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Abstract

Visual working memory possesses capacity constraints limiting the availability of resources for 

encoding and maintaining information. Studies have shown that prospective rewards improve 

performance on visual working memory tasks, but it remains unclear whether rewards increase 

total resource availability or simply influence the allocation of resources. Participants performed 

a continuous report visual working memory task with oriented grating stimuli. On each trial, 

participants were presented with a priority cue, which signaled the item most likely to be probed, 

and a reward cue, which signaled the magnitude of a performance-contingent reward. We showed 

that rewards decreased recall error for cued items and increased recall error for non-cued items. 

This tradeoff was due to a change in the probability of successfully encoding a cued versus 

a non-cued item rather than a change in recall precision or the probability of binding errors. 

Rewards did not modulate performance when priority cues were retroactively presented after 

the stimulus presentation period, indicating that rewards only affect resource allocation when 

participants are able to engage proactive control prior to encoding. Additionally, reward had no 

effect on visual working memory performance when priority cues were absent and thus unable 

to guide resource allocation. These findings indicate that rewards influence the flexible allocation 

of resources during selection and encoding in visual working memory, but do not augment total 

capacity.
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Introduction

Visual working memory is a goal-directed process that is severely capacity limited. Capacity 

constraints necessitate the ability to select or prioritize a subset of available information 

(i.e., the flexible allocation of resources). While it is well established that resources can 

be flexibly allocated across items held in working memory (Fougnie et al., 2012; van den 

Berg et al., 2012; van den Berg & Ma, 2018), it is currently unclear whether there is also 

flexibility in the total amount of resources that can be allocated at different points in time. 
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It has been shown that monetary rewards facilitate a broad range of processes. The prospect 

of receiving reward could potentially drive flexibility in the allocation of visual working 

memory resources across time.

Monetary incentives increase both the speed and accuracy of movements, seemingly 

violating the speed-accuracy tradeoff predicted by optimal control theory (Adkins et al., 

2021; S. P. Anderson et al., 2020; Manohar et al., 2015, 2018; Takikawa et al., 2002). 

Participants also benefit from rewards in the performance of cognitive control tasks, 

exhibiting both reduced reaction time and increased accuracy (Boehler et al., 2012; Chiew 

& Braver, 2013; Hübner & Schlösser, 2010; Krebs et al., 2011). Consequently, we might 

expect that working memory would similarly benefit from a reward-induced increase in 

motivation. A number of studies have examined the influence of monetary incentives 

on working memory performance. Some of these studies indicate that working memory 

capacity is enhanced by rewards (Gilbert & Fiez, 2004; Kawasaki & Yamaguchi, 2013), 

while others find no effect of reward on capacity (Krawczyk et al., 2007; van den Berg et 

al., 2020; Zhang & Luck, 2011). An additional set of studies investigating the relationship 

between monetary incentives and visual working memory have associated rewards with 

specific items in the display and have provided more definitive evidence for improved 

recall precision for rewarded items (Gong & Li, 2014; Klink et al., 2017; Klyszejko et 

al., 2014; Thomas et al., 2016; Wallis et al., 2015). Under this reward structure, however, 

monetary incentives are indistinguishable from attentional priority cues. Based on these 

prior reports, it is unclear how rewards influence the allocation and availability of working 

memory resources when reward cues are experimentally dissociated from attentional priority 

cues. That is, do rewards modulate visual working memory performance independent of the 

prioritization of specific items.

There is reason to believe that working memory performance may not similarly benefit from 

rewards when incentives are decoupled from attentional priority. Visual working memory is 

subject to strict capacity limits. Non-rewarded estimates of visual working memory capacity 

range from 2-4 items (Cowan, 2001; Luck & Vogel, 1997) and capacity estimates are 

surprisingly stable within an individual (M. K. Johnson et al., 2013). Furthermore, capacity 

limitations have been theorized to arise due to neurophysiological constraints (Bays, 2015; J. 

S. Johnson et al., 2014; Lisman & Idiart, 1995; Raffone & Wolters, 2001; Wei et al., 2012). 

As such, it may be impossible for visual working memory capacity to be augmented further 

by the introduction of rewards.

A number of models have been developed to explain capacity limitations. Slot models 

characterize visual working memory as a small number of indivisible ‘slots’ in which items 

can be stored (Awh, Barton, et al., 2006; Cowan, 2001; Luck & Vogel, 1997; Rouder 

et al., 2008; Zhang & Luck, 2008). Resource models, on the other hand, consider visual 

working memory to be instantiated by the allocation of a continuous resource to presented 

memoranda (Bays et al., 2009; Bays & Husain, 2008; Wilken & Ma, 2004). A central tenet 

of resource models is that observers are able to flexibly allocate resources across items, such 

that items can be remembered with variable precision (Fougnie et al., 2012; van den Berg 

et al., 2012). Recent modeling work suggests that there may also be flexibility in how much 

total resource can be allocated to a task at hand (van den Berg & Ma, 2018). The amount 
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of resource invested in a particular task is argued to be governed by a tradeoff between the 

neural cost of using resources and the expected behavioral cost of errors. This would suggest 

that participants could possibly invest more total resource when there is more at stake. In 

support of this idea, a recent study found that participants could remember a greater number 

of items when they were instructed to remember all items in the display rather than focus on 

a subset of items (Bengson & Luck, 2016). These findings raise the possibility that rewards 

could similarly increase the total amount of resources available.

Here, we had participants perform a continuous report visual working memory paradigm 

with independent reward and priority cues. On each trial, participants were presented with 

a possible reward ($1, $10 or $20) and cue indicating the stimulus that would most likely 

be probed (e.g. cue valid 80% of the time) following the delay period. We hypothesize 3 

possible outcomes for this experiment. One potential result is that monetary incentives have 

no effect when dissociated from attentional priority (Figure 1B). This result would indicate 

that prior observations of a reward effect on working memory recall precision could be 

attributed to prioritization rather than an independent effect of reward. Alternatively, reward 

could globally enhance working memory representations independent of attentional priority 

(Figure 1C). In other words, greater reward could result in better recall regardless of whether 

an item was validly cued or not. This would be consistent with recent work suggesting that 

rewards attenuate neural noise for both motor and cognitive tasks, leading to more precise 

responses (Manohar et al., 2015). This result would also suggest that monetary incentives 

are capable of expanding working memory capacity, consistent with a ‘resource-rational’ 

theory of working memory (van den Berg & Ma, 2018). Conversely, working memory could 

present a unique case due to its limited capacity. If working memory capacity cannot be 

expanded, then rewards could modulate performance primarily through a reallocation of 

resources according to the attentional priority of presented items. In this case, more accurate 

memory for prioritized items would come at the expense of less prioritized items. An 

interaction between cue validity and reward value would provide support for this scenario 

(Figure 1D).

Method

Participants.

191 total healthy adult volunteers participated in this study. 6 participants were unable 

to finish the experiment due to technical difficulties and were thus excluded from further 

analysis, leaving us with 185 total participants. All participants were naïve and had no 

prior association with the lab. All research protocols were approved by the Health Sciences 

and Behavioral Sciences Institutional Review Board at the University of Michigan. All 

participants gave written informed consent and were paid $ 10/hr + performance bonuses for 

their participation. Participants were recruited from University of Michigan. All participants 

possessed normal or corrected-to-normal vision. 11 participants participated in Experiment 1 

(9 female/2 male; Age range: 18-20), 25 participants took part in Experiment 2 (18 female/7 

male; Age range: 19-34), 25 participants participated in Experiment 3 (17 female/8 male; 

Age range: 18-30), and 25 participants participated in Experiment 4 (18 female/7 male; Age 

range: 18-20). The sample for Experiment 1 was a sample of convenience. For Experiments 
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2-4, we conducted a power analysis for an effect size (ηp
2) of 0.2, a power of 0.9, and 

an alpha of 0.01, which resulted in a required sample size of 21 participants. To account 

for potential participant attrition, we recruited 25 participants each for Experiments 2-4. 

Experiments 5 and 6 aimed to detect a potentially small effect of reward that might be 

masked by the larger priority effect in Experiments 1-4. As a result, we increased our sample 

size relative to Experiments 1-4 to 50 (Experiment 5; 34 female/16 male; Age range: 19-36) 

and 49 (Experiment 6; 33 female/16 male; Age range: 20-36) participants.

