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RNA-Seq is quickly becoming the preferred method for comprehensively characterizing whole
transcriptome activity, and the analysis of count data from RNA-Seq requires new computational tools. We
developed GSAASeqSP, a novel toolset for genome-wide gene set association analysis of sequence count
data. This toolset offers a variety of statistical procedures via combinations of multiple gene-level and gene
set-level statistics, each having their own strengths under different sample and experimental conditions.
These methods can be employed independently, or results generated from multiple or all methods can be
integrated to determine more robust profiles of significantly altered biological pathways. Using simulations,
we demonstrate the ability of these methods to identify association signals and to measure the strength of the
association. We show that GSAASeqSP analyses of RNA-Seq data from diverse tissue samples provide
meaningful insights into the biological mechanisms that differentiate these samples. GSAASeqSP is a
powerful platform for investigating molecular underpinnings of complex traits and diseases arising from
differential activity within the biological pathways. GSAASeqSP is available at http://gsaa.unc.edu.

ellular processes are regulated by complex networks of functionally interacting genes. Differential activity

of genes in these networks largely determines the state of the cell and cellular phenotypes. Identifying

biological pathways with differential activity between phenotypically distinct samples is a powerful way to
uncover molecular mechanisms underlying complex traits, diseases, and diverse cell types. Towards this end, we
previously developed GSAA' (Gene Set Association Analysis) that identifies differentially expressed pathways
through the integration of microarray gene expression and single nucleotide polymorphism (SNP) data. In
addition, a variety of alternative statistical and computational methods have been developed as well such as
GSEA?, SAM-GS?, PAGE*, GAGE?, T-profiler’, GT’, AGT®, and GLAPA’. However, these programs, including
GSAA, can only evaluate differential activity of pathways using real-valued data from microarrays, but not count
data from RNA-seq.

RNA-Seq performs transcriptome profiling using high-throughput sequencing technologies. Compared to
microarrays, RNA-Seq offers several advantages including: 1) better quantification of very high and very low
expressed genes; 2) detection of all transcripts without pre-existing knowledge of their sequence or location; and
3) higher levels of reproducibility'®. Analysis of count-based data from RNA-Seq requires the development of new
methods and tools. Three existing methods have been developed for gene set analysis (GSA) of RNA-Seq data'''*:
(1) SeqGSEA'"'? performs GSA using differential expression and splicing information, either independently or
together, based on a weighted Kolmogorov-Smirnov (KS) statistic; (2) A GSA method proposed by Fridley et al.
uses the Gamma Method with a soft truncation threshold; and (3) GSVA (Gene Set Variation Analysis)
calculates pathway-based variation within a sample population'*. We found, however, that SeqGSEA is compu-
tationally intensive and only offers the single gene set-level statistic; the GSA method from Fridley et al. is not
available as a public software tool; and GSVA is not designed for gene set-based differential expression analysis
between two phenotypically distinct sample groups. Therefore, computational tools that assess the associations
between phenotypes and differential expression of pathways for RNA-Seq data are still very much needed.

Here, we describe a novel toolset, Gene Set Association Analysis for RNA-Seq with Sample Permutation
(GSAASeqSP) that efficiently performs gene set association analysis using RNA-seq count data for studies of
phenotypically distinct samples. In addition to the weighted KS statistic used in SeqGSEA'"'?, we adapt seven
other statistics for these analyses and compare their performance within the same simulation framework dem-
onstrating strengths and weaknesses of each statistic under differing conditions. We demonstrate the effective-
ness of GSAASeqSP by using it to discover pathway differences between kidney and liver, and subtypes of breast
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cancer. Our toolset offers alternative options for gene set association
analysis of RNA-Seq data. It will greatly assist in elucidating the
molecular mechanisms underlying complex traits or human diseases.
GSAASeqSP is being released as a module within our GSAA software
suite that is publically available at http://gsaa.unc.edu. GSAA 1.2 now
includes four functionally independent modules: GSAASeqSP,
GSAASeqGP, GSAA', and GSAA-SNP. These modules include
different sets of analytical methods and allow for the analysis of
different types of transcriptomics data and genomics data (see
Supplementary Table S1 for a description of each).

Results

Overview of gene set association analysis in GSAASeqSP.
GSAASeqSP takes as input RNA-seq data from multiple samples
classified into two distinct phenotypic groups. Using pre-defined
sets of functionally related genes, such as those in a biological
pathway, GSAASeqSP identifies gene sets whose activity, as
measured by gene expression, is significantly different between the
two groups. To do this, GSAASeqSP employs a multi-layer statistical
framework that consists of two key steps, illustrated in Figure 1: (1)
differential expression analysis of individual genes between two
phenotypic groups; and (2) gene set association analysis based on
differential gene activity. Each step can be implemented using a
variety of statistical methods. We have evaluated three gene-level
statistics for differential expression analysis: Signal2Noise, log2Ratio,
and Signal2Noise_log2Ratio, and ten gene set-level statistics for
gene set association analysis: Weighted_KS, L2Norm, Mean,
WeightedSigRatio, SigRatio, GeometricMean, TruncatedProduct,
FisherMethod, MinP, and RankSum (see Methods and Supple-
mentary Material for definitions of these statistics). Among these,
one gene-level statistic (Signal2Noise_log2Ratio) and two gene set-
level statistics (WeightedSigRatio, SigRatio) are proposed for the first
time. The remaining statistics have been used for gene set analysis of
microarray data, but the performance of these statistics, except for
Weighted_KS in SeqGSEA, have not yet been evaluated using RNA-
Seq data. Significance of associations is determined using sample
permutation tests, and p-values, false discovery rates (FDRs), and
family-wise error rates (FWERs) are reported.

