
1

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports

Digital design
of a spatial‑pow‑STDP learning
block with high accuracy utilizing
pow CORDIC for large‑scale image
classifier spatiotemporal SNN
Mohammad Kazem Bahrami  & Soheila Nazari *

The paramount concern of highly accurate energy-efficient computing in machines with significant
cognitive capabilities aims to enhance the accuracy and efficiency of bio-inspired Spiking Neural
Networks (SNNs). This paper addresses this main objective by introducing a novel spatial power spike-
timing-dependent plasticity (Spatial-Pow-STDP) learning rule as a digital block with high accuracy in
a bio-inspired SNN model. Motivated by the demand for precise and accelerated computation that
reduces high-cost resources in neural network applications, this paper presents a methodology based
on COordinate Rotation DIgital Computer (CORDIC) definitions. The proposed designs of CORDIC
algorithms for exponential (Exp CORDIC), natural logarithm (Ln CORDIC), and arbitrary power
function (Pow CORDIC) are meticulously detailed and evaluated to ensure optimal acceleration and
accuracy, which respectively show average errors near 10–9, 10–6, and 10–5 with 4, 4, and 6 iterations.
The engineered architectures for the Exp, Ln, and Pow CORDIC implementations are illustrated and
assessed, showcasing the efficiency achieved through high frequency, leading to the introduction
of a Spatial-Pow-STDP learning block design based on Pow CORDIC that facilitates efficient and
accurate hardware computation with 6.93 × 10–3 average error with 9 iterations. The proposed learning
mechanism integrates this structure into a large-scale spatiotemporal SNN consisting of three layers
with reduced hyper-parameters, enabling unsupervised training in an event-based paradigm using
excitatory and inhibitory synapses. As a result, the application of the developed methodology and
equations in the computational SNN model for image classification reveals superior accuracy and
convergence speed compared to existing spiking networks by achieving up to 97.5%, 97.6%, 93.4%,
and 93% accuracy, respectively, when trained on the MNIST, EMNIST digits, EMNIST letters, and
CIFAR10 datasets with 6, 2, 2, and 6 training epochs.

Keywords  Bio-Inspired SNN, AMPA and GABA neurotransmitters, LIF neurons, Image classification,
Spatial-Pow-STDP, Unsupervised learning, Exp CORDIC, Ln CORDIC, Pow CORDIC, FPGA implementation

Realizing energy-efficient computing systems has become a paramount concern for machines with significant
cognitive capabilities. Mammalian cortexes exhibit remarkable efficiency, consuming a mere 10 to 20 watts dur-
ing high-level cognitive processes1, a stark contrast to contemporary computer systems engaged in analogous
functions. This pronounced disparity in energy utilization has propelled the quest for energy-efficient computing
solutions. In recent years, notable endeavors have focused on implementing Spiking Neural Networks (SNNs) on
neuromorphic chips2, where energy consumption has been reduced to the picojoule scale in the transmission of
each spike. This achievement has rendered neuromorphic hardware conducive for on-chip learning3 mechanisms
and is elevating SNNs to paramount importance in machine learning and artificial intelligence applications4.

Parallel to this, deep learning techniques have gained considerable prominence in the scientific community,
primarily through the adoption of deep neural networks (DNNs) for supervised and reinforcement learning
tasks5. Among DNNs, convolutional neural networks (CNNs) have excelled in automatically extracting features
from input data. However, SNNs operating on an event-driven, asynchronous paradigm demonstrate significantly

OPEN

Faculty of Electrical Engineering, Shahid Beheshti University, Tehran 1983969411, Iran. *email: so_nazari@sbu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-54043-7&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

lower power consumption than their DNN counterparts6,7. Herein, a novel spiking pattern recognition platform
contains a biologically possible SNN and a bio-inspired learning approach based on extended versions of Spike
Time Dependent Plasticity (STDP). This platform exhibits superior accuracy and learning speed compared to
previous SNN-based pattern recognition systems and attains accuracy levels akin to deep pattern recognition
networks, with additional advantages such as compatibility with neuromorphic chips, unsupervised learning, and
higher convergence speed. The remarkable ability of the designed spiking platform for pattern recognition can be
seen in the novel variant of STDP called Spatial Power Spike-Timing-Dependent Plasticity (Spatial-Pow-STDP).

One typical dataset used to evaluate network performance is the MNIST dataset8, which has been successfully
classified by deep conventional neural networks. In addition to MNIST, the proposed network’s performance
on an extended version of MNIST called EMNIST9, which includes handwritten digits and letters, was evalu-
ated. Also, the dataset CIFAR1010, which is very challenging to classify by unsupervised networks, has been
investigated to verify the proposed learning performance. Notably, achieving high accuracy on EMNIST and
CIFAR10 using spiking pattern recognition networks remains a formidable challenge11,12, marking this work as
state-of-the-art. While mapping deep networks to spiking networks and enhancing classification accuracy with
supervised spike-based back-propagation have been explored in recent studies13, the proposed platform com-
pared to previous spiking networks indicates several advantages, including higher classification accuracy, faster
convergence speed, an unsupervised training method, fewer hyper-parameters, and network layers.

FPGA-based implementations of spiking neural networks have been explored for a variety of applications
including pattern recognition14,15, context-dependent learning14, and auditory processing16. For pattern recog-
nition tasks, spiking neural networks using leaky integrate-and-fire neuron models and spike timing depend-
ent plasticity learning rules have been implemented on FPGAs to achieve high speeds such as 189 MHz17 and
412 MHz maximum frequency for a single neuron model18. Other works have focused on implementing spiking
neural networks with reinforcement learning capabilities for context-dependent learning tasks, using modi-
fied leaky integrate-and-fire models to enable faster convergence and lower power consumption compared to
previous FPGA implementations18. In the auditory domain, FPGA implementations of spiking neural networks
have aimed to mimic auditory pathways in the brain, using bio-inspired hierarchical network architectures and
biological neuron models to achieve robustness against noise19. Overall, FPGAs provide a flexible platform for
spiking neural network implementation to leverage the benefits of event-driven, parallel, and low power process-
ing for time-critical and power-constrained applications19–21. In works focused on the hardware implementation
of the pattern recognition networks14,15, new network topologies and learning models were not presented. In
such works, hardware implementation was done for networks whose structure and learning model had already
been presented in other works. In contrast, our work focused on two key principles: (1) Providing a hardware
learning module based on CORDIC with high accuracy. (2) Proposing a spiking network with unsupervised
learning modeled on AMPA and GABA synapses to identify MNIST, EMNIST, and CIFAR10 patterns with higher
accuracy and faster convergence than previous spiking and deep neural networks.

Moreover, this study proposes a digital design and evaluation method for the Spatial-Pow-STDP learning
module based on COordinate Rotation DIgital Computer (CORDIC) to address critical issues related to hard-
ware efficiency and learning accuracy. This comprehensive approach spans from theoretical CORDIC-level
error analysis to application-level learning performance on MNIST, EMNIST, and CIFAR10 datasets. The goal
is to identify the optimal CORDIC type among various algorithms and the lowest bit-width precision to maxi-
mize overall SNN hardware efficiency while minimizing performance loss and hardware overhead22. Within
this context, a digital module of Spatial-Pow-STDP based on a selected 16-bit Pow CORDIC is presented, and
Field-Programmable Gate Array (FPGA) implementation results confirm its superiority over conventional and
state-of-the-art CORDIC methods in terms of hardware efficiency.

In neural network computation, logarithms and exponentials play a pivotal role, particularly in SNNs. Two
primary approaches exist for evaluating logarithms and exponentials: approximation23 and iterative methods24.
While these methods have been considered in many research studies, this paper introduces a promising solution
to enhance hardware efficiency by improving the computation of logarithms, exponentials, and power functions
using a novel CORDIC algorithm. Specifically, this paper introduces a novel natural logarithm and exponential
calculation using the CORDIC algorithm, renowned for its high accuracy and speed. Leveraging these enhanced
natural logarithms and exponential CORDIC techniques, a novel CORDIC variant, called Pow CORDIC, is
introduced for calculating power functions. The Pow CORDIC block can calculate power functions with arbitrary
power terms, a critical requirement in the second and third generation of neural networks.

We evaluate these CORDIC-based techniques and implement them on an FPGA using the VHDL language,
examining their resource consumption. The Pow CORDIC is used to implement the Spatial-Pow-STDP learning
module efficiently, which is the proposed training module in the presented spiking pattern recognition network.
The classification accuracy of the software (Spatial-Pow-STDP) and hardware (CORDIC-based Spatial-Pow-
STDP) learning blocks are assessed by the MNIST, EMNIST, and CIFAR10 datasets, revealing the potential ben-
efits of this innovative methodology in advancing neural network hardware efficiency and learning performance.

