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Abstract 

Essential proteins play a vital role in development and reproduction of cells. The identification of essential proteins 
helps to understand the basic survival of cells. Due to time-consuming, costly and inefficient with biological experi-
mental methods for discovering essential proteins, computational methods have gained increasing attention. In 
the initial stage, essential proteins are mainly identified by the centralities based on protein–protein interaction (PPI) 
networks, which limit their identification rate due to many false positives in PPI networks. In this study, a purified PPI 
network is firstly introduced to reduce the impact of false positives in the PPI network. Secondly, by analyzing the 
similarity relationship between a protein and its neighbors in the PPI network, a new centrality called neighborhood 
similarity centrality (NSC) is proposed. Thirdly, based on the subcellular localization and orthologous data, the protein 
subcellular localization score and ortholog score are calculated, respectively. Fourthly, by analyzing a large number of 
methods based on multi-feature fusion, it is found that there is a special relationship among features, which is called 
dominance relationship, then, a novel model based on dominance relationship is proposed. Finally, NSC, subcellular 
localization score, and ortholog score are fused by the dominance relationship model, and a new method called NSO 
is proposed. In order to verify the performance of NSO, the seven representative methods (ION, NCCO, E_POC, SON, 
JDC, PeC, WDC) are compared on yeast datasets. The experimental results show that the NSO method has higher 
identification rate than other methods.

Keywords:  Essential proteins, Neighborhood similarity centrality, Protein–protein interaction, Multi-feature fusion, 
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Introduction
Essential/lethal proteins are one of the most critical mac-
romolecules in living organisms, and their deficiency can 
lead to stopping growth, reproduction, and even death 
[1–3] of cells. Therefore, it has great significance to pre-
dict essential proteins, which helps reveal cellular molec-
ular mechanisms [4] and discovers new biomarkers and 
drug targets [5].

There are roughly two types of methods for predicting 
essential proteins. One is biological experimental meth-
ods, and the other is computational methods. The bio-
logical experimental methods include gene knockout [6], 
RNA interference [7], and conditional knockouts [8], etc., 
while are time-consuming, expensive, and low efficient. 
Therefore, there is an urgent need to develop rapid, eco-
nomical, high efficient essential proteins identification 
methods. The computational methods meet the need.

These computational strategies depend on one or many 
features, which can generally be divided into topology-
based features and sequence-based ones. The topology-
based features find the essentiality of nodes (proteins) in 
protein–protein interaction (PPI) networks. Degree cen-
trality (DC) [9], betweenness centrality (BC) [10], close-
ness centrality (CC) [11], subgraph centrality (SC) [12], 
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eigenvector centrality (EC) [13], information central-
ity (IC) [14] and neighborhood centrality (NC) [15],etc., 
are the representative topology-based methods/features. 
They can intuitively reflect the importance of proteins in 
the networks, but their recognition rate is low due to a 
large number of false positives in PPI networks.

The sequence-based features can be extracted based 
on different data, such as subcellular localization data 
[16], evolutionary conservation data [17–19], and gene 
expression data [20, 21]. However, due to the heterogene-
ity and incomparability of these data, the relations among 
extracted features from these data are less analyzed how 
affect the identification rate of essential proteins.

In order to improve essential proteins recognition rate, 
more and more researchers propose fusion methods, 
some are based on data fusion, others are based on multi-
feature fusion. Wang et  al. [22] constructed a dynamic 
proteins interaction network (DPIN) by combining gene 
expression data to PPI data, that calculated the activ-
ity threshold of each gene based on the gene expression 
data used the three-sigma principle. Then, many meth-
ods were proposed by fusing gene expression data to 
PPI data, such as NF-APIN [23], DPPN [24]. Then other 
data was used to purify PPI networks. Li et al. [25] con-
structed a spatial and temporal active proteins interac-
tion network (ST-APIN) by integrating time-course gene 
expression data and subcellular localization information. 
From these representative methods, one can see that the 
effect of false positives in PPI data is reduced by fusing 
other data to PPI data.

The multi-feature fusion methods integrate features 
using fusion model, such as linear model, random walk 
model, Pareto Optimal Consensus model. Tang et al. [26] 
extracted two features, edge clustering coefficient (ECC) 
and Pearson correlation coefficient (PCC) from PPI net-
work data and gene expression data, respectively. Then, 
a linear model was used to fuse these two features, and 
the WDC method was proposed. The OGN [27] method 
used a linear model to integrate two types of features 
extracted from ortholog information, gene expression 
profiles and PPI networks. Li et  al. [28] extracted three 
features from PPI data, subcellular localization data and 
orthologous data, respectively, used a linear model to 
fuse them, and proposed a new method SON.

