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Abstract 

Background: Drug‑target interaction (DTI) is a vital drug design strategy that plays a significant role in many pro‑
cesses of complex diseases and cellular events. In the face of challenges such as extensive protein data and experi‑
mental costs, it is suggested to apply bioinformatics approaches to exploit potential interactions to design new 
targeted medications. Different data and interaction types bring difficulties to study involving incompatible and 
heterology formats. The analysis of drug‑target interactions in a comprehensive and unified model is a significant 
challenge.

Method: Here, we propose a general method for predicting interactions between small‑molecule drugs and protein 
targets, Large‑scale Drug target Screening Convolutional Neural Network (LDS‑CNN), which used unified encoding to 
achieve the calculation of the different data formats in an integrated model to realize feature abstraction and poten‑
tial object prediction.

Result: On 898,412 interaction data involving 1683 small‑molecule compounds and 14,350 human proteins from 
8.8 billion records, the proposed method achieved an area under the curve (AUC) of 0.96, an area under the preci‑
sion‑recall curve (AUPRC) of 0.95, and an accuracy of 90.13%. The experimental results illustrated that the proposed 
method attained high accuracy on the test set, indicating its high predictive ability in drug‑target interaction predic‑
tion. LDS‑CNN is effective for the prediction of large‑scale datasets and datasets composed of data with different 
formats.

Conclusion: In this study, we propose a DTI prediction method to solve the problems of unified encoding of large‑
scale data in multiple formats. It provides a feasible way to efficiently abstract the features among different types of 
drug‑related data, thus reducing experimental costs and time consumption. The proposed method can be used to 
identify potential drug targets and candidates for the treatment of complex diseases. This work provides a reference 
for DTI to process large‑scale data and different formats with deep learning methods and provides certain sugges‑
tions for future research.

Keywords: Drug‑target interaction prediction, Convolutional neural networks, United encoding, Large scale 
prediction

Introduction
Approved drugs are important research content for new 
drug discovery. Drug development based on approved 
drugs does not require consideration of the safety and 
efficacy of the original drug, effectively reducing the 
time and cost of the drug development process [1]. Infer-
ring potential regulatory pathways based on drug-target 
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interactions is of great significance for drug design [2, 3]. 
Small molecule drugs can affect protein targets through 
physical binding, these proteins can interact with other 
targets and form a vast interaction network together 
[4–6]. The known small molecule drugs can be associ-
ated with more targets based on the type and property of 
these targets, and hence it is important to use the avail-
able data to explore potential regulatory relationships. It 
is necessary to search for compounds that can interact 
with target proteins in the vast network when develop-
ing new drugs. Traditional pharmaceutical methods in 
the field of drug-target interaction (DTI) prediction are 
time-consuming and laborious, such as Gaussian meth-
ods [7] and density functional theory (DFT) methods [8]. 
Companies and researchers are in urgent need of efficient 
computational methods to inform and advise traditional 
pharmaceuticals [9, 10].

In recent years, as the field of DTI requires efficient 
computational methods to improve efficiency, virtual 
drug screening on computers has become an increas-
ingly popular research topic. Researchers have attempted 
to obtain solutions using molecular docking techniques, 
which is a well-established virtual drug screening method 
that can visualize small molecule-protein interactions 
and provide reliable docking conformations [11]. How-
ever, the efficiency of these methods is significantly lim-
ited due to the one-to-one speed of each docking process 
[12]. Several studies pointed out that the accuracy of 
docking methods still needs to be improved, and the 
accuracy of docking methods needs to be higher  [13, 
14]. Furthermore, docking methods predict binding sites 
by calculating the 3-D structure of drugs and proteins, 
which requires specific structural details  [15]. How-
ever, there still remain a lot of proteins without structure 
details. And due to clinical trials being costly and cannot 
be tested on a large scale, traditional methods cannot 
effectively utilize interaction network data [16]. In view of 
the above problems, many researchers predict DTI using 
machine learning (ML) methods [17, 18], which allow the 
screening of potential drug-target combinations by sim-
ple model work. These methods help overcome the dis-
advantages of traditional drug discovery methods, such 
as high cost, low success rate, and long study time, dra-
matically reducing the cost of drug development.