In summary, this paper signifies a pivotal convergence of advancements in energy-efficient computing and
bio-inspired neural networks. It introduces groundbreaking techniques culminating in a novel and highly efficient
Spatial-Pow-STDP learning rule for bio-inspired SNNs. Moreover, this research pioneers the development of
more accurate and faster natural logarithm CORDIC and exponential CORDIC algorithms, facilitating the pre-
cise calculation of power functions with arbitrary power terms using Pow CORDIC. These innovations synergize
to empower the implementation of Spatial-Pow-STDP, propelling the efficiency and accuracy of neural network
modeling to unprecedented levels. This multifaceted approach not only advances energy-efficient neuromorphic
hardware but also opens new horizons for the precision and efficiency of neural network computations.

3

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

Computational SNN model
In this research, a cutting-edge SNN model is adopted, built upon Leaky Integrate-and-Fire (LIF) neurons25,
including both pyramidal and interneurons. Additionally, it incorporates an unsupervised STDP variant learn-
ing rule26. The choice of this SNN architecture and learning rule is based on their proven effectiveness in prior
studies27,28. This particular SNN framework, coupled with the selected learning rule, has demonstrated its abil-
ity to achieve superior accuracy when evaluated against well-established dataset benchmarks. Furthermore, it
exhibits a notable advantage in terms of the speed at which it converges during the learning process, making it
a robust choice for this study.

Computational model of excitatory and inhibitory neurons and synapses
The representation of neurons (including both pyramidal neurons and interneurons) within the innovative SNN
utilizes LIF neurons. In this context, the membrane potential, denoted as vk , is characterized as follows:

The representation of the excitatory post-synaptic potential (AMPA potential) is described as VAk in Eq. (2),
which is the product of membrane resistance and AMPA synaptic current. In Eq. (3), the combined effect of
excitation from pyramid neurons linked to neuron k and the stimulating input to neuron k is computed as an
auxiliary variable called xAk . This auxiliary variable xAk is then utilized as the excitatory input for generating the
AMPA potential VAk.

Likewise, the representation of the inhibitory post-synaptic potential (GABA potential) is denoted as VGk
in Eq. (4), which is the product of membrane resistance and GABA synaptic current. The cumulative impact
of inhibition originating from the interneurons connected to neuron k is computed in Eq. (5) as an auxiliary
variable termed xGk . This auxiliary variable xGk is then employed as an input in Eq. (4) to generate the GABA
potential VGk.

The parameters τm (20 ms for excitatory neurons and 10 ms for inhibitory neurons), vthr (18 mV), vres (0 mV),
τrp (2 ms for excitatory neurons and 1 ms for inhibitory neurons), and τL (1 ms) are defined as follows: τm
represents the membrane time constant, vthr stands for the threshold at which neurons fire, vres is the resting
potential, τrp is the refractory time, and τL denotes the latency of post-synaptic potentials. Additionally, terms
like tk−pyr,int,ext , τdA (or τdG ), and τrA (or τrG ) are used to describe the timing of received spikes from pyramidal
neurons, interneurons, and external inputs to neuron k , as well as the decay and rise times of excitatory (or inhibi-
tory) AMPA (or GABA) synaptic potentials. The learning within the network heavily relies on excitatory and
inhibitory synaptic weights, which are represented by Jk−pyr (for excitatory synapses from pyramidal neurons
to neuron k ), Jk−int (for inhibitory synapses from interneurons to neuron k ), and Jk−ext (for excitatory synapses
from external inputs to neuron k ). However, the excitatory synapse Jk−ext is static and does not participate in
learning. The values of parameters are adopted from Ref.28.

In this paper, due to the simplification of network dynamics, dendritic connections are not considered in
the computational model of pyramidal neurons. If dendritic connections were used in the pyramidal neuron
model, the amount of computation would be greatly increased and complexity would arise in the training process.
Instead of dendritic connections, excitatory and inhibitory synapses of AMPA and GABA neurotransmitters
have been used in modeling neuronal interactions.

In general, pyramidal neurons and interneurons are characterized using the LIF neuron model as outlined in
Eq. (1). The modeling of excitatory AMPA synaptic potentials is explained by Eq. (2) and Eq. (3), while inhibitory
GABA potentials are described by Eq. (4) and Eq. (5). Pyramidal neurons, through excitatory neurotransmitters
represented by Eq. (3), stimulate their post-synaptic neurons via AMPA synapses defined in Eq. (2). Similarly,
interneurons, employing inhibitory neurotransmitters as per Eq. (5), inhibit their post-synaptic neurons through
GABA synapses as per Eq. (4). The neural interactions encompass interactions between interneurons, pyramidal
neurons, and interneurons to pyramidal neurons, as depicted in Fig. 1.

Architecture of spiking image classification networks
The spiking image classification network comprises a retinal model as the input layer, followed by a bio-inspired
spiking neural network as the middle layer, with pyramidal neurons serving as the classifying neurons.

Input layer
The MNIST dataset consists of 28 × 28 images that show digits from 0 to 9 (with a total of 60,000 training images
and 10,000 test images). Also, the EMNIST dataset encompasses images sized at 128 × 128 pixels featuring digits
from 0 to 9 (with 240,000 training patterns and 40,000 test patterns) and letters spanning A to Z (comprising

(1)τm
dvk(t)
dt = −vk(t)+ [VAk(t)− VGk(t)]

(2)τdA
dVAk
dt = −VAk + xAk

(3)τrA
dxAk
dt = −xAk + τm

(

Jk−pyr
∑

pyr δ(t − tk−pyr − τL)+ Jk−ext
∑

ext δ(t − tk−ext − τL)

)

(4)τdG
dVGk
dt = −VGk + xGk

(5)τrG
dxGk
dt = −xGk + τm

(

Jk−int
∑

int δ(t − tk−int − τL)
)

4

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

88,800 training patterns and 14,800 test patterns). Meanwhile, the CIFAR10 dataset consists of 10 classes of
natural images, each measuring 32 × 32 pixels (with 50,000 training patterns and 10,000 test patterns).

In contrast to prior studies29, where the size of the input layer scaled with the dimensions of the input image,
in this case, input patterns are transformed to spike trains based on the bio-inspired visual pathway. As a result,
the patterns from the MNIST, EMNIST, and CIFAR10 datasets, respectively are converted into 7 × 7, 8 × 8, and
8 × 8 spike trains, enabling a significant reduction in the size of the input layers for the MNIST, EMNIST, and
CIFAR10 classification networks.

In the input layer, MNIST, EMNIST, and CIFAR10 images are initially processed by photoreceptors. Subse-
quently, these images are routed through horizontal cells, where they undergo averaging with a 2 × 2 window
and a stride of 2, resulting in electrical signals of sizes 14 × 14, 64 × 64, and 16 × 16, respectively. These electrical
signals then pass through bipolar cells30, where they are subjected to further averaging using an 8 × 8 window
with an 8-pixel stride for EMNIST and a 2 × 2 window with a stride of 2 for MNIST and CIFAR10, leading to
electrical signals sized 7 × 7, 8 × 8, and 8 × 8 for MNIST, EMNIST, and CIFAR10, respectively. Finally, ganglion
cells31 transform these electrical signals from amacrine cells into 7 × 7, 8 × 8, and 8 × 8 spike trains. This process
is generally shown in Fig. 2. These spike trains are stimuli for the pyramidal and interneurons in the middle layer
through excitatory synapses. The dynamic models of the ON/OFF bipolar and ganglion networks are intercon-
nected using the model outlined in a previous paper32 to construct the retinal model.

Middle layer
The middle layer of the EMNIST and CIFAR10 classification networks consists of N = 5000 neurons. Among
these, 80% are pyramidal neurons (PY), which are excitatory, and the remaining 20% are interneurons (IN),
which are inhibitory. Consequently, in the MNIST recognition network, there are 4000 PY and 1000 IN neurons,
and the same distribution applies to the EMNIST recognition network. The complexity of this spiking network
is determined by the intricate dynamics of synapses and the extent of neural communication. In this setup, all
network neurons are based on the LIF neuron model, and the neural interactions are simulated using dynamic
models of excitatory and inhibitory neurotransmitters such as AMPA and GABA, as shown in Fig. 1.

Figure 1.   Pyramidal neurons (PYs) transmit stimulating signals to connected neurons through excitatory
neurotransmitters, while interneurons (INs) relay inhibitory signals to connected neurons via inhibitory
neurotransmitters.