Multiplication is also used for multi-feature fusion. The 
PeC method [29] used multiplication to combine ECC 
and PCC to calculate the scores of the proteins. The JDC 
method [30] multiplied two classes of features, Jaccard 
similarity coefficient and ECC, to predict essential pro-
teins. In the TEGS method [31], multiplication is used to 
combine ECC, SLC, PCC, and GO_sim.

Meanwhile, random walk model and its extended mod-
els are also used for multi-feature fusion. ION [32] used 

the random walk model to fuse two features extracted 
from ortholog information and PPI information. An 
extended random walk model was also adopted to inte-
grate subcellular localization and ortholog information in 
the NTMEP method [33].

Li et al. found a phenomenon among multiple features, 
if any feature score of protein A is higher than that of 
protein B, then protein A is more likely to be an essential 
protein than protein B. This phenomenon meets Pareto 
Optimal Consensus (POC) theory. NCCO [34] combined 
orthologous feature and neighborhood closeness central-
ity (NCC) using an extended POC model. The E_POC 
method [35] also fused two kinds of features based on an 
extended POC model.

From the above know, there are mainly two kinds of the 
features used to find essential proteins, one is topology-
based features, the other is sequence-based features. Due 
to a large number of false positives in PPI networks, the 
topology-based methods/features have low identification 
rate. The multi-feature fusion methods have higher dis-
covery rate, but they seldom consider the relation among 
features. The NCCO and E_POC methods think the rela-
tion among features meet POC theory, but it is not com-
prehensive. After a large number of analyzing, it is found 
that the relation among features is more meet the domi-
nance relation in this study. When most feature values of 
protein A have a large enough dominance over protein B, 
even if proteins A has small relatively weak feature val-
ues, protein A should prefer to be the essential protein. 
This phenomenon is called protein A dominates protein 
B.

For these cases, to reduce the reflect of false positives 
in PPI networks, a purified PPI network is firstly con-
structed in this paper. Then a new centrality with high 
recognition rate, neighborhood similarity centrality 
(NSC), is proposed based on the purified PPI network. 
Next, the subcellular localization score (Sub) and the 
ortholog score (OS) of each protein are calculated based 
on the subcellular localization data and the orthologous 
data, respectively. Finally, NSC, Sub and OS are fused 
based on a dominance relationship model, a new method 
called NSO, is proposed. In order to verify the perfor-
mance of NSO, yeast datasets are used to test, and seven 
representative essential proteins identification methods, 
such as ION, NCCO, E_POC, SON, JDC, PeC and WDC, 
are compared. The experimental results show that the 
NSO method has higher identification rate than other 
methods.

Methods
By summarizing the existing methods, we find their com-
mon deficiencies. (1) These features have low recognition 
rate due to the influence of many false positives in input 
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data; (2) these methods seldom consider relationships 
among features or do not consider comprehensively. To 
face these deficiencies, in this paper, the NSO method 
is proposed. Its overall flow figure is shown in Fig.  1. 
(1) Construction of purified PPI network. To reduce 
the influence of false positives in PPI network, the gene 
expression data is fused with the original PPI network, 
a purified PPI network is constructed. (2) Extraction of 
neighborhood similarity centrality NSC. By analyzing the 
similarity between proteins and their neighbors in the 
purified PPI network, NSC is extracted. (3) Extraction of 
subcellular localization score Sub. Sub is extracted from 
subcellular localization data. (4)Extraction of ortholog 
score OS. OS is extracted from orthologous proteins 
data. (5) Dominance relationship and NSO algorithm. 
The dominance relationship model is developed to fuse 
the three scores of proteins to obtain the final scores, and 
the NSO algorithm is proposed in full. The process is 
described in detail as follows.

