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Chronic liver disease (CLD) affects 1.5 billion people 
worldwide (1). CLD can be caused by metabolic, en-

vironmental, infectious, or genetic factors. Across causes, 
CLD progresses through repeated cycles of liver injury 
and fibrosis in which ongoing inflammation and hepato-
cellular injury result in progressive scarring that can ulti-
mately culminate in cirrhosis.

Nonalcoholic fatty liver disease (NAFLD), or meta-
bolic dysfunction–associated steatotic liver disease 
(MASLD) in new terminology, is the most common CLD 
cause and is characterized by fat accumulation in vacuoles 
within the hepatocytes without alcohol-related liver injury 
(2). Nonalcoholic steatohepatitis (NASH), or metabolic 
dysfunction–associated steatohepatitis (MASH) in new 
terminology, is a subtype of NAFLD in which inflam-
mation and hepatocellular injury result in fibrosis and, 
ultimately, advanced CLD. Some patients with NASH 
accompanied by severe fibrosis (grade ≥F2) and inflam-
mation (NAFLD activity score ≥4) at first diagnosis have 
an elevated long-term risk of cirrhosis (3,4), termed high-
risk NASH (3,4). Currently, there are no treatment op-
tions cleared by the U.S. Food and Drug Administration 
(FDA) for patients with high-risk NASH, but a variety 
of therapeutics are in development. It is important to 
identify patients with NAFLD, as they are at risk for the 
development of NASH. Early NASH and particularly 
high-risk NASH diagnosis and treatment may provide an 
opportunity to prevent cirrhosis-related complications, 

such as portal hypertension, hepatic encephalopathy, and 
hepatocellular carcinoma. Estimation of inflammation 
and fibrosis in patients with NAFLD provides prognostic 
information and helps identify patients with high-risk dis-
ease. However, ultimately, a tool for identifying patients 
with NAFLD at risk for progression would be ideal to aid 
in early detection. Recent pilot data suggest that imaging 
estimates of steatosis severity may help identify patients at 
risk for progressive disease (5).

Liver biopsy is the accepted reference standard tool 
for NAFLD risk stratification but is limited by invasive-
ness and high cost. MRI-based methods such as proton 
density fat fraction (PDFF) estimation and MR elas-
tography are accurate methods to quantify steatosis and 
fibrosis, respectively (6), but their use is constrained by 
relatively high cost and limited availability. US-based 
methods have favorable cost and wide availability, mak-
ing them more suitable for population-level diagnosis 
and risk stratification.

This review focuses on currently available US methods 
to evaluate liver steatosis, inflammation, and fibrosis. Each 
section summarizes different US-based methods, current 
evidence, and future directions. We also discuss recent 
promising innovations that are not yet clinically available. 
Our goal is to discuss these technologies and place them 
into a broader context for the practicing radiologist. For 
more detailed technical discussion, we refer the reader to 
the recent article by Fetzer and Rosado-Mendez et al (7).

Nonalcoholic fatty liver disease (NAFLD) is a common cause of morbidity and mortality. Nonfocal liver biopsy is the historical 
reference standard for evaluating NAFLD, but it is limited by invasiveness, high cost, and sampling error. Imaging methods are ideally 
situated to provide quantifiable results and rule out other anatomic diseases of the liver. MRI and US have shown great promise for 
the noninvasive evaluation of NAFLD. US is particularly well suited to address the population-level problem of NAFLD because it 
is lower-cost, more available, and more tolerable to a broader range of patients than MRI. Noninvasive US methods to evaluate liver 
fibrosis are widely available, and US-based tools to evaluate steatosis and inflammation are gaining traction. US techniques including 
shear-wave elastography, Doppler spectral imaging, attenuation coefficient, hepatorenal index, speed of sound, and backscatter-
based estimation have regulatory clearance and are in clinical use. New methods based on channel and radiofrequency data analysis 
approaches have shown promise but are mostly experimental. This review discusses the advantages and limitations of clinically available 
and experimental approaches to sonographic liver tissue characterization for NAFLD diagnosis as well as future applications and 
strategies to overcome current limitations.
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Imaging Methods in Current Clinical  
Use for Liver Steatosis

Conventional US
Qualitative assessment of conventional gray-scale brightness 
mode (B-mode) US imaging has traditionally been the corner-
stone of hepatic steatosis evaluation. Liver sonography is often 
performed as the first-line test to investigate abnormal liver 
function, and the diagnosis of steatosis may be the explanatory 
factor. Characteristic findings of fat deposition in-
clude increased parenchymal echogenicity, beam 
attenuation, blurring of anatomic structures (such 
as the intrahepatic vasculature, gallbladder wall, or 
diaphragm), and image quality degradation (Fig 1). 
Generally, echogenicity assessment is performed by 
comparing the liver tissue with the other hepatic 
structures (eg, vessel walls) or adjacent organs (eg, 
kidney). The characteristic B-mode findings result 
from a combination of aberrations due to assumed 
and actual parenchymal sound speed mismatch, 
increased backscattered echoes from lipid droplets, 
and increased beam attenuation due to increased 
backscatter and absorption. Hepatic fat deposition 
is often heterogeneous, with characteristic areas ad-
jacent to the gallbladder fossa, falciform ligament, 
or portal vein that remain uninvolved, possibly due 
to variability in venous drainage and perfusion in 
these regions (8). Moderate to severe steatosis can 
be detected with 84.8% sensitivity (95% CI: 79.5, 
88.9) and 93.6% specificity (95% CI: 87.2, 97) at 
B-mode US, as published in a meta-analysis (9). 