Visual Stimuli and Experimental Paradigm.

Stimuli were generated and presented using Python with the PsychoPy software package. 

Participants sat centered in front of a computer screen with a standard QWERTY keyboard. 

Throughout the session, participants were instructed to fixate on a centrally located black 

diamond (Figure 1A). Each trial began with the presentation (1 s) of an incentive value ($1, 

$10, or $20). Participants were instructed that at the end of the experiment, a trial would 

be selected at random, and if they had accurately reported the probed item (≤ 2° error), 

they would receive the associated reward for that trial in addition to their base pay. This 

payoff scheme encouraged participants to evaluate the incentive for each trial independent 

of all other trials. Learning to make rewarding choices depends on both a fast and flexible 

process, working memory, and a slow but steady process, reinforcement learning (Collins, 

2018). Reinforcement learning is driven by reward history (i.e. reward feedback on previous 

trials). In contrast with working memory, reinforcement learning is not capacity-limited. 

We did not provide participants with performance feedback so that we could examine the 

motivational effect of incentives on working memory capacity independent of reinforcement 

learning mechanisms that would likely influence performance from one trial to the next. 

Simultaneous with the presentation of the reward cue, one side of the fixation diamond 

changed to white. This cue validly indicated the item that would be probed at the end of the 

trial on 80% of trials, while on the remaining 20% of trials this cue was invalid. Immediately 

following the cue period, two circular sine-wave gratings (6 cycles/deg) were presented (one 

in each hemifield) for 200 ms. The gratings were centered to the left and right of fixation 

along the horizontal meridian. The orientation of the gratings was drawn from a uniform 

distribution over 0°-160° in 20° increments with the constraint that the orientation of the 

gratings could not match. A small angular jitter of ± 0°-5° was added randomly to the 

orientation of each grating on each trial to minimize verbal or categorical coding of stimuli. 

As a result, 99 out of a possible 180 orientations could be presented. Participants were not 

told that stimuli were limited to certain ranges of orientations and were free to report any 

orientation possible (0°-179°). To avoid potential congruency sequence effects (Gratton et 

al., 1992), we additionally specified that no two invalid trials could be consecutive. After 

assigning a prespecified number of trials to each level of reward according to their validity 

(e.g. 80% of trials valid, 20% of trials invalid), we swapped any invalid trial that followed 

another invalid trial with a valid trial. Unfortunately, a coding error resulted in the vector 

coding reward not being swapped along with the vector coding cue validity. While the total 

number of valid and invalid trials was not affected, the exact number of valid and invalid 

trials could differ slightly across levels of reward. This imbalance was not systematic across 

levels of reward or across experiments (see Supplementary Table 1). Removing participants 

that substantially deviated from the intended valid/invalid ratio (≥10%) for one or more 
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level of reward did not change the effects of interest (e.g. Experiment 1, N=9, reward × cue 

validity pd = 93.75%; Experiment 2, N=24, reward × cue validity pd = 98.16%). Participants 

were instructed to then maintain the orientation of the presented gratings over a 6 s delay 

period during which only the central fixation diamond was visible. Following the delay 

period, participants were presented with a probe grating that appeared in either the left 

or right hemifield. The location (hemifield) of the probe grating indicated which sample 

grating should be recalled. For example, if the probe grating appeared in the left hemifield 

then participants should report the orientation of the grating that was presented in the left 

hemifield during the sample display. Participants used the right and left arrow keys to rotate 

the probe grating clockwise and counter-clockwise, respectively, to match the remembered 

orientation. Participants were instructed to press the up arrow key to lock in their response 

and end the current trial. Participants had up to 6 seconds to provide a response. The initial 

orientation of the probe grating was randomized. The randomization of the probe stimulus 

ensured that participants were unable to prospectively plan a specific motor action (i.e. 

direction of rotation) during the maintenance period. Participants were not provided with any 

feedback at the end of each trial. Trials were separated by a 1 s inter-trial interval.

Experiments 2-4 manipulated one of two variables: cue validity or the timing of the priority 

cue. Experiment 2 served as a direct replication of Experiment 1 and was pre-registered 

on OSF (see https://osf.io/dcjnx). The only differences between the two experiments were 

that the hemifield cue was valid on 2/3 trials and invalid on the remaining 1/3 trials and 

the delay period was shortened to 4 s. The change in the level of cue validity enabled 

us to obtain a more reliable estimate of response error on invalid trials (~25 invalid trials 

per reward value vs. ~12 invalid trials per reward value), with the understanding that the 

validity effect could potentially be reduced by this change. Experiment 3 examined the effect 

of reward when the priority cue was completely uninformative (50% valid). Experiment 4 

was designed to allow us to isolate the particular phases of working memory where reward 

modulation might occur. Working memory research has shown that the working memory 

storage process comprises several phases. These include the initial selection of items, 

encoding/consolidation of those items into working memory, attentional prioritization of 

items within working memory (if required), and the maintenance or retention of information 

over extended delays (Awh, Vogel, et al., 2006; Myers et al., 2017; Todd et al., 2011; 

Woodman & Vogel, 2004; Ye et al., 2017). In this experiment, we presented the priority cue 

200 ms following the offset of the sample period. If we do not observe an effect of reward, 

it would suggest that rewards modulate either the initial selection or encoding of information 

into working memory. In contrast, if we observe the same effect as presenting the priority 

cue before the sample period, it would suggest that reward modulates processes occurring 

during either the prioritization of items within working memory or during the maintenance 

phase.

If the relationship between recall error and information storage is nonlinear (see Experiment 

5 in Results), it is possible that a small main effect of reward could be obscured by a much 

larger effect of attentional priority. Experiments 5 and 6 tested the effect of reward in the 

absence of priority cues. For these experiments, participants were recruited using Prolific 

(www.prolific.co) and the experimental paradigm was hosted on Pavlovia (pavlovia.org). 

Experiment 5 matched the experimental parameters for the original experiments except 

Brissenden et al. Page 5

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/dcjnx
http://www.prolific.co
http://pavlovia.org


priority cues were not presented (set size 2; 200 ms encoding window; 4 s delay period). 

Experiment 6 additionally manipulated the number of to-be-remembered items (set size 2, 

4 or 6) and the duration of the sample period (1 s). In these experiments, we relaxed the 

criterion for reward payout to ≤ 5° error in case the strict criterion used in the previous 

experiments had a demotivating effect on participants’ performance. Additionally, rather 

than add 0°-5° of jitter to values drawn from a uniform distribution over 0°-160° in 20° 

increments as in Experiments 1-4, orientations were instead sampled from a full uniform 

distribution (0°-179°).

Statistical Analysis.

All statistical analysis was performed using R (R Core Team, 2019; Version 3.6.1) and 

MATLAB (Mathworks; Version R2019a). We extracted trial-wise measures of absolute 

response error for each participant. To model the effect of incentives and cue validity on 

visual working memory response error we fit a Bayesian hierarchical generalized linear 

model (GLM). Bayesian statistics provide numerous advantages including allowing one to 

make intuitive probabilistic statements about the range of credible values (e.g. parameter 

x has a probability of 0.95 of being in the range 1 to 5), as well as incorporate prior 

knowledge. As absolute response error is strictly positive with positive skew, we specified 

a Gamma likelihood function and a log link function. The model included fixed effects 

of reward value ($1, $10, or $20), cue validity (valid or invalid), and their interaction. 