Construction of purified PPI network
The construction of purified PPI networks [22] is based 
on the co-expression principle. The co-expression princi-
ple is that two proteins occur interaction only when they 
are all expression state at the same time. The interactions 
in PPI network are deleted when two proteins are not 

expression state at the same time. So, to determine the 
expression state of proteins is important. In this paper, 
the steps to determine the expression state of proteins are 
described as follows. Firstly, an activity threshold Act_th 
is used to determine whether a gene is expression state or 
not, which is defined as follows:

where u(i) and σ(i) denote the mean and standard devia-
tion of gene expression values of protein i, respectively, 
F(i) denote the volatility of gene expression values of 
protein i. If the expression level of a gene exceeds its 
Act_th at a certain time point, it is considered to be in an 
expression state at that instant. Then, the gene expres-
sion matrix is processed into the gene expression activity 
matrix (GM), which is defined as:

where g(i, t) represents the gene expression value of 
protein i at time t. Secondly, the original PPI network is 
converted into an adjacency matrix (ADM). Then, GM is 

(1)Act_th(i) = u(i)+ 3σ(i)× (1− F(i))

(2)F(i) = 1/

(

1+ σ(i)2
)

(3)GM(i, t) =

{

1, g(i, t) > Act_th(i)
0, otherwise

Fig.1  Theoverall flow of the NSO method
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integrated into ADM by co-expression principle, a new 
purified adjacency matrix is obtained and denoted as 
New_AM, which is defined by the formula:

where i,j ∈ V (i,j = 1,…, N), N is the total number of pro-
teins in PPI network. Finally, New_AM is converted into a 
purified PPI network.

Extraction of neighborhood similarity centrality NSC
By analyzing the similar relationship between proteins 
and its neighbors in the purified PPI network, a phe-
nomenon is found. If proteins i and j exist an interaction, 
protein z is their common neighbor, T(z) and D(z) are the 
number of triangles formed by protein z with its neigh-
bors and the degree of protein z, respectively, the ratio of 
T(z) to D(z) affects the strength of interaction between 
proteins i and j. This phenomenon is described as the 
neighborhood similarity coefficient (NSC). Firstly, neigh-
borhood similarity (NS) relation is defined as follows:

where Ne(i) ∩ Ne(j) represents the common neighbor set 
between proteins i and j. D(i), D(j) and D(z) denote the 
degrees of proteins i, j and z, respectively. min() is the 
minimum function. D(z) + 1 in the denominator is to pre-
vent the case that D(z) is zero. The larger the NS value 
the interaction, the more reliable the interaction is. The 
SNS(i) value of protein i is the sum of the NS values of all 
neighbors of protein i in the purified PPI. Therefore, for 
protein i, its SNS(i) is defined as follows:

where Ne(i) represents the set of neighbors of protein i. 
In order to keep each feature value in the same range, 
SNS value is normalized to the neighborhood similarity 
centrality (NSC) value, which is defined as follows:

where max() represents the maximum value function.

Extraction of subcellular localization score Sub
Studies have shown that the subcellular localization 
of protein is related to its function. Thus, subcellular 
localization information facilitates the recognition of 
essential proteins. The number of occurrences of the 

(4)New_AM
�

i, j
�

=







1, ifADM
�

i, j
�

= 1 and

∃t,GM(i, t) = GM
�

j, t
�

= 1

0, otherwise

(5)NS
(

i, j
)

=

∑

z∈Ne(i)∩Ne(j)

T (z)/(D(z)+ 1)

min
(

D(i)− 1,D
(

j
)

− 1
)

(6)SNS(i) =
∑

j∈Ne(i)

NS
(

i, j
)

(7)NSC(i) =
SNS(i)

max(SNS)

subcellular localizations of the top/bottom 5% proteins 
in results of ION [32] are counted and denoted as Fi(s) 
and Li(s),respectively. Where s represents the common 
11 subcellular localization. Then, subcellular localization 
coefficient LCC(s) is defined as:

where, sum(Fi) and sum(Li) represent the total number 
of subcellular localizations in the top/bottom 5% of pro-
teins, respectively. For a protein i, its subcellular localiza-
tion score S_LCC(i) is defined as the sum of LCC(s) of all 
the subcellular localizations it appears.

where Sn(i) represents a set of subcellular localizations 
of protein i. To balance the effect of different scores, S_
LCC(i) is normalized to obtain the subcellular localiza-
tion score,Sub(i), using the following formula:

where max() is the maximum value function.

Extraction of ortholog score OS
Ortholog score OS [32] is used to measure the conserva-
tion property of proteins. Usually, the higher the ortholog 
score of a protein, the more conserved it is, the more 
likely to be essential. The OS(i) of protein i is defined as 
follows:

where NOS(i) represents the number of ortholog refer-
ence species of protein i exists, and max() represents the 
maximum value function.