Figure 2.   Conversion of input patterns into the spike trains is employed to minimize the input layer dimensions
within the pattern classification networks.

5

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

In addition to considering the dynamics of excitatory and inhibitory synapses within the spiking network,
the number of synapses present in the network plays a significant role in shaping its learning capabilities. Imple-
menting pattern recognition networks on neuromorphic hardware platforms presents challenges such as high
power consumption, complex implementation, and speed limitations, especially when utilizing fully connected
networks. Fortunately, research has demonstrated that reducing the density of connections in fully connected
networks by up to 90% and transitioning to a sparsely connected network architecture can enhance performance
accuracy. Additionally, experimental evidence suggests that the connection probability between two neurons in
the nervous system is approximately 0.233.

Considering a connection probability of 0.2 within the middle layer, each neuron establishes connections
with roughly 1000 other neurons. Therefore, in the middle layer of the MNIST, EMNIST, and CIFAR10 classifica-
tion networks, we have integrated an excess of 5 million excitatory and inhibitory synapses, precisely 5,123,640
synapses for MNIST, 5,100,762 for EMNIST, and 5,074,150 for CIFAR10. Figure 3 illustrates the synapse counts
per neuron in the middle layer of the EMNIST classification network.

Considering that the transmission of information between neurons is influenced not only by the timing of
pre- and post-synaptic spikes but also by the spatial distance between neurons, we have organized neurons within
a rectangular area measuring 100 by 50 neurons27. In this context, the intensity of interactions between neurons
is represented as diminishing exponentially with greater distances, as denoted by the term e

−r
D incorporated

into Eqs. (3) and (5) are the dynamic equations governing excitatory and inhibitory synapses. This modification
results in Eq. (6) and (7) are presented as below:

In Eq. (6), r represents the distance between the pre-synaptic pyramidal neurons and neuron k , and in Eq. (7),
r signifies the distance between the pre-synaptic interneuron and neuron k . Here, D denotes the constant for scal-
ing distances. The term e

−r
D specifically influences the interactions between neurons by modulating the strength

of both excitatory and inhibitory synapses. Notably, this term does not impact input synapses because the input
spike train stimulates pyramidal neurons and interneurons regardless of the distance between neurons and input
nodes. Hence, in Eq. (6), e

−r
D is enclosed within parentheses to denote its specific applicability.

Classifier layer
In alignment with the 36 classes in EMNIT and the 10 classes in MNIST and CIFAR10, an equal number of LIF
pyramidal neurons are positioned in the classifier layer of their respective pattern classification networks. These
classifying neurons are linked to all pyramidal neurons in the middle layer through excitatory connections and to
the interneurons in the middle layer via inhibitory connections. Each neuron in the classifier layer corresponds
to a specific class within the training dataset, thereby assigning the responsibility of classifying test data to the

(6)τrA
dxAk
dt = −xAk + τm

(

e
−r
D Jk−pyr

∑

pyr δ(t − tk−pyr − τL)+ Jk−ext
∑

ext δ(t − tk−ext − τL)

)

(7)τrG
dxGk
dt = −xGk + e

−r
D τm

(

Jk−int
∑

int δ(t − tk−int − τL)
)

Figure 3.   The count of connections (comprising both excitatory AMPA and inhibitory GABA synapses) per
neuron within the EMNIST classification network.

6

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

neurons of this layer after the training phase. The classifying neuron exhibiting the highest firing rate signifies
the winning class during the winner-takes-all process. The general network structure for the MNIST, EMNIST,
and CIFAR10 classification networks is illustrated in Fig. 4.

Utilizing the retinal model within the input layer of pattern classification networks offers a novel approach
to reduce dimensionality while safeguarding the integrity of input data. This feature can be valuable in various
other machine learning applications. Maintaining the image information during the conversion to spike trains
within the input layer of pattern classification networks is a pivotal aspect of the learning process, as each pattern
is uniquely represented by its corresponding spike train.

Learning mechanism
Recent research has emphasized the importance of developing learning mechanisms tailored to SNNs, drawing
inspiration from the neural interactions in the nervous system. Hebbian learning and STDP mechanisms34 have
been prominent due to their biological relevance and integration into SNNs. While supervised methods like
spike-based back-propagation13 and transformed spiking deep networks35 exist, unsupervised STDP learning
is crucial due to its alignment with biological evidence. Due to the high cognitive ability of the nervous system,
to enhance the capability learning of machines, aligning machine calculations with neural spike calculations is
essential36. Recent efforts have led to the development of SNNs, mirroring the brain’s functional structure4. These
networks rely on temporal information coding and spatially distributed neuronal populations for learning4.
Hence, this paper presents a novel adaptation of the spike-timing-dependent plasticity mechanism derived from a
variant of the STDP rule characterized by a weight-dependent update equation based on a power-law function27.
This modified mechanism is referred to as "spatial power spike-timing-dependent plasticity (Spatial-Pow-STDP),"
and it influences the transmission of AMPA and GABA neurotransmitters as part of the learning process37. This
approach aligns with biological evidence and updates synaptic weights based on the timing of spike activity of
pre-and post-synaptic neurons and their spatial distance until patterns are stored in network memory.

Within the framework of Spatial-Pow-STDP learning, as illustrated in Eq. (8), there is an optimization aimed
at enhancing simulation speed by computing weight dynamics through synaptic traces. In addition to monitor-
ing synaptic weight, each synapse also maintains another parameter known as the pre-synaptic trace, denoted
as xpre , which reflects the recent history of pre-synaptic spikes. As detailed in Eq. (9), whenever a pre-synaptic
spike reaches the synapse, this trace increases by 1; otherwise, it undergoes exponential decay. Subsequently,
when a post-synaptic spike occurs at the synapse, the weight change ( �w ) is determined based on the pre-
synaptic trace29,38.

(8)�w = e
r
Ds η

(

xpre − xtar
)

(wmax − w)µ

(9)τxpre
dxpre
dt = −xpre +

∑

pre δ(t − tpre)

Figure 4.   The general architecture of the image classification networks consists of an initial input layer
represented by a retinal model, followed by a bio-inspired SNN in the middle layer, and subsequently, with a
group of classifying neurons forming the classifier layer.

7

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

In Eqs. (8) and (9), several key parameters are defined. These include η as the learning rate, w representing
synaptic weight within the range of 0 to 1, wmax as the maximum weight, τxpre serving as the time constant for xpre ,
and µ , a positive value less than 1, determining the influence of the previous weight on updates. Additionally,
xtar signifies the target value for the pre-synaptic trace at the moment of a post-synaptic spike.

Furthermore, the variable r denotes the distance between two pre- and post-synaptic neurons that have fired,
with Ds serving as a constant parameter representing the scale of this distance. Essentially, the terms involving
e

r
Ds capture the spatial characteristics within the learning process. This spatial learning component expedites the

network’s learning convergence for two primary reasons: Firstly, when two neurons are distant from each other
and have short spike intervals, they exhibit a greater increase in synaptic weight compared to standard STDP.
Secondly, when two neurons are nearby and have short spike intervals, their synaptic weight increase is less than
what is observed with STDP.

The measurement of pre-synaptic spiking activity over a time window denoted as xpre , effectively represents
the dynamic of synaptic strength between two neurons through STDP. As depicted in Eq. (8), when a post-syn-
aptic neuron fires and xpre is larger, it signifies a smaller time difference between the spiking of the two neurons,
resulting in a more substantial contribution from the pre-synaptic neuron. Consequently, �w increases signifi-
cantly, strengthening the connection between the neurons, a phenomenon known as long-term potentiation
(LTP). Conversely, when the pre-synaptic neuron’s contribution to the post-synaptic neuron’s firing is minimal,
and the spiking time difference is substantial, �w can become negative to weaken the synaptic connection. This
adjustment is achieved with the assistance of the target trace xtar , reflecting long-term depression (LTD).

Understanding cellular processes and the dynamic principles governing interactions within the nervous
system is challenging because of the vast diversity of biological cells and the intricate nature of neural synapses
that transmit information. To gain insight into the mechanisms underlying synaptic weight changes and synaptic
plasticity in the learning process, it is essential to investigate and uncover the structure and functional behavior
of ion channels and neurotransmitters. A significant discovery in this context is the impact of neurotransmitters
like AMPA (excitatory) and GABA (inhibitory) on regulating synaptic weight changes, ultimately influencing
synaptic plasticity37.