To address these issues, we proposed the large-scale 
drug target screening convolutional neural network (LDS-
CNN), a novel method for predicting prospective drug-
target interactions using a convolutional neural network 
(CNN) with unified probability encoding. This method 
enables data compatibility by unifying the SMILES format 
for small molecule drugs and amino acid format for pro-
teins. The LDS-CNN model uses a one-dimensional CNN 
to extract features and predicts drug or target data by 

uniform probability encoding. With stacked convolutional 
layers and pooling layers, it can extract and downscale fea-
tures from 1000-length sequences, and eventually link fully 
connected layers to learn hierarchical representations of 
the data and output classification results. The global maxi-
mum pooling layer is adopted to extract the most signifi-
cant features, while the reshaping layer is used to adjust the 
data shape. The final output layer uses a sigmoid activation 
function for dichotomous prediction. In further, sufficient 
data can help the LDS-CNN model provide more reliable 
conclusions over a larger range of data. A series of experi-
ments were conducted to validate the stability and over-
all performance of this encoding. This work attempted to 
provide an efficient DTI identification method and reduce 
the experimental time and material cost on accomplishing 
the DTI tasks. It is anticipated to be used as a reference for 
deep learning research on large-scale data in the field of 
DTI. The contributions of this work include:

1. We propose a new encoding method for DTI study 
through combining the general sequence feature of 
drug, protein and gene data. This encoding allows a 
unified analysis for different data types, the results 
suggest that the proper encoding could bring new 
insight into identifying of potential drug target.

2. We enhance the performance of deep learning model 
by analyzing the quality of dataset, which involves 
about 1 million drug-related interactions from over 8 
billion database records. The chemical space of com-
pounds in the dataset are characterized as molecular 
weight and lipid-water partition coefficient, indicat-
ing the compounds holds a wide chemical space to 
allow a broader chemical exploration space.

3. We illustrate the effectiveness of deep learning 
method using unified encoding. The convolutional 
neural network is designed and optimized based on 
the classic linear-convolution architecture, that can 
effectively process DTI Big data while ensuring calcu-
lation efficiency and accuracy. It is anticipated to be 
a useful tool to identify potential drug targets in DTI 
research.

4. We identify several potential drug targets and vali-
date these predictions by utilizing the AutoDock 
program and DS visualizer software. The molecular 
simulations show theoretical interactions between 
the drugs and their targets, suggesting further inves-
tigations on these predictions.

Related works
Traditional machine learning methods typically utilize 
small-scale drug-target interaction data for prediction  
[19, 20]. Bleakley et  al. [21] utilized a support vector 
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machine (SVM) framework to predict DTIs. This frame-
work applied the method known as bipartite local models 
(BLM), which first predicted the target protein of a given 
drug and then predicts the drug against the given protein. 
BLM method may not make correct predictions when 
those new drug candidates involved, and to solve this 
problem, Mei et  al. [22] complemented the BLM with 
neighbor-based interaction profile inference (NII). Buza 
et  al. [23] predicted DTIs using the BLM and the hub-
aware regression technique ECkNN. In addition, Cheng 
et al. [24] predicted drug-drug interactions through deci-
sion trees, straightforward Bayesian, and other machine 
learning-based methods, and Bull et al. [25] utilized ran-
dom forests to measure the similarity of non-targeted 
drug targets to develop drug development programs. 
Zhou et  al. [26] also employed machine learning-based 
techniques, primarily dichotomous local models, matrix 
decomposition, and regularized least squares, to enhance 
the DTI prediction process. These works provided multi-
ple solutions, but machine learning methods still remain 
difficulties to achieve efficient and accurate large-scale 
drug screening.

To improve large-scale screening accuracy, the 
researchers introduced a big data-driven deep learning 
approach to facilitate model extract more valuable fea-
tures from large samples, and to ensure accurate predic-
tion of unknown data when large samples are present. 
The high compatibility and reliable predictive capability 
of deep learning in dealing with big data provide many 
solutions to solve DTI domain problems [27–29]. These 
methods are very applicable to large-scale data and help 
research the most suitable candidate drug molecules, 
which can reduce experimental time compared to molec-
ular docking  [30]. Deep learning method is an end-to-
end method for directly extracting features from protein 
and drug sequences and predicting the binding affinity 
of drug-protein interactions  [31–33]. These methods 
are less dependent on specific data, usually using struc-
tural information, and have fast computational speed. In 
contrast to traditional machine learning methods which 
require expertise  [34, 35], deep learning methods have 
been applied on automatic tasks such as interaction net-
work inference and drug design to analyze large-scale 
and complex interaction relationships. For example, the 
deep learning methods are used to select candidate drugs 
based on data characteristics in the database and predict 
potential interactions between proteins and targets [36, 
37].

In these methods, encoding of protein/drug sequences 
is a crucial step before designing models. The one-hot 
encoding method, as commonly used in various works, 
could represent molecules in amino acid sequences and 
drugs but this encoding may dilute the features due to the 

feature vector. Moreover, one-hot encoding may lead to 
a large feature vector that would be too sparse accord-
ing to the task  [38]. It is necessary to improve traditional 
encoding methods or design a novel efficient encoding 
strategy for adapting to the characteristics of DTI task, 
and further improve the performance of current analysis 
methods.

