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CovidSim is an individual-based simulation code developed 
by the MRC Centre for Global Infectious Disease Analysis at 
Imperial College London. It is a modified version of an earlier 

model designed to support pandemic influenza planning1 and has 
now been used to explore various non-pharmaceutical interventions 
(NPIs) with the aim of reducing the transmission of the coronavi-
rus, as documented in the key paper2 denoted Report 9. CovidSim 
played an important role in the United Kingdom in reorienting UK 
Government policy from herd immunity to a strategy focused on 
suppression of the viral infection. It should be noted, however, that 
many competitor models exist. Notable examples include the work 
performed at the London School of Hygiene and Tropical Medicine 
(see, for instance, refs. 3,4 and especially ref. 5), in which the effects of 
different NPIs in the UK are modelled. Another noteworthy model 
is CovaSim6, which is similar in structure to CovidSim in the sense 
that it models a population of individuals via discrete agents.

Likewise, CovidSim creates a network of individuals located in 
areas defined by high-resolution population density data. In the 
model, contacts with other individuals can be made in four different 
types of place, namely, within households, at schools, universities 
and work places. It is possible to model a combination of different 
NPIs, namely, general social distancing (SD), social distancing for 
those over 70 years of age (SDOL70), home isolation of suspected 
cases (CI), voluntary home quarantine (HQ) and place closure of 
universities and schools (PC) (see Table 2 of ref. 2). CovidSim con-
tains over 900 input parameters, which are mainly located in two 
input files. Furthermore, a small number of parameters that define 
certain characteristics of the intervention scenario one wishes to 
study are supplied via the command line.

We investigated the reproducibility of the code, as has been done 
in past work7,8. That said, we especially focus on CovidSim’s robust-
ness to uncertainty in the input parameters. By robustness in this 
context, we mean the extent to which the code amplifies uncertain-

ties from the input to the output. Our main aim is to thus take the 
model as given and examine the uncertainty in its predictions when 
its parameters are treated as random variables instead of determin-
istic inputs. We will use a dimension-adaptive sampling method for 
this purpose9 to be able to handle the high-dimensional input space. 
This type of anisotropic sampling method adaptively exploits a pos-
sible low effective dimension, where only a subset of all inputs have 
a substantial impact on the model output. A wide range of domains 
have seen the application of such dimension-adaptive samplers, for 
example, computational electromagnetism10, finance11,12 and natural 
convection problems13, to name just a few. Here we perform a vali-
dation study to examine the ability of the predicted output distribu-
tion to envelop the observed COVID-19 death count, conditional 
on a predefined intervention scenario.

Due to the large number of inputs, one cannot hope to obtain 
an accurate, data-informed value of all parameters in contention. 
Moreover, considering CovidSim’s influential status and its likely 
use in future COVID-19 predictions, it is important to assess the 
impact of parametric uncertainty on the model output. We will 
argue the case for the prediction of uncertainty in high-impact 
decision-making, after we first describe our results.

Results
We have performed an analysis on the original closed-source ver-
sion of the code; however, the majority of our sensitivity analysis 
and uncertainty quantification efforts lie with the current updated 
open-source release of CovidSim.

With respect to the original version, we have been able to achieve 
exact reproducibility of the results2 in Report 9, although only when 
running within an Azure cloud environment. Attempts to run the 
code on a Linux-based machine failed; we could not reproduce the 
same results here and as this version is no longer supported it was 
not investigated further.
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Uncertainty in CovidSim. The predictions of most computa-
tional models are affected by uncertainty from a variety of different 
sources. We identify the following three sources of uncertainty in 
CovidSim; namely, parametric uncertainty, model structure uncer-
tainty and scenario uncertainty. This breakdown is not uncommon 
(see, for example, refs. 14–16).

Parametric uncertainty arises due to imperfect knowledge of the 
model input parameters ξ 2 Rd

I
, described in the ‘CovidSim param-

eters’ section. Model structure uncertainty is more fundamental, as 
it relates to uncertainty about the appropriate mathematical struc-
ture of the model, denoted by M

I
; one can think of missing epide-

miological processes that are not implemented in CovidSim (see the 
discussion in Supplementary Section 6). Finally, a scenario S is the 
set of conditions under which a model M ξð Þ

I
 is applied. In the case 

of CovidSim, S includes the choice of NPI scenarios, the initializa-
tion of the model and the well-known reproduction number R0. 
Note that the actual implementation of S will be parameterized as 
well, and that we could technically lump these parameters in with ξ; 
however, the scenario parameters are of a different nature than the 
internal inputs ξ, and treating S as a separate category mirrors the 
way in which the results were presented in Report 9, which showed 
results for different NPIs and R0 values.