Simulation studies. A comprehensive simulation study was con-
ducted to evaluate the performance of gene-level and gene set-level
statistics under varying magnitudes and presence of signals. More
specifically, we sought to determine how well each of the statistics
recovered a “causal gene set” given different numbers of contributing
genes in the gene set and varying effect sizes of the differentially
expressed genes with respect to the association with phenotype.
We designed six scenarios. In each scenario, we simulated 200
sequence count data sets each containing 1000 genes and 400
samples — 200 for each phenotype class. We simulated 100 gene
sets for each data set with the first gene set being the causal gene
set. The causal gene set contained sixteen genes of which a varying
subset was differentially expressed. The remaining 99 gene sets were
composed of a random subset of 984 non-causal genes generated
from a null model. A non-causal gene may be assigned to multiple
gene sets by this design. The six scenarios are distinguished by the
number and magnitudes of signals embedded in the genes
constituting the causal gene set:

S1: Eight of the sixteen genes are differentially expressed, the
effect size of differential expression is drawn from U[0.8, 1];
S2: Eight of the sixteen genes are differentially expressed, the
effect size of differential expression is drawn from U[1, 3];
S3: Eight of the sixteen genes are differentially expressed, the
effect size of differential expression is drawn from U[2, 4];
S4: Twelve of the sixteen genes are differentially expressed, the
effect size of differential expression is drawn from U[0.8, 1];

S5: Twelve of the sixteen genes are differentially expressed, the
effect size of differential expression is drawn from U[1, 3];
S6: Twelve of the sixteen genes are differentially expressed, the
effect size of differential expression is drawn from U[2, 4];

See Methods and Supplementary Material for more details on our
simulation study design.

We evaluated all combinations of the three gene-level statistics
and ten gene set-level statistics. The results are shown in
Supplementary Table S2. For each combination, we calculated the
recognition rate (RR), defined as the proportion of replicates for
which the causal gene set was the top-ranked gene set among the
100 gene sets, where gene sets are ranked by FDR. The average p-
value, FDR and FWER for the causal gene set over 200 replicates and
the power of each method in each scenario are reported as well. The
p-value, FDR and FWER were calculated based on 2000 permuta-
tions of sample phenotype labels. Power was calculated as the pro-
portion of replicates for which the p-value for the causal gene set was
less than 0.05. Comparisons of RR and FDR among all gene-level and
gene set-level statistical combinations are shown in Figures 2 and 3,
respectively.

Opverall, most combinations of gene-level statistics and gene set-
level statistics can identify association signals embedded in simulated
causal gene sets and distinguish the signal intensity effectively.
Unsurprisingly, as the signal intensity increased, the RR and power
increased while p-value, FDR, and FWER decreased. We also noticed
that most combinations performed substantially better when the
causal gene sets contained 12 causal genes (S4-S6) compared to those
scenarios with 8 causal genes (S1-S3), as would be expected.

With respect to the recognition rate, our results show that the
combination Signal2Noise (gene-level) and L2Norm (gene set-level)
performed better than all other combinations (Figure 2). It achieved
recognition rates 0f 0.80, 0.95,0.98,0.99, 1, and 1, respectively, for the
six simulation scenarios, the highest among all combinations.
Surprisingly, by including a sample based permutation procedure,
several simple gene set-level statistics, such as Mean and
GeometricMean, could recognize association signals effectively.
Interestingly, the three combinations using MinP for the gene set
association analysis performed poorly under all conditions we simu-
lated, so we excluded these combinations from other compari-
sons and analyses in this simulation study. Overall, FDRs and
FWERs when using TruncatedProduct as the gene set-level statistic
were consistently smaller than other combinations; however the
TruncatedProduct statistic showed a moderate bias towards larger
gene sets in the analyses of tissue data (see Supplementary Table S3).
The ranks of gene sets from this statistic were negatively correlated
with gene set sizes, possibly due to the TruncatedProduct statistic
only considering the significant proportion of genes in the gene set.
The Signal2Noise:L2Norm gene:gene set-level statistic combination
has the best overall performance based on FDR and FWER when
excluding the three TruncatedProduct based combinations from the
comparison.