Furthermore, there are many effective methods work-
ing on DTI prediction were developed. For example, 
Huang et al. proposed a molecular interaction transducer 
(MolTrans) to improve DTI prediction performance  
[39]. Chu et al. developed a new DTI prediction method 
to improve the prediction performance of a cascade 
deep forest (CDF) based model, called DTI-CDF, which 
attempts to uncover drugs with multiple similarity-based 
features as well as similarity features between target 
proteins extracted from heterogeneous graphs contain-
ing known DTIs  [40]. Lee et al. constructed a new DTI 
prediction model using a CNN-based deep learning 
approach to extract local residue patterns of target pro-
tein sequences  [41], and Bagherian et  al. described the 
data required for the DTI prediction task, containing 
a comprehensive catalog of machine learning methods 
and databases, highlighting the possible challenges of 
using machine learning methods for DTI prediction  [42]. 
These methods have solved the problem of DTI to vary-
ing degrees, but issues such as computational accuracy 
and overhead still need to be urgently addressed.

Materials and methods
Collection of drug‑target interaction data
The following databases are utilized in this work which 
are commonly used in recent research: (1) the PubChem 
database, which contains over 160 million compounds 
and small molecule drugs  [43]; (2) the ChEMBL data-
base, which provides drug-protein interaction data and 
contains over 2 million compounds [44]; (3) the Drug-
Bank database, which provides information on drug-
target interactions as well as detailed information on the 
structure, indications, metabolic pathways, and other 
properties of drugs [45]; (4) the STITCH database, which 
provides information on interactions between com-
pounds and proteins [46]; (5) the STRING database, 
which provides information on interactions between pro-
teins and proteins  [47]. The detailed information of data-
set downloaded from this database was shown in Table 1. 
The approved small molecule drugs data were obtained 
from the DrugBank database which contained 2739 
records and their corresponding CIDs were obtained 
from the PubChem database. The compound-protein 
interactions data from the STITCH database contained 
as many as 8,863,842,013 records. The small molecule 
drug-protein interactions data were obtained from the 
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STITCH database, in which contained 638,547 records of 
human protein data according to the Uniport database. 
Due to the various data sources of the STITCH database, 
including the literature as well as from multiple biological 
pathways, it essentially covers the main objects of current 
research.

Dataset preprocessing
The target small molecule drugs were obtained from the 
DrugBank database, these drugs were listed as SMILES 
format by using the PubChem API. Then, the SMILES 
data were selected with length limitation of 400, those 
drugs with lengths over 400 would be removed. To obtain 
interaction data about the target small molecule drugs, 
it is also necessary to restrict the length of the amino 
acid sequence. The amino acid sequences of human pro-
teins were collected from the UniProt database. In order 
to ensure the overall similarity of the data length, while 
considering the average length distribution of the pro-
tein data, the amino acid sequence length of the selected 
protein is limited to 600 characters, and proteins longer 
than 600 will be removed. Finally, 898,412 drug-small 
molecule-protein interactions involving 1683 small mol-
ecule pharmaceuticals and 14,530 human proteins were 
utilized in experiment training and testing.

To improve the quality of experimental data, negative 
samples should provide sufficient features for analysis 
models. Therefore, to provide more effective negative 
features, negative samples are generated through the 
following strategy: For drug-protein interactions data, 
the interactions between unrelated drugs and proteins 
are clear negative samples, which are easy to classify. 

However, interactions between drugs and proteins 
related to known results are difficult to classify. Con-
sidering these similar unknown interactions, negative 
samples are generated through random unrelated rela-
tionships and modifications of known interactions. Due 
to the lack of a standard dataset to build comprehen-
sive and complete drug-protein interaction network, 
all interactions appearing in the dataset are considered 
positive samples based on known interactions. Nega-
tive samples are generated by randomly combining 
proteins and drug molecules and deleting samples that 
appear repeatedly in positive samples.

The final positive and negative samples in the data-
sets were randomly sorted, and then the datasets were 
divided into training set, validation set, and testing set 
with ratio of 3:1:1. Positive and negative samples in 
each dataset were roughly equal to balance the classifi-
cation capability of model. Dataset_train1 and Dataset_
train2 are fast test datasets for checking whether the 
parameters of the model work properly and the model 
acc respectively; Dataset_train3 is the optimization test 
dataset for verifying the effect of the parameters at dif-
ferent data sizes; Dataset_4 is the complete dataset for 
final performance test and model training. Each data-
set is randomly selected and reordered from the whole 
datasets to avoid the duplication and correlation among 
datasets. Details of each dataset are shown in Table 2.

We characterized the chemical space of compounds 
for the three training datasets into two dimensions 
which were molecular weight (MW) and lipid-water 
partition coefficient (AlogP). As shown in Fig.  1, 
the compounds in the training, validation, and test 
sets have a wide range of molecular weights (12.011 
to 3931.48) and lipid-water partition coefficients 
(−  25.1791 to 18.470), indicating that the compounds 
in each dataset held a wide chemical space to allow a 
broader chemical exploration space. Also, most of the 
chemical space of the test set (pink part) is distributed 
within the area of the training set (blue part) and the 
validation set (yellow part), suggesting that the training 
datasets were suitable for extracting data features and 
testing datasets can be used to evaluate the prediction 
performance.