If we denote q as the predicted output quantity of interest, we 
therefore have q ¼ q ξ;M;Sð Þ

I
, where all three arguments are uncer-

tain. As noted, our main goal is to quantify the impact of parametric 
uncertainty. By treating the inputs as random variables with prob-
ability density function (PDF) p ξð Þ

I
, our mean prediction is given by

E qjM;S½  :¼
Z

Ωξ

q ξ;M;Sð Þp ξð Þdξ; ð1Þ

where Ωξ is the support of p(ξ). The uncertainty in the prediction in 
equation (1) can be represented by either the corresponding vari-
ance or confidence intervals. It is important to note that our results 
are conditional on M

I
 and S. We are not in a position to change 

the former and we illustrate the importance of scenario uncertainty 
by repeating the parametric uncertainty analysis for two different 
scenarios.

Uncertainty propagation. We use EasyVVUQ17,18 from the Verified 
Exascale Computing for Multiscale Applications (VECMA) toolkit19  
to propagate the input uncertainties through CovidSim. Templates 
from the CovidSim input files are generated to interface CovidSim 
with EasyVVUQ. In the process, a single file is generated, which 
contains all inputs, with their types and default values specified. 
Simply counting the number of entries in this file allows us to 
exactly determine the number of parameters present in the code, 
which is how we arrived at a number of 940 inputs.

We will not vary all 940 parameters (see the ‘CovidSim param-
eters’ section). We will instead assign to d (d ≪ 940) input param-
eters ξi an independent PDF, that is, ξi ≈ p(ξi); a d-dimensional 
sampling plan from the joint PDF, ∏ip(ξi), is then created, after 
which CovidSim is evaluated at each input point. We refine the 
sampling plan in a dimension-adaptive manner to handle the 
high-dimensional input space, the details of which can be found in 
the ‘Statistics’ section in the Methods.

CovidSim parameters. In this section we describe how we arrived at 
our selection of input parameters that we vary as part of our uncer-
tainty quantification study. We have divided the parameters present 
in the input files into three groups:

	(1)	 Group 1, intervention parameters—these are parameters meant 
to slow down the viral infection, which can still be varied for a 
fixed S (for example, the length of time households are quaran-
tined) when HQ is part of the selected NPI set.

	(2)	 Group 2, disease parameters—related to the characteristics of 
COVID-19 (for example, the latent period).

	(3)	 Group 3, spatial/geographic parameters—parameters that ap-
ply to the properties of the network (for example, the relative 
transmission rate for place types).

The purpose of this classification was to direct initial, explor-
atory uncertainty quantification (UQ) and sensitivity analysis (SA) 
campaigns on a coherent subset of parameters. The final UQ cam-
paign contains parameters from all three groups. By campaign, we 
mean a single forward propagation step of uncertainty from the 
input to the output.

Before starting the UQ analysis we first performed a parameter 
study using, in part, expert domain knowledge from the CovidSim 
team at Imperial College London to reduce the number of inputs. We 
focus on a scenario based on the suppression release in the Report 
9 folder on GitHub20, using the intervention setting that combines 
PC, CI, HQ and SD, as this class is the closest to actual NPIs that 
were implemented in the UK. In this case we have the aforemen-
tioned total of 940 parameters. Note that some input parameters are 
vectors, in which case we counted each entry as a separate input 
parameter. On top of our own initial selection, we received feedback 
over the course of our analysis from the developers of CovidSim as 
to the inclusion of given parameters in the UQ study.

Many of the parameters are (currently) not used in the case of 
COVID-19 simulation, such as numerous vaccination parameters. 
See the Supplementary Data for the full list with all input param-
eters, their default values, and the reasons for their inclusion or 
exclusion by the Imperial College London CovidSim team. This list 
also contains a short description of the parameters.

Although we made our own considerations and decisions as to 
which parameters to include in the UQ study, the large number of 
parameters in play requires expert knowledge to make a suitable ini-
tial selection. A total of 60 of these parameters were included in a 
UQ campaign at some point (these are displayed separately in the 
Supplementary Data). We choose uninformative uniform distribu-
tions to reflect our lack of knowledge in the most likely values of 
these inputs, with bounds either based on data or expert knowledge.

Any input that was selected at least once for refinement during 
the dimension-adaptive sampling in one of the three exploratory 
UQ campaigns of the ‘CovidSim parameters’ section was included 
in the final, large-scale UQ campaign. This led to a total of 19 final 
parameter distributions (see Supplementary Section 3).

