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CT angiography (CTA) is a widely used diagnostic imag-
ing technique to visualize blood vessels and assess vas-

cular conditions. Iodinated contrast agents are commonly 
used in CTA to enhance the visibility of vascular structures 
and facilitate the diagnosis of vascular conditions such as 
aneurysms, dissections, and atherosclerosis. However, io-
dinated contrast agents can also lead to adverse effects in pa-
tients, including both anaphylactoid and nonanaphylactoid 
reactions (1). Environmentally, these agents pose long-term 
concerns as they can contaminate water sources after being 
excreted through urine (2). The recent shortage in contrast 
media due to pandemic-related supply chain issues also 
raises alarm, given the ever-growing number of CT exami-
nations performed using contrast agents. Thus, there could 
be meaningful clinical and ecological impact if a method 
for generating synthetic CTA images from noncontrast CT 
images was developed and used for certain diagnoses.

From the perspective of the computer vision field, 
the task of generating synthetic CTA images from non-
contrast CT images can be framed as an image-to-image 
translation problem. This encompasses a broad spectrum 
of applications in medical imaging, ranging from image 
quality enhancement (eg, denoising and super resolu-
tion) to translation between different imaging modalities  

(eg, MRI to CT). The incorporation of deep learning 
methods, particularly generative adversarial networks 
(GANs), has greatly accelerated progress in this area. The 
conditional GAN (3), a specific GAN architecture, is 
particularly useful for this task as it comprises a genera-
tor and a discriminator. In the context of synthetic CTA 
image generation, the generator can accept a noncontrast 
CT image and generate a synthetic CTA image. The dis-
criminator is trained to compare synthetic CTA images 
to real CTA images and determine whether the synthetic 
CTA images look real or fake. In the training process, the 
generator model is trained to both fool the discriminator 
and minimize the difference between the synthetic CTA 
image and the real CTA image. The conditional GAN 
has had tremendous success in general image-to-image 
translation tasks based on evaluations of whether the gen-
erated samples look realistic to humans. However, two 
important questions arise regarding the task of synthe-
sizing CTA images: First, is there sufficient information 
to differentiate blood and soft tissues in noncontrast CT 
images to enable translation into synthetic CTA images? 
Second, can the synthetic CTA images match the diag-
nostic accuracy of real CTA images?

In this issue of Radiology, Lyu and Fu and colleagues (4) 
explore the use of a GAN-based deep learning model to 
generate synthetic CTA images of the neck and abdomen 
from noncontrast CT scans. To address the first question, 
the authors compared Hounsfield unit values in different 
vascular regions of aortic aneurysms in noncontrast CT 
images. They observed small but nonnegligible differences 
in Hounsfield units between blood and the surrounding 
tissues, which aligns with findings from another study (5). 
To evaluate the image quality of synthetic CTA images, 
the authors examined quantitative image quality metrics 
including normalized mean absolute error, peak signal-to-
noise ratio, and the structural similarity index measure. 
Additionally, two senior radiologists rated the visual qual-
ity of three features using a three-point scale: vessel wall 
clarity, lumen edge sharpness, and lumen wall contrast. 
They also assessed the diagnostic accuracy of the synthetic 
CTA images for aortic and carotid artery diseases such as 
aneurysm, dissection, and atherosclerosis.

Lyu and Fu and colleagues trained their GAN-based 
CTA imaging (CTA-GAN) model using paired noncon-
trast CT and CTA scans from 1749 patients from one in-
stitution. Scans from 1137 patients were used for training, 
400 for validation, and 212 for internal testing. An external 
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test data set including 42 patients from another institution was 
also used. In the proposed CTA-GAN model, the authors intro-
duced a corrector alongside the generator and discriminator. This 
corrector accounts for the misregistration between the paired 
noncontrast and CTA images and is jointly trained with the gen-
erator and discriminator. Two discriminators were employed to 
account for both global and local (central vascular region) image 
features. The authors compared the CTA-GAN model with two 
other conditional GANs used for image-to-image translation:  
pix2pix and RegGAN. In quantitative evaluations, the CTA-
GAN model achieved a normalized mean absolute error of 
0.013, a peak signal-to-noise ratio of 31.58, and a structural 
similarity index measure of 0.906 in the external test set, values 
that were all better than those of the other GAN variants. In the 
visual quality assessment, over 95% of the synthetic CTA im-
ages generated in both the internal and external test sets received 
a high-quality score overall and for the three individual visual 
features, with no evidence of a difference in quality observed 
between real and synthetic CTA images (P value range, .18 to 
>.99). For diagnostic accuracy evaluation in the external test 
set, the synthetic CTA images demonstrated 100% sensitivity 
and 97% specificity for aneurysms, 67% sensitivity and 100% 
specificity for dissections, 87% sensitivity and 89% specificity 
for atherosclerosis, and 100% sensitivity and 95% specificity for 
healthy arteries. The overall accuracy for the synthetic images 
was 86%, with a macro F1 score of 0.83.

The use of GAN models to synthesize CTA images from 
noncontrast CT images has also been explored in other studies. 
In one study (5), the authors trained a CycleGAN model—
which is a type of GAN designed for unpaired image-to-image 
translation—on an abdominal aortic aneurysm data set com-
posed of 75 patients and evaluated the quantitative image qual-
ity, aneurysm lumen segmentation accuracy, and thrombus 
spatial morphology classification accuracy using the synthetic 
CTA images. Instead of using the full axial CT section as input, 
the authors used image patches surrounding the aorta as input 
to the model. They achieved 86.1% accuracy for aneurysm lu-
men segmentation and 93.5% accuracy for thrombus spatial 
morphology classification. In another study (6), the authors 
proposed an aorta-aware GAN for abdominal aortic aneurysm 
detection, employing scans from a small cohort of 26 patients 
for training and internal testing. They achieved an F1 score 
of 0.85 for aneurysm detection. Both studies used a relatively 
small training data set compared with this study.

One limitation of this study is the small size of the external  
test set. As shown in this work, the accuracy of the model 
dropped from 94% in the internal test set to 86% in the external  
test set. However, this discrepancy may be attributed to the  
notably smaller size of the external test set. It is essential to have 
a large external test set with patients from a targeted population,  

so that the diagnostic accuracy of the model can be reliably 
evaluated. It is also important to evaluate how sensitive the 
model is to different CT systems and scanning parameters, as 
the drop in accuracy on the external test set could be related 
to such factors. Finally, given the 95% specificity for healthy 
arteries in both the internal and external test sets, representing 
a 5% rate of missed diagnoses, it is vital to clearly define the 
intended use of this tool and the appropriate patient popula-
tion for its reliable and responsible use.

Nevertheless, this work further demonstrates the feasibility of 
generating synthetic CTA images from noncontrast CT images 
using deep learning and establishes the baseline diagnostic accu-
racy of the method for several vascular diseases. Recent advances 
in the field of generative modeling, particularly the development 
of diffusion models (7,8), might present alternative model ar-
chitectures for this task and potentially enhance performance 
compared with current GAN variants (9). There is also potential 
to expand the scope of the CTA-GAN model developed by Lyu 
and Fu and colleagues to even smaller vessels and include more 
pathologies. However, when new technologies are introduced, 
it remains essential to train and validate the model using well-
curated clinical data sets and perform clinically relevant evalua-
tions, as was done in this work.
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