Table 1 Details of each database

Database Data content Dataset size

STITCH Available interaction records 8,863,842,013

STRING Proteins involved 67,592,465

Uniport Human proteins involved 14,530

DrugBank Small molecule drugs involved 2739

PubChem SMILES data for small molecule drugs 2739

Table 2 The scale of each dataset

Drug‑protein interaction Training dataset Validation dataset Test dataset

Dataset_train1 1282 372 346

Dataset_train2 11,691 3482 3963

Dataset_train3 125,823 47,132 43,872

Dataset_4 539,046 179,683 179,683
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Unified encoding
To ensure the applicability of the data and processing 
efficiency, input data were obtained with SMILES format 
Compared with other encoding methods (e.g., graph vec-
tors), the SMILES format is almost applicable to current 
data, and thus avoided the compatibility issues of some 
data and of some methods. In addition, the data scale 
and model computation based on encoded vectors are 
relatively lower than 3D-molecular structure data and 
graph vector data, which can help more efficient task-
solving. In this task, it would calculate as many as 8.8 bil-
lion records of DTI data, the computational performance 
should be considered first. An effective but simple data 
encoding was necessary.

One-hot encoding transforms protein sequences and 
SMILES sequences from a sequence format (size L × 1, L 
refers to the sequence length) into a vector format (size 
L × 20, 20 refers to the amount of amino acid types), 
effectively expanding the feature with characteristic 
information of original sequence in matrix form. For the 
redundancy of one-hot coding, the number of characters 
in SMILES is known to be 64, so only 1/64 (about 1.56%) 
information in one hot encoding is valid, and the remain-
ing 98.4% information is invalid since all of these values 
are zero. This may lead to a particularly redundant in the 
calculation and significantly increase the complexity of 
model. In this task and other large-scale data task, redun-
dancy of 98.44% is too sparse for model optimization 
and training due to the computational burden of training 
from large dimension of the vector.

The text data used contains not only capital letters in 
the amino acid sequence, but also special characters and 
lowercase letters in the SMILES formula. In order to dis-
tinguish similar atomic symbols (such as Carbon short for 
C and Calcium short for Ca) and enhance feature expres-
sion, atomic symbols that contain only one uppercase 
letter are extended to provide extra feature, for example, 
the C atom become C*. This not only achieves uniformity 

in terms of number of characters, but also increases the 
SMILES formula that is short compared to the amino 
acid sequence to prevent the model from overly adopting 
amino acid sequence features. For better feature abstrac-
tion from sequences data, all characters in the dataset 
were counted, and a character probability dictionary was 
calculated based on the occurrence of characters. This 
dictionary is used to provide overall character digitiza-
tion and probability encoding calculation. The main steps 
of unified encoding process are shown in Fig. 2

The unified encoding design can provide a stand-
ard input for analysis model. In Fig.  2A, the SMILES 
sequences for small molecule drugs use the same proba-
bilistic coding dictionary to encode atoms and the length 
of each SMILES sequence is limited to 400. In Fig. 2B, the 
amino acid sequences for proteins use the same proba-
bilistic coding dictionary to encode amino acids and the 
length of each amino acid sequence is limited to 600. This 
process also normalizes the sequence length while proba-
bilistically encoding all protein amino acid sequences. 
In Fig.  2C, the probability-encoded sequences of small 
molecule drug SMILES and protein amino acids are con-
catenated, and the resulting sequence is padded to 1000 
characters. The sequence preserves the features of the 
original sequence and the features of the interaction, and 
the connection sites are represented by squares in gradi-
ent colors in the figure. Finally, an interaction with a fixed 
length of 1000 is generated. By this encoding method, the 
interaction data were calculated to the matrix of L × 1000 
for model training and testing.

Model design and parameter details
The effectiveness of the CNN model on many dif-
ferent tasks is based on local perception and weight 
sharing  [48]. In DTI task, the analysis model should 
have the capability to abstract enough effective fea-
tures from interaction data, and do not occupy too 
much expenses. Due to the large amount of data and 

Fig. 1 Scatterplots of molecular weight (MW) and lipid‑water partition coefficient (AlogP) in three datasets. A, B and C was the scatterplot of each 
dataset
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numerous interaction objectives, the SMILES data for-
mat of model input was selected for acceptable calcu-
lation pressure. The SMILES format was widely used 
with CNN model in various chemical molecular related 
tasks for its lower computational complexity and easier 

optimization and application. By exploiting the feature 
extraction capability of CNNs in local regions, the DTI 
screening tasks can be efficiently analyzed, which is 
advantageous in solving the large scale and diverse data 
pattern issues.

