightly higher for between-sentence bigrams (mean cosine distance = .85) relative 

to within-sentence bigrams (mean distance = .82), t(451.48) = 2.7, p =.006, Cohen d =.18, 

small effect).

We conducted a replication analysis to determine whether the surprising finding of lower 

between-sentence than within-sentence semantic distance observed in To Build a Fire would 

hold across a much larger and more varied corpus.5 Using the same procedures applied 

to To Build a Fire, we analyzed bigram distances across ten novels (see Table 6) sourced 

primarily from Project Gutenberg and the Harry Potter R package (Boehmke. 2022). These 

texts included a total of approximately 906,421 words and 56,675 sentences. For 9 of the 

10 sources, embedding-based semantic distance was higher for bigrams crossing sentence 

boundaries relative to within-sentence bigrams. For the remaining text (i.e., The Portrait of 

Dorian Gray by Oscar Wilde), distance was lower for between sentence bigrams, although 

this statistically significant difference constituted a very small effect. These overall results 

suggest that in most instances readers can expect to experience small jumps in semantic 

4Distances scaled from the original range of −1:1 to 0:2 and reverse scored such that 0 constitutes identical vectors and 2 is the 
greatest possible distance between any pair of words.
5This suggestion was raised by an anonymous reviewer, highlighting the importance of replication and extension with largescale 
language models.
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distance across sentence boundaries, as confirmed by a paired t-test on total between vs. 

within bigram distances (embedding-based)6 across all ten texts, t(9) = 3.97, p =.002. We 

interpret these results in the general discussion to follow.

4. General Discussion

Much remains to be learned about the ways that meaning is conveyed in continuous 

language, and recent advances in natural language processing have afforded new insights 

into the ways that words combine at different scales. Here we evaluated a sequential bigram 

model involving the application of two high dimensional semantic spaces to any continuous 

language sample. We developed open-source software for computing sequential bigram 

distance in a specified language sample of any length.7 We also derived semantic distance 

norms that serve as a standard against which other analyses of connected language might be 

gauged. In Section 3.2 we conducted a validation study demonstrating how both semantic 

spaces described in this work could successfully segment a continuous sample of simulated 

verbal fluency data. Finally, in sections 3.3 and 3.4, we evaluated word-to-word semantic 

transitions in To Build a Fire. We discuss some of the major findings to follow. Semantic 

distance is only interpretable in relation to the unique semantic space used to define it. For 

example, semantic distances between experiential and embedding models are not directly 

comparable. In addition, cosine values are not typically normalized, reverse scored, or 

standardized across semantic spaces. As such, when one observes a cosine similarity value 

of 0.6, it is almost impossible to determine the magnitude of this semantic distance in the 

absence of a known standard. In section 2.5, we described steps for establishing bigram 

distance norms for experiential (SemDist15) and embedding (GloWCA) spaces. We queried 

hundreds of thousands of naturally occurring bigrams in contemporary English text relative 

to ‘synthetic’ bigrams created by random word pairings. These analyses established bounds 

for low, medium, and high semantic distance which we then deployed as reference points for 

the analyses of To Build a Fire.

We used the norms established in section 2.5 to evaluate a proof-of-concept that bigram 

distance in To Build a Fire would be higher for random bigram pairings relative to naturally 

ordered text, a pattern that was also evident in the bigram norming sample. As predicted, 

adjacent words within To Build a Fire are more semantically related than a randomly 

sampled bigrams within the same corpus. Relatedness between words in running text was 

far stronger for embedding (GloWCA) than experiential (SemDist15) distances, suggesting 

dominance for thematic (e.g., dog-collar) relative to taxonomic (e.g., dog-wolf) semantic 

relatedness in discourse.

The nature of how thematic and taxonomic semantic systems interact during language 

comprehension remains one of the most active topics in cognitive science. It has been 

argued that embedding (i.e., thematic) models are also capable of recovering taxonomic 

relationships (Grand, Blank, Pereira, & Fedorenko 2022). However, the reverse pattern 

6There were no reliable or systematic differences in bigram distance between and within sentences via the experiential semantic space 
(SemDist15)
7All associated code is freely available for inspection and use within the ‘semdistflow’ R-package. We encourage researchers to 
contact us for assistance.
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appears less likely (i.e., experiential models recovering thematic relationships) since 

experiential models are more sensitive to perceptual than contextual similarity. Language 

discourse tends to unfold in terms of thematically related content (i.e., topics) making it 

more likely to encounter the word ‘leash’ than ‘wolf’ in proximity of ‘dog.’ This is not 

to say that taxonomic relationships are not present or important, particularly for scientific 

genres such as biology or zoology. However, our data suggest a more integral role for 

thematic relationships in online language processing.