Abbreviations
AC = attenuation coefficient, AI = artificial intelligence,  
ASQ = acoustic structure quantification, AUC = area under 
the receiver operating characteristic curve, CLD = chronic liver 
disease, FDA = U.S. Food and Drug Administration, HRI = hepatorenal 
index, NAFLD = nonalcoholic fatty liver disease, NASH = nonalcoholic 
steatohepatitis, NLV = normalized local variance, PDFF = proton density 
fat fraction, SoS = speed of sound, SWD = shear-wave dispersion,  
SWE = shear-wave elastography, SWV = shear-wave viscosity

Summary
Quantitative US techniques are noninvasive methods to quantify 
fatty liver disease severity; innovations in acoustics and image analysis 
disciplines show promising results in fatty liver diagnosis and risk 
stratification.

Essentials
 ■ Noninvasive, low-cost, and accurate imaging-based quantification 
tools are needed to address the increasing incidence of fatty liver 
disease.

 ■ Several tools are currently available, with varying evidence to support 
their role in detecting and assessing nonalcoholic fatty liver disease 
(NAFLD); these include shear-wave elastography and estimation of 
parameters such as attenuation coefficient, sound speed, hepatorenal 
index, and pulsatility index.

 ■ Multiple advanced signal processing and image analysis methods for 
NAFLD and nonalcoholic steatohepatitis evaluation will likely be 
clinically available in the next 3–5 years.

However, sensitivity and specificity for mild steatosis could be 
lower (70% [95% CI: 63, 77] and 86% [95% CI: 82, 89], re-
spectively), as published in another meta-analysis (10). 

B-mode features of steatosis are subjective, with corre-
sponding interpretative variability and limited generalizability. 
Furthermore, technical acquisition parameters can confound 
some features. Increasing overall image gain or changing 
US transducer frequency can lead to increased parenchymal 
echogenicity, while altering depth-dependent time gain com-
pensation settings can mimic increased beam attenuation. 
Generalized image quality reduction may result from several 
factors, including acquisition hardware differences, transducer 
transmit frequency, sonographer technical skill, and increased 
patient abdominal subcutaneous tissue thickness. Variation in 
interpreting radiologist experience may confound reader reli-
ability. These pitfalls commonly make interpretation challeng-
ing, even for experienced readers. Identifying fatty sparing in 
characteristic locations can improve interpretation specificity, 
as technical parameters may have less influence on this feature. 
Nonetheless, the limitations of conventional B-mode US for 
liver steatosis estimation are well established.

The hepatorenal index (HRI) is a semiquantitative B-mode 
imaging steatosis biomarker derived by dividing the hepatic B-
mode signal intensity by the renal cortical signal intensity at the 
same depth (to account for attenuation effects) (11) within a 
single image depicting both structures (Fig 2). This aims to miti-
gate confounding parameters by standardizing liver brightness 
estimation to the renal cortex as an internal control. Higher HRI 
values indicate increased liver echogenicity and correspond to in-
creased steatosis. Some vendors offer an HRI calculation tool in 
their US device commercial software, with a subset allowing HRI 
estimation from the acquired raw data to mitigate confound-
ing from time gain compensation settings. However, the HRI 
measurement may still be confounded by concomitant renal 
disease, which alters the brightness of the kidney parenchyma. 

Figure 1: Characteristic B-mode US image in a 35-year-old male patient with hepatic steatosis 
and 16% MRI proton density fat fraction. Steatosis results in increased brightness of the liver relative 
to the kidney (arrow), blurring of hepatic vasculature (small arrowhead), loss of definition of the 
diaphragm (large arrowhead), and reduced signal from deep anatomy. 
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Additionally, changing device acquisition settings may influ-
ence the appearance of the images available for postacquisition 
HRI measurement, implying that standardized settings may be 
needed for reliable HRI measurements. The reported sensitiv-
ity (76.4% [95% CI: 70.2, 82.7]) and specificity (93.2% [95% 
CI: 86.4, 98.3]) of HRI with a cutoff value of 1.22 to detect 
steatosis in a prospective multicenter study with biopsy-proven 
CLD cases including NAFLD suggest that it may have clinical 
value (12,13). However, the technique is limited by the fact that 
liver fibrosis, which is a parameter of interest, may confound the 
relationship between HRI and hepatic steatosis (14).

In summary, although B-mode–based methods are common 
and easy to access, they have several disadvantages, as described 
earlier. To address these limitations, methods such as deep learn-
ing may decrease manual region of interest drawing workload 
and provide accurate HRI estimation (15). Artificial intelligence 
(AI)–enhanced screening of B-mode images to identify patients 
with suspected steatosis may be helpful to refer patients to more 
advanced methods, such as PDFF, or more accurate US-based 
methods, such as attenuation coefficient (AC) estimation.