The transmission of AMPA neurotransmitters within the synaptic space is a pivotal factor in information
storage and learning within the nervous system. Manipulating AMPA neurotransmitter levels by increasing or
decreasing them has been shown to induce STDP during learning. Similarly, the modulation of GABA neuro-
transmitters also significantly influences synaptic weight adjustments, consequently impacting STDP and thereby
influencing learning processes. Consequently, the Spatial-Pow-STDP learning approach is defined by employing
equations that describe the dynamics of AMPA and GABA potentials, which simulate the learning processes
through regulating AMPA and GABA neurotransmitter transmission levels.

As a result, the learning process is guided by four distinct rules.

1.	 When connecting a pyramidal neuron to another pyramidal neuron, an initial weight is set randomly. If the
post-synaptic neuron fires after the pre-synaptic neuron, the AMPA synaptic weight between them increases
according to e

r
Ds ηPY

(

xpre − xtar
)

(wmax − w)µ (Eq. (10)).
2.	 The initial weight is determined randomly when establishing a connection from an interneuron to a pyrami-

dal neuron. If the post-synaptic neuron fires after the pre-synaptic neuron, the GABA synaptic weight
between them decreases according to e

r
Ds ηPY

(

xpre − xtar
)

(wmax − w)µ (Eq. (11)).
3.	 The initial weight is assigned randomly when forming a connection from a pyramidal neuron to an interneu-

ron. If the post-synaptic neuron fires after the pre-synaptic neuron, the AMPA synaptic weight between them
increases based on e

r
Ds ηIN

(

xpre − xtar
)

(wmax − w)µ (Eq. (12)).
4.	 When connecting an interneuron to another interneuron, the initial weight is determined randomly. If the

post-synaptic neuron fires after the pre-synaptic neuron, the GABA synaptic weight between them decreases
based on e

r
Ds ηIN

(

xpre − xtar
)

(wmax − w)µ (Eq. (13)).

It is important to mention that random synaptic weights are based on Gaussian distribution with zero mean
and 0.2 standard deviation, that excitatory and inhibitory synapses have positive weight, but the effect of AMPA
excitatory synapses on post-synaptic neuron stimulation is positive and the effect of inhibitory synapses is nega-
tive. The subsequent equations (Eqs. (10) and (11) for pyramidal neurons and Eqs. (12) and (13) for interneurons)
depict the mathematical expressions that govern the learning process in pattern classification networks:

(10)

τrA
dxAk
dt = −xAk + τm

(

e
−r
D

(

Jk−pyr + e
r
Ds ηPY

(

xpre − xtar
)

(wmax − w)µ
)

∑

pyr δ(t − tk−pyr − τL)

+Jk−ext
∑

ext δ(t − tk−ext − τL)

)

(11)τrG
dxGk
dt = −xGk + τm

(

e
−r
D

(

Jk−int − e
r
Ds ηPY

(

xpre − xtar
)

(wmax − w)µ
)

∑

int δ(t − tk−int − τL)

)

(12)

τrA
dxAk
dt = −xAk + τm

(

e
−r
D

(

Jk−pyr + e
r
Ds ηIN

(

xpre − xtar
)

(wmax − w)µ
)

∑

pyr δ(t − tk−pyr − τL)

+Jk−ext
∑

ext δ(t − tk−ext − τL)

)

8

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

As the spike rate in the pattern classification network rises, the learning speed also increases, which means
that interneurons release fewer neurotransmitters into the synaptic cleft compared to pyramidal neurons
( ηIN = 0.5ηPY).

The chosen STDP rule, which employs a power-law function, delivers comparable classification accuracies
compared to other STDP variants using the exponential functions described in previous studies. It’s worth noting
that the power-law weight-dependent STDP rule offers the advantage of triggering weight updates only when a
post-synaptic pyramidal neuron or interneuron fires a spike. Given the relatively low firing rate of post-synaptic
neurons, this more intricate STDP update mechanism does not demand significant computational resources.
Previous research has demonstrated that the power-law weight dependence of the STDP learning rule enhances
learning robustness and accelerates convergence29.

CORDIC based computation: Exp CORDIC, Ln CORDIC, and Pow CORDIC
The CORDIC algorithm represents an iterative computational technique applied to calculate a variety of complex
functions, encompassing multiplication, exponentials, logarithms, hyperbolic, and trigonometric functions. This
method operates efficiently by utilizing simple shift and add operations while avoiding resource-intensive and
slow arithmetic multipliers. Consequently, CORDIC functions can be readily and effectively implemented in digi-
tal Application-Specific Integrated Circuits (ASICs) and FPGAs39. Consequently, CORDIC tends to outperform
alternative methods in scenarios where a hardware multiplier is unavailable, such as in microcontroller platforms,
or when minimizing gate usage is a critical factor, as in FPGA or ASIC implementations. CORDIC offers a highly
precise and cost-effective means of implementing nonlinear dynamic properties like natural exponentials and
power-law functions in the context of most biologically plausible SNN models and STDP learning rules, such as
the chosen SNN and Spatial-Pow-STDP. This paper introduces novel algorithms of CORDIC tailored to natu-
ral exponentials (Exp CORDIC), natural logarithms (Ln CORDIC), and arbitrary power-law (Pow CORDIC)
functions. Subsequently, it evaluates and compares their accuracy and computational iterations performance,
considering the specific network model and learning rule employed.

The section introduces the hyperbolic CORDIC, forming the foundation for the advanced Exp CORDIC,
Ln CORDIC, and Pow CORDIC algorithms. Following this, the algorithms are presented and elaborated upon
in detail. Subsequently, a comprehensive evaluation and comparison are conducted with similar methodologies
introduced in existing literature.

Introduction to hyperbolic CORDIC
The iterative formula of the fundamental version of hyperbolic CORDIC is provided as follows24:

where i is an integer commencing at 1, the values of σi can be established according to the chosen mode of
operation. Hyperbolic CORDIC is categorized into two distinct modes: rotation mode CORDIC and vectoring
mode CORDIC. In the Rotation mode of Hyperbolic CORDIC (RH CORDIC), the σi values are determined as
σi = sign(zi) , whereas in the Vectoring mode of Hyperbolic CORDIC (VH CORDIC), the σi values are desig-
nated as σi = −sign(zi).

After completing the iterations, z is driven to 0 by RH CORDIC, while y is driven to 0 by VH CORDIC. It is
imperative to acknowledge in hyperbolic CORDIC that when the iterative sequence number i corresponds to 4,
13, 40 …, K, 3K + 1, the respective iteration stage must be executed twice to ensure convergence. After numerous
iterations, the outputs of RH CORDIC and VH CORDIC will ultimately converge to specific results, as expressed
by the following equations, respectively:

where scale factor KH for hyperbolic CORDIC can be determined through the following computation:

It should be noted that in Eq. (17), elements related to repeated iterations are to be multiplied twice. Equa-
tions (15) and (16) demonstrate that hyperbolic CORDIC can calculate inverse hyperbolic tangent, hyperbolic

(13)τrG
dxGk
dt = −xGk + τm

(

e
−r
D

(

Jk−int − e
r
Ds ηIN

(

xpre − xtar
)

(wmax − w)µ
)

∑

int δ(t − tk−int − τL)

)

(14a)xi+1 = xi + σi2
−iyi

(14b)yi+1 = yi + σi2
−ixi

(14c)zi+1 = zi − σitanh
−1

(

2−i
)

,

(15)RH CORDIC →

{

xn = KH (x0coshz0 + y0sinhz0)
yn = KH (y0coshz0 + x0sinhz0)

zn = 0

(16)VH CORDIC →











xn = KH

�

x20 − y20
yn = 0

zn = z0 + tanh−1
�

y0/x0
�

(17)KH =
∏n

i=1

(√
1− 2−2i

)

.

9

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

sine, and hyperbolic cosine. This capability forms the basis for computing natural exponentials and natural
logarithms, as elucidated in prior publications39,40.

In a more detailed manner, for the computation of natural exponentials, the initialization of the input for RH
CORDIC is defined as x0 = 1/KH , y0 = 0 , and z0 = R . Consequently, as per Eq. (15), the results of this opera-
tion can be formulated as xn = cosh(R) and yn = sinh(R) . Consequently, natural exponentials are computed by
performing an addition operation between these outputs, which is calculated as follows:

Additionally, to compute natural logarithms, it is necessary to initialize the inputs of VH CORDIC as
x0 = R + 1 , y0 = R − 1 , and z0 = 0 . Subsequently, as per Eq. (16), the resulting output of VH CORDIC, denoted
as zn , can be expressed as follows:

the actual value of ln(R) can be obtained by left-shifting zn by one bit to multiply it by 2.
Hence, the CORDIC algorithm can calculate exp(R) and ln(R). Utilizing these values, power-law functions

with arbitrary exponents can also be determined and computed with CORDIC as follows:

Up to this point, the method for deriving natural exponentials and natural logarithms through hyperbolic
CORDIC has been elucidated, followed by the computation of power-law functions using the same technique.
Advanced algorithms, namely Exp CORDIC, Ln CORDIC, and Pow CORDIC, have been introduced based on
Eqs. (18), (19), and (20) to calculate natural exponentials, natural logarithms, and arbitrary power-law func-
tions, respectively.