From these simulations, we note some general characteristics of
different statistics at the gene or gene set level. At the gene-level, our
results show: (1) when using Weighted_KS as the gene set-level
statistic, Signal2Noise performed better when there were only eight
causal genes in the causal set (S1-S3) while Signal2Noise_log2Ratio
was superior if there were twelve causal genes (S4-S6); (2)
Signal2Noise performed the best in nearly all simulated scenarios
when combined with either the L2Norm or Mean gene set-level
statistic; (3) Signal2Noise_log2Ratio had the highest RR and lowest
FDR and FWER in all scenarios when combined with the
WeightedSigRatio gene set-level statistic; (4) All three gene-level
statistics performed similarly over all simulated scenarios when the
gene set-level statistic was SigRatio, GeometricMean, Truncated
Product, FisherMethod, or RankSum.
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Figure 1 | Schematic flow diagram of GSAASeqSP. (A): GSAASeqSP takes as input an experimental count dataset and a priori defined gene sets, and first
generates permuted datasets based on the experimental dataset; (B): Data is normalized and extremely small and large gene sets are filtered; (C):
Differential expression analysis is performed using one of: Signal2Noise, log2Ratio, and Signal2Noise_log2Ratio; (D): Gene set association analysis is
performed using one of: Weighted_KS, L2Norm, Mean, WeightedSigRatio, SigRatio, GeometricMean, FisherMethod, and RankSum; (E): Outputs
include 1) ranked summary gene set association table with the name of the gene set, the number of genes (SIZE), association score (AS), normalized
association score (NAS), P-VALUE, FDR, and FWER; 2) a link to gene set annotation in MSigDB (where applicable); 3) a heat map of the gene expression
data for each gene set; and 4) the null distribution of the AS.
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Figure 2 | Recognition rates for all combinations of gene-level and gene set-level statistics applied to simulation scenarios 1-6.

The gene set-level statistics can be divided into those that take as
input scores from the differential expression analysis of individual
genes (Weighted KS, L2Norm, Mean, WeightedSigRatio, SigRatio),
those that take as input p-values (GeometricMean, TruncatedProduct,
FisherMethod, MinP), and those that take as input ranks (RankSum).
Considering the ten gene set-level statistics, our results show: (1) the
L2Norm statistic performed better than all other score based statistics,
and when combined with Signal2Noise or Signal2Noise_log2Ratio
gene-level statistics, it had the highest RR and lowest FDR and
FWER in nearly all simulated scenarios; (2) the GeometricMean statistic
had the highest RR among p-value based statistics.

We implemented all of the three gene-level statistics and eight
of the gene set-level statistics in our GSAASeqSP platform. The
MinP and TruncatedProduct statistics were not included because
MinP performed poorly in the simulations and TruncatedProduct
had a size bias in the analysis of the tissue data. Our simulation
study shows that different combinations perform better or worse
based on characteristics of causal gene sets (proportion of differ-
entially expressed genes, strength of association). Therefore, we
do not recommend a specific combination but suggest using
multiple combinations. We hypothesize that associations are
more likely to be biologically meaningful if they are detected
using multiple analytical methods.

Analyses of tissue and breast cancer data. To further assess the
power of GSAASeqSP to detect relevant gene sets differentiating
phenotypically distinct samples, we analyzed two tissue data sets,
one to explore pathway-based differences between kidney and liver
tissue, and a second to identify differences between breast cancer
subtypes. Our analyses of these tissue samples aimed to answer two
important questions: (1) does GSAASeqSP provide biologically
meaningful insights into mechanisms underlying the phenotypic
distinction; and (2) were the results reproducible over multiple
analytical methods. For these analyses, we used canonical
pathway gene sets from the Molecular Signatures Database v4.0
(C2:CP collection, MSigDB, http://www.broadinstitute.org/gsea/
msigdb/index.jsp). Pathways for which gene expression data were
available for less than 15 genes or more than 100 genes in a study
were filtered to avoid overly narrow or broad functional categories.
This resulted in 910 and 948 canonical pathways for the kidney-
liver analysis and breast cancer subtype analysis, respectively. The
statistical significance of association scores for gene sets was
assessed using 5000 permutations of phenotypic class labels.
Signal2Noise was chosen as the gene-level statistic for differential
expression analysis of individual genes since this statistic had
better overall performance in our simulations. All ten gene set-
level statistics were evaluated.
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Figure 3 | FDRs for all combinations of gene-level and gene set-level statistics applied to simulation scenarios 1-6.

Case study 1: kidney vs. liver tissue data. RNA-Seq data from
kidney and liver tissue samples were generated by Marioni,
et al”® consisting of 7 technical replicates from each tissue. The
results of GSAASeqSP analyses for each of the ten gene set-level
statistics paired with the Signal2Noise gene-level statistic are
shown in Supplementary Tables S4-S13. In each table, pathways
were sorted first by FDR, and then by the normalized association
score (NAS). Results from the MinP and TruncatedProduct gene
set-level statistics were excluded from all of the subsequent tissue
data analyses because MinP performed poorly in simulations and
TruncatedProduct was found to have a gene set size bias in these
analyses. In order to find top-ranked pathways identified by
multiple methods, the top 30 pathways from each of eight
methods were extracted and the occurrences and ranks of each
pathway were calculated, as shown in Supplementary Table S14. A
“0” indicates the gene set was not ranked in the top 30 for that
method. We only chose those pathways ranked in top 30 by at
least four methods, and then ranked those by their average rank
across those methods in which it was one of the top 30. The top
ten pathways with smallest average ranks are shown in Table 1.
We used the average rank for the subsequent tissue data analyses
as well. While we adopted this metric for the results presented
here, users should determine whether using gene sets identified as
significant by all methods, by a subset of methods, or just one
method provide the best results for their purposes.