The model additionally allowed intercepts to vary by subject. A posterior distribution over 

possible parameter values was sampled using Markov chain Monte Carlo (MCMC) sampling 

implemented in rstan (Stan Development Team, 2020; Version 2.21.2) via the brms package 

(Bürkner, 2017, 2018); Version 2.14.4). The model was specified as follows:

abs(errori) ∼ Gamma(μi, sℎape)
log(μi) = αs + βRRewardi + βV V alidityi + βR × V RewardiV alidityi

αs ∼ α + σzs
α ∼ Student_t(3, 2, 10)
σ ∼ Student_t(3, 0, 10)

zs ∼ Normal(0, 1)
β ∼ Normal(0, 1)

sℎape ∼ Gamma(1, 0.01)

Where αs denotes a subject-specific intercept and βR, βV, and βR×V denote parameter 

estimates for the effect of reward, cue validity, and their interaction. We specified a weakly 

informative prior distribution for the fixed effects (β) with a mean of 0 and a standard 

deviation of 1 (i.e. N(0,1)). As regression coefficients for a Gamma likelihood GLM with 

a log link function are interpreted as multiplicative factors rather than slopes, a N(0,1) 

prior indicates that a priori we believe that a change in factor level (e.g. invalid cue to 

valid cue) is associated with an increase or decrease in absolute error by a factor between 

1 and 7.1 (i.e. [exp(0), exp(1.96)]). To ensure that the reported results were robust to the 

choice of prior, we additionally re-fit the model with both a more liberal (N(0, 4)) and 

more conservative (N(0, 0.25)) prior for the fixed effects. The overall pattern of effects was 

robust to the choice of prior. The brms package implements a non-centered parameterization 

for random effects (Betancourt & Girolami, 2015), which for our model parameterizes 

subject-specific intercepts (αs) using an overall intercept (α), a subject-specific offset 
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(zs), and a scaling parameter (σ). This parameterization decorrelates the sampling of 

random effects from high-order hyperparameters allowing for improved sampling efficiency 

(Betancourt & Girolami, 2015). Default prior specifications from the brms package were 

used for parameters associated with subject-specific intercepts (α, zs, and σ) , as well as 

the residual shape parameter (shape). By default, the location parameter for α was set to 

median(log(abs(error))) and the scale parameter for α and σ was set to max(mad(abs(error)), 
2.5) where mad represents the median absolute difference. Incentive value ($1, $10, or $20) 

was treated as an ordinal factor.

We ran 4 separate chains with 6000 iterations each. The first 2000 iterations were discarded 

as warm-up. R-hat values were all very close to 1 (R-hat ≤ 1.001) and effective sample 

size exceeded 5000 for all parameters indicating that MCMC chains had converged and 

there was minimal autocorrelation in the sampling. Posterior predictive checks confirmed 

that distributional assumptions were met and that the specified model could generate data 

that resembled the actual data. For each parameter in the model, we report the median, 95% 

highest density interval (HDI), and the probability of direction (pd). The HDI represents the 

interval for which all values within that interval have a higher probability density than points 

outside that interval. Due to the log-link function, we exponentiate the median and 95% HDI 

values for reporting so that values represent multiplicative factors on the original response 

scale (e.g. a one unit change in x is associated with an increase in absolute response error by 

a factor of exp(0.1) = 1.11). pd is an index of effect existence (ranging from 50% to 100%), 

which represents the probability that an effect goes in a particular direction (e.g. effect x 
has a 99% probability of being negative). Note that pd represents the probability that the 

effect is negative or positive prior to exponentiation and the probability that the effect is less 

than or greater than 1 after exponentiation. We consider a pd that is greater than 95% to be 

strong evidence for the existence of an effect, a pd between 90% and 95% to provide some 

evidence for an effect, and a pd that is less than 90% to indicate limited evidence for an 

effect.

To examine the effect of reward on performance in the absence of priority cues in 

Experiment 5 we used the same hierarchical Gamma GLM. This model included a single 

fixed effect of reward ($1, $10 or $20) in addition to subject-specific intercepts.

abs(errori) ∼ Gamma(μi, sℎape)
log(μi) = αs + βRRewardi

Experiment 6 manipulated working memory load in addition to reward. As a result, we 

amended the model to include fixed effects associated with set size (2, 4, or 6 items) and the 

interaction between reward and set size.

abs(errori) ∼ Gamma(μi, sℎape)
log(μi) = αs + βRRewardi + βV SetSizei + βR × V RewardiSetSizei

Experiment 2 served as pre-registered replication of Experiment 1 (see https://osf.io/dcjnx). 

As a result, we performed a Bayesian replication analysis (Ly et al., 2019). This analysis 
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required the pooling of data from both experiments and fitting the same Gamma GLM 

model. From this analysis, we computed a replication Bayes factor, which reflects the 

evidence for or against a successful replication of the observed effect in the first experiment. 

To do so, we computed an evidence ratio for both Experiment 1 and the data pooled from 

both Experiments 1 and 2. The evidence ratio (or Bayes factor) is the ratio of the probability 

that an effect goes in one direction (e.g. negative) over the probability that it goes in the 

other direction (e.g. positive) and can be derived using the formula pd/(1-pd). The evidence 

ratio we report should not be confused with the Jeffreys Bayes factor (Jeffreys, 1961) that 

is produced by the R BayesFactor package (Morey & Rouder, 2018) and the statistical 

software JASP (Love et al., 2019). The Jeffreys Bayes factor is highly dependent on the 

definition of the prior. For linear models (t-test, linear regression, ANOVA) the range of 

plausible effect sizes is well known. As a result, default priors can be defined that do not 

exert undue influence on the resulting Bayes factor (Rouder et al., 2009, 2012; Rouder & 

Morey, 2012). In other words, the computed value is robust to the particular prior definition 

used. The choice of prior is not so straightforward for nonlinear models such as those we 

use here (Rouder et al., 2017). We found that while the HDI for a particular effect was 

robust to the selected prior definition, the Jeffreys Bayes factor was highly dependent on the 

prior, ranging from strong evidence for the null to strong evidence for an effect. It should be 

noted that in contrast to the Jeffreys Bayes factor, the evidence ratio cannot provide evidence 

for no effect. The replication Bayes factor was computed by dividing the evidence ratio 

from the pooled model fit by the evidence ratio for Experiment 1 (Ly et al., 2019). While 

the evidence ratio cannot provide evidence for no effect, the replication Bayes factor can 

provide evidence for both the existence of an effect or the null hypothesis that the replication 

is inconsistent with the original experiment. If the pooled fit produces an evidence ratio that 

is less than the original fit this would indicate evidence against a replication of the effect 

observed in the original study. In contrast, a replication Bayes factor greater than 1 would 

indicate that the evidence ratio for the pooled model fit increased relative to the evidence 

ratio for the original fit indicating that the effect replicates across studies. A replication 

Bayes factor of 1 would indicate no evidence for or against a replication of the original 

results.

To isolate the specific components of working memory that are modulated by rewards and 

attentional priority, we additionally performed a mixture model analysis of participants’ 

response error distribution using the MemToolBox MATLAB package (Suchow et al., 2013). 

Due to the cue validity manipulation, participants were necessarily presented with far fewer 

invalid trials. To enable us to properly fit a mixture model to the response error distribution 

for each condition we collated data from all subjects into a single “super-subject” for 

each level of reward and cue validity. The standard mixture model (Zhang & Luck, 

2008) fits participants’ response errors with a mixture of two distributions: (1) a uniform 

distribution reflecting trials in which items were not stored in working memory and (2) a 

von Mises distribution reflecting the precision of items successfully represented in working 

memory. This model comprises 2 mixture parameters (which sum to 1), the probability of 

target report (P(Target)) and the probability of guessing (P(Guess)), as well as a precision 

parameter (SD). The swap model is an extension of the standard mixture model that includes 

an additional mixture parameter representing the probability that participants incorrectly 
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reported the identity of the non-cued item [parameters: P(Target), P(Guess), P(Swap), SD] 

(Bays et al., 2009). The swap model reduces to a standard mixture model when P(Swap) is 

0. We report results for the swap model for all experiments. We note that the “super-subject” 

approach ignores potential variation across individual subjects, and it is possible that our 

aggregate model does not describe any particular individual well. To determine whether our 

mixture model results were robust to outlier subjects, we performed a bootstrap procedure. 

For Experiments 1-3, we repeatedly sampled our participants with replacement to create 

100 bootstrap super-subjects for each level of cue validity and reward. Comparisons of 

posterior median estimates of P(Target) replicated our original results for the vast majority 

of bootstrap samples (see Supplementary Table 2).