Proposed Exp CORDIC, Ln CORDIC, and Pow CORDIC algorithms
Previous studies39–44 have indicated that the traditional CORDIC algorithm suffers from a significant limitation
of slow convergence, requiring redundant iterations that can account for up to 50% of the total iterations before
reaching the desired target angle. Furthermore, other algorithms proposed in prior research have exhibited
inadequate convergence speed and accuracy39–44, essential attributes for implementing SNNs and associated
learning rules in digital ASIC and FPGA platforms. In light of these challenges, this paper introduces novel
CORDIC algorithms aimed at achieving faster and more precise convergence to the final target with the fewest
elementary iterations, addressing these issues.

The Exp CORDIC algorithm and its requisite components, is illustrated in Algorithm 1.

Algorithm 1.   CORDIC for calculating natural exponentiation: Exp CORDIC.

(18)xn + yn = cosh(R)+ sinh(R) = exp(R).

(19)zn = tanh−1
(

R−1
R+1

)

= 1
2 ln(R)

(20)xp = exp
(

p× ln(x)
)

.

10

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

In Exp CORDIC, pre-computed values of exp(2–1), exp(2–2), exp(2–3), …, exp(2−n) are stored in an array
denoted as List_exp[i]. In line 13, the Maclaurin series definition is utilized to enhance accuracy. Additionally,
the parameter n_exp, representing the number of iterations employed in hyperbolic CORDIC, determines the
closeness of the result f_exp to the actual natural exponential value, albeit at the expense of latency and implemen-
tation resources. The proposed algorithm does not limit the input range x; however, it necessitates a sufficiently
high number of iterations. Depending on the input range x and its integer part x_int, the IF condition in line 15
or its ELSE counterpart in line 17 can be applied accordingly.

Furthermore, the computation process of the Exp CORDIC is depicted in Fig. 5 based on its algorithm. Nota-
bly, all functions within Exp CORDIC can be executed using shift, add, and subtraction operations, obviating
the need for a multiplier. This innovative algorithm demonstrates swifter convergence compared to algorithms
introduced in subsequent publications. Nonetheless, a comprehensive performance analysis and comparison of
the proposed algorithm are presented in the subsequent subsection.

Moreover, the proposed Ln CORDIC and its requisite components, is shown in Algorithm 2.

Algorithm 2.   CORDIC for calculating natural logarithm: Ln CORDIC.
In Ln CORDIC, precomputed values of exp(2–1), exp(2–2), exp(2–3), …, exp(2−n) are stored in an array denoted

as List_exp[i]. In line 21, the Maclaurin series definition is applied to enhance accuracy. Additionally, the param-
eter n_ln, representing the number of iterations employed in hyperbolic CORDIC, influences the proximity of the
result f_ln to the actual natural logarithm value, albeit at the expense of latency and implementation resources.
The input range x in the proposed algorithm only needs to be above zero; otherwise, an exception occurs. The
number of iterations must be sufficiently high for a broader range of inputs. Depending on the input range x, one
of the WHILE loops in lines 6 or 10, or none of them, can be utilized. In addition, the Ln CORDIC computing
flow is illustrated in Fig. 6, following its algorithm. Notably, all functions utilized in Ln CORDIC can be executed
using shift, add, and subtraction operations, eliminating the need for a multiplier. This state-of-the-art algorithm
is the fastest and most accurate method for calculating natural logarithms using CORDIC. However, a detailed
performance analysis and comparison of the proposed algorithm are presented in the subsequent subsection.

Thus far, two CORDIC algorithms have been introduced for the computation of natural exponentials and
natural logarithms. Subsequently, in accordance with Eq. (20), power-law functions incorporating arbitrary
exponent terms can be computed using the CORDIC concept. Consequently, leveraging the foundation provided

11

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

by Exp CORDIC and Ln CORDIC, the Pow CORDIC algorithm and its constituent elements are presented in
Algorithm 3.

Algorithm 3.   CORDIC for calculating arbitrary power-law function: Pow CORDIC.
All the components of Pow CORDIC are presented in Algorithms 1 and 2. Here, p signifies the arbitrary

exponent selected for raising the input x to the power of p. Figure 7 depicts computing following the suggested
Pow CORDIC approach. Since the exponent p is predetermined and unchanging, the multiplication operation
in line 3, alongside other functions, can be executed through shift and add operations. This proposed CORDIC
exhibits swift and precise convergence due to its principled approach and the utilization of efficient and accu-
rate functions. Nonetheless, the performance of Pow CORDIC is subjected to analysis and comparison in the
subsequent subsection.

Input x
Input n_exp

x_int = integer of x
z = fraction of x

poweroftwo = 0.5

List_exp[i] = exp(2-i)

e = Euler’s Number

f_exp = 1

i ≤ n_exp

poweroftwo < z

z = z – poweroftwo
f_exp = f_exp × List_exp[i]

poweroftwo = poweroftwo / 2
i = i + 1

yes

yes

no

f_exp = f_exp × (1 + z (1 + z/2 (1 + z/3 (1 + z/4))))

i ≤ |x_int|

x_int < 0

f_exp = f_exp / e

f_exp = f_exp × eno

Output f_exp

yes

yes

no

no

i = i +1

Figure 5.   Computing flow of proposed Exp CORDIC approach for calculating exp(x) with n_exp iteration.

Input x
Input n_ln e ≤ x

k = 0

poweroftwo = 0.5

List_exp[i] = exp(2-i)

e = Euler’s Number

w = [0, 0, … , 0]

f_ln = 1

k = k + 1

x = x / e

x < 1

k = k − 1

x = x × e

i ≤ n_ln

List_exp[i] < x

w[i] = 1

x = x / List_exp[i]

i = i + 1

x = x − 1

x = x × (1 – x/2 × (1 + x/3 × (1 – x/4)))

i ≤ n_ln

x = x + w[i] × poweroftwo
poweroftwo = poweroftwo / 2

i = i + 1

f_ln = k + x

Output f_ln

yes

yes

no

no

yes

yes

no

no

yes

no

Figure 6.   Computing flow of proposed Ln CORDIC algorithm for calculating ln(x) with n_ln iteration.

12

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

Performance analysis of the proposed CORDIC algorithms
In this sub-section, the errors of various iterations in different CORDIC simulations are examined and analyzed
to assess the accuracy of CORDIC-based operations in the SNN network and the learning rule for classification.
The proposed methodologies are based on iterative Algorithms 1, 2, and 3, as well as the top-level computing
flow depicted in Figs. 1, 2, and 3, have been implemented and coded. To evaluate the accuracy, the average mean
of relative error has been chosen as the representative measure. The average mean of relative error is defined as
follows:

In Eq. (21), T signifies the true values of exponential, logarithmic, or power-law functions obtained using
Python’s libraries. C denotes the computed outcomes derived from the proposed methodology, while Num rep-
resents the count of calculated samples for each respective function.

The proposed Exp CORDIC algorithm for computing natural exponential was initially subjected to testing.
Table 1 displays a comprehensive performance analysis, including error comparison, across various CORDIC
methods utilized for natural exponentiation computation and implementation. This analysis encompassed 1
million random inputs assessed through a specific number of iterations. To ensure a fair comparison, the input
range for each method was specified. However, it is worth noting that the proposed algorithm in this paper for
exponential computation does not possess a limited range, as previously explained.

Nevertheless, for testing, the input range was set between − 700 and 700 based on simulation limitations. The
impact of the number of iterations (denoted as n_exp) on the results was of particular interest. Specific iterations
were chosen as benchmarks, considering the pivotal role that the iteration count plays. As mentioned earlier,
an increase in iterations significantly reduces average error, albeit at the cost of heightened latency and resource
requirements. The results demonstrated that the Exp CORDIC method exhibited the smallest error from all
perspectives. Notably, it achieved an average error of approximately 10–14 in computing natural exponential
with just 12 iterations, significantly outperforming other methods. Consequently, the Exp CORDIC algorithm
is exceptionally well-suited for implementing SNN networks, learning rules, and dynamic functions involving
natural exponential computations.