Dominance relationship and NSO algorithm
By analyzing a large number of essential proteins recog-
nition methods based on multi-feature fusion, a phenom-
enon among features is found. When most feature values 
of protein i have a large enough dominance over protein 
j, even if proteins i has small relatively weak feature val-
ues, protein i should prefer to be the essential protein. 
This phenomenon is called protein i dominates protein j. 
The dominance relationship is defined as follows:

(1)	
n
∑

m=1

Am(i) >
n
∑

m=1

Am

(

j
)

(2)	 ∀m,Am(i) > Am

(

j
)

− ϕ

(8)LCC(s) =
Fi(s)

sum(Fi)
+

Li(s)

sum(Li)

(9)S_LCC(i) =
∑

s∈Sn(i)

LCC(s)

(10)Sub(i) =
S_LCC(i)+max(S_LCC)

Max(S_LCC(i)+max(S_LCC))

(11)OS(i) =
NOS(i)

max(NOS)
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where A denotes the set of features A(A1,A2,…,An), 
Am denote the mth feature value, ϕ represents the reg-
ulatory factor and is a small positive number. If protein 
i satisfies the characteristic dominance relation for j, it 
is denoted as: i ⊲ j. Then, according to the dominance 
relation, a dominance relationship model is designed 
for multi-feature fusion. The design idea of fusion 
model is as follows: for three feature scores NSC, Sub 
and OS, NSC and Sub should be firstly fused due to 
interaction between proteins occurs only in the same 
subcellular localization. The dominance relationship 
model is defined as follows:

where α is between [0,1], ϕ represents the regulatory fac-
tor, which is a small positive number. The final score for 
protein i, FS(i), is defined as:

where V represents the set of all nodes in the PPI net-
work. All proteins are then sorted in descending order 
according to their FS values. A protein with higher rank 
is more likely to be essential. The NSO algorithm is 
described as follows: 

(12)DL(i, j) =











�

α ×
�

NSC(i)− NSC(j)+ ϕ
�

+ (1− α)×
�

Sub(i)− Sub(j)+ ϕ
��

×
�

OS(i)− OS(j)+ ϕ
�

, if i ⊳ j

0, otherwise

(13)FS(i) =
∑

j∈V

DL
(

i, j
)

Results
Before the analysis of the performance of NSO, the 
parameter α and the regulatory factor ϕ in the dominance 
relationship model are firstly analyzed. To adequately 
analyze the performance of NSO, multiple yeast data-
sets are used to test, and seven representative essential 
proteins identification methods, such as ION, NCCO, 
E_POC, SON, JDC, PeC and WDC, are compared. Three 
mainstream validation methods are employed: histo-
gram, Precision–Recall curve, and Jackknife curve. Fur-
thermore, in order to verify the effectiveness of NSC, it 
is compared against six classical centrality methods: DC, 

IC, SC, CC, EC, and NC.

Experimental data
There are three PPI networks on S.cerevisiae (yeast) in this 
study. The first PPI network was downloaded from the DIP 
database [36], contained 5,093 proteins and 24,743 inter-
actions, named Y5093. The second PPI network was con-
structed by Yu et al. [37] and contained 4,743 proteins and 
23,294 interactions, called Y4743. The third PPI network 
derived from a paper [38], which contained 2,708 proteins 
and 7,123 interactions, named Y2708.

The gold standard dataset of essential proteins integrated 
MIPS [39], SGD [40], DEG [4] and SGDP [41], which con-
tained 1,285 true essential proteins on S.cerevisiae.

The gene expression dataset of S. cerevisiae was con-
structed by Tu et  al. [42], which contained 6,777 genes 
expression values at 36 time points for sampling.

The subcellular localization dataset of S. cerevisiae was 
obtained from COMPARTMENTS database [43], which 
contained 20,6831 subcellular localization records on 
5,095 proteins.

The ortholog dataset of S. cerevisiae derived from Version 
7 of the InParanoid database [44],which was a set of pairwise 
comparisons of 100 whole genomes (99 eukaryotes and 1 
prokaryote) constructed by the INPARANIOD program.

Analysis of parameter α and regulatory factor ϕ
In the NSO algorithm, two parameters are included, 
which are the parameter α and the regulatory factor ϕ . 
The parameter α is used to adjust the contributions of 
NSC and Sub; its value is set as 0, 0.1,…, 1,respectively. 
The regulatory factor ϕ regulates the dominance relation-
ship between proteins in certain feature value; its value is 
set as 0, 0.01,…, 0.1,respectively.
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Table 1 shows the identification results by different val-
ues of α on Y5093 to analyze impact of parameter α on 
the performance of NSO. As shown in Table  1, when α 
values from 0.7 to 0.9, the result of NSO is better. In par-
ticular, when α is 0.9, the identification result is the best. 
Therefore, in this paper, the optimal value of α is set as 
0.9.