Fig. 2 The main steps of unified encoding. A The unified encoded sequence of drug small molecule SMILES. B The unified encoded sequence of 
protein amino acid. C Padding the concatenated unified encoded sequences of drug small molecule SMILES and protein amino acid sequences. 
The final encoding result is a vector with 1000 values
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Therefore, the SMILES-encoded convolutional 
neural network (CNN) model was designed accord-
ing to these task characteristics. The SMILES-based 
data format led to a framework targeted at process-
ing sequences, rather than the graph vector graph 
convolutional network (GCN) models. For effec-
tive feature extraction and appropriate computa-
tion cost, a substructure of two convolutional layers 
and one max-pooling lay was adopted and two such 
substructures constitute the main structure of CNN 
model. The model details are shown in Fig.  3. The 
overall framework of this model includes: (1) The 
input layer (input) was used to receive the shape of 
the input data as input to the neural network. (2) To 
extract interactive features between small molecule 
drugs and proteins by applying a convolutional opera-
tion with uniform probability encoding, the convo-
lutional layer (Conv1D) was arranged for four times. 
There were two convolutional layers that be set after 
input layer. (3) The output of feature map from the 
second convolutional layer was then abstracted by 
down-sampling, which the max-pooling layer (Global-
MaxPooling1D) would reduce the dimensionality of 
the features and retain the most significant features. 
(4) The output of the pooling layer was reshaped by 
using the Reshape() function from Keras to modify its 
shape to (Conv1D_filters, 1) for next step (Reshape). 
(5) The first dense layer (Dense) contained 256 neu-
rons and Rectified Linear Unit (ReLU) was used as the 
activation function, for further processing the features 
extracted from the previous convolutional layers. (6) 
The second dense layer contained 2 neurons to output 
the two-category results with the Sigmoid activation 
function, for predicting the probability of potential 

drug-target interactions. (7) The key parameters such 
as loss function and optimizer were pre-set following 
the literature recommendations, which were binary 
cross-entropy and Adam in this work.

The 1-d convolutional layers were set to implement con-
volutional operations with size [None, 1000, 1]. The first 
dimension was the batch size (None was the default param-
eter in Keras), the second dimension of 1000 was the length 
of sequence encoding, and the third dimension of 1 was the 
dimensionality of input data. The input of model was for-
mulated as:

where D was the dataset in this work, q was the length of 
data, and d represented the dimensionality of the input 
data. In this task, q equaled 1000 and d equaled 1. The 
input of the first convolutional layer was as follows:

where m represented the number of data channels, n rep-
resented the size of the convolution kernel, m equaled 1 
and n equaled 3 here. The x(0)i,i+2,j represented one data 
item of the ith convolution window in the jth chan-
nel. Since the valid-fill method was adopted, the output 
length of the convolutional layer was q − 2 = 998 . The 
output of the convolutional layer was as:

where c(1,k)i  represented the output of the ith convolution 
window in the kth convolution kernel. Each result c(1,k)i  
was calculated by the following formula:

(1)A =

[

a
(1)
1 , a

(1)
2 , . . . , a(1)q

]

∈ Dq×d

(2)X =

[

x
(0)
i:i+2,j

]

∈ D(q−2)×m×n

(3)C
(1) =

[

c
(1,k)
i

]

∈ D(q−2)×Conv1D filters

Fig. 3 Details of large‑scale drug target screening convolution neural model. In LDS‑CNN, there are two functional l substructures. Each substruc‑
ture comprises a set of two convolutional layers and one global max pooling layer. The convolutional kernels in each substructure are the same to 
extract spatial information. All convolutional layers are appropriately designed to ensure that the input and output sizes of each layer are identical. 
The classification results are finally output from the fully connected layer
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where wk ∈ R3 was the weight vector and bk ∈ D was the 
bias term of the kth convolution kernel. The ReLU activa-
tion function was utilized in consideration of the charac-
teristics of DTI task. The input and output of the second 
convolutional layer was as follows:

The global maximum pooling layer was utilized to 
reduce the number of computational parameters to 
avoid over-fitting problems. The input of this layer 
was the output from the second convolutional layer, 
and the output of the global maximum pooling layer 
was P = [pk ] ∈ D256 , where pk equaling maxi=1,...,996c

(k)
i  

was the maximum value among all elements of the k-th 
channel. Then, the next following layer converted the 
output shape to R = [ri] ∈ D256×1 , where ri represented 
the i-th element to modify the data dimensions for the 
following layers. As shown in Fig.  3, the dimension 
after the global maximum pooling layer was [None, 
256]. It needs to be modified to [None, 256, 1] for the 
subsequent calculation. After max-pooling calculation, 
the first dense layer had 256 neurons with ReLU acti-
vation function, and the second dense layer had 2 neu-
rons with SoftMax activation function to output the 
prediction of binary classification. The final output of 
the model was a tuple y = [y1, y2] , to provide the pre-
dicted probability of both categories.