MemToolBox performs an adaptive MCMC sampling procedure (Andrieu et al., 2003), 

which automatically detects convergence using the Gelman-Rubin statistic (Gelman & 

Rubin, 1992). 6000 total samples were collected post-convergence across 3 chains. We 

computed pairwise comparisons of the posterior distributions for each parameter to assess 

the effect of priority, reward, and their interaction. To examine the effect of attentional 

priority we pooled the posterior samples across all levels of reward for invalid and valid 

trials and then computed all possible pairwise comparisons between the two pooled posterior 

distributions (324,000,000 comparisons). To test for an interaction between priority and 

reward, we examined how the difference between valid and invalid posterior parameter 

distributions changed as a function of reward. To do so, we first computed all pairwise 

comparisons between posterior samples for invalid and valid trials separately for each level 

of reward (36,000,000 comparisons each). We then compared the difference distribution 

for $10 and $20 to the difference distribution for $1. So as to not exceed memory limits 

by computing all possible pairwise comparisons (1.296 × 1015 comparisons), we computed 

the difference for a random sample of 36,000,000 differences (permute posterior difference 

distribution for each reward value then subtract one from the other). We then examined 

whether there was evidence for a tradeoff in the benefit or cost of rewards on prioritized or 

deprioritized items, respectively. To do so, we computed all possible pairwise comparisons 

of $10 versus $1 and $20 versus $1 for invalid and valid conditions separately. After 

flipping the sign of the invalid comparisons, we computed a random sample of 36,000,000 

comparisons between the two distributions. As for the hierarchical GLM analysis of absolute 

error, we report the median, 95% HDI, and pd for each of these comparisons.

Results

Experiment 1.

To investigate the effect of monetary incentives on visual working memory, we had 

participants perform a delayed recall task with oriented contrast gratings (Figure 1A). On 

each trial, we independently presented a reward cue ($1, $10, or $20) and a stimulus cue 

(left or right hemifield) prior to stimulus presentation. Participants were told that a trial 

would be randomly selected at the end of the experiment. If they had accurately reported the 

probed item (≤ 2° error), they would receive the associated reward for that trial. Critically, 

rewards were not linked with specific items in the display. In Experiment 1, the stimulus 

cue validly indicated the to-be-probed item on 80% of trials and invalidly indicated the to-
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be-probed item on the remaining 20% of trials. The independent manipulation of incentives 

and cue validity enabled us to examine how reward modulates working memory for stimuli 

with different levels of attentional priority. We fit a Bayesian hierarchical gamma GLM to 

trial-wise absolute error with fixed effects of reward value, cue validity, and their interaction.

What is the impact of independent priority and incentive cues on visual working memory 

recall? Replicating prior work, we found a robust effect of cue validity (Figure 2A; 

median [95% HDI] = 0.463 [0.400, 0.531], pd = 100%), indicating that prioritized items 

were remembered with greater precision. We further found that the effect of reward 

depended on whether the priority cue was valid or invalid (Figure 2B; reward × cue 

validity: median [HDI] = 0.770 [0.611, 0.978], pd = 98.5%). Greater incentives were 

associated with worse recall for invalidly cued trials and better recall for validly cued trials. 

This interaction suggests that rewards are capable of modulating visual working memory 

performance. Furthermore, these results indicate that this modulation can be characterized as 

a reallocation of resources among to-be-remembered items based on their attentional priority 

(Figure 1D) rather than an increase in the total amount of resources available (Figure 1C).

This effect could not be attributed to a speed-accuracy tradeoff. In fact, in addition to worse 

recall, there was evidence for a slowing of reaction time with increased reward for invalid 

trials (median [HDI] = 1.096 [1.002, 1.197], pd = 97.8%; see Table 1). We found limited 

evidence for reward modulation of reaction time for valid trials (median [HDI] = 1.019 

[ 0.976, 1.066], pd = 79.6%). We did find evidence for a validity effect where participants 

responded faster on valid trials than invalid trials (median [HDI] = 0.771 [0.728, 0.816], pd 
= 100%).

We next examined whether we could isolate whether the interaction between reward and 

validity could be tied to a specific component of visual working memory. To do so, we 

fit a mixture model to a response error distribution aggregated across all participants for 

each condition. This model comprised 3 mixture parameters (which sum to 1) representing 

the probability of recalling a target item (P(Target)), recalling a non-target item (P(Swap)), 
or guessing randomly (P(Guess)) (Bays et al., 2009). The model additionally included an 

imprecision parameter, SD, which represents the standard deviation of recall error for trials 

for which the participant successfully remembered an item (target or non-target). We tested 

for a validity effect by computing all pairwise differences between posterior distributions for 

valid and invalid trials yielding a posterior probability difference distribution.

We found strong evidence for a validity effect for the probability of target report (P(Target): 
median [HDI] = 0.416 [0.118, 0.714], pd = 99.86%; see Table 2) and the probability of 

an item swap (P(Swap): median [HDI] = −0.334 [−0.529, −0.167], pd = 100%). There 

was weaker evidence for a validity effect for recall precision (SD: median [HDI] = −5.507 

[−15.026, 4.512], pd = 83.75%) and little evidence for a validity effect for the probability of 

guessing (P(Guess): median [HDI] = −0.052 [−0.429, 0.251], pd = 61.54%).

We next tested for an interaction by comparing the difference between valid and invalid 

trials for different levels of reward. An interaction would be evidenced by a larger difference 

between levels of cue validity at $10 and $20 than $1. We found that the effect of attentional 
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priority on the probability of recalling the target item or guessing was modulated by reward 

(Figure 3A-B; P(Target) [$10 V – I] vs [$1 V – I]: median [HDI] = 0.281 [0.024, 0.516], 

pd = 98.22%; P(Target) [$20 V – I] vs [$1 V – I]: median [HDI] = 0.410 [0.107, 0.673], pd 
= 99.45%; P(Guess) [$10 V – I] vs [$1 V – I]: median [HDI] = −0.176 [−0.485, 0.140], pd 
= 86.29%; P(Guess) [$20 V – I] vs [$1 V – I]: median [HDI] = −0.408 [−0.759, 0.013], pd 
= 96.37%). We found little evidence for an interaction between priority and reward for the 

probability of a memory swap or imprecision (Supplementary 1A-B; P(Swap) [$10 V – I] vs 
[$1 V – I]: median [HDI] = −0.104 [−0.312, 0.112], pd = 82.69%; P(Swap) [$20 V – I] vs 
[$1 V – I]: median [HDI] = 0.007 [−0.254, 0.220], pd = 52.45%; SD [$10 V – I] vs [$1 V 
– I]: median [HDI] = 3.148 [−8.256, 14.403], pd = 70.09%; SD [$20 V – I] vs [$1 V – I]: 
median [HDI] = 5.283 [−10.435, 18.392], pd = 72.92%). Thus, rewards appear to primarily 

affect the success of encoding items into working memory rather than the probability of item 

swaps in working memory or the precision of working memory representations.

We then examined whether there was a tradeoff in the probability of target recall or 

guessing between prioritized and de-prioritized items. In other words, we examine whether 

any benefit associated with reward for prioritized items was accompanied by a cost for 

de-prioritized items. We tested for a tradeoff by comparing the difference between larger 

reward values ($10 and $20) and low reward ($1) for valid and invalid items to see if the 

absolute difference was of similar magnitude. We found little evidence for an asymmetry in 

the difference between larger reward values and low reward between validly and invalidly 

cued trials (P(Target) [Valid $10 – $1] vs. [Invalid $1 – $10]: median [HDI] = −0.022 

[−0.257, 0.235], pd = 56.75%; P(Target) [Valid $20 – $1] vs. [Invalid $1 – $20]: median 

[HDI] = −0.112 [−0.374, 0.191], pd = 75.94%; P(Guess) [Valid $10 – $1] vs. [Invalid $1 
– $10]: median [HDI] = −0.085 [−0.400, 0.225], pd = 70.58%; P(Guess) [Valid $20 – $1] 
vs. [Invalid $1 – $20]: median [HDI] = 0.071 [−0.350, 0.423], pd = 62.21%). So we again 

find evidence that rewards do not increase the total amount of encoded information. Rather, 

incentive cues influence how displayed items are prioritized for subsequent encoding.

Experiment 2.