The distinction of ‘normal’ semantic distance in relation to narrative quality remains unclear. 

A narrative dominated by low semantic distance could be perceived as repetitive or hyper-

focused. In contrast, excessively high semantic distance (i.e., each word highly unrelated 

to the last word) could be perceived as analogous to ‘word salad’ in terms of cohesion. In 

our first patient-based extension of this method, Litovsky et al. (2022) sampled hundreds 

of thousands of bigrams from the narratives of people with aphasia relative to age-matched 

controls. This bag-of-bigrams approach demonstrated that people with aphasia show reduced 

bigram semantic distances relative to controls and that compression in semantic distance 

strongly correlates with semantic ability. In the current project, we extended this approach 

to model semantic distance across ordered discourse, potentially expanding the power and 

ecological validity of the measure to treat conceptual drift across words as a time series.

We demonstrated several applications of this continuous bigram approach. First, we 

conducted a validation study examining whether two metrics of semantic distance could 

effectively mark cluster boundaries in a simulated stream of verbal fluency data. Both 

semantic spaces (GloWCA and SemDist15) showed higher than 90% classification accuracy, 

demonstrating sensitivity to detect semantic fluctuations in continuous language output 

(see also Zemla et al, 2020). Second, we tested whether bigrams spanning sentence 

boundaries had higher semantic distances than bigrams within sentences. We predicted 

that between-sentence bigrams would be marked by a jump in semantic distance relative to 

within-sentence bigrams. This is premised on the idea that sentences constitute micro-topics 

organized around thematic semantic content and that transitions between sentences incur 

associated shifts in meaning.

We initially found that semantic distance was paradoxically lower for bigrams crossing 

sentence boundaries in To Build a Fire. However, a subsequent replication/extension 

analysis revealed that this finding was likely idiosyncratic. A more extensive corpus analysis 

across several works of fiction revealed that the final content word of one sentence and 

the initial content word of the next sentence tend to be punctuated by a jump in semantic 

distance, consistent with our original hypothesis. The extent to which readers and listeners 

are sensitive to such jumps to facilitate online sentence parsing remains unclear.

4.2 Applications and Future Directions

We envision a variety of applications to conceptualizing language as a continuous time 

series fluctuating in meaning over time. This includes the following:

1. Causal Modeling of Language and Physiological Relations: Converting word-

to-word level changes in meaning to a numeric time series will potentially 
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facilitate causal modeling of how psycholinguistic (e.g., frequency, word length), 

psychophysiological (e.g., heart rate, pupil surface area), and neurological (e.g., 

evoked potentials) variables interact during continuous language perception and 

production. For example, changes in embedding semantic distance in a running 

narrative could tax cognitive control which in turn perturbs pupil diameter 

and heart rate. One fruitful extension of this method will involve continuous 

measurement of neural signals using techniques such as MEG or EEG with 

adequate temporal resolution to detect processes underlying predictive coding 

and the interplay between taxonomic and semantic systems during real-time 

language comprehension (for recent related work see Brodbeck, Hong, & Simon 

2019; Kuperberg et al., 2006; Laszlo & Federmeier, 2009).

2. Implicit Detection of Neurological Disorders: Patterns of impairment in natural 

language production (e.g., writing samples, spoken language) have proven 

sensitive to detecting a wide range of neurological and psychiatric disorders 

(Fraser et al., 2015; Gerard et al., 2001; Gerard et al., 2014). Automated 

screening using implicit language sampling is emerging as a powerful tool for 

early detection of prodromal dementia (Merkin et al., 2022; Song et al., 2011; 

Spooner et al., 2020). We know of no algorithm that considers aberrant semantic 

distance in connected language as a marker of cognitive impairment.

3. Norming of Developmental Milestones: Little is known about the trajectory of 

semantic composition throughout early language development. As children learn 

to narrate written and oral stories, inter-word semantic distance could prove 

sensitive to gauging maturation of semantic knowledge. Specifically, longitudinal 

changes in semantic distance during storytelling could yield a sensitive marker of 

combinatorial semantic abilities.

4. Auto-segmenting Verbal Fluency Data: Our validation study demonstrates the 

utility of semantic distance in detecting switches between semantic clusters 

without the necessity for supervised machine learning or human intervention 

(e.g., manual scoring). This algorithm may prove useful for neuropsychology and 

other disciplines such as speech-language pathology that rely on verbal fluency 

as part of their core clinical assessment protocols.

5. Evaluating how semantic distance is moderated by part-of-speech: One of 

the key steps needed to refine the proposed model is to improve sensitivity 

to disambiguate grammatical class (e.g., run as a verb vs. run as a noun). 