Important scenario parameters are R0 and two trigger param-
eters, which are specified via the command line. In the case of 
modelling a suppression strategy, the SD and PC interventions are 
triggered when the weekly number of new intensive care unit (ICU) 
cases exceeds the value supplied by the first trigger. Likewise, they 
are suspended when this metric drops below the second specified 
trigger2. The results below are conditional on the selected NPI mea-
sures, as well as fixed values for R0 and the ICU triggers.

Confidence intervals. Here we consider two different PC_CI_HQ_
SD suppression scenarios. The results that follow were obtained 
using a computational budget of 3,000 CovidSim evaluations per 
scenario. Figure 1a shows the 68% and 95% confidence intervals 
of the cumulative death prediction for S1

I
, with R0 = 2.4 and on/

off ICU triggers of 60/15. Remember that the PC and SD interven-
tions are turned on and off based on a specified number of new 
weekly ICU cases (60 and 15 new cases here, which is one of the 
scenarios considered in Report 9). The PDF of the total death count 
after 800 days is also plotted. The latter shows clear non-Gaussian 
behaviour, with a heavy tail towards a higher death count. The 
corresponding Report 9 total death count2 is 8,700, whereas the 
current version, which now supports averaging over stochastic real-
izations, predicts21 9,500. Our mean prediction from equation (1)  
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is almost double this amount. The Report 9 predictions are still 
captured by the distribution (at approximately the lower boundary 
of the 68% confidence interval), but the distribution also supports 
low-probability events which are about five to six times higher than 
those given in Report 9.

Note that the output distribution conditioned on S1
I

 clearly 
underpredicts the observed death count in the UK, which is also 
plotted in Fig. 1a. We therefore selected S2

I
 using the parameters 

from Report 9 that gave the highest predicted mortality (R0 = 2.6 
and ICU on/off triggers of 400/300 cases; Fig. 1b). The deterministic 
Report 9 prediction is still located at the 68% confidence interval 
lower border; however, the total death count PDF is notably less 
skewed, although still not exactly symmetric.

Figure 1 clearly indicates that the results are very sensitive to 
S. As noted, we also plot the observed death count validation data 
from ref. 22 in both subfigures, which are evidently not captured 
well by the output distributions, although scenario S2

I
 does per-

form better than S1
I

. It is also plain from Fig. 1 that the rate of 

infection starts too slowly in both cases; it must be assumed that 
the epidemic started earlier than suggested in Report 9, which is 
in line with the findings of ref. 7. Hence, if one aims to validate 
CovidSim in a probabilistic sense (that is, obtaining a distribution 
that captures validation data with high probability), it is crucial 
to either tune the scenario parameters or to quantify the scenario 
uncertainty.

CovidSim also has a number of random seeds, whose influence 
on the death count is examined in Supplementary Section 5. See 
Supplementary Section 7 for confidence intervals on quantities of 
interest other than the cumulative death count.

Finally, we emphasize that the authors of Report 9 did not claim 
that their parameterization at the time would be able to match the 
death count data of the coming months. The main message was that 
it would “…be necessary to layer multiple interventions, regard-
less of whether suppression or mitigation is the overarching policy 
goal”2, and it also showed that doing nothing at all would have disas-
trous consequences.
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Fig. 1 | Distribution of cumulative death predictions. a,b, The mean cumulative death prediction for S1
I

 (R0 = 2.4, ICU on/off triggers 60/15) (a) and S2
I

 
(R0 = 2.6, ICU on/off triggers 400/300) (b) plus confidence intervals. The PDFs of the total death count after 800 days are shown to to the right. Day zero 
corresponds to 1 January 2020. We also plot the observed cumulative death count data for the UK (green squares) in both figures, which were obtained 
from ref. 22. The striped line is a single sample from CovidSim (current release), run with the baseline parameter values of Report 9.
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Sensitivity analysis. With sensitivity analysis, the aim is to appor-
tion the uncertainty of the model output to specific (combinations 
of) input parameter uncertainties. To this end, Sobol indices mea-
sure the fraction of the output variance that each combination of 
input parameters is responsible for when given a distribution on 
the inputs23. They can be computed in a post-processing step once 
the input uncertainties are propagated through the computational 
model24 (see the ‘Sobol index calculation’ section in the Methods).

The first-order Sobol indices (Si) are defined as 
Si :¼ V qi

� �
=V q½  2 ½0; 1

I
, for i = 1, ⋯ , d. Here V q½ 

I
 is the total 

output variance and V qi
� �

I
 is the partial variance attributed to one 

particular input parameter23. Figure 2 displays the three Si with the 
highest values for S1

I
 and S2

I
 (see Supplementary Section 8 for more 

results). The Sobol indices are plotted against time, showing that the 
latent period (the period in which a patient is infected but not yet 
infectious) is the most influential at the beginning, although only 
for a short amount of time. A longer latent period therefore means 
that the rate of disease spread is slower in this early exponential 
growth stage, when there are still relatively few cases present.