Attenuation Coefficient
US AC is defined as the measure of the rate of energy lost by 
the acoustic wave as it propagates through the tissue, quanti-
fied in decibels per unit of depth (in centimeters). Attenuation is 
dependent on insonation frequency and tissue characteristics, so 
it is normalized by the frequency (relative to 1 MHz). Thus, the 
AC has a unit of dB/cm/MHz. Attenuation can be quantified by 
accounting for the energy lost in the propagating tissue at differ-
ent frequencies. Different factors affect attenuation estimation 
accuracy, including focus depth, varying backscatter and speed 

of sound (SoS), imaging resolution, artifacts, and signal-to-noise 
ratio of the echo. US AC estimation is available on multiple 
FDA-cleared US devices. Further details describing AC estima-
tion can be found in a review article by Ferraioli et al (16).

AC for fatty liver evaluation has been studied more than 
other quantitative US fat quantification methods. It is known 
that higher attenuation values are present in liver tissues with 
higher steatosis severity. Many studies have been published re-
garding the diagnostic accuracy, variability, and operator depen-
dence of these methods (16,17). In a recent meta-analysis of 13 
studies, the pooled sensitivity and specificity for attenuation-
related methods to diagnose steatosis severity were 76% (95% 
CI: 73, 80; I 2 = 43% [I 2 is a marker of heterogeneity]) and 84% 
(95% CI: 77, 89; I 2 = 74%), respectively, for mild steatosis (≥S1) 
and 87% (95% CI: 83, 91; I 2 = 0%) and 79% (95% CI: 75, 
83; I 2 = 59%) for moderate steatosis (≥S2) (17). These results 
suggest that AC may be a useful tool to diagnose and quantify 
steatosis severity.

Regarding operator dependence, high intra- and interobserver 
agreement values (intraclass correlation coefficient between 0.79 
and 0.98) have been reported for attenuation imaging (16). 
However, it is important to consider the effects of operator train-
ing, experience, and device familiarity, as these factors may in-
crease operator dependence. As attenuation imaging is available 
on multiple devices, interplatform agreement is another impor-
tant factor that should be evaluated and is the subject of several 
active studies (18).

There is currently no widely accepted US AC measure-
ment practice guideline. Some centers use elastography prac-
tice guidelines to perform US attenuation examinations, which 
include the following suggestions: (a) Liver attenuation mea-
surements are typically taken with the patient in the supine  
or left lateral decubitus position at mid breath hold and  
(b) the region of interest should be placed on a homogeneous 
region more than 2 cm deep to the liver capsule to avoid cap-
sule artifacts while avoiding blood vessels (Fig 3). Most vendors 
suggest taking five independent measurements of attenuation 
and reporting the median value; however, there is no strict rec-
ommendation or guideline regarding the required number of 
measurements. The utility of reporting the IQR divided by the 
median value, as is done for shear-wave elastography (SWE), is 
presently unclear (16). In summary, initial data regarding the 
diagnostic performance and variability of AC estimation for ste-
atosis quantification are promising, but several unmet needs re-
main, including (a) widely accepted implementation guidelines,  
(b) understanding of measurement variability across manufac-
turers, and (c) understanding of how new AI technologies may 
be used in conjunction with the technique (19).

Other Commonly Used Methods
Changes in the number and size of intracellular fat vacuoles in 
steatosis result in a change of parenchymal echogenicity, produc-
ing a hyperechoic appearance compared with normal tissue or 
kidney. Techniques to discern these properties from the level of 
the acoustic echoes—termed the backscatter coefficient—have 
demonstrated similar performance to MRI-derived estimates 
of steatosis quantification (20–22). It is known that backscatter 

Figure 2: B-mode US image at the level of the pouch of Morison in a 59-year-
old female patient with nonalcoholic steatohepatitis and grade 2 hepatic steatosis. 
Two circular regions of interest are placed on the kidney cortex and liver tissue at 
the same depth. Hepatorenal index (HRI) can be calculated on US systems with  
HRI quantification software, or images can be exported in Digital Imaging and 
Communications in Medicine, or DICOM, format and region of interest circles 
can be drawn with a DICOM viewer. In this image, the local region of interest 
pixel brightness values and the HRI value are presented in the bottom left corner.  
Reproduced, with permission, from the Non-Invasive Biomarkers of Metabolic Liver 
Disease, or NIMBLE 1.1, study (18). 
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coefficient values increase with increased steatosis level. How-
ever, more clinical studies are needed to understand operator 
dependence and other patient- and device-related confounding 
factors. Backscatter coefficient can be calculated from radiofre-
quency signal data (23).

SoS is another acoustic parameter that can be used to assess 
steatosis. SoS quantification provides reasonable delineation of 
disease severity, with known negative correlation between ste-
atosis severity and SoS (Fig 4). Currently, the availability of this 
method on clinical devices is limited, as is the literature on the 
performance of SoS in clinical studies. However, recent studies 
show promising results to diagnose steatosis. In a cohort of 215 

patients with NAFLD, SoS estimation showed an area under the 
receiver operating characteristic curve (AUC) of 0.88 (95% CI: 
0.82, 0.92) to detect grade S2 or higher (24). A widely accept-
able reference standard like biopsy or PDFF was not available in 
this recent study. More clinical studies are needed to understand 
the effect of confounding factors and device and operator vari-
ability on the SoS biomarker.