We expected that biological pathways associated with kidney-
specific or liver-specific functions would be identified. We found that
the top 10 pathways represent several signaling cascades and meta-
bolic processes active only or predominantly in the liver. Two path-
ways, BIOCARTA AMI PATHWAY (Gl) and BIOCARTA
INTRINSIC PATHWAY (G4), are related to the activation of the
prothrombin, which is synthesized in the liver and is necessary for
the coagulation of blood'®. The coagulation cascade plays a critical
role in myocardial infarction since most myocardial infarctions
result from the formation of a blood clot"”. The second-ranked
pathway, REACTOME XENOBIOTICS (G2), which operates to
deactivate and excrete xenobiotics, is active primarily in the
liver'®. Three pathways including REACTOME COMPLEMENT
CASCADE (G3), BIOCARTA COMP PATHWAY (G5) and
KEGG COMPLEMENT AND COAGULATION CASCADES (G8)
represent the complement cascades and interactions between
complement and coagulation systems. The complement system con-
sists of a number of small proteins that are synthesized by the liver
and is an important contributor to both innate and adaptive immune
responses'’. KEGG PRIMARY BILE ACID BIOSYNTHESIS (G6),
REACTOME BILE ACID AND BILE SALT METABOLISM (G9),
and REACTOME SYNTHESIS OF BILE ACIDS AND BILE SALTS
(G10) are three pathways responsible for the synthesis and metabol-
ism of bile acids and bile salts. The primary bile acids, cholic acid
and chenodeoxycholic acid, are synthesized in the liver from
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Table 1 | The occurrences and ranks of the top pathways across eight methods associated with differences between kidney and liver tissue
Index Pathway NOC Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8  Avg
Gl BIOCARTA AMI PATHWAY 8 1 2 7 1 15 1 1 2 375
G2 REACTOME XENOBIOTICS 8 3 1 6 3 23 2 2 1T 513
G3 REACTOME COMPLEMENT CASCADE 6 0 4 9 0 6 4 9 4  6.00
G4 BIOCARTA INTRINSIC PATHWAY 8 2 3 8 2 26 3 3 3 625
G5 BIOCARTA COMP PATHWAY 5 0 10 1 0 0 8 6 8 6.60
Gé KEGG PRIMARY BILE ACID BIOSYNTHESIS 6 4 6 12 0 0 10 8 7 7.83
G7 KEGG RETINOL METABOLISM 6 11 8 13 0 0 6 4 6 8.00
G8 KEGG COMPLEMENT AND COAGULATION CASCADES 6 12 11 10 0 0 9 7 5 9.00
G9 REACTOME BILE ACID AND BILE SALT METABOLISM 6 0 9 11 0 10 5 10 9 9.00
GI10 REACTOME SYNTHESIS OF BILE ACIDS AND BILE SALTS 7 9 5 14 0] 18 7 5 15 1043
NOC: number of occurrences; 1: Weighted_KS; 2: L2Norm; 3: Mean; 4: WeigtedSigRatio; 5: SigRatio; 6: GeometricMean; 7: FisherMethod; 8: RankSum; Avg: the average rank.

cholesterol®. Bile salts are ionized bile acids— a more active form. Bile

acids and bile salts are critical for digestion and absorption of lipids in
the small intestine. KEGG RETINOL METABOLISM (G7) is ranked
seventh. Retinol is one of the animal forms of vitamin A and the liver
is a particularly rich source of vitamin A"

Case study 2: breast cancer subtype data. Breast cancer is a
heterogeneous disease with different molecular subtypes that are
diverse in their natural history and in their responsiveness to
treatments®. RNA-Seq data from breast cancer patients were
downloaded from the data portal of The Cancer Genome Atlas
(TCGA). For this data set, we sought to identify pathways linked
with estrogen receptor (ER) and progesterone receptor (PGR)
activity in breast cancer. These data consist of 69 ER-negative,
PGR-negative tumor samples and 162 ER-positive, PGR-positive
tumor samples, all from the Stage ITA pathologic group.

The results of RNA-Seq data analyses using the ten gene set-level
statistics and with the Signal2Noise gene-level statistic are shown in
Supplementary Tables S15-524. The occurrences and ranks of top 30
pathways over the eight methods are shown in Supplementary Table
S§25. The top ten pathways with smallest average ranks are listed in
Table 2.

Among the top 10 pathways with smallest average ranks, eight
pathways, REACTOME DNA STRAND ELONGATION (Gl),
REACTOME ACTIVATION OF THE PRE REPLICATIVE
COMPLEX (G2), REACTOME G1 S SPECIFIC TRANSCRIPTI
ON (G5), REACTOME G1 PHASE (G6), PID ATR PATHWAY
(G7), KEGG DNA REPLICATION (G8), REACTOME G2 M
CHECKPOINTS (G9), and REACTOME CYCLIN A Bl ASSO
CIATED EVENTS DURING G2 M TRANSITION (G10) are related
to cell cycle regulation and proliferation. These are well-known path-
ways altered in cancers. We found that most genes in these pathways
are up-regulated in the ER-negative, PGR-negative samples compared

to the ER-positive, PGR-positive samples. These results clearly pre-
dict that ER-negative, PGR-negative tumors are a more aggressive
form of the disease, which is consistent with experimental results
that show almost all ER-negative tumors are characterized by
increased proliferation®. The remaining two pathways, PID
FOXMIPATHWAY (G3) and PID AURORA B PATHWAY (G4),
are closely related to ER function. The forehead transcription factor
(FOXM]1) is transcriptionally regulated by ER-alpha and has critical
roles in the initiation, progression and drug sensitivity of breast
cancer* . Overexpression of aurora kinase A (AURKA) and aurora
kinase B (AURKB) has been observed in many types of cancers®.
Aurora kinases have vital roles in mitosis, and the deregulation of
these mitotic kinases may represent an important mechanism driv-
ing tumorigenesis®**>. Our analyses suggest that the deregulation of
FOXMI1 and AURKB pathways may contribute to the progression
from hormone-dependent to hormone-independent growth of
breast cancer since our results show that the activity of both path-
ways is higher in ER-negative, PGR-negative breast cancer.