The second important parameter is the relative spatial contact 
rate given social distancing parameter, which indicates the assumed 
effectiveness of social distancing. Finally, the third parameter (in 
both scenarios) to dominate the variance is the delay to start case 
isolation. The latent period originally belonged to the disease 
parameter group of the ‘CovidSim parameters’ section, whereas the 
other two inputs are intervention parameters. Overall, it can be said 
that the intervention parameters, which influence control measures 
and human behaviour, are most influential. The inputs from the 
spatial/geographic group have a comparatively small effect.

In Fig. 2 we also plot the sum of all 19 first-order Sobol indi-
ces. This shows that first-order effects (that is, the fraction of the 
variance obtained by varying individual parameters) account for a 
little under 80% in the case of S1

I
, and roughly 90% of the variance 

for S2
I

. Conversely, interaction effects between parameters there-
fore account for no more than 10–20% in our chosen scenarios. 
We also show the sum of the first-order indices for just the three 

most important parameters (that is, those actually plotted in Fig. 2), 
which already accounts for roughly 50% and 67% of the observed 
variance in cumulative deaths for S1

I
 and S2

I
, respectively.

Uncertainty amplification. Although we based our input distribu-
tions (see Supplementary Table 1) on a combination of available 
data and expert knowledge, (in general) a certain level of ambiguity 
remains with respect to the choice of input distribution. We there-
fore devise a measure that examines the amplification of uncertainty 
in the outputs with respect to a given set of input distributions (as 
explained below). This relative measure of output-to-input vari-
ability is based on the coefficients of variation ratio (CVR), which 
serves as our robustness score and is given by

CVR :¼ CV qð Þ=CV ξ
� 

¼ 1
N

XN

n¼1

σqn
μqn

 !
=

1
d

Xd

i¼1

σξi
μξi

 !
: ð2Þ

A coefficient of variation (CV) is a dimensionless quantity that 
measures the variability of a random variable with respect to its 
mean, and is defined as the standard deviation over the mean (σ/μ). 
In equation (2), CVð�qÞ

I
 and CVð�ξÞ

I
 are the mean CV of the output 

q 2 RN

I
 and input ξ 2 Rd

I
, respectively. The results for CovidSim 

using equation (2) are displayed in Table 1, which shows that the 
uncertainty in the input is amplified by a factor of three for scenario 
1. By contrast, CovidSim is more robust under S2

I
, in which case the 

same input uncertainty is still amplified to the output, although now 
by a factor of two.

Note that S1
I

 has a higher CVR while imposing stronger con-
trol than S2

I
. Although the stronger control results in a much lower 

absolute number of predicted deaths, the output is more uncertain 
in a relative sense due to the long tail (see Fig. 1a), which results in 
a higher output CV and therefore a higher CVR.

Discussion
Conditional on a given S, we found that the Report 9 predictions 
are captured by the parametric uncertainty at the lower bound of 
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the 68% confidence interval. The PDF of the total death count is 
skewed and can support low-probability events with a predicted 
death count that is about five to six times higher.

We find that CovidSim amplifies the input uncertainty by 300% 
(that is, roughly by a factor of three; see Table 1) depending on the 
chosen NPI scenario. Despite this amplification of uncertainty, the 
distribution of the output does not envelope available validation 
data well for the two scenarios we considered. We do note, however, 
that the predictions will be very sensitive to the chosen S, which 
therefore must be tuned if one wishes to validate CovidSim against 
available data (see, for example, ref. 7). Tuning the ICU triggers alone 
is insufficient. In Supplementary Section 4 we show the results of an 
additional UQ campaign where we sought to extract the best-guess 
ICU trigger values from data. These results are similar to those pre-
sented in the main manuscript.

Predicting the uncertainty in computational models is already 
considered as vitally important in weather and climate models. For 
instance, the author of ref. 25 claims that “…no weather or climate 
prediction can be considered complete without a forecast of the 
associated flow-dependent predictability”. We also argue that, in 
the case of COVID-19 predictions, a single deterministic prediction 
paints an incomplete picture, as we showed that such a prediction 
is better viewed as only one member of a much wider distribution. 
Hence, some measure of uncertainty is required for a correct inter-
pretation of the results, so that those tasked with policy-making are 
presented with a more complete picture of the outcomes that the 
model is capable of predicting.