Other techniques combine measures (eg, attenuation and 
backscatter coefficient) to estimate a US-derived fat fraction  
(Fig 5) (22) and have demonstrated high performance in the 
diagnosis of steatosis when compared with the reference stan-
dard of MRI PDFF (AUC, 0.90 [95% CI: 0.79, 0.96] to detect 
greater than 5.5% PDFF value) (25) and also high reproduc-
ibility values (intraclass correlation coefficient higher than 0.93) 
(26). These results suggest that US-derived fat fraction may be an 
accurate and reproducible method to evaluate steatosis; however, 
studies with biopsy-proven (ideally single-pathologist) NAFLD 
may be needed to support the literature.

A persistent challenge for deriving material properties from 
US images is that these images depend both on individual ma-
chine settings (frequency, gain, focal depth, etc) and parame-
ters that are set by the individual sonographer. Controls by way 
of a reference phantom or by comparison with the appearance 
of another target, such as the kidney cortex (ie, the HRI), have 
been proposed to mitigate interoperator and intersession vari-
ability. Modern implementations of these techniques rely on 
internal validation and correction strategies that are embedded 
in the device, which mitigates the need for external validation 
tools, such as phantoms.

Backscatter coefficient, SoS, and US-derived fat fraction show 
promising results in terms of steatosis quantification. US-derived 
fat fraction and SoS methods are available on clinical systems, 
but access to raw data may be needed to calculate backscatter 
coefficient. Cooperative efforts to standardize approaches across 

manufacturers and provide access to raw data under 
appropriate legal terms may be crucial to use these 
methods reliably in clinical settings.

Speckle Statistics
Speckle patterns appear in US images due to scattered 
US signals from tissue microstructures. Therefore, 
speckle statistics, representing the envelope distri-
bution of backscattered US signal, are a good in-
dicator of tissue scattering characteristics. Advanced 
quantitative US techniques based on these envelope 
parameters, such as acoustic structure quantification 
(ASQ), normalized local variance (NLV), and Na-
kagami distribution, have been developed as poten-
tial biomarkers for fat quantification. Most of these 
methods are commercially available; however, the 
literature is limited on the comparison of these with 
the other NAFLD assessment tools. We summarize 
these methods in the Table and Figure 6.

In the ASQ method, the degree of deviation 
from the Rayleigh distribution is quantified to as-
sess the liver tissue characteristics (Fig 6). Theoreti-
cally, ASQ is used to compute a focal disturbance 

Figure 4: US image in a 64-year-old male patient with nonalcoholic steatohepatitis cirrhosis 
and grade 1 steatosis. Speed of sound (SSp PLUS) and attenuation (Att PLUS) values are shown. The 
measurements are collected from the rectangular region of interest. Lower speed of sound values are 
expected with increasing steatosis. Reproduced, with permission, from the Non-Invasive Biomarkers 
of Metabolic Liver Disease, or NIMBLE 1.1, study (18).

Figure 3: US image in a 72-year-old male patient with nonalcoholic steato-
hepatitis and grade 1 steatosis shows an example of US liver attenuation coefficient 
measurement. Higher attenuation values are expected with higher grades of steato-
sis. A region of interest is placed on an area without visible blood vessels. Attenu-
ation value is presented on the bottom left of the image. Attenuation measurements 
are collected from the rectangular region of interest. Color map may be added to 
the region of interest if needed. Reproduced, with permission, from the Non-Invasive  
Biomarkers of Metabolic Liver Disease, or NIMBLE 1.1, study (18). 
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ratio, which is inversely related to the fat content of the liver. In 
an early study, a significant negative correlation between the fo-
cal disturbance ratio and the MR spectroscopy–based hepatic 
fat fraction was demonstrated (r = −0.87; P < .01) (27). Similar 
negative correlation results have been shown in a recent study 
(28), and performance to diagnose MR spectroscopy–defined 
steatosis (≥5%) was also proven (AUC, 0.82) (29).

NLV is an extension of ASQ and provides a quantitative 
tool to perform regional analysis of the image and evaluate the 
intensity and homogeneity of the liver tissue. Lower NLV val-
ues have been associated with higher steatosis grade (30). The 
SD of NLV has been shown to help detect mild (AUC, 0.90 
[95% CI: 0.74, 0.97]), moderate (AUC, 0.74 [95% CI: 0.56, 
0.87]), and severe steatosis (AUC, 0.60 [95% CI: 0.42, 0.76]) 
(31). Generally, with the other steatosis quantification meth-
ods, higher AUCs may be observed in the detection of severe 
steatosis, but the opposite could be possible for NLV, consider-
ing the results from Zhao et al (31). In a separate study (32), 
NLV showed high repeatability with an intraclass correlation 
coefficient of 0.87 (95% CI: 0.61, 0.95) and reproducibility 
with intraclass correlation coefficient of 0.80 (95% CI: 0.50, 
0.92) in assessing PDFF-proven steatosis. These studies show 
promising results, but sample sizes were small; meta-analyses 
may be needed to understand the cumulative effect.

Last, the Nakagami parameter, another modern technique, 
is the variation in the shape of the envelope distribution of 
backscattered US signal. Increased Nakagami parameter values 
have been associated with higher steatosis severity (33). In a 
recent study (33), the Nakagami parameter was indicative of 
mild steatosis (PDFF ≥6.4%), with an AUC of 1.00. Although 
high correlation with PDFF has been reported by some au-
thors, others have not shown as promising results, with lower 
correlation (r  = 0.47) with PDFF (34). Further studies with 

larger samples are needed to understand the diagnostic perfor-
mance of this method.