To better understand the relationships between these top path-
ways, we examined protein-protein interactions (PPIs) between pro-
tein products of all genes in the top three pathways based on two
types of evidence from the STRING database® (http://string-db.
org/): experimental (protein-protein interaction databases) and
text-mining (abstracts of scientific literature). The PPI network is
shown in Figure 4. Our results indicate that the majority of proteins
in the top three pathways are interconnected, which is not unexpec-
ted in this case as so many are similarly involved in aspects of the cell
cycle. This could explain both how the deregulation of key “hub”
genes may affect multiple top pathways, and also how deregulation of
distinct genes in multiple samples may have the same phenotypic
effect if they act on a similar set of genes in key pathways.

In summary, our results show: (1) analyses of diverse tissue sam-
ples not only identified well-known trait-associated pathways but

Table 2 | The occurrences and ranks of top pathways across eight methods associated with differences in breast cancer subtypes
Index Pathway NOC Rank1 Rank2 Rank3 Rank4 Rank5 Ranké Rank7 Rank8  Avg
Gl REACTOME DNA STRAND ELONGATION 7 0 5 4 2 4 1 1 2 2.71
G2 REACTOME ACTIVATION OF THE PRE 8 2 9 2 4 6 3 3 19 6.00
REPLICATIVE COMPLEX
G3 PID FOXM1PATHWAY 8 1 2 3 10 20 5 4 5 6.25
G4 PID AURORA B PATHWAY 8 3 4 11 1 13 4 5 25 8.25
G5 REACTOME G1 S SPECIFIC TRANSCRIPTION 8 9 7 1 18 12 2 2 16 8.38
Gé6 REACTOME G1 PHASE 8 11 6 8 15 21 8 7 4 10.00
G7 PID ATR PATHWAY 7 0 19 14 3 5 9 11 13 10.57
G8 KEGG DNA REPLICATION 8 8 16 10 5 8 11 10 18 10.75
G9 REACTOME G2 M CHECKPOINTS 8 18 8 5 25 1 13 9 7 10.75
G10  REACTOME CYCLIN AB1 ASSOCIATED EVENTS 7 10 1 12 16 0 6 6 29 11.43
DURING G2 M TRANSITION
| 4:6347 | DOI: 10.1038/srep06347 6


http://string-db.org
http://string-db.org

CENPA

HIST1H2BA

é AURKB
BIRC5
e SLCO1B1
2 &)
-
e, CDC258

/

g MAP2K1

ONECUT1

CREBBP

- PRIM2

L PRIM1
-

Figure 4 | The predicted protein-protein interaction network of protein products of genes in the top three differential pathways associated with breast
cancer subtypes (confidence: 0.90). The nodes represent proteins; the edges represent the predicted functional associations. The associations were

inferred from two types of evidence from the STRING database: the presence of experimental evidence (purple line) and text-mining evidence (yellow
line). Experimental evidence was obtained from protein-protein interaction databases and text-mining evidence from abstracts of scientific literature.

also provided potentially novel insights into the molecular mechan- Comparison to existing tools. Recently, several tools have been
isms of complex traits and human disease; (2) results were highly  developed for differential expression analysis of individual genes
reproducible over multiple analytical methods for the two data sets for RNA-Seq data, for example DESeq*, edgeR*, NOISeq*®, and
we analyzed. Cuffdiff’. These tools generate a list of scores or p-values
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indicating the correlation of each gene with a phenotype difference.
Any suitable gene set-level metric can then be used to study the
associations between gene sets and phenotype based on this list.
However, the sample permutation strategy is not applicable to
methods that take as input a list of scores or p-values generated
using other tools. Therefore, list-based approaches usually assess
statistical significance of association signals by gene permutation -
shuffling gene labels. It is common for genes in a pathway to have
correlated expression profiles. Sample permutation preserves these
correlation structures within gene sets, and so likely provides a more
accurate background model than gene permutation. We believe this
enables GSAASeqSP to generate more accurate null distributions for
gene-level and gene set-level statistics in expression-based gene set
analysis since it uses sample permutation to preserve correlation
information during randomization.