Subsequently, the proposed Ln CORDIC algorithm for natural logarithm computation underwent testing.
Table 2 presented a comprehensive performance analysis and facilitated comparison among different CORDIC
methods employed for natural logarithm computation and implementation. This analysis encompassed 1 mil-
lion random inputs, evaluated through a specified number of iterations. The input range for each method was
detailed to ensure a meaningful comparison. However, it is noteworthy that the proposed algorithm for natural
logarithm computation presented in this paper does not possess any range limitations; therefore, it can extend
well beyond zero.

Nevertheless, for testing, the input range was constrained to fall between 0 and 109, dictated by simulation
constraints. The number of iterations, denoted as n_ln, was observed to significantly influence the results. Specific
iterations were singled out as benchmarks for analysis. As previously mentioned, an increase in the number of
iterations led to a substantial reduction in average error, though at the expense of increased latency and resource
utilization. The findings revealed that the Ln CORDIC method consistently exhibited the smallest errors from all
perspectives. Notably, it achieved an average error of approximately 10–14 in natural logarithm computation with
just 12 iterations, significantly outperforming other methods. Therefore, the Ln CORDIC algorithm is well-suited
for implementing SNN networks, learning rules, and dynamic functions involving natural logarithmic operations.

The error analysis of the Pow CORDIC method is finally conducted and presented in Table 3. The Pow
CORDIC approach is employed for calculating the power of a random input with a fixed, user-defined exponent.
This method utilizes Ln CORDIC and Exp CORDIC, each with selectable number of iterations. Given that the

(21)AvgErr =
∑Num

i=0

∣

∣

∣

T−C
T

∣

∣

∣

Num .

plx,
n_exp

Input x
Input p

Input n_exp
Input n_ln

Ln CORDIC

plnx = p × lnx

Exp CORDIC

Output f_powlnx

x,
n_ln

f_pow

Figure 7.   Computing flow of suggested Pow CORDIC approach for finding xp with fixed arbitrary p exponent
using Exp CORDIC and Ln CORDIC and their iterations. All internal multiplications and divisions are
implemented using only shift and addition operations.

13

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

computation of natural logarithms necessitates a higher number of iterations, a correspondingly elevated iteration
count was adopted. Additionally, 1 million inputs were utilized to encompass the maximum achievable simula-
tion range, although it should be noted that the method itself does not possess a restricted range. Considering
that, in the context of the learning rule Eq. (8), the base of the power-law function consistently falls within the
range of 0 to 1, a separate error analysis is conducted specifically for this interval. Moreover, Eq. (8) prescribes an
exponent, denoted as μ, constrained to the range of 0 to 1. For this analysis, the exemplar exponent is denoted as
p and varies between 0 and 1. The results in Table 3 demonstrate that the Pow CORDIC method can achieve an
exceptionally low average error, approximately on the order of 109, with just 4 and 8 iterations for exponential
and natural logarithmic components, respectively.

In conclusion, the average error analyses and comparisons have demonstrated the precision and efficiency of
the Pow CORDIC, Ln CORDIC, and Exp CORDIC algorithms. These algorithms are highly accurate and swift,
rendering them suitable for integration within various aspects of SNN network functions, learning processes, or
other applications where timely and precise results are essential. Furthermore, this approach offers the advantage
of implementing these functions using solely shift and addition operations.

CORDIC algorithms are used in the network learning module, and the error in this module causes the change
of network weights to be affected during the SNN learning process. This effect is such that if the accuracy of the
output of these calculations is not at a good level, the learning of the network is done with less accuracy, and the
speed of convergence of learning is reduced. Since accuracy and speed in the learning module are important
to us, the Exp and Ln CORDIC iterative calculations are set to 4–5 to provide the required high accuracy. As a
result, it provides high accuracy in the performance of the classification network and increases the convergence
speed of network learning.

Hardware design and implementation
CORDIC‑based hardware design
In addition to the CORDIC design and the evaluation carried out through theoretical analysis and algorithm
definition in the preceding section, it is imperative to undertake hardware design and implementation to assess
the effectiveness of the proposed CORDIC calculations. Given the advantages of flexibility, reconfigurability,
and extensive parallel processing capabilities of FPGAs, this research endeavors to utilize a Xilinx Zynq FPGA
device (xc7z030fbg484-3). The objective is to implement CORDIC algorithms as blocks using the VHDL pro-
gramming language in the ISE Design Suite 14.7 environment, enabling the thorough examination of hardware
implementation efficiency and accuracy across all of the proposed algorithms and the learning mechanism.

CORDIC algorithms implementation design
In this section, a comprehensive elaboration is provided on the design aspects of each algorithm. The primary
objective is to optimize the utilization of resources in the implementation process while concurrently achieving
the utmost accuracy in computationally demanding hardware tasks. In light of the prerequisite for a predefined
and unchanging hardware architecture, the choice of iterations is guided by carefully considering the results

Table 1.   Exp CORDIC average error analysis and comparison based on input range and number of iterations.

CORDICs for exp input range n_exp = 2 n_exp = 4 n_exp = 8 n_exp = 10 n_exp = 12

conventional
CORDIC
(Eq. (18))

[−1.1182, 1.1182] 1.28× 10−1 3.37× 10−2 2.99× 10−3 1.45× 10−3 1.06× 10−3

Heidarpur’s
CORDIC42 [0, 1] 1.15× 10−1 3.07× 10−2 1.95× 10−3 4.89× 10−4 1.22× 10−4

Wu’s CORDIC41 [−1, 1] 4.21× 10−2

(n = 2.27)
1.05× 10−2

(n = 4.18)
8.51× 10−5

(n = 7.88)
4.42× 10−7

(n = 10.48) –

Luo’s CORDIC40 [−1.1178, 1.1178] – – – – 1.2228× 10−4

Mopuri’s
CORDIC44 [−6.9263, 6.9263] – 3.01× 10−2 2× 10−3 – 1.2224× 10−4

Exp CORDIC
(Proposed) [−700, 700](−∞,+∞)1.14× 10−6 1.26× 10−9 2.88× 10−14 2.95× 10−14 2.94× 10−14

Table 2.   Ln CORDIC average error analysis and comparison based on input range and number of iterations.

CORDICs for ln input range n_ln = 2 n_ln = 4 n_ln = 8 n_ln = 10 n_ln = 12

conventional (Eq. 19) [0.1068, 9.3595] 1.72× 100 5.61× 10−1 2.71× 10−1 2.16× 10−1 2.58× 10−1

Luo’s CORDIC40 [0.107, 9.352] – – – – 3.8023× 10−4

Mopuri’s CORDIC44 [9.6358× 10−7, 1.0378× 106] – 4.7× 10−3 3.0735× 10−4 – 1.923× 10−5

Chen’s CORDIC43 [6.3471× 10−8, 6.8351× 104] – – – – 6.35× 10−5

Ln CORDIC (Proposed)
(

0, 109
]

(0,+∞) 1.21× 10−4 1.61× 10−6 3.81× 10−10 5.93× 10−12 9.37× 10−14

14

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

delineated in Tables 1, 2, and 3. As a result, a selection of 4 and 5 iterations is made for the Exp and Ln CORDICs,
respectively, to ensure an appropriate level of accuracy. Consequently, in the case of the Pow CORDIC, a cumula-
tive total of 9 iterations is employed to facilitate the computation of arbitrary power functions.

In order to achieve a highly accurate and efficient implementation of Exp CORDIC, it is appropriate to allocate
8 fractional and 3 integral bits. This configuration enables the accommodation of input values up to 8, with a
resolution step of 0.0039, while maintaining an average error of approximately 10−3 . It should be noted that the
hardware design is done according to the specific application and characteristics of the neural network learning
block. When the accuracy of the required calculations, the input range, and the output result are known, as a
result, we can determine the number of iterations and the number of bits in these specific conditions to avoid
overflow and underflow. Consequently, an 11-bit representation is employed for Exp CORDIC, accounting for
potential overflow and underflow conditions. However, a greater bit count may be warranted for applications
necessitating extended input ranges and enhanced resolution. Moreover, since the input of the Exp CORDIC
algorithm is derived from the Ln output, it is characterized by values exclusively below 0. Consequently, during
the implementation, certain superfluous conditions in the Exp CORDIC algorithm, such as those found in line
17 of Algorithm 1, can be omitted, reducing hardware resource utilization.

The engineered architecture for the implementation of Exp CORDIC is illustrated in Fig. 8. Multiplications
are executed through right shifting and addition, while deviations are carried out through right shifting and
subtraction. Non-constant values, such as x_int and z, are implemented as fixed values and linear approxima-
tions proportional to the input. Moreover, to minimize resource costs while maintaining the desired accuracy,
the Maclaurin series in line 13 of Algorithm 1 is simplified to its first component.