For instance, if the policymaker is presented with just the deter-
ministic model outcome of Fig. 1b, they may draw the conclusion 
that the UK will suffer 50,000 deaths after approximately 600 days 
by adopting scenario S2

I
. However, by taking some reasonable input 

uncertainty into account, we see that the same model can also pre-
dict that number in less than 200 days with the same NPI settings. 
Another example concerns predictions with hard thresholds (such 
as the maximum number of available ICU beds). A single predic-
tion might lie on the safe side of the threshold, yet the model may 
exhibit a considerable non-zero probability that this threshold can 
be exceeded, if it were admitted that the models are uncertain. We 
expect that such kinds of information pertaining to uncertainty 
would influence the decision-making process in an important way.

Let us briefly discuss applying the proposed method to models 
other than CovidSim, which may well be beneficial for the same rea-
sons mentioned above. The dimension-adaptive sampling scheme has 
a black-box assumption, and can therefore be applied without modifi-
cation to other models; however, note that EasyVVUQ requires that a 
template for the input file must be created17. We used the FabSim3 auto-
mation toolkit to execute the ensembles on a supercomputer (in our 
case the PSNC Eagle machine26; see the Code Availability section for 
the relevant links to our software). In summary, (dimension-adaptive) 
parametric uncertainty propagation is general enough to be applied to 
other models and it is important to do so moving forward; however, 
although the dimension-adaptive approach is efficient, it is ultimately 
still limited by the dimension of the input space. We could not have 
applied our method to all inputs of CovidSim, for example.

Conclusion
To conclude, to retrofit the model’s outputs with the observed 
data requires additional post-hoc tuning of certain parameters 

that control the scenario in which the model is applied. These 
issues need to be addressed in seeking to provide a more quantita-
tive albeit strongly probabilistic version of the code that might be 
suitable for its future application in healthcare and governmental 
decision-making. Our findings exemplify how sensitivity analysis 
and uncertainty quantification can help improve model develop-
ment efforts, and in this case support the creation of epidemiologi-
cal forecasting with quantified uncertainty.

As an alternative to retrofitting the scenario parameters, one 
could attempt to quantify the uncertainty related to the scenario the 
model is applied in. One such potential route for future research 
could involve creating cheap surrogate models for CovidSim, for 
example, in the stochastic space of the most influential parameters 
identified, which opens up the possibility of Bayesian inference27. 
This would allow us to update our assumptions on the input dis-
tributions and obtain posterior input distributions conditioned on 
observed data instead. Furthermore, such a statistical calibration 
can eliminate a bias between the mean prediction and real-world 
observations. Repeating the procedure for a discrete set of scenario 
parameters then allows for the combined estimation of the paramet-
ric and the scenario uncertainty using Bayesian ensemble methods 
(see, for example, refs. 15,16).

Methods
In this section we first describe our method for computing the statistical results and 
subsequently describe the uncertainty amplification factor.

Statistics. Here we describe how we compute the probability distribution of the 
code output, the corresponding ensemble execution and how the Sobol indices are 
calculated.

Dimension-adaptive uncertainty propagation. The traditional forward uncertainty 
quantification methods present in EasyVVUQ (for example, stochastic collocation 
and polynomial chaos), are subject to the curse of dimensionality. To illustrate the 
problem, consider first the standard stochastic collocation method, which creates 
a polynomial approximation of the code output q, as a function of the uncertain 
inputs ξ ¼ ðξd ;    ; ξdÞ 2 Rd

I
:

qðξÞ  ~qðξÞ ¼
Xm1

j1¼1

  
Xmd

jd¼1

qðξj1 ;    ; ξjd Þ aj1 ðξ1Þ      ajd ðξdÞ ð3Þ

Here, ~q denotes the polynomial approximation of q, and qðξj1 ;    ; ξjd Þ
I

 is the 
actual code output, evaluated at some location inside of the stochastic domain of 
ξ 2 Rd

I
. Each input ξi &isi n; ξ is assigned an independent PDF p(ξi), and the goal is 

to propagate these through CovidSim to examine the corresponding distribution 
of the output q. The basic building blocks for the SC method are one-dimensional 
quadrature and interpolation rules, which are extended to higher dimension 
through a tensor-product construction. In equation (3), aj1 ðξ1Þ      ajd ðξdÞ

I
 is 

the tensor product of one-dimensional Lagrange interpolation polynomials, used to 
interpolate the code outputs qðξj1 ;    ; ξjd Þ

I
 to a (potentially) unsampled location ξ.  

For instance, unlike the Monte Carlo method, the sample locations ðξj1 ;    ; ξjd Þ
I

 
are not random. Instead, each ξji

I
 is a point drawn from a one-dimensional 

quadrature rule, used to approximate integrals weighted by the chosen input 
distribution p(ξi). The order of the quadrature rule for the ith input determines the 
number of points mi, and due to the tensor product construction the total number 
of code evaluations for d inputs equals M = m1 ⋅ m2 ⋯ md, or M = md if all inputs 
receive the same quadrature order (see Supplementary Fig. 1 for an example). The 
exponential increase with d, known as the curse of dimensionality, renders the SC 
method intractable beyond d ≈ 10. Hence, although our parameter analysis in the 
main article indicates that only roughly 6% of the inputs will be varied at some 
point, due to the large number of inputs this is far too much for such brute-force 
UQ methods.