In Experiment 2, we aimed to replicate Experiment 1 in a larger sample of participants (N 

= 25) to confirm that reward primarily influences working memory task performance by 

modulating attentional priority. In order to collect a greater number of invalid trials and 

obtain a more accurate estimate of response error, cue validity was reduced to 66.67% of 

trials (versus 80% in Experiment 1) and the delay period was shortened to 4 s (versus 6 s in 

Experiment 1). The task was otherwise identical to that used in Experiment 1.

Participants were far more accurate (i.e., lower mean absolute error) on valid trials than 

invalid trials (Figure 2C; median [HDI] = 0.559 [0.524, 0.594], pd = 100%), again indicating 

that the priority cue manipulated attentional priority (Figure 2B). We found strong evidence 

for an interaction between reward and cue validity (Figure 2D; median [HDI] = 0.887 

[0.793, 0.987], pd = 98.4%), whereby the memory advantage for validly cued items was 

larger at the higher reward values. Again, this interaction could not be explained by a speed-

accuracy tradeoff, as there was no evidence for an effect of reward on reaction time for both 

valid and invalid trials (valid: median [HDI] = 1.010 [0.978, 1.041], pd = 72.2%; invalid: 
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median [HDI] = 0.991 [0.970, 1.013], pd = 78.8%). These results further demonstrate that 

rewards affect working memory primarily through a change in the degree of prioritization 

among to-be-remembered items.

We next performed a Bayesian replication analysis to quantify the evidence for or against 

a successful replication (Ly et al., 2019). To do so, we computed an evidence updating 

replication Bayes factor, which involves fitting the same model to data pooled from both 

experiments (N = 36) and then comparing the resulting evidence to the evidence from the 

original experiment (see methods). The interaction between reward and cue validity for 

Experiment 1 yielded an evidence ratio of 65.67. The pooled model fit revealed the same 

interaction between reward and cue validity (median [HDI] = 0.868 [0.787, 0.958], pd = 

99.8%, evidence ratio = 499). This resulted in a replication Bayes factor of 7.60 (i.e. 499 / 

65.67), which indicates that the data from the replication attempt (Experiment 2) are 7.60 

times more likely under the hypothesis that the effect is consistent with the one found in the 

original study (Experiment 1) than the null hypothesis that the effect is not consistent.

We again performed a mixture model analysis to determine which aspect of working 

memory was modulated by reward and priority (see Table 3). We found strong evidence 

of a validity effect on the probability of target recall and guessing (P(Target) V – I: median 

[HDI] = 0.334 [0.211, 0.440], pd = 100%; P(Guess) V – I: median [HDI] = −0.311 [−0.426, 

−0.177], pd = 100%). We found weaker evidence for an effect of cue validity on the 

probability of a memory swap (P(Swap) V – I: median [HDI] = −0.020 [−0.065, 0.010], 

pd = 89.49%) and there was little evidence for an effect of cue validity on recall precision 

(SD V – I: median [HDI] = −0.651 [−4.146, 2.892], pd = 63.59%). Replicating Experiment 

1, we observed a strong interaction between reward and priority for both the probability of 

target recall and the probability of guessing (Figure 3C-D; P(Target) [$10 V – I] vs [$1 V 
– I]: median [HDI] = 0.103 [−0.005, 0.207], pd = 96.87%; P(Target) [$20 V – I] vs [$1 V 
– I]: median [HDI] = 0.143 [0.036, 0.253], pd = 99.59%; P(Guess) [$10 V – I] vs [$1 V – 
I]: median [HDI] = −0.110 [−0.230, 0.011], pd = 96.23%; P(Guess) [$20 V – I] vs [$1 V 
– I]: median [HDI] = −0.149 [−0.273, −0.030], pd = 99.39%). There was little evidence for 

an interaction between reward and priority for the probability of non-target report or recall 

precision (Supplementary Figure 1C-D; P(Swap) [$10 V – I] vs [$1 V – I]: median [HDI] 

= 0.007 [−0.048, 0.065], pd = 61.08%; P(Swap) [$20 V – I] vs [$1 V – I]: median [HDI] = 

0.007 [−0.048, 0.064], pd = 59.37%; SD [$10 V – I] vs [$1 V – I]: median [HDI] = 1.454 

[−2.263, 5.251], pd = 77.34%; SD [$20 V – I] vs [$1 V – I]: median [HDI] = 2.164 [−1.823, 

6.197], pd = 86.02%). We further found evidence for a tradeoff in the effect of reward on 

probability of target recall and guessing between cued and non-cued items. The change in 

probability associated with larger rewards for valid trials (e.g. increased probability of target 

report) was mirrored by a change in the opposite direction for invalid trials (e.g. decreased 

probability of target report) (P(Target) [V $10 – $1] vs. [I $1 – $10]: median [HDI] = 

−0.0447 [−0.150, 0.062], pd = 79.12%; P(Target) [V $20 – $1] vs. [I $1 – $20]: median 

[HDI] = −0.052 [−0.162, 0.055], pd = 82.90%; P(Guess) [V $10 – $1] vs. [I $1 – $10]: 
median [HDI] = 0.048 [−0.073, 0.168], pd = 77.64%; P(Guess) [V $20 – $1] vs. [I $1 – 
$20]: median [HDI] = 0.048 [−0.072, 0.171], pd = 78.14%). These findings further indicate 

that rewards do not change the availability of resources. Instead, rewards appear to modulate 

the distribution of resources across to-be-remembered items.
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Experiment 3.

In Experiments 1 and 2, the greater allocation of resources to prioritized items could be 

construed as a strategy to allocate resources to items with higher expected value. Experiment 

3 examined the effect of reward on the allocation of working memory resources when the 

cued item no longer had greater expected value. To do so, we further manipulated cue 

validity so that only 50% of priority cues were valid. Prioritizing the cued item in this case 

would not lead to any overall benefits in performance. We again found strong evidence for 

a validity effect (Figure 2E; median [HDI] = 0.885 [0.836, 0.940], pd = 100%) as well as 

some modulation of this validity effect by reward (Figure 2F; median [HDI] = 0.931 [0.841, 

1.033], pd = 91.5%). However, we surprisingly did not find strong evidence for a cost. 

Greater rewards were associated with reduced recall error for valid trials (median [HDI] = 

0.919 [0.856, 0.990], pd = 98.8%), but there was little evidence for a change in recall error 

with increasing reward for invalid trials (median [HDI] = 0.987 [0.918, 1.061], pd = 64.4%). 

Nevertheless, we again find evidence for an asymmetry in the influence of reward depending 

on the attentional priority of the remembered item.

We then fit a mixture model to the response error distribution for each trial type (see 

Table 4). This analysis allowed us to distinguish between different sources of recall error. 

We found some evidence for a validity effect for the probability of target report and the 

probability of guessing (P(Target) Valid – Invalid: median [HDI] = 0.066 [−0.027, 0.161], 

pd = 91.57%; P(Guess) Valid – Invalid: median [HDI] = −0.072 [−0.176 0.026], pd = 

91.63%), as well as strong evidence for an interaction between reward and cue validity for 

P(Target) and P(Guess) (Figure 3E-F; P(Target) [$10 V – I] vs [$1 V – I]: median [HDI] 

= 0.055 [−0.031, 0.138], pd = 89.60%; P(Target) [$20 V – I] vs [$I V – I]: median [HDI] 

[HDI] = 0.130 [0.043, 0.216], pd = 99.73%; P(Guess) [$10 V – I] vs [$I V – I]: median 

[HDI] = −0.064 [−0.150, 0.026], pd = 91.68%; P(Guess) [$20 V – I] vs [$1 V – I]: median 

[HDI] = −0.143 [−0.234, −0.051], pd = 99.82%). There was limited evidence for a validity 

effect or an interaction between reward and validity for the probability of a memory swap 

(Supplementary Figure 1E; all pd < 83%). There was evidence for an interaction between 

reward and validity for recall precision (Supplementary Figure 1F; pd > 96.5%). However, 

the direction of this effect was opposite to that observed for the probability of target report 

and guessing (i.e. larger difference between valid and invalid trials for $1 than $10 or $20). 