(4)c
(1,k)
i = relu(wk · [ai, ai+1, ai+2]+ bk)

(5)X = C(1) =

[

c
(1,k)
i

]

∈ D998×256

(6)C(2) =

[

c
(2,k)
i

]

∈ D996×256

Results
Performance improvement from optimizers
In order to obtain stable results on dealing with large 
datasets, fivefold cross-validation tests were used to train 
the model. Figure 4 shows the effectiveness of each opti-
mization algorithm including AUC (short for Area under 
curve), AUPRC (short for Area under precision-recall 
curve), accuracy, F-measure, and Sensitivity. As shown in 
Fig. 4, the Adam Optimizer performed better than other 
methods. Meanwhile, the Nadam, RMSprop, Adamax, 
and Adam optimizers also performed well with similar 
results. The Adam method can achieve an AUC of 0.9075, 
which was higher than the other methods of 0.8816, 
0.8912, 0.8940, respectively. Similarly, the AUPRC value 
of Adam method was 0.8921, which was higher than the 
other three methods of 0.8687, 0.8687, 0.8908, respec-
tively. The F-measure value of Adam method (0.8303) 
was also higher than other three methods (0.8121, 0.8292, 
0.8103, respectively). Although the sensitivity of Adam 
method was not the highest (0.8291, lower than 0.9090 
of Nadam method), due to the main objective of identi-
fication of potential DTIs, we still chose Adam rather 
than other three methods. There methods are all based 
on improved versions of the gradient descent method, 
with capability of adaptively adjusting the learning rate 
and momentum to speed up convergence and stability. 
They both utilize exponential moving averages of first- 
and second-order moments to estimate the direction and 
magnitude of the gradient, thus avoiding the problem of 
vanishing or exploding gradients. For the other meth-
ods such as Adagrad, Adadelta, and SGD, they have in 
common that they do not take into account the histori-
cal information of the gradient and momentum effects, 

Fig. 4 Performance of different optimizers on Dataset_train3 with 200,000 drug‑target interactions. A The score on the left side of figure is the 
value unit for the AUC, AUPRC, F‑measure, Sensitivity, and Acc metrics on the right side. On the x‑axis, the optimizers are divided into seven groups 
by region. B The heat map of each performance from with different optimizers
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leading to a slow or unstable optimization process. They 
may be susceptible to noise or outliers, thus deviating 
from the direction of the optimal solution. Also, they 
all need to set the appropriate learning rate manually, to 
avoid the problem of failure to converge or overfitting. 
Adam combines the advantages of both Adagrad and 
RMSProp optimization methods and is able to adaptively 
adjust the learning rate and momentum to speed up the 
convergence and stability, so Adam is used as an opti-
mizer for the LDS-CNN model.

Performance improvement from kernels
To extract more features, the proper number of kernels 
need to be tested under certain calculated pressure. 
When calculating protein and small molecule sequence 
data, the number of kernels is typically set to 32–64, in 
particular using Adam optimizer to train the model  [49, 
50]. Considering that uniform encoding is designed to 
provide more features, we can infer that the CNN model 
may extract more features by utilizing more kernels. 
Therefore, the number of kernels in this task is increased 
to 256–512, namely there are 256 kernels in the first and 
second convolutional layer, and 512 kernels in the third 
and fourth convolutional layer, respectively. The perfor-
mance of LDS-CNN model using different kernel combi-
nation is shown in Fig. 5.

As shown is Fig.  5, when adopted the most kernels 
(256/512), the performance of each index was higher 
than other group, namely, AUC was 0.9175 while other 
three group were 0.7902 (32/64), 0.8370 (64/128), 0.8764 
(128/256), respectively. The AUPRC and F-measure value 
were also similar to this conclusion: the AUPRC of group 
256/512 was 0.9021, higher than other three methods of 
0.8044, 0.8471, 0.8621; the F-measure of group 256/512 

was 0.8503, higher than other three methods of 0.7240, 
0.7810, 0.8105. The Acc and sensitivity values coincided 
with this conclusion.

The result showed with the increase of the number of 
convolutional kernels, the performance of LDS-CNN 
model also improved with a significant trend. The per-
formance growth from 128/256 kernels to 256/512 ker-
nels slowed down, indicating the 128/256 kernels could 
extract most features and there was a limitation on 
improvement from kernel increase. Moreover, the time 
cost of setting more kernels will also increase exponen-
tially. When 128/256 kernels were set in the model, the 
calculation efficiency is about 35  ms per interaction. 
Adding more kernels would further bring extra calcu-
lation cost. The calculation efficiency declined sharply 
to 200  ms per interaction when set 256/512 kernels 
in model. Although the increasing number of kernels 
brought better prediction result, but calculation effi-
ciency was also an important factor to be considered.