A dimension-adaptive version of the stochastic collocation method (based 
on the work of refs. 9,28) has therefore been implemented in EasyVVUQ. It is 
reasonable to expect that the output q will not be equally sensitive to each input ξi. 
Hence, although our input space is d-dimensional, a dimension-adaptive approach 
banks on the existence of a lower effective dimension. The basic idea is to start 
with a zeroth-order quadrature rule for all inputs, and to adaptively rank order 
the inputs, keeping all ineffective inputs at a low (possible zeroth) order, while 
increasing the order of those that are effective (see Supplementary Fig. 1 for an 
example in two dimensions).

The dimension-adaptive approach is explained in detail in ref. 9, here we only 
provide a general outline. Let Λ be the set containing all selected quadrature-order 
multi-indices (the grey squares of Supplementary Fig. 1), which is initialized as 

Table 1 | The mean CV for the input and output, and the CVR

Scenario CV �ξ
� �

I
CV �qð Þ
I

CVR

S1
I

0.1950 0.6097 3.13

S2
I

0.1950 0.3872 1.99
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Λ ≔ {(0, , ⋯ , 0)}. Let the forward neighbours of any multi index l be defined by 
the set {l + ei∣1 ≤ i ≤ d}, where ei is the elementary basis vector in the ith direction, 
for example, e2 = (0, 1, 0, ⋯ , 0). The forward neighbours of the set Λ are then 
the forward neighbours for all l ∈ Λ, which are not already in Λ. Similarly, the 
backward neighbours of l are given by {l − ei∣li > 0, 1 ≤ i ≤ d}. An index set Λ is said 
to be admissible if all backward neighbours of Λ are in Λ.

To adaptively refine the sampling plan, a look-ahead step29 is executed, 
where the computational model is evaluated at the new unique sample locations 
generated by those forward neighbours l where Λ ∪ {l} remains an admissible set, 
corresponding to the × symbols of Supplementary Fig. 1. For each admissible 
forward neighbour l, a local error measure is computed. As proposed in ref. 10, we 
will base our error measure on the so-called hierarchical surplus, defined as the 
difference between the code output q and the surrogate prediction ~q, evaluated at 
new sample locations of an admissible forward neighbour l,

s ξðlÞj

� �
:¼ q ξðlÞj

� �
� ~qΛ ξðlÞj

� �
; ξðlÞj 2 XlnXΛ: ð4Þ

Here, XΛ is the sampling plan generated by the one-dimensional quadrature 
rules in Λ, and Xl is the sampling plan generated by Λ ∪ {l}. Futhermore, ~qΛ

I
 is the 

polynomial surrogate constructed from points in XΛ alone. A local error measure 
can now be defined as

ηðlÞ :¼ 1
#ðXlnXΛÞ

X
ξðlÞj 2XlnXΛ

k s ξðlÞj

 
k : ð5Þ

Note that other error measures, based on quadrature errors9,30, or Sobol sensitivity 
indices29 can also be defined. The admissible forward neighbour with the highest 
error measure η(l) is added to Λ, which can cause new forward neighbours to 
become admissible, and the algorithm repeats.

Note that every index l = (l1, ⋯ , ld) ∈ Λ constitutes a separate tensor product 
of one-dimensional quadrature rules with orders given by l. Unlike the standard 
approach in equation (3), the SC expansion in the adaptive case is therefore 
constructed as a linear combination of tensor products, that is

qðξÞ  ~qðξÞ ¼
X

l2Λ cl
Xml1

j1¼1

  
Xmld

jd¼1

qðξðlÞj Þ aðl1Þj1
ðξ1Þ      aðldÞjd

ðξdÞ; ð6Þ

where qðξðlÞj Þ ¼ qðξðl1Þj1
;    ; ξðld Þjd

Þ
I

, and mli
I

 is the number of points generated by a 
one-dimensional rule of order li. The coefficients cl are computed as

cl ¼
X1

k1¼0

  
X1

kd¼0

�1ð Þjkj1  χðlþ kÞ; where χðlÞ ¼
1 l 2 Λl

0 otherwise


; ð7Þ

see ref. 28 for details.
As equation (6) consists of a linear combination of tensor products, the choice 

of the quadrature rule chosen to generate the one-dimensional points substantially 
affects the total number of code evaluations. It is common practice to select a 
nested rule, which has the property that a rule of a given order contains all points 
generated by that same rule at lower orders. When taking linear combinations of 
tensor products built from nested one-dimensional rules of different order, may 
points will overlap. This leads to a more efficient sparse sampling plan, especially 
in higher dimensions. For our calculations, we employ the well-known Clenshaw–
Curtis quadrature rule (see, for example, ref. 10).