To our knowledge, the pipeline for DE-only analysis in SeqGSEA "
is so far the only published tool for sample permutation-based gene
set association analysis for RNA-Seq gene expression data. SeqGSEA
uses the Weighted_KS statistic as gene set-level statistic, which we
evaluated in our simulation study as it is also implemented in
GSAASeqSP. The DE-only analysis in SeqGSEA uses DESeq™ for
gene-level differential expression analysis. DESeq and edgeR* are
two popular Bioconductor packages that test for gene-level differ-
ential expression in RNA-Seq based on the negative binomial (NB)
distribution. We have explored using these tools in another toolset
for gene set association analysis of RNA-Seq data, Gene Set
Association Analysis for RNA-Seq with Gene Permutation
(GSAASeqGP). GSAASeqGP contains the gene-level differential
expression metrics proposed by edgeR and DESeq and uses the
Weighted_KS statistic as gene set-level statistic (Supplementary
Table S1). Currently, GSAASeqGP uses the gene permutation strat-
egy. However, we also implemented this with sample permutation
(called “GSAASeqSPNB”). We found that the run time for
GSAASeqSPNB is unacceptable, as we describe in more detail below.
In addition, we have implemented the gene permutation strategy for
each analytical method in GSEASeqSP (called “GSAASeqSPGP”).

We carried out comparisons between the two NB-based metrics,
DESeq and edgeR, in GSAASeqGP and the Signal2Noise metric in
GSAASeqSP using the gene permutation strategy. Here, we chose the
S5 simulation scenario to evaluate these since it effectively measures
the ability of methods to detect association signals. We chose
Signal2Noise as the gene-level statistic due to its superior perform-
ance in the simulation studies. The results of these tests are shown in
Supplementary Tables S26-S27, which include the average run time,
RR, p-value, FDR, FWER, and power over 200 replicates. For the
comparison of run times, we also included a predicted run time for
DESeq/edgeR-based GSA ASeqSPNB, which was based on the time of
running a single gene-level analysis. Let T(GSAASeqGP) be the total
time for running DESeq-based GSAASeqGP with N permutations
and T(DESeq) be the time for running a single DESeq analysis, then
the total run time for running DESeq-based GSAASeqSPNB,
T(GSAASeqSPNB), can be calculated as T(GSAASeqSPNB) =
(T(DESeq) * N) + (T(GSAASeqGP) — T(DESeq)). For gene permu-
tations, we just need to run DESeq one time while for sample per-
mutation, we have to run DESeq N times. We set N to 2000 in
our simulation study. In addition, we also included the results
from GSAASeqSP with Signal2Noise as gene-level statistic - see
Supplementary Tables S26-S27 for details.

Based on a comparison of run times (Supplementary Table S26),
our results show: (1) using the gene permutation strategy, methods in
GSAASeqSPGP are faster than methods in GSAASeqGP; and (2)
using the sample permutation strategy, methods in GSAASeqSP
are much faster than methods in GSAASeqSPNB. The DE-only ana-
lysis in SeqGSEA is very similar to DESeq-based GSAASeqSPNB
(called GSAASeqSPNB_DESeq:Weighted_KS), as both use DESeq
for differential gene expression analysis, Weighted_KS for gene set

analysis, and a sample permutation strategy. We predict that the run
times of SeqGSEA and GSAASeqSPNB_DESeq:Weighted_KS will be
similar. Based on our calculations (Supplementary Table S26),
GSAASeqSPNB_DESeq:Weighted_KS (3531661 secs) is approxi-
mately 75142 times slower than GSAASeqSP with Signal2Noise
and Weighted_KS as gene-level and gene set-level statistics (called
GSAASeqSP_Signal2Noise:Weighted_KS) (47 secs) when using
2000 permutations to generate null distributions. Namely,
GSAASeqSP_Signal2Noise:Weighted_KS  takes approximately
16 hours to finish running on all of our simulated datasets while
GSAASeqSPNB_DESeq:Weighted_KS would need approximately
134 years. These analyses imply that DESeq may be more suited
for gene permutation-based gene set analysis.

Overall, our performance comparisons (Supplementary Table
S27) indicate: (1) when using Weighted_KS as the gene set-
level statistic and employing the gene permutation strategy,
Signal2Noise performed slightly better than DESeq with respect to
RRs while DESeq is slightly better than Signal2Noise with respect to
FDRs. The RRs and FDRs for GSAASeqSPGP_Signal2Noise:
Weighted_KS, GSAASeqGP_DESeq:Weighted_KS, and GSAA
SeqGP_edgeR:Weighted_KS are 0.98, 0.96, 0.93 and 0.030236,
0.027124, 0.066553, respectively; (2) sample permutation performed
better than or the same as gene permutation for all combinations of
Signal2Noise gene-level statistic and eight gene set-level statistics in
GSAASeqSP with respect to RRs and FDRs.

Discussion

In this study, we describe GSAASeqSP, a novel toolset that we
developed for gene set association analysis of sequence count data.
This toolset contains a comprehensive set of analytical methods
through combinations of multiple gene-level statistics and multiple
gene set-level statistics. We rigorously evaluated the ability of these
methods to identify association signals using both simulated and real
data. In this paper, our results focused on pathways robustly iden-
tified as top pathways by at least four methods. Most pathways iden-
tified through this strategy have well-established roles in the relevant
complex trait. In addition, results from each method alone may also
generate meaningful biological insights. For instance, the PID PLK1
PATHWAY was ranked fourth by the combined Signal2Noise (gene-
level):Weighted_KS (gene set-level) method. In this pathway, many
genes, such as polo-like kinase 1 (PLK1), are up-regulated in ER-
negative, PGR-negative breast cancer. PLK1 is a potential therapeutic
target for the treatment of the poor prognosis-associated triple-
negative breast cancer (TNBC) since it was found to be significantly
overexpressed in TNBC compared with the other breast cancer
subtypes®*°.