Tissue scatter distribution imaging and tissue attenuation 
imaging, other commonly used techniques, provide attenuation 
and Nakagami parameter values. High diagnostic accuracy was 
observed when using this combination of methods, the details of 
which can be found in another review (35).

ASQ, NLV, and Nakagami parameters may be useful meth-
ods in the diagnosis of NAFLD. Although the diagnostic perfor-
mance has been reported as high in recent studies, it is important 
to note that the literature regarding these parameters is limited, 
and reported results may not be generalizable. Additionally, the 
effect of several confounding factors like obesity, patient move-
ment, and breath intake are not well established.

Shear-Wave Elastography, Dispersion, and Viscosity
In US SWE, tissue stiffness is estimated by inducing shear 
waves in tissue, most commonly with acoustic radiation force, 
and measuring the propagation velocity of those shear waves. 
Based on the measurement area size, it can be categorized 
as point SWE or two-dimensional SWE. Higher shear-wave 
velocities are associated with increased fibrosis severity or in-
creased tissue stiffness (36). SWE estimates of tissue stiffness 
can be reported as the estimated Young modulus of tissue in 
kilopascals or as shear-wave speed in meters per second; con-
version between these properties is algebraic. Multiple studies 
have shown that SWE can be used to distinguish cirrhosis 
from early-stage liver fibrosis with excellent accuracy and 
differentiate intermediate liver fibrosis stages with moderate 
accuracy (37). As a result, SWE-derived hepatic shear-wave 
speed estimates have been widely adopted as liver fibrosis 
biomarkers. SWE is in widespread clinical use but is limited 
by variability produced by operator-, patient-, and device-re-
lated factors (Fig 7). Details about common SWE limitations 
and artifacts can be found in the paper by Bruce et al (38).

Shear-wave dispersion (SWD) has been proposed as a bio-
marker for inflammation and has been studied in several clini-
cal studies (39). Higher SWD values have been associated with 
higher grades of histopathologic ballooning and lobular inflam-
mation (40). When combined with AC, SWD may show higher 
diagnostic performance in the detection of NASH, even higher 
than SWE alone. These results show that combining parameters, 
such as AC, SWE, and SWD, may improve diagnostic perfor-
mance for identifying patients with high-risk NASH (41).

Last, shear-wave viscosity (SWV), another shear wave– 
focused biomarker, has been used in several clinical studies. 
No significant relationship has been shown between SWV and 
PDFF-based steatosis severity (34,42); however, SWV may be 
related to the degree of fibrosis (AUC, 0.76 [95% CI: 0.64, 
0.87] for significant fibrosis), with higher viscosity values at 
higher fibrosis stages (43). No association was found between 
SWV and steatosis or disease activity (43). One of the strong 
sides of this study is that the biopsy samples were evaluated by 
one pathologist, which minimizes the reader variability on the 
reference standard side.

SWE, SWD, and SWV may be estimated during a sin-
gle US examination. The diagnostic performance of SWE 

Figure 5: US image in a 55-year-old female patient with nonalcoholic  
steatohepatitis and grade 1 steatosis. Point shear-wave elastography (pSWE) and 
US-derived fat fraction (UDFF) measurements are presented. The device software 
uses a large region of interest with 15 small measurement locations (rectangles). 
In this method, attenuation and backscatter coefficients are combined to report a 
single value in percentage unit. Higher US-derived fat fraction values are expected 
with increasing steatosis. The US-derived fat fraction and shear-wave speed values 
(top left corner) are acquired by these 15 small regions of interest. The purpose of  
using 15 small regions of interest is to expand the measurement area. Reproduced, 
with permission, from the Non-Invasive Biomarkers of Metabolic Liver Disease,  
or NIMBLE 1.1, study (18). 
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for fibrosis staging is well known. More clinical studies are 
needed for SWD and SWV to better understand their associa-
tion with inflammation and fibrosis and the magnitude of the 
effect of common confounders, including obesity, food intake, 
and patient movement.

Several future directions to improve and combine these 
biomarkers have been proposed. Researchers have proposed 

Common Sonographic NAFLD Evaluation Methods 

Method Physics Area of Use Challenges

Recommended 
Articles for 
Details

Shear-wave 
elastography

Uses shear-wave velocity to 
identify the elastic  
properties of the tissue

Fibrosis quantification Depth dependency creates a variability 
challenge (37,48); strict protocol 
compliance (ROI at 4–4.5-cm depth, 
perpendicular ROI in reference to the 
capsule) may be needed to acquire 
accurate stiffness measurements with 
low variability

37, 38, 62–64

Shear-wave 
dispersion

Shear wave–based analysis  
(m/sec/kHz unit)

Inflammation Limited clinical data; possible 
confounding effect from fibrosis  
or steatosis

33, 34

Hepatorenal  
index

Semiquantitative assessment of 
backscatter due to steatosis, 
using renal cortex as an 
internal control

Steatosis quantification Confounding from renal disease and  
liver fibrosis; proposed thresholds  
are highly variable; manual ROI 
placement

65

Attenuation 
coefficient

Quantifies energy loss in  
different tissue types

Steatosis quantification Cause of liver disease, uneven fat 
distribution, liver inflammation, fibrosis, 
and body habitus; signal bandwidth, 
frequency, and phase aberration