Little is currently known about how bigram semantic distance is moderated by 

grammatical role and how semantic distance might contribute to thematic role 

assignment and verb argument structure.

4.3 Limitations

Language is a rich symbolic modality comprised of numerous interactive subdomains. In 

its current form, however, our algorithm can only yield coarse data about how the meaning 

of one word relates to its neighbor. Our processing pipeline is currently insensitive to 

grammatical, pragmatic, and/or lexical ambiguity. The program yokes each word to its single 
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entry in one of two lookup databases. The algorithm is agnostic to part of speech, polysemy, 

or homophony. This shortcoming undoubtedly results in error variance that could potentially 

be ameliorated by part-of-speech tagging or syntactic parsing. One rate limiting factor for 

the widespread adoption of such techniques involves the extensive processing resources 

required to parse large language samples. Such analyses often exhaust the capacity of 

personal computers, requiring database integration over high performance clusters. As such, 

refinement of the semantic algorithms proposed here will require integration of syntactic 

and pragmatic information to provide a more realistic picture of combinatorial semantic 

processing.

4.4 Conclusions

We have proposed a continuous bigram model and opensource toolkit for analyzing 

semantic transitions in natural language and have identified numerous applications of the 

model to address theoretical and clinical questions about combinatorial semantic processing. 

Much remains to be learned about how to best measure conceptual shifts in language and 

how such variability either facilitates or compromises human communication. We invite 

researchers to explore these tools with their own datasets.
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Figure 1. Semantic Distance Density Distributions for Sequential and Random Bigrams
Note: The y-axis represents the scaled probability density for a given x-axis value xn. 

Probability density is calculated by subtracting the sample mean from xn and dividing by the 

standard deviation. The resulting value is then plugged into the Normal probability density 

function to obtain the probability density for xn.
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Figure 2. 
Sensitivity and specificity of binary classification of simulated category fluency
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Figure 3. Semantic Distances in To Build a Fire
Note: The red dashed reference lines reflect z-scores corresponding to ± 1.0 based on the 

norming procedures for adjacencies (i.e., sequential bigrams) described in Section 3.1.The 

black dashed reference lines reflect the boundaries of Q1 and Q3 reflecting the interquartile 

ranges derived from the norming study in Section 3.1.
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Table 1.

Text Stripping, Vectorizing, and Global Formatting

Target Description of Global Action (substitution or omission)

Contractions Replaced/extended contractions (e.g., it’s  it is).

Letter case All text converted to lowercase.

Stopwords Omitted closed class words (e.g., the, a, is) using a custom stopword list (N=1,104 words) modified from the 
SMART (System for the Mechanical Analysis and Retrieval of Text) stopword list.

Non-alphabetic characters Omitted all punctuation, symbols, emojis, whitespace, and other non-alphabetic characters.

Numbers Omitted all cardinal and ordinal numbers.

Morphological Derivatives Lemmatized the text to transform all words into their corresponding dictionary entries.

Note: In addition to base R, packages used in the various stages of text preparation included TextStem (v0.1.4) (Rinker, 2018a) and Textclean 
(v0.9.3) (Rinker, 2018b).
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Table 2.

SemDist15 Experiential Bigram Distances: Norms and Ranges

Distance Band

Bigram Condition

Sequential Random

Mean (SD)
Raw Cosine (−1:1) n/a 0.13 (0.42) 0.08

Rescaled Reverse Scored (0:2) 0.87 (0.42) 0.92 (0.42)

Min to Q1
Raw Cosine (−1:1) Low 0.45 to 1.00 0.39 to 1.00

Rescaled Reverse Scored (0:2) 0 to 0.55 0 to 0.61

Q1 to Q2 Raw Cosine (−1:1)

Average

0.14 to 0.44 0.08 to 0.38

Rescaled Reverse Scored (0:2) 0.56 to 0.86 0.62 to 0.92

Q2 to Q3 Raw Cosine (−1:1) −0.18 to 0.13 −0.76 to 0.07

Rescaled Reverse Scored (0:2) 0.87 to 1.18 0.93 to 1.24

Q3 to Max Raw Cosine (−1:1) High −0.96 to −0.19 −0.97 to 0.75

Rescaled Reverse Scored (0:2) 1.19 to 1.96 1.25 to 1.97

Note: Raw Cosine scores reflect the original cosine value on a −1 to 1 scale with a cosine of 1 indicating 0 distance between two vectors. Rescaled 
Reverse Scored (0:2) values reflect a transformation of the original cosine values first to a range between zero to two and then reverse scored using 
the 1-observed. On this transformed scale, zero indicates no distance (i.e., a word vs. itself), and two reflects the highest possible dissimilarity 
between two words.
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Table 3.