GSAASeqSP currently includes three statistics for gene differential
expression analysis and eight statistics for gene set analysis. Among
these statistics, some have not been previously used in gene set ana-
lyses, while the majority has been used in conjunction with micro-
array data. However, except for Weighted KS adopted by
SeqGSEA'"", the performance of these statistics on RNA-Seq data
had not been evaluated. Microarray data is approximately normally
distributed while RNA-Seq data follows a NB distribution, so a stat-
istic that works well for microarray data analysis may fail to identify
signals in RNA-Seq data - the MinP statistic is an example. Using
simulations, we have comprehensively evaluated the performance of
different analytical methods under various scenarios. Our results
show that most methods captured signals embedded in the simulated
count data effectively. Since each method has its own advantages and
disadvantages, we suggest that users evaluate multiple methods when
analyzing their data. We provide many options for solving the same
problem in order that users can compare and determine which
one(s) are best for their specific purposes. In addition, in the simu-
lation study we presented results for all combinations of gene-level
statistics and gene set-level statistics, but we are aware that a few of
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combinations may not be statistically sound. However, these types of
combinations generally performed poorly so they can be ignored in
practice. Our simulation results provide guidance on the selection of
appropriate combinations.

The advantages of GSAASeqSP from the point of view of com-
putation include: 1) it is computationally efficient; GSAASeqSP took
approximately 0.3, 0.8, 2.8, 2.5, 2.7, 1.1, 1.0 and 1.5 hrs for
Weighted_KS, L2Norm, Mean, WeigtedSigRatio, SigRatio,
GeometricMean, FisherMethod, RankSum, respectively, in the ana-
lysis of breast cancer data using one computational node (Intel(R)
Xeon(R) CPU X5650 @ 2.67 GHz) on a Linux cluster; 2)
GSAASeqSP can be run from both the command line and the gra-
phical user interface (GUI) making it is user-friendly; and 3)
GSAASeqSP is implemented using a flexible modular structure
allowing it to be easily extended to include new statistics in the future.

Methods

GSAASeqSP takes as input raw count data from multiple samples, a priori defined
gene sets, and phenotype labels of samples. Its workflow includes 1) normalization of
raw count data; 2) differential expression analysis of individual genes; 3) gene set
association analysis; 4) assessment of statistical significance of associations (Figure 1).
The details of each step are described below:

Normalization of raw count data. Normalization is very important for gene
expression analysis as studies have shown that gene set analysis can be affected by
both systematic biases and technical biases inherent to RNA-Seq technology, such as
between-sample differences (i.e. library size)** and within-sample gene-specific
effects (i.e. gene length)*'. Normalization enables accurate comparisons of expression
levels between and within samples by adjusting for these biases. There are several
methods available for normalizing RNA-Seq data. In GSAASeqSP, we normalize raw
counts using the same method implemented in the DESeq Bioconductor package™.
Dillies et al."” comprehensively evaluated a series of normalization methods and their
results show that the DESeq normalization and Trimmed Mean of M values (TMM)
implemented in the edgeR Bioconductor package® outperformed the other methods
compared. To avoid zero counts, we added 1 to all counts in the data set before
normalization.

Differential expression analysis. Three statistics were evaluated for differential
expression analysis of individual genes: Signal2Noise, log2Ratio, and
Signal2Noise_log2Ratio. Signal2Noise is the primary gene-level statistic used by
GSEA?, one of the most popular tools for gene set enrichment analysis of microarray
data. Log2Ratio is a commonly used metric for differential expression analysis of
microarray data as well. In addition, we developed a new statistic,
Signal2Noise_log2Ratio, by modifying an existing statistic introduced by NOISeq*,
software designed to perform differential expression analysis of individual genes for
RNA-Seq data. A detailed description of these statistics is available in the
Supplementary Material. GSAASeqSP employs a sample-based permutation
procedure to assess the statistical significance of associations, and this is achieved by
shuffling the phenotype labels of samples and recalculating the test statistics many
times. Compared with methods that instead permute the genes, sample permutation-
based approaches generate more accurate null distributions for gene-level and gene
set-level statistics in expression-based gene set analysis since the expression profiles of
genes in biological pathways are usually correlated. The sample permutation
preserves the gene-gene correlation structures during the randomization, thus,
phenotypic associations can be examined more accurately. In this step, a differential
expression score and a p-value are computed for each gene for both the observed data
and permutations.

Gene set association analysis. Computation of gene set association scores. Ten
statistics were evaluated for gene set association analysis: Weighted_KS, L2Norm,
Mean, WeightedSigRatio, SigRatio, GeometricMean, TruncatedProduct,
FisherMethod, MinP, and RankSum. A detailed description of these statistics is
available in the Supplementary Material. These statistics can be divided into three
categories: score based (Weighted_KS, L2Norm, Mean, WeightedSigRatio, SigRatio),
p-value based (GeometricMean, TruncatedProduct, FisherMethod, MinP), and rank
based (RankSum). Among these statistics, Weighted_KS, L2Norm, Mean,
GeometricMean, TruncatedProduct, FisherMethod, MinP, and RankSum have
already been used for gene set analysis of microarray data. Here we adapted these
statistics for and evaluated their performance for the first time on RNA-Seq count-
based data. WeightedSigRatio and SigRatio are novel and have not been previously
applied to gene set analysis. In this step, a gene set association score (AS) is computed
for each gene set for both the observed data and permutations based on any of the ten
gene set-level statistics. The differential expression scores or p-values of individual
genes can be computed by any of the three gene-level statistics: Signal2Noise,
log2Ratio, or Signal2Noise_log2Ratio.