Ensemble execution. Consequently, through the use of adaptive methods we make 
the uncertainty analysis of CovidSim tractable, but our analysis nevertheless 
required us to perform thousands of runs, each with its own unique set of 
input parameters. Specifically, we used the Eagle supercomputer at the Posnan 
Supercomputing and Network Centre31, which has a track record of reliably 
supporting large ensemble calculations. The workflows associated with these 
UQ/SA procedures are large, multifaceted and iterative, and to handle and curate 
them efficiently, we rely on the FabSim3 automation toolkit26. FabSim3 allows 
us to capture commonly used workflow patterns in single-line bash commands, 
and it automatically captures all of the relevant input parameters, output data 
and variables of both the job submission environment and the local machine 
environment in which each simulation has been executed.

Sobol index calculation. Sobol indices are variance-based sensitivity measures of a 
function q(ξ) with respect to its inputs ξ 2 Rd

I
 (refs. 23,32). Let V qu

� �

I
 be a so-called 

partial variance, where the multi-index u can be any subset of U :¼ f1; 2;    ; dg
I

. 
Each partial variance measures the fraction of the total variance in the output q 
that can be attributed to the input parameter combination indexed by u. The Sobol 
indices are defined as the normalized partial variances, that is

Su :¼ V qu
� �

V½q
ð8Þ

where V½q ¼PuUV½qu
I

 is the is the total variance of q (ref. 32). As all partial 
variances are positive, the sum of all possible Su equals 1.

To perform the Sobol sensitivity analysis, we employ the method described in 
ref. 24, which is an adaptation of a method originally proposed in ref. 33. The general 
idea is to transform the adaptive SC expansion into a polynomials chaos expansion 
(PCE) to facilitate the computation of the Sobol indices. The PCE equivalent of 
equation (3) reads

qðξÞ  ~qðξÞ ¼
X

k2K ηk ϕðk1Þðξ1Þ      ϕðkd ÞðξdÞ ð9Þ

Here, the basis functions ϕk are usually constructed to be orthonormal to the input 
density, and the response coefficients ηk are normally computed via a spectral 
projection technique or via a regression method. Unlike equation (3), summation 
does not take place over the collocation points ξj. It instead takes place over multi 
indices k ¼ ðk1;    ; kdÞ 2 K

I
, determined by a selected truncation scheme (see 

below). The PCE method is a well-know technique; please refer to refs. 34,35 for more 
details.

The PCE method is particularly suited for sensitivity analysis, as the Sobol 
indices can be calculated from the response coefficients ηk in a post-processing 
procedure36. The PCE mean and variance (when the ϕk are orthonormal), are given 
by34

E ~q½  ¼ η0 and V ~q½  ¼
X

k 2 K k≠0
η2k ð10Þ

Similarly, the partial variances can be computed with

V ~qu
 

¼
X

k2Ku
η2k where Ku ¼ fkjki>0 when ki 2 u; j ¼ 0 when j=2ug:

ð11Þ

The multi index set Ku
I

 can be interpreted as the set of all multi indices 
corresponding to varying only the inputs indexed by u. That is, if, for instance, 
u = (1, 3), Ku

I
 is the subset of K, with all indices k where k1 > 0 and k3 > 0, with all 

other kj = 0. Note that with equations (10) and (11), the Sobol indices in equation 
(8) are readily available, provided we have the PCE coefficients ηk.

To compute the PCE coefficients from our anisotropic sparse grid, we can 
transform the Lagrange basis to a PCE basis on the level of the one-dimensional 
basis functions24. Applying this transformation T

I
 to equation (6) yields

T ~q½  ¼
X

l2Λ cl T
Xml1

j1¼1

  
Xmld

jd¼1

qðξðlÞj Þ aðl1Þj1
ðξ1Þ      aðld Þjd

ðξdÞ
" #

; ð12Þ

and so we have to apply the transformation separately to each tensor product. 
Equating a tensor product of equation (12) to a corresponding PCE expansion in 
equation (9) yields

Pml1

j1¼1
  
Pmld

jd¼1
qðξðlÞj Þ aðl1Þj1

ðξ1Þ      aðld Þjd
ðξdÞ ¼

P
k2Λl

ηðlÞk ϕðk1Þðξ1Þ

     ϕðkd ÞðξdÞ;
ð13Þ

where the PCE truncation is Λl ≔ {k∣k ≤ l}24. By using the orthogonality property of 
the PCE basis functions (and the independence of the input distributions), we can 
find an expression for each coefficient ηðlÞk