The discovery results based on different values of ϕ on 
Y5093 is shown in Table 2 to analyze impact of the regu-
latory factor ϕ on the performance of NSO. In Table  2, 
when ϕ is 0, the identification performance of NSO is rel-
atively poor; when it is set as other values, NSO can pre-
dict more essential proteins. In particular, when ϕ is 0.09, 
the overall identification capability of NSO is awfully 
excellent, so ϕ is set to 0.09.

Validated by histograms
The histogram is used to verify the performance of the 
NSO method and other methods. The top 100, 200, 300, 
400, 500, and 600 proteins identified by these methods, 
respectively, are selected as candidate essential proteins. 
Then, based on the gold standard set of essential proteins, 
the number of true essential proteins correctly identified 
by these methods is counted.

Figure  2 shows the number of true essential proteins 
correctly identified by these methods on Y5093. As shown 
in Fig. 2a, NSO finds 92 true essential proteins, E_POC 
and NCCO find 84 true essential proteins, respectively, 

SON identifies 81 essential proteins, the other methods 
do not exceed 79. In Fig. 2b, the number of essential pro-
teins identified by NSO is the most, reaching 176. Com-
pared with SON(161), E_POC(157), NCCO(157), JDC 
(152), ION(150), WDC(132) and PeC(133), the number 
of essential proteins identified by NSO(176) increases 
15, 19, 19, 24, 26, 44 and 43, respectively. As shown in 
Fig.  2c, NSO is only method that finds more than 253 
essential proteins. The number of true identified essential 
proteins of SON, E_POC, NCCO, JDC, ION, WDC and 
PeC are 232, 227, 227, 220, 216, 196 and 189, respectively. 
In Fig.  2d, SON, E_POC, NCCO, JDC, ION, WDC and 
PeC discovery 293, 284, 282, 267, 280, 242 and 247 essen-
tial proteins, respectively. Compared with these methods, 
NSO finds 319 essential proteins, that improves by 8.87%, 
12.32%, 13.12%, 19.47%, 13.92%, 31.81% and 29.15%, 
respectively. In Fig.  2e, NSO(371) is 25, 33, 34, 57, 45, 
86 and 72 more than SON, E_POC, NCCO, JDC, ION, 
WDC and PeC, respectively. In Fig. 2f, 403, 394, 392, 356, 
374, 324 and 341 essential proteins are identified by SON, 
E_POC, NCCO, JDC, ION, WDC and PeC, respectively, 
while 419 essential proteins are identified by NSO. Over-
all, NSO correctly identifies the most essential proteins 
among all methods, and it has the best performance on 
Y5093.

Figure 3 presents the prediction results of these meth-
ods on Y4743. Based on Fig. 3, it is evident that NSO is 
significantly ahead of the other methods in correctly 

Table 1  Impact of parameter α on the performance of NSO on Y5093

Bold values indicate the best performing results in each TOP dimension

α 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

TOP 100 77 82 85 86 91 91 91 91 93 92 92

TOP 200 167 166 168 169 170 171 168 172 171 171 171

TOP 300 239 239 240 244 241 243 243 247 246 240 237

TOP 400 295 296 298 298 300 301 302 305 304 302 291

TOP 500 346 346 345 345 346 347 347 348 349 349 346

TOP 600 384 386 387 387 388 387 389 391 393 395 389

Table 2  Impact of the regulatory factor ϕ on the performance of NSO on Y5093

Bold values indicate the best performing results in each TOP dimension

ϕ 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

TOP 100 92 92 92 92 93 92 91 91 91 92 92

TOP 200 171 172 172 173 174 173 174 174 174 176 176

TOP 300 240 245 248 249 251 248 250 251 253 253 251

TOP 400 302 309 307 311 315 315 314 317 319 319 315

TOP 500 349 366 367 366 368 368 369 370 370 371 371

TOP 600 395 416 420 419 418 418 417 420 421 419 419
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identifying essential proteins. In Fig.  3a, NSO identi-
fies 92 true essential proteins, SON, E_POC, NCCO, 
JDC, ION, WDC and PeC identify 63, 79, 74, 73, 78, 
38 and 72 respectively. In Fig.  3b, there are only four 
methods that find more than 150 essential proteins, 

and they are NSO(173), E_POC(155), NCCO(156) and 
ION(154). NSO is 18, 17 and 19 higher than E_POC, 
NCCO and ION, respectively. As shown in Fig.  3c, 
compared with NCCO(228), E_POC(225), SON(219), 
ION(212), JDC(175), PeC(160) and WDC(149), 