In contrast to the analysis of absolute error, we did find evidence for a tradeoff whereby the 

benefit observed with increasing reward for the valid cue condition was accompanied by a 

cost in the opposite direction for the invalid cue condition. This tradeoff was observed for 

both the probability of target recall and the probability of guessing (P(Target) [Valid $10 – 
$1] vs. [Invalid $1 – $10]: median [HDI] = −0.005 [−0.089, 0.080], pd = 54.99%; P(Target) 
[Valid $20 – $1] vs. [Invalid $1 – $20]: median [HDI] = −0.002 [−0.089, 0.084], pd = 

52.08%; P(Guess) [Valid $10 – $1] vs. [Invalid $1 – $10]: median [HDI] = −0.002 [−0.091, 

0.085], pd = 52.17%; P(Guess) [Valid $20 – $1] vs. [Invalid $1 – $20]: median [HDI] 

= −0.014 [−0.105, 0.077], pd = 62.08%). These findings suggest that reward modulation 

of prioritization may be independent of any strategic allocation of resources to items with 

greater expected value.
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Experiment 4.

We next sought to isolate the specific phase of working memory that is modulated by 

rewards. To do so, rather than present the stimulus cue concurrently with the reward cue, 

we shifted the stimulus cue to appear immediately following the offset of the stimulus 

presentation period. This post-cue could only affect prioritization after encoding had already 

occurred. This change allowed us to determine if rewards modulate processing during 

selection/encoding phases of the trial or maintenance/retrieval phases of the trial.

We again found evidence for a validity effect (median [HDI] = 0.903 [0.849, 0.961], pd 
= 100%). In contrast to Experiments 1-3, we found limited evidence for an interaction 

between reward and validity (Figure 4A-B; median [HDI] = 0.974 [0.877, 1.081], pd = 

69.5%). The lack of an interaction indicates that rewards do not modulate performance 

once items have already been encoded into working memory. This would suggest that the 

reward modulation observed in Experiments 1-3 must occur during either the attentional 

selection of items or the subsequent encoding of those items into working memory. This 

finding was confirmed by a mixture model analysis (see Table 5). While we found some 

evidence for an effect of cue validity on the probability of target recall (P(Target) Valid 
– Invalid: median [HDI] = 0.065 [−0.035, 0.153], pd = 88.92%), we did not find strong 

evidence for an interaction between reward and cue validity for any model parameter when 

the priority cue was retroactive (Figure 4C-D; Supplementary Figure 2A-B; all pd < 90%). 

These results again indicate that rewards do not influence working memory performance 

when participants are unable to prioritize information prior to encoding.

Experiment 5.

While we found strong evidence for a main effect of priority and an interaction between 

reward and priority in Experiments 1-3, we did not find strong evidence for a main effect 

of reward indicating that reward does not augment overall capacity. However, a subtle main 

effect of reward could have been obscured by the substantially more robust priority effect. 

This masking could be exacerbated by a nonlinear relationship between recall error and the 

amount of information stored in working memory. That is, it is possible that there are ceiling 

and floor effects on recall error when storage is minimal or maximal that could make a main 

effect of reward less likely to be observed statistically in the presence of a reward by priority 

interaction. To more definitively demonstrate that reward does not affect overall capacity 

and that there is no effect of reward in the absence of priority cues we ran an additional 

experiment in which we manipulated reward value while keeping prioritization constant (no 

priority cues). We found limited evidence for a main effect of reward when prioritization 

cues were not presented (median [HDI] = 1.001 [0.973, 1.031], pd = 53.76%). We find 

limited evidence for reward modulation of capacity despite doubling our sample size for 

this experiment relative to the previous experiments (N=50). This finding argues against a 

scenario where a small reward effect is masked by the substantially more robust effect of 

prioritization.

Experiment 6.

In Experiment 6 we sought to investigate whether other aspects of the task design in 

previous experiments could have also obscured a main effect of reward on working memory 
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capacity. Experiments 1-5 each kept set size constant at 2 items. It is possible that capacity 

is only augmented when working memory is sufficiently taxed (i.e. greater working memory 

load). In Experiment 6, participants had to remember the identity of either 2, 4 or 6 items 

(120 trials each). Experiments 1-5 presented memoranda for 200 ms. This brief encoding 

window could have produced a perceptual bottleneck that encouraged a strategy in which 

participants choose one item from the display to sufficiently encode. Thus, Experiment 6 

extended the sample period to 1 s to ensure participants had sufficient time to perceptually 

encode all stimuli in the display. We still did not observe strong evidence for an effect 

of reward across set sizes (median [HDI] = 0.986 [0.959, 1.011], pd = 85.71%) or an 

interaction between reward and set size (median [HDI] = 0.984 [0.940, 1.029], pd = 75.98%) 

indicating that reward does not selectively augment capacity at greater levels of working 

memory load. We further showed negligible evidence for an effect of encoding window 

duration on recall error (1 s – 200 ms encoding window: median [HDI] = 1.102 [0.940, 

1.294], pd = 88.68%), which suggests that a perceptual bottleneck cannot account for the 

null main effect of reward.

Discussion

The effect of motivation on visual working memory is controversial. Working memory 

is subject to strict capacity limits that may restrict the potential benefits of reward on 

performance (Cowan, 2001; Luck & Vogel, 1997). On the other hand, recent modeling 

work theorizes that the total amount of resource dedicated to storing items in working 

memory is flexible and potentially able to be increased when there is more at stake (van den 

Berg & Ma, 2018). Here, we find that rewards do modulate working memory performance. 

However, the direction and extent of this modulation was determined by the attentional 

priority of the to-be-remembered item. Our findings provide evidence for flexibility 

in resource allocation in the selection of information for working memory. Resource 

availability, however, is unaffected by the prospect of reward. Across six experiments using 

a range set sizes, we fail to observe any evidence for increased availability of visual working 

memory resources with greater prospect of reward.

Prior studies on the effect of motivation on visual working memory capacity and precision 

have produced mixed results. Some studies have found no effect of reward (Zhang & Luck, 

2011; van den Berg et al., 2022), while others have seemingly demonstrated that reward 

benefits visual working memory performance. However, the observation of a reward effect 

in these studies generally cannot be attributed to a motivational effect on capacity. Instead, 

these effects can be attributed to either the confounding of attentional priority cues with 

reward cues (Gong & Li, 214; Klink et al., 2017; Kyszejko et al., 2014; Thomas et al., 

2016; Wallis et al., 2015) or a speed-accuracy tradeoff (Krawczyk et al., 2007; Grogan 

et al., 2022). In one notable counterexample, Kawasaki and Yamaguchi (2013) found that 

increasing reward resulted in greater estimates of capacity (Cowan’s K score; Cowan, 2001). 

Yet, two aspects of their design make it difficult to determine if storage capacity has in fact 

expanded with the prospect of reward. First, this study provided trialwise feedback which 

confounds working memory storage with reward history related reinforcement learning 

mechanisms. Second, the authors used a change detection paradigm (binary choice), which 

means that their results could be explained by a tradeoff between the number of items stored 
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and the fidelity with which those items were encoded. For instance, given the prospect of 

reward a participant could adopt a strategy whereby they maintain a higher number of items 

at a lower resolution (but with sufficient resolution to detect a change). Such a reallocation 

of resources would be consistent with the results presented here.

We independently manipulated reward and attentional priority in a visual working memory 

task and found that greater rewards coincided with greater prioritization of pre-cued items 

at the expense of non-cued items. This was evidenced by a decrease in recall error for 

cued items and an increase in recall error for non-cued items with larger rewards. We 

additionally performed a mixture model analysis that enabled us to disentangle the effects 

of reward on different components of visual working memory. We found that rewards 

modulated the probability of successfully encoding an item into working memory. Greater 

rewards were associated with greater probability of successful encoding for cued items and 

decreased probability of successful encoding for non-cued items. Interestingly, we found 

little evidence that rewards modulated the probability of binding errors or recall precision. 

This is consistent with a recent study that found no effect of reward on visual working 

memory precision (van den Berg et al., 2020). Taken together, these findings indicate that 

monetary incentives primarily affect whether an item is prioritized for encoding rather than 

the quality of visual working memory representations or encoding errors (e.g. misbinding of 

location and feature).