For the achievement of a sufficient accuracy and efficient implementation of Ln CORDIC, 12 fractional
and 3 integral bits were assigned, resulting in a permissible input and output range spanning from 0.000244
to nearly 8, which yields an average error of approximately 10−4 . Additionally, a single bit was employed as a
sign bit to handle negative natural logarithm results. Thus, in this paper’s application, 16 bits are appropriately
employed for Ln CORDIC, considering the potential for overflow and underflow. A greater number of bits can
be employed for applications with wider input ranges or requiring higher resolution. As the natural logarithm
input in our adopted learning mechanism is represented as (wmax − w) , the input values fall exclusively within
the range of 0 to 1, and any conditions within the algorithm that pertain to values outside this range remain
unimplemented, akin to the exclusion of line 6 in Algorithm 2. Furthermore, attention should be directed to the
computation series defined in line 21 of Algorithm 2, partially implemented in this application, extending up
to a power of two. To achieve the requisite accuracy commensurate with Ln CORDIC precision, the power of
two computations is accomplished using Square CORDIC, as presented in a prior publication24, employing the
same bit width and requiring 12 iterations.

The configured architecture for the implementation of Ln CORDIC is depicted in Fig. 9. Multiplications are
executed through right shifting and addition, while deviations are achieved through right shifting and subtrac-
tion. The computation of Ln involves utilizing a Maclaurin series, as indicated in Algorithm 2 line 21, with the
square component employed for efficient and precise implementation. The Square CORDIC, introduced in a prior
paper24 for computing x2 through 12 iterations, is utilized for the square function. Additionally, non-constant
operations within the WHILE loop are implemented as values proportional to the input.

In the context of Pow CORDIC, which comprises components from the preceding explanations, a 16-bit allo-
cation is applied for the computation of arbitrary power functions with a predetermined fixed exponent, resulting
in a target error level of approximately 10−3 . It is evident that to achieve even lower error margins, a greater bit
width may be chosen, and the selection of additional CORDIC iterations is an option. However, it is noteworthy
that within the specific context of this paper, which focuses on applying a particular learning mechanism and
SNN architecture, the designated CORDIC designs yield highly favorable outcomes, as elaborated upon in the
Results Section. It is important to emphasize that all these designs operate in parallel mode, delivering results
within a single clock cycle to ensure rapid computation, although this approach entails increasing resource
consumption. As shown in Fig. 10, Pow CORDIC can be implemented using Ln and Exp CORDIC blocks plus
multiplication, which is implemented using right shift and addition to compute xp.

Learning block implementation design
In this section, a comprehensive design detailing the data flow of the learning process is presented to ensure an
efficient implementation. Figure 11 illustrates the scheduling diagram for computing �w and xpre , as introduced
in Eqs. (8) and (9), respectively. The fixed-point hardware architecture for these computations comprises 1 sign
bit, 3 integral bits, and 12 fractional bits, facilitating the attainment of the required accuracy and enabling an
efficient implementation.

To implement xpre , the differential equation within its definition can be discretized through the straightfor-
ward application of Euler’s method. This approach generates stable output results by selecting small step sizes
to ensure the stability of the Euler method. As depicted in Fig. 11a, in order to compute the subsequent value of

Table 3.   Pow CORDIC average error analysis based on input range and different iterations for exp and ln.

CORDIC for pow input x range n_exp = 2 n_ln = 4 n_exp = 4 n_ln = 5 n_exp = 4 n_ln = 8

Pow CORDIC (0, 1) 1.78× 10−5 1.97× 10−6 5.1× 10−9

p in range (0, 1) (Proposed) (0, 700)(0,+∞) 1.7× 10−5 1.94× 10−6 5× 10−9

15

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

xpre denoted as xpre[n+ 1] , the initial value of xpre denoted as xpre[n] is first subtracted from the summation of
spikes generated by all pre-synaptic neurons. The outcome of this subtraction is then multiplied by a constant
through a shift operation. Subsequently, the result of the shift operation is added to xpre[n] to determine the
desired result, xpre[n+ 1].

Furthermore, in the computation of �w , there is a requirement for xpre and e
r
Ds , which are acquired, respec-

tively, from the detailed xpre scheduling diagram and the Exp CORDIC using the input value rDs . Multiplication by
the constant learning rate η is achieved through a basic shift operation. The complete data flow for �w is visually
represented in Fig. 11b, comprising a Finite State Machine (FSM) with two distinct states and a Pow CORDIC
block employed to calculate the power of µ with 9 iterations. Two multiplicative operations are employed in the
formulation of Spatial-Pow-STDP for ascertaining the extent of weight adjustment during the learning process.
To streamline this process into a single multiplication, two sequential multipliers are implemented within the
serial states of a simplified FSM. This approach facilitates the determination of �w within two clock cycles.

FPGA implementation analysis
In this part, the designs that were explicated in the previous part have been realized through VHDL implementa-
tion in Xilinx’s Zynq FPGA device xc7z030fbg484-3 using ISE Design Suite 14.7. The implementation results for
the proposed methods are presented in Tables 4, 5, and 6. It is noteworthy that the bold method is employed in
the Spatial-Pow-STDP and SNN. The average error for each implementation is calculated using Eq. (21), with 5
million random samples. The input range for Exp ranges from –7 to 0, and for Ln, it spans from 0 to 1. The low
average error contributes to high learning accuracy, leading to superior classification accuracy. The exceptional
maximum speed also allows a rapid learning mechanism, meeting a critical requirement in neural networks.

The average error in Tables 4 and 5 is due to the simplified hardware design of the Exp and Ln CORDIC
blocks. These designs are optimized for specific applications and input ranges to achieve the required accu-
racy with a limited number of iterations. However, using these simplified designs with unoptimized iterations
increases the average error. In contrast, Tables 1 and 2 show the results of the original algorithms without

Figure 8.   Implementation architecture of Exp CORDIC for n_exp iteration. All the solid lines are for data
transition and dotted ones are control lines for enabling or disabling. For each loop, i starts at 0, and other
parameter initializations are based on Algorithm 1.

16

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

simplification, demonstrating that increasing the number of iterations decreases the average error, indicating
higher accuracy. The average error of the original algorithms decreases steadily with more iterations until it
reaches a saturation point, where it remains at about 10−14 for Exp and 10−15 for Ln for a wide range of input.
This saturation is expected due to the approximate nature of the CORDIC algorithm compared to exact operators.

The outcomes include determining the maximum operating frequency and quantifying resource utilization,
presented as a percentage of the available hardware resources on the selected FPGA device, as summarized in
Table 7. The Spatial-Pow-STDP learning block, serving as a learning component in SNN, incorporates Pow
CORDIC through 9 iterations, as depicted in the data flow illustrated in Fig. 11b. A superior operational speed
of 776 MHz is demonstrated, coupled with a significantly low average error of 6.93 × 10–3. This performance
underscores its effectiveness as a hardware computation solution with notable efficiency. Notably, the Spatial-
Pow-STDP learning module predominantly consumes Look-Up Tables (LUTs), considered abundant resources
due to the economization of relevant constants within the algorithms. Conversely, the utilization of Digital Signal
Processors (DSPs), recognized as costly and relatively scarce resources in both FPGA and ASIC configurations,

Figure 9.   Implementation architecture of Ln CORDIC for n_ln iteration. All the solid lines are for data
transition and dotted ones are control lines for enabling or disabling. For each loop, i starts at 0 and other
parameter initializations are based on Algorithm 2.

Figure 10.   Implementation architecture of Pow CORDIC.

17

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

is minimal, with only one DSP employed to handle the multiplier operation within the Finite State Machine of
the �w data flow. This choice ensures a straightforward and feasible implementation.

The achieved average errors are primarily attributable to the inherent design characteristics of the proposed
Exp CORDIC, Ln CORDIC, and Pow CORDIC algorithms, which can be effectively leveraged within neural
network applications. It should be noted, however, that higher levels of precision can be attained by adopting a
greater number of bits or additional iterations, as elucidated in the implementation design. The foundation of
the proposed CORDIC algorithms lies in their precise ability to compute functions while maintaining hardware-
friendliness. Since the classification network only has one learning block and the weight range is between 0 and
1, having low error and fast calculation is crucial, even at the expense of increased resource usage and power
consumption.

Furthermore, the attained maximum speeds are notably elevated due to the utilization of designs structured
in parallel architecture, albeit at the cost of increased resource utilization. The critical path in the proposed
methodology resides in a shift-add operation, contrasting with the state-of-the-art method, where the critical
path involves a multiplication operation. Generally, it is observed that the latency associated with multiplication

Figure 11.   Data flow of (a) pre-synaptic trace named xpre (b) Spatial-Pow-STDP learning. In the learning block,
the amount of weight change is measured in 2 states using only one repeated multiplier.