Fig.2  NSO and other methods predict the number of true essential proteins on Y5093

Fig.3  NSO and other methods predict the number of true essential proteins on Y4743
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NSO(244) increases 16, 19, 25, 32, 69, 84 and 95, 
respectively. In Fig.  3d, NSO identifies 306, which are 
22, 23, 24, 24, 77, 87 and 91 higher than E_POC(284), 
NCCO(283), SON(282), ION(282), JDC(229), PeC(219) 
and WDC(215),respectively. As shown in Fig. 3e, f, NSO 
identifies 357 and 400, respectively, which is significantly 
ahead of the other methods. In summary, NSO finds out 
the most essential proteins on Y4743.

The results of these methods based on Y2708 are 
shown in Fig.  4. In Fig.  4a, NSO, SON, E_POC and 
NCCO identify 80, 79, 90 and 83 essential proteins, 
respectively, the other methods do not exceed 73. 
As shown in Fig.  4b, compared with NCCO(148), E_
POC(145), SON(143), ION(140), JDC(138), PeC(135) 
and WDC(141), NSO(159) increases 7.43%, 9.65%, 
11.18%, 13.57%, 15.22%, 17.78% and 12.76%, respectively. 
In Fig. 4c, NSO(230) increases 17, 25, 33, 43, 34, 45 and 
38 than SON(213), E_POC(205), NCCO(197), JDC(187), 
ION(196), WDC(185) and PeC(192), respectively. As 
shown in Fig. 4d–f, among the TOP 400–600 candidate 
proteins, NSO and SON are the two methods with the 
highest recognition rates among these methods. NSO 
identifies 289, 345, and 384,respectively. The number of 
true essential proteins discovered by SON is 267, 326 and 
379,respectively. Undoubtedly, NSO has the best perfor-
mance on Y2708.

Comparison based on Precision–Recall curve
The Precision–Recall curve is used to evaluate the per-
formance of algorithm. The larger the AUC area of the 
Precision–Recall curve, the better the performance of 
algorithm is.

Figure  5 shows the Precision–Recall curves for these 
methods on Y5093. The AUC values of NSO, SON and 
E_POC are 0.4223, 0.4170 and 0.4095, respectively, which 

Fig.4  NSO and other methods predict the number of true essential proteins on Y2708

Fig.5  Comparison based on Precision–Recall curves of NSO and 
other methods on Y5093
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are significantly higher than 0.4027, 0.3946, 0.3807, 
0.3512 and 0.3666 of ION, NCCO, JDC, PeC and WDC, 
respectively.

The Precision–Recall curve based on Y4743 is shown 
in Fig. 6. The Precision–Recall curve of NSO has obvious 
advantages over the curves of other methods, and PeC 
has the worst performance. Compared with ION(0.4149), 
E_POC(0.4088), SON(0.4002), NCCO(0.4018), 
JDC(0.3849), WDC(0.3587) and PeC(0.3547), the AUC 
values of NSO(0.4260) increases 2.67%, 4.20%, 6.44%, 
6.02%, 10.67%, 18.76% and 20.10%, respectively.

The comparison results based on the Precision–Recall 
curve for these methods on Y2708 are shown in Fig.  7. 
Three curves of NSO, SON and ION are higher than 
the others. The AUC values of NSO, SON and ION are 
0.4964, 0.4907 and 0.4886, respectively. The AUC val-
ues of NCCO, E_POC, JDC, PeC and WDC are 0.4248, 
0.4752, 0.4124, 0.4081 and 0.4301, respectively.

Comparison based on Jackknife curves
The Jackknife curve serves as a common tool for com-
paring algorithm performance, assessing the strength 
of algorithms based on the AUC value of the Jackknife 
curve.

Figure  8 shows the Jackknife curves based on Y5093. 
As can be seen from Fig. 8, it becomes evident that NSO 
outshines other methods by a significant margin. The 
AUC value of the NSO Jackknife curve is 141,903. The 
AUC values of the Jackknife curves of SON, E_POC, 
NCCO, ION, JDC, WDC and PeC are 131,702, 128,816, 
128,436, 123,974, 121,450, 110,879 and 108,080, respec-
tively. Compared with these methods, the AUC value of 

NSO increases 7.74%, 10.16%, 10.48%, 14.46%, 16.84%, 
27.98% and 31.29%, respectively.