It could be argued that the brief duration of our sample period (200 ms) produced a 

perceptual bottleneck that forced a strategy in which participants must make a choice to 

select only one of the items for sufficiently precise encoding. This would suggest that the 

observed tradeoff in recall error resulted from perceptual encoding limitations rather than 

working memory capacity limitations. We find this explanation unlikely for several reasons. 

First, sample periods of 100-200 ms are consistent with a number of seminal visual working 

memory studies that estimate capacity (Bays et al., 2009, 2011; Luck & Vogel, 1997; van 

den Berg et al., 2012; Wilken & Ma, 2004; Zhang & Luck, 2008, 2011). Second, prior 

research indicates that visual working memory encoding for multiple items is not a strictly 

sequential process. Bays et al. (2011) systematically varied stimulus presentation duration 

and showed that recall error is governed by two constraints: encoding rate and storage limits. 

At short encoding times (<200 ms), the quality of subsequent recall depends on both how 

rapidly information is encoded into WM and overall storage capacity. They showed that for 

encoding times beyond 200 ms, recall fidelity is entirely determined by capacity constraints. 

Third, the probability of successfully encoding a target item on invalid trials in Experiment 

3 (50% cue validity) was ~75%, indicating that participants were capable of encoding two 

items on the majority of trials even with brief exposure to the stimuli. Lastly, in Experiment 

6 we extended the encoding period to 1 s. We did not find a difference in participants’ 

ability to encode 2 items between this extended encoding period and the short encoding 

period used in the prior experiments. Taken together, these results indicate that 200 ms is 

a sufficient duration for participants to perceptually process 2 items and thus a perceptual 

bottleneck is unlikely to account for our finding of a reward-induced tradeoff in working 

memory performance according to item priority.
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Our results provide support for a proactive control account of reward modulation of visual 

working memory. Proactive control refers to the advance maintenance of goal-relevant 

information for the purpose of biasing perception-, attention-, and action-related systems 

(Braver, 2012). Proactive control can be differentiated from reactive control which is 

characterized by the transient adjustment of control in response to unexpected events 

(Braver, 2012). Prior work has indicated that incentives primarily enhance proactive rather 

than reactive control processes (Braver et al., 2009; Chiew & Braver, 2013, 2014, 2016). For 

example, Chiew and Braver (2016) independently manipulated incentives and task-relevant 

cues and found that rewards modulate performance specifically when preparatory cues are 

presented, but only when there is sufficient time to act on those cues. This is consistent with 

the current result that incentives modulate the priority of displayed items, but only when 

priority cues are presented prior to the encoding period. Once participants had encoded 

items into visual working memory (Experiment 4), prospective rewards no longer impacted 

performance. This is notable as it indicates that rewards do not modulate prioritization 

during maintenance. These findings potentially suggest distinct mechanisms may underlie 

prioritization of sensory stimuli versus the prioritization of items held in working memory.

It should be noted that our mixture model analysis used a super-subject approach which 

assumes no variation across individuals. This aggregation was necessary due to the limited 

number of invalid trials collected for each participant. Increasing the number of invalid 

trials while maintaining the same ratio of valid and invalid trials would have resulted in 

experimental session durations that were not feasible. Nevertheless, our mixture model 

results consistently revealed the same reward by priority interaction across experiments as 

our hierarchical fit to mean absolute recall error, which accounted for both within- and 

between-subject sources of variation. This interaction in the mixture model analysis was 

limited to parameters associated with the probability of successfully encoding a stimulus 

for each experiment. It is possible with sufficient data that we would not observe this effect 

in individual subjects. This concern is somewhat mitigated by our bootstrap analysis which 

demonstrated that our mixture model results were not driven by outlier subjects.

Our results cannot be explained by a strategy whereby participants simply prioritize items 

with greater expected value (Shenhav et al., 2013, 2016). In Experiments 1 and 2, it could 

be argued that cued and non-cued items had unequal expected value (e.g. 0.8 * $20 = 

$16 vs. 0.2 * $20 = $4). As a result, participants could simply have strategically deployed 

greater attentional resources to the item with greater value. In Experiment 3, however, 

priority cues had equal chance of being valid or invalid. Thus, neither displayed item had 

greater expected value. Nevertheless, we still observed an interaction between reward and 

priority such that greater incentives were associated with greater likelihood that the cued 

item would be encoded and decreased likelihood that the non-cued item would be encoded. 

This finding suggests that reward modulation of prioritization may be an involuntary process 

akin to the phenomenon of value-driven attentional capture (B. A. Anderson et al., 2011). 

Recent conceptualizations of the attentional capture effect suggest that attention can be 

captured by salient stimuli but the degree of capture can be modulated or even prevented if 

the attentional control system is appropriately configured (Luck et al., 2021). As a result, 

both salience and control settings influence the priority of specific locations and features. 

The current findings potentially suggest that rewards produce an involuntary reconfiguration 
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of control that increases the degree to which cues drive resource allocation regardless of 

whether they are informative or not.

A set size of 2 was used for Experiments 1-5, which is below capacity for many participants. 

We chose set size 2 with the intention of better controlling the tradeoff in prioritization and 

de-prioritization between items. Set sizes greater than 2 could potentially lead to varying 

levels of de-prioritization across non-cued items making it difficult to detect a change in 

resource allocation without increasing the number of trials substantially. We acknowledge 

that we are assuming that if working memory load is sub-capacity that participants divide 

all available resources across items rather than use a fraction of available resources. Our 

results indicate that this is a reasonable assumption. We observed a tradeoff in recall 

between the cued and non-cued item indicating that participants used all available resources 

at set size 2 and were unable to modulate the total availability of resources. If we had 

observed that performance had improved for the cued item without an associated cost for the 

non-cued item, it would have been unclear whether this improvement reflected an increase 

in total resources or whether participants were simply not using all available resources for 

sub-capacity displays at low reward values. We would have then needed to test a larger range 

of set sizes to determine if reward can expand overall capacity. Yet, we failed to observe 

such a facilitation across all of our experiments, including in Experiment 6 which included 

both sub- and supra-capacity set sizes. We leave it for future research, however, to more 

definitively determine whether our finding of a reallocation of resources across items in the 

presence of priority cues occurs for supra-capacity displays.

Our results argue against a resource rational model of visual working memory (van den 

Berg & Ma, 2018). According to the resource rational model, an observer could potentially 

expend greater neural resources when there is greater value at stake, and thus increase 

storage capacity. We found little evidence for a change in the availability of resources with 

greater rewards. Instead, rewards simply modulated the flexible allocation of resources to 

different items within the display. The current results indicate that the effect of reward on 

visual working memory differs from the primarily facilitatory effect previously shown for 

motor processes or higher order decision processes (Adkins et al., 2021; S. P. Anderson 

et al., 2020; Boehler et al., 2012; Chiew & Braver, 2013, 2016; Hübner & Schlösser, 

2010; Krebs et al., 2011; Manohar et al., 2015, 2018; Takikawa et al., 2002). Rather than 

providing a global boost to performance, any reward benefit for prioritized items came at the 

expense of deprioritized items. While the prospect of reward influences proactive control at 

encoding, visual working memory capacity constraints appear to be unaffected.

Context

The amount of visual information we receive each moment outstrips our capacity to 

actively hold information in mind for further processing. This short-term maintenance and 

manipulation of information, visual working memory, has strict storage limits. However, 

recent modeling work has argued that the total amount of resources devoted to visual 

working memory can be flexibly adjusted as the situation demands. Although the prospect of 

reward can facilitate a broad range of mental processes, there is mixed evidence for whether 

reward can similarly enhance visual working memory. Across multiple experiments, we find 
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that prospective rewards do not increase the total amount of resources available to visual 

working memory. Rather, rewards enhanced memory for prioritized information, but this 

came at the cost of memory for simultaneously presented information that was deprioritized. 