In Fig.  6A, it was showed that when training model 
with the same other parameters, more kernels brought 
better Acc and smaller loss value. In Fig.  6B, it showed 
that the performance on validation dataset also coin-
cident with this conclusion. Figure  6C represented the 
model performance of different kernels. The AUC value 
indicated that more kernels bring better overall classifi-
cation capability (from 0.9536 to 0.9621 while kernels 
increase from 128/256 to 256/512), the AUPRC and sen-
sitivity values were also the similar trend. However, the 
f-measure value of 128/256 kernels (0.9092) was higher 
than 256/512 kernels (0.9058), and the sensitivity values 
differed from this situation, which indicating the classi-
fication capability on predicting the negative sample may 
be affected. This might be a little disturbance caused by 

Fig. 5 Performance of LDS‑CNN at different kernel numbers on Dataset_train3 with 200,000 drug‑target interactions. A On the x‑axis, four group 
are arranged according to different number of kernels, respectively. B The heat map of each performance in four groups
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errors, but due to the identification of potential DTIs in 
negative sample of being the main objective in DTI task, 
using 128/256 kernels may generate more satisfactory 
results. Further performance improvement can be con-
sidered by introducing more additional information to 
improve this situation. Finally, the all 800,000 samples 
were used to train the model, and the proposed method 
can achieve an accuracy of 90.13% on validation dataset. 
As a performance reference for the model.

Independent validation tests were conducted by 
downloaded three datasets from the ChEMBL database: 
GLP1R dataset, SHBG dataset, and IMDH1 dataset. 
The GLP1R dataset contained 3, 252 records, the SHBG 
dataset contained 204 records, and the IMDH1 dataset 

contained 64 records. ROC results of each dataset were 
shown in Fig. 7.

As shown in Fig.  7, the LDS-CNN model achieved a 
ROC of 0.91 on the GLP1R dataset, 0.88 on the SHBG 
dataset, and 0.76 on the IMDH1 dataset. The perfor-
mance of LDS-CNN on the IMDH1 dataset was lower 
than average performance of model and other datasets, 
which may be mainly due to insufficient samples in the 
drug-protein interaction dataset.

The structural diversity of molecules in the modeling 
dataset and proper chemical space can help improve 
accurate and robust prediction models. More back-
bone structures indicated that the dataset encompassed 
a diverse chemical space which enhanced the screening 

Fig. 6 Model evaluation metrics for kernel 128/256 and 256/512. A Performance curves of training loss and Acc value. B Performance curves of 
validation loss and Acc value. C Comparison of AUC, AUPRC, Sensitivity, and F‑measure metrics on two different kernel group
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accuracy of the model. Therefore, the rdkit tool was used 
to extract and identify molecules with defined Bemis-
Murcko Scaffold (BMS) backbones for molecular back-
bone analysis. Commonly the Bemis-Murcko structure 
was one-to-one with the molecular structure of the com-
pound. It can be generated by removing the side chain 
and identifying the ring structure connected to the link-
age structure. Smaller ratio between skeletons of the 
compounds would bring higher diversity of the dataset. 
According to the Bemis Murcko backbone analysis, the 
percentage of backbones in the three external independ-
ent test datasets ranged from 41 to 55%, indicating that 
the structures of the compounds in the external test set 
were highly diverse, which was beneficial for enhancing 
the test confidence. Detailed information was listed in 
Table 3.

To further validate the efficacy of the proposed method, 
five other methods were utilized to compare with the 
proposed method using benchmark datasets. These 

five methods were: (1) the AEFS method  [51], (2) the 
NGDTP method  [52], (3) the MolTrans method  [38], 
(4) the Watanabe’s network method  (W1-method) and 
(5) Watanabe’s molecular method  (W2-method)  [53]. 
The dataset is the small molecule drugs-protein interac-
tion data from STITCH database, and three evaluation 
indexes were utilized to comprehensively compare the 
performance of each method. These methods were used 
for comparison. The AUC results showed that LDS-CNN 
(AUC of 0.962199) was higher than other methods.

The STITCH database-constructed drug small mole-
cule-protein interaction dataset is compared to the DPI 
dataset using a variety of methodologies. Table  4 lists 
the outcomes of the comparisons, illustrating that the 
AUC and AUPRC for each method. Our model excels in 
AUC and AUPR (AUC: 0.962 and AUPR: 0.959). LDS-
CNN improved AUC by 5.6%, 2.9%, 5.2%, 1.5%, and 0.6% 
relative to AEFS, NGDTP, MolTrans, and Watanabe’s 
network and molecular work, while AUPRC increased 
by 48.2%, 63.45%, 85.67%, 3.9%, and 3.2%. Our method 
enhances AUPRC more than AUC, as demonstrated by 
the experimental findings.