On Y4743, the Jackknife curves are shown in Fig.  9. 
These curves can be divided into three tier. It can be seen 
that NSO is in the first-tier, while NCCO, E_POC, ION, 
and SON are in the second-tier, and JDC, PeC, and WDC 
are in the third-tier. The AUC value of NSO is 137,314, 
higher than the second-tier methods NCCO(127,340), 
E_POC(127,108), ION(125,568), and SON(124,668), 
and significantly higher than the third-tier methods 
JDC(104,775), WDC(95,594.5), and PeC(93,531).

Figure  10 shows the comparison results based on the 
Jackknife curve on Y2708. From the figure, the AUC 

Fig.6  Comparison based on Precision–Recall curves of NSO and 
other methods on Y4743

Fig.7  Comparison based on Precision–Recall curves of NSO and 
other methods on Y2708

Fig.8  Comparison based on Jackknife curves between NSO and 
other methods on Y5093
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values of NSO, SON, E_POC, NCCO, ION, WDC, JDC, 
and PeC are 130,026, 122,982, 119,184, 112,126, 111,020, 
106,208, 103,358 and 103,092, respectively. Compared 
with E_POC, NCCO, ION, WDC, JDC, and PeC, the 
AUC value of NSO increases 7044, 10,842, 17,900, 
19,006, 23,818, 26,668, and 26,934, respectively.

Comparing NSC to other 6 centralities
To evaluate the effectiveness of NSC, six classical cen-
tralities are compared on three datasets. Table  3 shows 
the results of these centrality methods based on the 
three purified PPI networks. It is evident that NSC com-
prehensively outperforms other centralities in terms of 

performance on Y5093. On Y4743 and Y2708 datasets, 
NSC and other centrality methods have wins and losses, 
but from the overall results, NSC is still able to outper-
form other methods.

To further evaluate the effectiveness of NSC, the aver-
age values of NSC for both essential and non-essential 
proteins are analyzed and listed in Table  4. As shown 
in Table  4, the average NSC values of essential proteins 
is almost more than twice that of non- essential pro-
teins. Furthermore, based on Y5093, the top 20 pro-
teins according to their NSC scores are listed in Table 5. 
In Table  5, among the top 20 ranked proteins, 85% are 
essential proteins. It is further confirmed the effective-
ness of NSC in identifying essential proteins。

Enrichment analysis
Figure 11 shows pathways or GO terms enrichment anal-
yses of the top 600 predicted proteins by NSO in three 
PPI networks. The Metascape tool is used for enrichment 
analysis, which is a user-friendly and powerful online gene 
function annotation analysis tool [45], and its website is 
http://​metas​cape.​org/​gp/. Figure  11A shows the top 10 
pathways or GO terms in the biological pathway cluster-
ing analysis of the top 600 predicted proteins by NSO on 
Y5093, which are mainly enriched in GO:002613 (ribonu-
cleoprotein complex biogenesis), GO:0071826 (ribonu-
cleoprotein complex subunit organization), GO:0016071 
(mRNA metabolic process), R-SCE-983169 (Class I 
MHC mediated antigen processing&presentation), 
R-SCE-69278 (Cell Cycle, Mitotic), WP425 (Eukaryotic 
transcription initiation), GO:0042273 (ribosomal large 
subunit biogenesis),GO:0031123 (RNA 3’-end process-
ing), sce03020 (RNA polymerase—Saccharomyces cer-
evisiae), and GO:0006281 (DNA repair). The top 10 
pathways or GO terms in the biological pathway clus-
ter analysis of the top 600 proteins predicted by NSO 
based on Y4743 are shown in Fig. 11B. They are mainly 
enriched in GO:0022613 (ribonucleoprotein complex 
biogenesis), GO:0071826 (ribonucleoprotein complex 
subunit organization), GO:0042273 (ribosomal large 
subunit biogenesis), sce03040 (Spliceosome—Saccha-
romyces cerevisiae), R-SCE-69278 (Cell Cycle, Mitotic), 
R-SCE-392499 (Metabolism of proteins), R-SCE-73894 
(DNA Repair), GO:0006281 (DNA Repair), GO:0006913 
(nucleocytoplasmic transport), and sce03420 (Nucleo-
tide excision repair—Saccharomyces cerevisiae). The 
results of biological pathway clustering analysis of the 
top 600 proteins on Y2708 predicted by NSO are shown 
in Fig.  11C. Among them, the top 10 pathways or GO 
terms are GO:0006396 (RNA processing), GO:0032774 
(RNA biosynthetic process), GO:0016071 (mRNA meta-
bolic process), GO:0043933 (protein-containing com-
plex organization), R-SCE-674695 (RNA Polymerase II 