These findings indicate that rewards affect the flexible allocation of existing resources but do 

not augment visual working memory capacity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Task paradigm and hypothetical results. (A) Reward and priority continuous report visual 

working memory paradigm. On each trial, participants were presented with a reward cue 

($1, $10 or $20) and a priority cue (left or right hemifield) for 1 s. Participants were then 

presented with two oriented grating stimuli for 0.2 s. Following a 6 s delay, a probe grating 

appeared in either the left or right hemifield and participants were given up to 6 s to adjust 

a probe grating to match the grating that had appeared in the same hemifield. (B-D) Three 

hypothetical effects of reward and priority. (B) Reward has no effect on visual working 

memory performance, although there is a robust priority effect across all levels of reward. 

(C) Reward equally benefits prioritized and de-prioritized items independent of the effect of 

priority. (D) Reward facilitates performance for prioritized items but this benefit comes at 

the expense of worse performance for deprioritized items.

Brissenden et al. Page 23

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Experiments 1-3 recall error results. (A) Mean absolute recall error across participants for 

each level of cue validity (valid or invalid) and reward ($1, $10, or $20) in Experiment 

1. Error bars represent within-subject standard error of the mean (SEM) (Morey, 2008). 

(B) Posterior distribution for the interaction between reward and priority for Experiment 1. 

Posterior parameter values are exponentiated so that they reflect multiplicative factors (with 

dotted line at 1 representing no change). The dark blue shaded region represents the 50% 

HDI and the light blue shaded region represents the 95% HDI. (C) Experiment 2 mean 

absolute recall error for each level of cue validity and reward (D) Experiment 2 posterior 

distribution for reward × priority interaction. (E) Experiment 3 mean absolute recall error for 

each level of cue validity and reward. (F) Experiment 3 posterior distribution for reward × 

priority interaction.
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Figure 3. 
Experiments 1-3 mixture model results. Violin plots depict posterior distributions for 

mixture model parameters for each level of cue validity and reward. (A) Experiment 1 

probability of target report posterior distributions. (B) Experiment 1 probability of guessing 

posterior distributions. (C) Experiment 2 probability of target report posterior distributions. 

(D) Experiment 2 probability of guessing posterior distributions. (E) Experiment 3 

probability of target report posterior distributions. (F) Experiment 3 probability of guessing 

posterior distributions.
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Figure 4. 
Experiment 4 results. (A) Mean absolute recall error across participants for each level of cue 

validity and reward. Error bars represent within-subject SEM. (B) Posterior distribution for 

the interaction between reward and priority. The dark blue shaded region represents the 50% 

HDI and the light blue shaded region represents the 95% HDI. (C) Violin plot depicting the 

posterior distribution for the probability of target report for each level of cue validity and 

reward. (D) Posterior distributions for the probability of guessing.
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Figure 5. 
Experiment 5 and 6 results. (A) Experiment 5 mean absolute recall error across participants 

for each level of reward. Error bars represent within-subject SEM (Morey, 2008). (B) 

Experiment 6 mean absolute recall error across participants for each level of reward and set 

size.

Brissenden et al. Page 27

J Exp Psychol Gen. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brissenden et al. Page 28

Table 1

Reaction Time Posterior Summary for each Experiment

$1 $10 $20

Experiment Validity Median (ms) 95% HDI Median (ms) 95% HDI Median (ms) 95% HDI

1 Valid 737 634 – 837 752 653 – 861 757 650– 857

Invalid 935 794– 1086 921 785– 1066 1065 898– 1238

2 Valid 662 602– 723 661 601– 721 653 594– 714

Invalid 809 736 – 887 818 741 – 895 820 743 – 897

3 Valid 806 722 – 894 821 732 – 910 804 723 – 896

Invalid 849 757 – 940 820 734 – 910 825 740 – 916

4 Valid 745 678 – 814 757 688 – 827 765 696 – 837

Invalid 814 735 – 892 818 744 – 900 843 763 – 925
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Table 2

Mixture Model Posterior Summary for Experiment 1

$1 $10 $20

Validity Parameter Median 95% HDI Median 95% HDI Median 95% HDI

Valid P(Target) 0.72 0.66 – 0.78 0.85 0.8 – 0.9 0.87 0.83–0.91

P(Guess) 0.26 0.21 – 0.33 0.14 0.08 – 0.19 0.1 0.05 – 0.15

P(Swap) 0.01 0.00 – 0.04 0.01 0.00 – 0.04 0.03 0.00 – 0.06

SD 11.7 9.74 – 13.08 14.53 12.71 – 16.23 14.41 13.18 – 16.08

Invalid P(Target) 0.55 0.33 – 0.68 0.38 0.25 – 0.53 0.27 0.11 – 0.51

P(Guess) 0.13 0.00 – 0.35 0.18 0.02 – 0.41 0.4 0.05 – 0.67

P(Swap) 0.31 0.18 – 0.45 0.42 0.27 – 0.56 0.34 0.18 – 0.54

SD 19.89 10.86 – 27.11 19.53 12.19 – 25.87 16.5 8.91 – 30.32
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Table 3

Mixture Model Posterior Summary for Experiment 2

$1 $10 $20

Validity Parameter Median 95% HDI Median 95% HDI Median 95% HDI

Valid P(Target) 0.85 0.82 – 0.88 0.88 0.85 – 0.91 0.9 0.87 – 0.93

P(Guess) 0.14 0.11 – 0.17 0.11 0.08 – 0.15 0.09 0.06 – 0.12

P(Swap) 0.002 0.00 – 0.01 0.005 0.00 – 0.02 0.008 0.00 – 0.02

SD 14.82 13.88 – 15.69 15.12 13.93 – 15.94 14.33 13.48 – 15.24

Invalid P(Target) 0.61 0.54 – 0.67 0.53 0.47 – 0.59 0.51 0.44 – 0.58

P(Guess) 0.37 0.29 – 0.45 0.44 0.36 – 0.51 0.46 0.40 – 0.56

P(Swap) 0.03 0.00 – 0.07 0.02 0.00 – 0.06 0.03 0.00 – 0.06

SD 16.57 14.50 – 19.20 15.43 13.13 – 17.84 13.95 11.11 – 16.86
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Table 4

Mixture Model Posterior Summary for Experiment 3

$1 $10 $20

Validity Parameter Median 95% HDI Median 95% HDI Median 95% HDI

Valid P(Target) 0.77 0.72 – 0.81 0.79 0.75 – 0.83 0.83 0.79 – 0.87

P(Guess) 0.23 0.18 – 0.27 0.19 0.14 – 0.23 0.15 0.11 – 0.19

P(Swap) 0.003 0.00 – 0.01 0.01 0.00 – 0.03 0.02 0.00 – 0.04

SD 13.58 12.22 – 14.66 14.71 13.65 – 15.95 13.13 12.08 – 14.49

Invalid P(Target) 0.76 0.72 – 0.80 0.73 0.70 – 0.78 0.7 0.65 – 0.74

P(Guess) 0.23 0.19 – 0.27 0.26 0.22 – 0.30 0.29 0.25 – 0.35

P(Swap) 0.004 0.00 – 0.02 0.004 0.00 – 0.02 0.006 0.00 – 0.02

SD 15.00 13.54 – 16.55 13.82 12.32 – 15.02 12.13 11.14 – 13.31
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Table 5

Mixture Model Posterior Summary for Experiment 4

$1 $10 $20

Validity Parameter Median 95% HDI Median 95% HDI Median 95% HDI

Valid P(Target) 0.72 0.68 – 0.75 0.71 0.67 – 0.76 0.71 0.67 – 0.75

P(Guess) 0.28 0.24 – 0.32 0.28 0.24 – 0.33 0.29 0.25 – 0.34

P(Swap) 0.001 0.00 – 0.01 0.003 0.00 – 0.01 0.002 0.00 – 0.01

SD 15.10 14.03 – 16.26 16.47 15.14 – 17.98 14.80 13.73 – 15.95

Invalid P(Target) 0.69 0.63 – 0.75 0.64 0.58 – 0.70 0.63 0.57 – 0.69

P(Guess) 0.28 0.22 – 0.36 0.34 0.28 – 0.41 0.33 0.26 – 0.41

P(Swap) 0.02 0.00 – 0.06 0.02 0.00 – 0.05 0.04 0.01 – 0.09

SD 16.00 13.86 – 18.50 15.60 13.81 – 17.33 14.99 13.33 – 17.42
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