Normalization of gene set association scores. To correct for possible heterogeneity of
information at each gene set, for example differences in the number of genes in the

gene set or correlation structure, we normalize the AS by the mean of its null dis-
tribution generated by permutations. For a particular gene set S, given its actual AS
ASp and ASs calculated from permutations 7 = 1,...,N {AS;,...,ASn}, the normalized
association score (NAS) is computed as

NAS(S)=ASy /mean(AS,,...,ASN) (1)

This normalization method was originally introduced by GSEA”.

Assessment of statistical significance and adjustment for multiple hypothesis
testing. Statistical significance refers to the probability that a difference observed
between groups occurs by chance. We assess the statistical significance of the AS and
adjust for multiple hypothesis testing based on a sample-based permutation
procedure. The null distribution of the AS for a particular gene set is generated by
shuffling the phenotypic class labels and recalculating the AS many times. This
procedure effectively preserves the correlation structure in the gene set. Consider a
particular gene set S, suppose AS, is the actual AS and {AS;,...,ASy} are the ASs for
permutations 7 = 1,...,N, the p-value for the gene set S from the Weighted_KS,
L2Norm, Mean, WeightedSigRatio, SigRatio, or FisherMethod test is computed as

S K4S 2 AS)

S)= 2
p(S) N )
while the p-value for GeometricMean, TruncatedProduct, MinP, or RankSum is
computed as
N
_ I(AS;<ASy)
p(S)= ZX—# (3)

Where the indicator variables I(AS; = AS,) and I(AS; = AS,) equal 1 if AS; = AS, and
AS; = AS, respectively otherwise they are 0. Smaller p-values indicate higher
probability that a gene set is associated with the phenotype.

We use the false discovery rate (FDR) and the family-wise error rate (FWER) based
on NAS to correct for multiple hypothesis testing and to control the proportion of
false positives below a certain threshold. Given m gene sets {S,...,S,,} and label
permutations 7 = 1,...,N, the FDR for the gene set S; from the Weighted_KS,
L2Norm, Mean, WeightedSigRatio, SigRatio, or FisherMethod test is computed as

(O S HVAS(S;m) = NAS(S)/(Nm)
(D7 HNAS(S) = NAS(S))/m

FDR(S;) =

The FDR for GeometricMean, TruncatedProduct, MinP, or RankSum is computed as

(O D HNAS(S;,m) <NAS(S))/(N'm)
(X INAS(S) <NAS(S))/m

FDR(S)) =

Where NAS(S;7) is the NAS for gene set j with label permutation 7. NAS(S)) is the
NAS for gene set j. The indicator variables I(NAS(S;m) = NAS(S;)), (NAS(S)) =
NAS(Sy), I(NAS(S;m) = NAS(S,), and I(NAS(S;) = NAS(S) equal 1 if NAS(S;m) =
NAS(S;), NAS(S)) = NAS(S;), NAS(S,;m) = NAS(S;), and NAS(S)) = NAS(S;)
respectively otherwise they are 0.

The FWER for the gene set S; from the Weighted_KS, L2Norm, Mean,
WeightedSigRatio, SigRatio, or FisherMethod test is computed as

I(max;_,, _nNAS(S;,7) = NAS(S)))

N
FWER(S;) = 2ee 5

(6)

The FWER for GeometricMean, TruncatedProduct, MinP, or RankSum is computed
as

SV Imax; . uNAS(S;.m) < NAS(S)

N
Where the indicator variables I(max;—, ... ,,NAS(S;m) = NAS(S;)) and
I(maxj—,, .. ,.NAS(S;m) = NAS(S;)) are 1 if max;—y,.._,,NAS(S;m) = NAS(S;) and

max;—y, _.NAS(S;m) = NAS(S;) respectively otherwise they are 0.

FWER(S;) =

(7)

Generation of simulated data. To evaluate the effectiveness of different gene-
level and gene set-level statistics, we conducted a comprehensive simulation
study. We designed 6 scenarios of differential expression. For each scenario,
200 data sets were independently generated from the same statistical model. In
each data set, we simulated 200 samples corresponding to one phenotype and
200 samples corresponding to a second phenotype. For each sample, we
simulated RNA-seq read counts for 1000 genes. In our simulations, we assume
that the expression differences observed between the two phenotypes result
from genotypic differences. Based on this assumption, we first simulated the
genetic association between gene sets and phenotype then simulated the
differential expression corresponding to the genetic association. Simulating
gene expression variation based on genetic variation makes simulated data
closer to the real data than simulating gene expression variation independently,
since genetic variants are one of the major causes of differential gene
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expression*>*’. For further details on generating these data, please see the
Supplementary Material.
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