17

Backscatter 
coefficient

Compares reflected acoustic 
energy with reference

Steatosis quantification, 
microstructure 
information

Calibration (eg, frequency-dependent); 
microstructure assumptions  
(eg, size distributions of scatterers  
alter measurements)

23

Speed of sound Rate of longitudinal sound  
wave propagation in tissue

Steatosis quantification;  
beamforming and image 
quality improvement

Limited commercial availability and 
clinical data; estimation may be  
biased for layered media

66, 67

US-derived fat 
fraction

Compares attenuation and 
backscatter coefficient with 
reference phantom

Steatosis quantification Possible effect of subcutaneous  
tissue; ROI placement may be  
affected by local structures like vessels

22, 25

ASQ Difference in theoretical and  
real envelope distributions  
of backscattered US signal

Fibrosis and steatosis 
quantification

Limited clinical data; limited  
performance with large hepatic  
vessels, focal fat sparing or  
deposition, and artifacts

28, 29, 68

Normalized  
local variance

Modified ASQ for regional 
evaluation of intensity and 
homogeneity

Steatosis quantification Limited clinical data; influence of  
ROI size; limitations in diagnosing 
severe steatosis; limited performance 
with large hepatic vessels, focal fat 
sparing or deposition, and artifacts

31, 69

Nakagami 
parameter

Variation in the shape of the 
envelope distribution of 
backscattered US signal

Fibrosis and steatosis 
quantification

Parameter plateaus for high scatter 
concentrations

34, 35, 70

Spectral  
Doppler US

Measures blood flow  
dynamics

Fibrosis quantification Need stronger literature knowledge; 
selecting minimum and maximum 
velocity is operator-dependent

46

Mean scatter 
spacing  
analysis

Change of the periodicity  
of US signal

Inflammation  
and fibrosis

In vivo validation and real-time  
estimation

71

Table (continues)

increasing the acoustic output to obtain higher-quality SWE 
images in difficult-to-image patients, especially in patients 
with obesity and increased subcutaneous tissue thickness (44). 
Multiple frequency–induced reverberant shear waves may be 
helpful to obtain higher-quality SWD data in patients with 
increased subcutaneous tissue thickness (45) and may specifi-
cally be helpful to detect inflammation. Combined fibrosis, 
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steatosis, and inflammation assessment tools may help identify 
patients with NAFLD who are at risk of developing NASH 
and those with established high-risk NASH. For example, us-
ing SWE, SWD, and attenuation in the same US examination 
in the same region of interest would be cost- and time-efficient 
and provide full characterization to identify patients in need 
of aggressive treatment. Considering the high prevalence of 
NAFLD, the use of these combined tools for screening at the 
primary care level with point-of-care devices could provide a 
population-level solution to identify at-risk patients in need of 
specialized care.

Portal Venous and Other Waveform Analysis
Hepatic Doppler US is widely accepted as a valuable, noninva-
sive, and cost-effective tool that is considered a first-line imaging 
technique for evaluating the hepatic vasculature. A hepatic Dop-
pler US examination consists of gray-scale or B-mode US, color 
Doppler US, and spectral waveform analysis obtained by placing 
a small region of interest over a vessel of interest.

Each of the main vessels assessed during a liver Doppler 
US examination have characteristic waveforms determined 
by the anatomic position of the vessel as well as cardiac- and 
respiration-related pressure variations. These waveforms are 
also affected by various physiologic and pathologic conditions. 
Resistive index (systolic velocity – diastolic velocity/systolic 
velocity), the arterial pulsatility index (systolic velocity – dia-
stolic velocity/mean velocity), and the venous pulsatility index 

Method Physics Area of Use Challenges

Recommended 
Articles for 
Details

Intensity  
spectrum

Several features related to 
microstructural organization 
of tissue (random vs organized, 
spacing between periodic 
scatterers) are extracted from  
the frequency-dependent 
(spectral) analysis of echo  
signals

Detection of changes in 
tissue microstructure  
due to diffuse liver  
disease

Sensitivity of features is obscured by  
other spectral components such as 
diffuse scattering, attenuation, and 
system effects

72

Spectral 
correlation and 
generalized 
spectrum

Detection of mean scatterer 
spacing, hypothesized to be 
associated with spacing  
among portal triads

Monitor microstructural 
remodeling due to diffuse 
or focal liver disease, and 
response to treatment

Consistency in scatterer spacing is  
needed to detect spectral correlation 
peaks related to periodic scatterers over 
diffuse component; scatterer spacing 
may depend on plane of insonation

73, 74

Analysis of phase 
uniformity

The presence of regularly paced 
scattering sources in the liver 
(ie, portal triads) produces a 
nonuniform distribution of  
the phase (stage of oscillation)  
of the arriving echo signal

Monitor microstructural 
remodeling due to diffuse 
or focal liver disease,  
and response to  
treatment

Consistency in scatterer spacing is  
needed to detect periodic scatterers 
over diffusely organized scatterers in 
the phase uniformity test; the degree of 
phase nonuniformity depends on the 
angle of insonation

75

H-scan Extracts information about size 
and type of scattering agents  
by filtering the echo signals 
with gaussian-weighted 
Hermite functions

Monitor microstructural 
remodeling due to  
diffuse or focal liver 
disease

Depth-dependent effects, such as 
attenuation and diffraction

76, 77

Note.—ASQ = acoustic structure quantification, NAFLD = nonalcoholic fatty liver disease, ROI = region of interest.