Validation results
According to the prediction result, the interaction 
between LYN and IL4RA suggests a potential drug-target 
interaction. Therefore, molecular simulation was used 
to validate this hypothesis. According to retrieval at the 
Drugbank database, the 1-Tert-Butyl-3-(4-Chloro-Phe-
nyl)-1  h-Pyrazolo[3,4-d] Pyrimidin-4-Ylamine (Drug-
Bank AC: DB03023) was an effective drug molecule 
targeting LYN. Docking simulations between the com-
pound and the protein were executed using the AutoDock 
program and DS visualizer software. The 3-dimensional 
structural protein information was downloaded from the 
RCSB Protein Data Bank. The Lamarckian genetic algo-
rithm was adopted to search the docking conformation. 
Finally, the optimized docking model of LYN_HUMAN 
and DB03023 with binding energy − 6.22  kcal/mol and 
inhibition constant (Ki) 27.70  μM was obtained. Com-
plex models of protein and compound, as well as their 
interactions, were displayed in Fig. 8A, B the optimized 
docking model of IL4RA_HUMAN and DB03023 with 
binding energy − 5.41  kcal/mol and inhibition constant 
(Ki) 108.13 μM was obtained. Complex models of protein 

Fig. 7 External validation cohort evaluation model ROC diagram

Table 3 The details of three validation datasets

ID Compounds Skeletons Ratio (%)

GLP1R P43220 1605 895 0.55

SHBG P04278 102 40 0.39

IMDH1 P20839 24 10 0.41

Table 4 Performance comparison with other methods

AEFS NGDTP MolTrans W1‑method W2‑method LDS‑CNN

AUC 0.906 0.933 0.910 0.947 0.956 0.962

AUPRC 0.477 0.324 0.102 0.920 0.927 0.959

F‑measure 0.507 0.400 0.104 0.853 0.868 0.906
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and compound, as well as their interactions, were dis-
played in Fig. 8C, D.

It can observe from the complex model (Fig. 8A) that 
Var der Waals interactions exist between the compound 
and amino acid residues Gly254, Glu290, Met294, Val303, 
Ile317, Thr319, Tyr321, Gly325, Ser326, and Ala384. 
Moreover, some hydrophobic interactions exist, such as 
alkyl interactions between the compound and residues 
Leu253, Val261, Ala273, Lys275, and Leu374. Further-
more, it can observe from the complex model (Fig.  8C) 
that Var der Waals interactions exist between the com-
pound and amino acid residues Pro7, Thr8, Cys9, Leu76, 
Ser89, and Phe90. Also, some hydrophobic interactions 
exist, such as π-alkyl interactions between the compound 

and residues Trp86 and Lys91. The drug (AC: DB03023) 
has a similar interaction way. Thus, we can infer that 
this drug may interact with IL4RA to perform a treating 
effect. In addition, the interaction between IL4RA and 
LYN is worth further experimental verification.

Conclusion
In this paper, we report on the LDS-CNN, a neural net-
work model for the prediction of potential drug-target 
interactions. Compared with the current common meth-
ods in the field of DTI, the proposed method uses uni-
fied encoding and large-scale data for training to achieve 
feature abstraction and potential object prediction in 
different data formats within the integrated model. The 

Fig. 8 A The complex model of ligand compound (DrugBank AC: DB03023) and receptor protein (UniProtKB: LYN_HUMAN) and their interactions. B 
The interactions between ligand compound and receptor protein. C The complex model of ligand compound (DrugBank AC: DB03023) and recep‑
tor protein (UniProtKB: IL4RA_HUMAN) and their interactions. D The interactions between ligand compound and receptor protein
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proposed method has the advantages of low experimen-
tal cost, appropriate time consumption and stable accu-
racy. Meanwhile, the overall performance can be further 
improved with an increasing scale of training data.

Results show that the proposed method achieved an 
AUC of 0.96 and AUPRC of 0.95, and an accuracy of 
90.13% on a total of 898,412 drug-target protein interac-
tions by using unified encoding. By validating the per-
formance of the proposed method on different scale of 
dataset, the stability is proved, which suggests the poten-
tial application ability in predicting drug-target inter-
actions. The combined energy calculation and module 
simulation results indicate that there are possibilities 
of actual existence for the prediction conclusion. The 
experimental conclusion also points out that model per-
formance relates to the quality of the dataset, which sug-
gests a future direction for model improvement through 
feature enhancement of the dataset.

In summary, we propose a novel deep learning model 
for identification of potential drug-target interactions by 
designing the unified encoding, which has advantages 
including low cost, high precision, and comprehensive 
data coverage. The proposed method is easy to be applied 
on specific research target by utilizing transfer learning. 
In the following work, we will further optimize the fea-
ture design to improve the efficiency of data encoding. 
Meanwhile, the proposed method provides a feasible 
application direction for designing different feature com-
binations to enhance the model performance. In order to 
further provides certain suggestion for future research, 
we will continue to improve it to address other analysis 
tasks based on unified encoding optimization, providing 
effective insights for drug-target interactions analysis and 
drug development.
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