Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Support vector machines (SVMs) are becoming popular in a wide variety of biological applications. But, what exactly are SVMs and how do they work? And what are their most promising applications in the life sciences?
How can we computationally extract an unknown motif from a set of target sequences? What are the principles behind the major motif discovery algorithms? Which of these should we use, and how do we know we've found a 'real' motif?
Sequence motifs are becoming increasingly important in the analysis of gene regulation. How do we define sequence motifs, and why should we use sequence logos instead of consensus sequences to represent them? Do they have any relation with binding affinity? How do we search for new instances of a motif in this sea of DNA?
Bayesian networks are increasingly important for integrating biological data and for inferring cellular networks and pathways. What are Bayesian networks and how are they used for inference?