Table (continued): Common Sonographic NAFLD Evaluation Methods

(systolic velocity/diastolic velocity) are examples of quantita-
tive biomarkers developed for describing changes in vascular 
flow. These biomarkers can be used in hepatic artery, hepatic 
vein, and portal vein imaging. For NAFLD or NASH diagno-
sis, predominantly portal vein–based indexes have been inves-
tigated and therefore are the focus of this section (46). Hepatic 
vein– and artery–based indexes are outside of the scope of 
this review; however, these methods, and newer methods like 
subharmonic imaging, can be used in evaluation of advanced 
CLD (47,48).

Portal venous pulsatility index, calculated as (maximum ve-
locity – minimum velocity)/maximum velocity (Fig 8), may be 
useful for the diagnosis of NASH with significant fibrosis. In a 
recent study of 123 patients, pulsatility index was shown to have 
a high AUC (0.84 [95% CI: 0.77, 0.91]) in the detection of  
biopsy-proven high-risk fatty liver (46). The low cost and ex-
cellent availability of hepatic Doppler US and the magnitude 
of information that can be extracted by means of waveform 
analysis suggest that this will remain an area of active research 
for improving the diagnosis and staging of liver pathology. New 
machine learning techniques will likely find a role in automated 
calculation of Doppler waveform–based biomarkers as well as 
finding new biomarkers that may be difficult to discern with 
visual inspection of spectral waveforms. The focus of these auto-
mated techniques will likely be to automate vessel identification, 
subsequent Doppler activation, and measurement of the quanti-
tative parameters of interest.
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Multiparametric Models
Multiparametric models using US-derived imaging markers 
have recently been developed to identify patients with high-
risk NASH. The FibroScan–aspartate aminotransferase score 
combines FibroScan (Echosens) measurements of liver stiff-
ness and the controlled attenuation parameter with aspartate 
aminotransferase levels. This score has been reported to have 
good diagnostic performance in the detection of NASH (iden-
tified as NAFLD activity score ≥5), with an AUC of 0.75 (95% 
CI: 0.69, 0.81) and slightly superior results to liver stiffness 
measurement alone; however, the AUC (0.68 [95% CI: 0.61, 
0.75]) to detect F2 grade or higher was lower than that for liver 
stiffness measurement alone (0.82 [95% CI: 0.76, 0.87]) (49). 
Another combination model, LAD-NASH score, has been de-
veloped by combining three US features: liver stiffness, AC, 
and dispersion slope. Performance of this score in the detection 
of patients with high-risk NASH was good in two study sam-
ples from different countries (Japan, 111 patients with NAFLD 
[AUC, 0.86 {95% CI: 0.79, 0.93}]; Korea, 102 patients with 

NAFLD [AUC, 0.88 {95%  
CI: 0.80, 0.95}]) (4).

Despite encouraging early 
results, US-derived multipara-
metric models have several limi-
tations. One major disadvantage 
is the existence of a large “gray 
zone.” Both the FibroScan–as-
partate aminotransferase and 
LAD-NASH scores use a dual 
cutoff approach where low and 
high cutoff values are used to rule 
out and rule in high-risk NASH. 
The gray zone, where results are 
too indeterminate to support 
clinical decision-making, lies 
between these. In the training 
cohorts of the FibroScan–aspar-
tate aminotransferase and LAD-
NASH scores, 39% and 26% of 
patients fell into this category, 
respectively. To narrow the gray 
zone, sequential testing using 
different noninvasive tests and 
other imaging modalities has 
been proposed, with liver biopsy 
as a last resort (4,50).

Multiparametric US–based 
model components may not 
be readily available, create extra 
cost and time burdens for health 
care providers and patients, 
and be clinically unreliable in 
specific circumstances. For ex-
ample, the FibroScan–aspartate 
aminotransferase score relies on 
aspartate aminotransferase lev-
els, which may show poor corre-

lation with disease severity (51). In the case of the LAD-NASH 
score, dispersion slope measurement is required. This parameter 
is not yet widely available or routinely obtained.

In summary, for multiparametric US models, quantitative so-
nographic biomarkers should be evaluated not only in terms of 
their absolute diagnostic value, but also their incremental value 
relative to other readily available sonographic biomarkers. These 
models may be used as enrichment biomarkers to select patients 
with high-risk NASH for future clinical trials. More studies are 
needed to understand the role of these models.

Artificial Intelligence
AI applications in liver US imaging are growing quickly, with 
many innovative approaches reported in the literature (52). 
For example, Byra et al (53) recently developed image analysis 
algorithms to detect PDFF-defined steatosis on multiview US 
images. Multiview algorithms could diagnose greater than 5% 
steatosis with an AUC of 0.91 and greater than 10% steatosis 
with an AUC of 0.86. Combining US images from multiple 

Figure 6: Diagram shows liver fat quantification with the acoustic structure quantification (ASQ), normalized local  
variance (NLV), and Nakagami parameter methods. (A) ASQ and NLV are calculated by comparing the theoretical and 
real envelope distributions of backscattered US signal (purple and red distribution curves). The magnitude of the fitting  
between these two curves is calculated as the Cm2 value. This value is calculated in multiple small regions of interest (ROIs). 
(B) The distribution of these multiple Cm2 values is plotted. The ASQ method uses the differences between these plots to 
differentiate fibrotic tissue. NLV is calculated according to similar principles; however, it is mainly used for steatosis quantifica-
tion. (C) The Nakagami parameter is the variation in the shape of the envelope distribution of backscattered US signal (red 
distribution on the blue curve). This variation is estimated as the m value, which is also called shape parameter. Higher m values 
are observed in fatty liver tissues.
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views with the help of deep learning may be valuable, as it would 
provide a whole-organ assessment of the liver tissue.