Glowca Embedding Bigram Distances: Norms and Ranges

Distance Band

Bigram Condition

Sequential Random

Mean (SD)
Raw Cosine (−1:1) n/a 0.42 0.28

Rescaled Reverse Scored (0:2) 0.58 (0.20) 0.72 (0.22)

Min to Q1
Raw Cosine (−1:1) Low 0.56 to 1.00 0.41 to 1.00

Rescaled Reverse Scored (0:2) 0 to 0.44 0 to 0.59

Q1 to Q2 Raw Cosine (−1:1)

Average

0.42 to 0.55 0.27 to 0.40

Rescaled Reverse Scored (0:2) 0.45 to 0.58 0.60 to 0.73

Q2 to Q3 Raw Cosine (−1:1) 0.27 to 0.41 0.13 to 0.26

Rescaled Reverse Scored (0:2) 0.59 to 0.73 0.74 to 0.87

Q3 to Max Raw Cosine (−1:1) High −0.22 to 0.26 −0.59 to 0.12

Rescaled Reverse Scored (0:2) 0.74 to 1.22 0.88 to 1.59

Note: Raw Cosine scores reflect the original cosine value on a −1 to 1 scale with a cosine of 1 indicating 0 distance between two vectors. Rescaled 
Reverse Scored (0:2) values reflect a transformation of the original cosine values first to a range between zero to two and then reverse scored using 
the 1-observed. On this transformed scale, zero indicates no distance (i.e., a word vs. itself), and two reflects the highest possible dissimilarity 
between two words.
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Table 4.

Accuracy of binary classification for simulated category fluency

SemDist15 Glowca

% Accuracy 91.5% 90.9%

d’ 2.02 1.86

Hit Rate 93.4% 93.80%

False Alarm Rate 6.58% 6.20%

Odds Ratio 40.66 28.66

Bias 0.96 0.98

Note: Sensitivity metrics derived from the ‘verification’ and ‘psych’ packages in R.
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Table 5.

Semantic Distances for To Build a Fire

Condition N Mean Dist SD

Semdist15 Sequential 3134 0.90 .36

Randomized 3255 1.01 .36

GloWCA Sequential 3360 0.62 .23

Randomized 3370 0.91 .18

Note: N= Number of bigrams, Mean Distance reflect cosine values transformed to a 0–2 scale where 0 is the highest possible similarity between 
two words.

J Exp Psychol Gen. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Reilly et al. Page 29

Table 6.

Embedding distance for bigrams within sentences vs. crossing sentence boundaries

Source Token Counts Bigram Distance t-statistic

Words Sentences Within Between

Prisoner of Azkaban 104860 8936 .62 .65 t(7514.9) =7.92, p<.001***

Little Women 194059 9266 .61 .63 t(8498) =3.55, p<.001***

Sherlock Holmes 107372 7065 .60 .61 t(7335) =3.01, p=.002**

Portrait of Dorian Gray 82012 6687 .60 .59 t(7150) =3.77, p=<.001***

Pride and Prejudice 124719 6210 .61 .62 t(6569.6) =2.33, p=.02*

Room with a View 69931 5948 .62 .63 t(6192.3) =2.79, p=.01*

Sorcerer’s Stone 77536 6474 .60 .63 t(5874.7) =5.46, p<.001***

Become an Engineer 21072 1466 .64 .68 t(1694.6) =6.92, p<.001***

Honey Bees 91577 3182 .72 .75 t(3061.3) =8.97 p<.001***

Prehistoric Villages 33283 1541 .67 .72 t(1521) =7.05, p<.001***

Note:

**
p<.01,

***
p <.001;

Token counts derived using the Quanteda package of R (Benoit et al, 2018). Distances reflect 0–2 cosine rescaled and reverse scored (0 is 
identical). Texts queried: Harry Potter and the Prisoner of Azkaban (J.K. Rowling, 1999); Little Women (Louisa May Alcott, 1868); The 
Adventures of Sherlock Holmes (Arthur Conan Doyle, 1892); The Portrait of Dorian Gray (Oscar Wilde, 1890); Pride and Prejudice (Jane Austen, 
1813); A Room with a View (E.M. Forster, 1908); Harry Potter and the Sorcerer’s Stone (J.K. Rowling, 1998); How to Become an Engineer (Frank 
W. Doughty, 2014); The Honey Bee: Its Natural History, Physiology, and Management (Edward Bevans, 1873); Prehistoric Villages, Castles, and 
Towers of Southwestern Colorado (Jesse Fewkes, 1919)
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