Fig.9  Comparison based on Jackknife curves between NSO and 
other methods on Y4743

Fig.10  Comparison based on Jackknife curves between NSO and 
other methods on Y2708

http://metascape.org/gp/
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Pre-transcription Events), GO:0006974 (cellular response 
to DNA damage stimulus), GO:0019219 (regulation of 
nucleobase-containing compound metabolic process), 
R-SCE-69278 (Cell Cycle, Mitotic), GO:0006325 (chro-
matin organization), and GO:0044265 (cellular macro-
molecule catabolic process).

Table 3  Performance comparison of NSC with other centralities

Bold values indicate the best performing results in each TOP dimension

Top100 Top200 Top300 Top400 Top500 Top600

Y5093

DC 49 101 154 205 258 298

IC 13 31 53 67 82 99

EC 67 122 185 224 265 308

SC 67 121 181 224 266 305

CC 43 83 116 155 199 235

NC 83 144 201 248 291 342

NSC 85 148 211 263 310 356
Y4743

DC 86 145 199 264 321 359

IC 16 33 50 68 75 92

EC 89 157 225 281 327 355

SC 89 157 225 281 327 355

CC 70 138 197 237 276 307

NC 84 134 217 281 338 388

NSC 87 140 208 285 341 389
Y2708

DC 74 130 182 231 264 299

IC 28 49 76 97 113 131

EC 60 117 153 193 237 273

SC 66 140 178 212 256 292

CC 54 102 140 191 236 280

NC 73 128 184 230 263 312
NSC 68 123 180 234 277 311

Table 4  The average NSC scores of essential/non-essential 
proteins

T_Avg and F_Avg represent the average NSC values of essential and 
non-essential proteins, respectively

Y5093 Y4743 Y2708

T_Avg 0.0477 0.0501 0.0676

F_Avg 0.0218 0.0175 0.0395

Table 5  The list of the top 20 proteins identified by NSC

Rank Protein name essential NSC Rank Protein name essential NSC

1 YKR081C 1 1.00 11 YPL043W 1 0.55

2 YPR016C 1 0.96 12 YAL043C 1 0.54

3 YNL061W 1 0.95 13 YER126C 1 0.51

4 YMR049C 1 0.95 14 YLR115W 1 0.51

5 YER133W 1 0.91 15 YHR197W 1 0.50

6 YHR066W 0 0.71 16 YKL059C 1 0.48

7 YNL110C 1 0.67 17 YDR301W 1 0.47

8 YCR057C 1 0.62 18 YGL111W 1 0.45

9 YGR103W 1 0.60 19 YLR074C 0 0.45

10 YIL035C 0 0.56 20 YGR090W 1 0.44
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Conclusion and discussion
Essential proteins play a crucial role in cellular activi-
ties. Therefore, the identification of essential proteins 
can help us reveal the molecular mechanism of cells 
and find new biomarkers and drug targets, which is of 
great significance. In this study, a new algorithm called 
NSO is proposed, which identifies essential proteins 
by fusing NSC, Sub, and OS using a dominance rela-
tionship model. To validate the performance of NSO, 
seven representative essential proteins identification 
algorithms are compared based on three PPI datasets 
of S.cerevisiae. The experimental results show that the 
NSO method has higher identification rate than other 

representative methods. Then, NSC based on purified 
PPI networks is compared with six representative cen-
tralities based on three PPI networks, the results show 
NSC can discovery more essential proteins.

There are some advantages of NSO as follows: (1) 
NSO integrates different types of biological data, so it 
has strong anti-interference ability and is less affected 
by the quality of a single dataset; (2) NSO improves the 
essential proteins recognition ability; (3) The proposed 
feature fusion model, the dominance relation model, 
can be widely applied to other feature fusion methods.

The NSO method also has a disadvantage. NSO needs 
a lot of pre-experiments to determine parameters, 
which may reduce their convenience.

Fig.11  Enrichment analysis of Top600 proteins predicted by NSO
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