I
 as

ηðlÞk ¼
Xml1

j1¼1

  
Xmld

jd¼1

qðξðlÞj Þ vðl1 ;j1Þk1
     v

ðld ;jd Þ
kd

; ð14Þ

where each univariate transformation coefficient νðli ;jiÞki
I

 is given by

ν
ðli ;jiÞ
ki

¼
Z

aðliÞji
ϕki pðξiÞdξ; i ¼ 1    ; d: ð15Þ

This is integrated over the support of p(ξi) using Gaussian quadrature. To generate 
the orthonormal ϕki

I
 we use the Chaospy package37.

Once in possession of the ηlk
I

, we can compute the statistics and the Sobol 
indices corresponding to an adaptive sparse grid. The first two moments are  
given by

E ~q½  ¼
X

l2Λ cl  η
ðlÞ
0 and V ~q½  ¼

X
l 2 Λ

l≠0

X
k2Kl

ckη
ðkÞ
l

h i2
ð16Þ

where Kl :¼ fkjl 2 Λk ; 8k 2 Λg
I

. The expression for the variance is obtained 
by (1) inserting equation (6) into E ~q2

� �
� E ~q½ 2

I
; (2) grouping all terms with like 

k in E ~q2
� �

I
, which is what Kl

I
 indicates; and (3) using the orthogonality of the ϕk 

to remove all cross terms ϕkϕj, j ≠ k. The statistics in equation (16) represent a 
more general version than those given in equation (10), and will revert to these 
equations when given the combination coefficients cl corresponding to a standard, 
non-adaptive SC grid. The partial variances V ~qu

� �

I
, and by extension the Sobol 

indices, are computed in the same way as before, namely by summing individual 
variance contributions indexed by the set Ku

I
 shown in equation (11).
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Uncertainty amplification factor. The aim here is to find a robustness score of 
a computational model, under uncertainty in the input parameters. A simple 
(dimensionless) measure for variability in some random variable X is the CV, 
which is defined as the standard deviation over the mean, that is

CVðXÞ ¼ σX
μX

; if μX≠0: ð17Þ

Any forward uncertainty propagation method approximates the first two moments 
of the output q 2 RN

I
, and so CVðqÞ 2 RN

I
 is readily available. Assuming we can 

(analytically) compute the first two moments of each input ξi ∈ ξ, i = 1, ⋯ , d, 
CVðξiÞ 2 R
I

 is also easily computed. Although ξ may contain inputs defined on 
vastly different scales, as the CV is a dimensionless quantity, this will not pose a 
problem. We propose to use the ratio of CV(Q) and CV(ξ) as a relative measure of 
variability between the input and the output. To do so we first have to account for 
the fact that in general, d ≠ N. Here we choose to average over all points:

CVR :¼ CV qð Þ=CV ξ
� 

¼ 1
N

XN

n¼1

σqn
μqn

 !
=

1
d

Xd

i¼1

σξi
μξi

 !
: ð18Þ

The basic idea of equation (18) is to say something about the robustness of the 
code to input uncertainty, given the fact that in all likelihood the choice of input 
distributions can be at least partly ambiguous. We have, for instance, prescribed 
an input distribution for the relative household contact rate after closure, with end 
points located at 20% of the default value (see Supplementary Table 1). Although 
this was within the range suggested by expert opinion, the number of 20% is still 
just a user-specified choice, and it might as well have been for instance 15%. It 
therefore makes sense to look at the relative input-to-output uncertainty; thus, 
when given a user-specified average input perturbation of say 20% (CVð�ξÞ ¼ 0:2

I
), 

equation (18) tells us to what extent the code (which is a nonlinear mapping from 
the input to the output) amplifies this assumed uncertainty. Relative damping of 
uncertainty is also possible, corresponding to CVR < 1.

Data availability
Figure 1a,b displays publicly available cumulative death count data for the UK, 
which were obtained from ref. 22. Source Data are available with this paper. 
Furthermore, the parameter list—with all input parameters, a description, their 
default values and reasons for inclusion or exclusion from the Imperial College 
London CovidSim team—is available as Supplementary Data.

Code availability
The version of EasyVVUQ that was used to generate our results has been pushed 
to a separate, publicly available GitHub branch, see refs. 38,39 for a Zenodo link. 
Likewise, the FabSim3 interface between EasyVVUQ and CovidSim that was  
used to execute the ensembles on the PNSC Eagle supercomputer can be found in 
refs. 40,41.
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