AI methods for radiofrequency signal processing have also 
been studied. For example, Han et al (54) used a deep learning 
approach to classify US radiofrequency data to quantify steato-
sis by accepting MRI PDFF values as the reference standard. The 
authors reported a strong linear relationship between the deep 
learning–predicted fat fraction and MRI PDFF results (Pearson 
r = 0.85). Jeon et al (55) used two-dimensional neural networks to 
study B-mode images and tissue scatter distribution imaging and 
tissue attenuation imaging data in a PDFF-defined sample of pa-
tients with NAFLD. The algorithm output could identify greater 
than 5% steatosis with an AUC of 0.97 (95% CI: 0.93, 0.99), 
which was higher than tissue attenuation imaging, tissue scatter 

distribution imaging, and B-mode–based visual deci-
sion (P = .01, P = .006, and P < .001, respectively). 
These results show that analyzing radiofrequency data 
with the help of deep learning may provide superior 
performance in the diagnosis of steatosis compared 
with existing conventional methods.

AI in US is rapidly evolving, with multiple FDA-
cleared models commercially available, particularly 
for cardiac applications. Despite emerging literature, 
FDA-cleared NAFLD-focused AI-enabled devices 
are not yet widely available (56). Currently, most of 
the published US NAFLD management algorithms 
focus on diagnostic accuracy. However, early disease 
detection, reprioritization of cases for radiologist re-
view, and personalized diagnostics by comparing 
prior examinations are alternative approaches that 
may improve NAFLD management (57,58). To give 
specific examples, early AI-enhanced steatosis quanti-
fication may be helpful for making lifestyle changes 
earlier in life. Identifying patients at risk for develop-
ing advanced CLD, like those with high-risk NASH, 
from US images and reprioritizing these images for 
more detailed review could facilitate better detection. 
Comparing prior US images and analyzing the differ-
ences in liver tissue characteristics may ultimately be 
important for monitoring treatment response.

Consensus Efforts
Several expert societies and committees have con-
vened groups to develop guidelines and consensus 
recommendations based on multicenter phantom 
and clinical studies. These activities are necessary, as 
complex multiparametric quantitative imaging meth-
ods require standardization to minimize variability. 
The Society of Radiologists in Ultrasound and the 
RSNA Quantitative Imaging Biomarkers Alliance, or 
QIBA, Ultrasound Shear Wave Speed Committees 
developed separate but complementary recommen-
dations for SWE practice that aim to aid interpreta-
tion and decrease variability (37,59).

The American Institute of Ultrasound in Medi-
cine/RSNA QIBA Pulse-Echo Quantitative US 
group has been working to develop consensus 

guidelines and profiles for attenuation, backscatter coefficient, 
and SoS methods (7).

Conclusion
Since the late 1960s, scientists have studied hepatic fat ac-
cumulation with conventional sonographic imaging tech-
niques (60,61). In the intervening years, advances in US 
hardware, signal processing, computational efficiency, and 
analytic algorithm development have led to new, exciting, 
and powerful quantitative imaging tools that promise to in-
crease hepatic steatosis diagnostic accuracy and reliability.

Early nonalcoholic fatty liver disease (NAFLD) diagnosis 
and timely clinical management are the main motivating fac-
tors for developing noninvasive biomarkers. The low cost, wide 

Figure 7: Shear-wave elastography (SWE) signal quality may be affected by the thickness of 
the subcutaneous tissue or skin-to–liver capsule distance. (A) SWE image in a 74-year-old female 
patient with clinically suspected nonalcoholic fatty liver disease (NAFLD). SWE examination was 
performed, and a complete SWE value pixel map was observed. The shear-wave speed, or SWS, 
color spectrum is presented on the left side (red, high SWS; dark blue, low SWS). Skin-to–liver 
capsule distance was estimated as 1.8 cm (vertical yellow line). The SWS value is presented in 
the bottom left corner of the image. SWS values are generated from the circular region of interest. 
(B) SWE image in a 35-year-old female patient with clinically suspected NAFLD. SWE examination 
was performed, and poor SWE value pixel map fill-in was observed. Skin-to–liver capsule distance 
was estimated as 3.6 cm (vertical yellow line). The SWS value is presented in the top left corner of 
the image. SWS values are generated from the circular region of interest.
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availability, and lack of harm of diagnostic US com-
bined with the prevalence and public health impor-
tance of NAFLD suggest that US-based techniques 
will continue to be used for the foreseeable future. 
Limited evidence, device and operator variability, and 
patient-related factors like obesity are common limi-
tations for some US biomarkers. Innovative research 
that combines multiparametric sonographic param-
eters with advanced machine learning and acoustic 
signal processing techniques are likely to further im-
prove the clinical utility of diagnostic US in NAFLD 
care. Advanced sonographic techniques are likely to 
grow further and become an integral part of NAFLD 
care for diagnosis, risk stratification, and response to 
therapy assessment in the next few years.
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