Table 4.   Hardware utilization, maximum speed, and average error of proposed Exp CORDIC
implementations for different numbers of n_exp iterations. The bold one is the selected architecture.

Implementation in 11-bits LUT Register slice DSP Max speed Average error

Exp CORDIC with 2 iterations 330 0 0 768 MHz 6.76 × 10–2

Exp CORDIC with 3 iterations 370 0 0 769 MHz 1.83 × 10–2

Exp CORDIC with 4 iterations 370 0 0 769 MHz 5.67 × 10–3

Exp CORDIC with 5 iterations 326 0 0 768 MHz 5.63 × 10–3

Exp CORDIC with 6 iterations 330 0 0 685 MHz 6.44 × 10–3

Exp CORDIC with 7 iterations 349 0 0 685 MHz 1.00 × 10–2

Table 5.   Hardware utilization, maximum speed, and average error of proposed Ln CORDIC implementations
for different numbers of n_ln iterations. The bold one is the selected architecture.

Implementation in 16-bits LUT Register slice DSP Max speed Average error

Ln CORDIC with 2 iterations 2182 289 0 771 MHz 9.59 × 10–2

Ln CORDIC with 3 iterations 2250 301 0 771 MHz 8.94 × 10–3

Ln CORDIC with 4 iterations 2321 310 0 771 MHz 7.49 × 10–4

Ln CORDIC with 5 iterations 2393 320 0 771 MHz 4.09 × 10–4

Ln CORDIC with 6 iterations 2482 331 0 771 MHz 6.05 × 10–4

Ln CORDIC with 7 iterations 2564 340 0 771 MHz 5.17 × 10–4

18

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

exceeds that of a shift-add operation. Consequently, the proposed methodology exhibits the potential for a higher
operating frequency. The presence of a DSP multiplier within the FPGA configuration diminishes the overall
system frequency, thereby causing other system units to operate at a reduced pace. Conversely, the absence of a
DSP component enhances the system speed, thereby augmenting overall system throughput.

The key advantage of CORDIC is substituting multiplications with fast shift and add operations. Therefore,
for each specific multiplication, specific shift and add units are used instead. As repetitions increase, more unique
shifts and adds modules are required to handle the repeated multiplications. This leads to higher overall hardware
usage. In summary, extra hardware resources implement multiple CORDIC iterations and specialized shift/add
units to optimize speed without compromising accuracy or delaying learning.

Table 8 presents the total power consumption of each CORDIC hardware design and the digital learning
block. Since the CORDIC designs do not contain DSPs, the computations are energy-efficient. The total power
consumption includes static and dynamic power per calculation performed in a single clock cycle. Using the
XILINX XPower Analyzer tool in ISE Design Suite 14.7, the power usage can be measured at different speeds.
This allows us to see how the energy usage increases at higher speeds.

Results
In this section, the performance analysis and comparison of the proposed methodology are presented. The
dynamics of pyramidal neurons, interneurons, and synapses in the neural network model align with the expla-
nation provided in the Computational SNN Model section. A population of 5000 neurons and over 5 million
synaptic connections in the spatiotemporal SNN undergo training through the discussed Spatial-Pow-STDP on
the training data of MNIST, EMNIST, and CIFAR10 datasets. The learning process encompasses training synaptic
weights for the second layer and the connections of the output layer.

To facilitate the attainment of a steady state for the variables in the dynamic equations, a resting time interval
of 100 ms is interposed between two input patterns. The training of MNIST, EMNIST, and CIFAR10 classification
networks involved 6, 2, and 6 epochs, respectively, until convergence. This decision stems from the observation
that the performance accuracy on the test set does not exhibit a significant augmentation with an increased
number of training epochs. Subsequently, the final training step in the image classification network involves the
assignment of class labels to each neuron in the classifier layer (output layer) based on the one exhibiting the
highest firing rate. Upon the conclusion of training, the synaptic weights undergo freezing. The mean accuracy
on the respective test sets of datasets gauges the test performance of the trained networks. Network validation
entails three training iterations, with accuracy results collected and averaged to provide the ultimate performance
accuracy report.

In recent years, numerous spiking pattern classification networks have emerged. The MNIST, EMNIST, and
CIFAR10 classification networks proposed in this study, when juxtaposed with preceding spiking pattern clas-
sification networks, demonstrate elevated accuracies even with reduced training epochs, thereby substantiating
the superior efficacy of the proposed topology and learning approach. In contrast, the spiking pattern recognition
networks trained through an unsupervised learning strategy exhibit comparatively diminished performance
compared to deep networks trained with a supervised learning strategy. Conversely, the proposed network and
learning approach manifest several noteworthy advantages over alternative networks, particularly deep networks:

1.	 A reduced number of hyper-parameters characterize the proposed network.
2.	 The proposed network is amenable to unsupervised training.

Table 6.   Hardware utilization, maximum speed, and average error of proposed Pow CORDIC
implementations for different numbers of n_exp and n_ln iterations as natural exponential and natural
logarithm. The bold one is the selected architecture.

Implementation in 16-bits LUT Register slice DSP Max speed Average error

Pow CORDIC with 3 Exp iterations and 3 Ln iterations 2699 305 0 685 MHz 2.21 × 10–2

Pow CORDIC with 3 Exp iterations and 4 Ln iterations 2773 313 0 767 MHz 2.21 × 10–2

Pow CORDIC with 4 Exp iterations and 4 Ln iterations 2804 314 0 685 MHz 6.94 × 10–3

Pow CORDIC with 4 Exp iterations and 5 Ln iterations 2876 324 0 685 MHz 6.93 × 10–3

Pow CORDIC with 5 Exp iterations and 5 Ln iterations 2915 323 0 685 MHz 5.87 × 10–3

Pow CORDIC with 5 Exp iterations and 6 Ln iterations 2999 334 0 685 MHz 5.87 × 10–3

Table 7.   Proposed CORDIC implementation result for power-law learning block.

Implementation Slice LUTs (of 78,600) Slice registers (of 157,200) DSPs (of 400) BRAM (of 530 18Kib) Max speed Average error

Exp CORDIC 370 (0.47%) 0 0 0 769 MHz 5.67 × 10–3

Ln CORDIC 2393 (3.04%) 320 (0.20%) 0 0 771 MHz 4.09 × 10–4

Pow CORDIC 2876 (3.65%) 324 (0.20%) 0 0 685 MHz 6.93 × 10–3

Spatial-Pow-STDP 2966 (3.77%) 357 (0.22%) 1 (0.25%) 0 776 MHz 6.93 × 10–3

19

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

3.	 The proposed network operates on an event-based paradigm, lowering energy consumption.
4.	 Implementing the proposed network is viable on neuromorphic boards characterized by low power con-

sumption.
5.	 The proposed network exhibits an accelerated convergence speed.

Finally, the test accuracies for the MNIST, EMNIST, and CIFAR10 datasets are compared with those of vari-
ous recently introduced deep and spiking neural networks in Tables 9, 10, and 11, respectively. The proposed
spiking image classification networks, encompassing both the software model and its hardware counterpart,
exhibit higher classification accuracy in fewer training epochs when contrasted with several previously intro-
duced spiking networks. This observation signifies an augmentation in the convergence rate facilitated by the
proposed algorithms and architecture.

Superior accuracy is attained by the proposed network employing unsupervised learning in comparison to
spiking networks derived from the conversion of deep neural networks into spiking counterparts. Although
our classification demonstrates a lower accuracy than deep networks, this disparity can be contextualized by
considering the heightened convergence speed and the aforementioned advantages inherent in the proposed
networks. Regarding the representation of convergence time, since this parameter has not been presented in
previous works, it is not possible to compare it.

During the training epochs, the image patterns are learned by the synaptic weights of the network, caus-
ing the classifying neurons to exhibit almost random responses to input stimuli in the initial training epoch.
Conversely, in the last training epoch, the output layer neurons successfully classify input patterns with a high
degree of accuracy. The spike activity of the output layer neurons in MNIST and CIFAR10 recognition networks
in reaction to input stimuli during the initial and final epochs of training is depicted in Fig. 12.

As can be shown in Fig. 12a,c, at the start of training, by applying diverse stimulation stimuli (y-axis), irregular
and random spike activity is detected in the classifying neurons of the output layer (x-axis). In contrast, when the
training epochs are completed, the classifier neurons properly categorize the input stimuli, as shown in Fig. 12b,d.
Sparse spike activity is an essential and notable element in the efficient and low-consumption implementation
of spiking networks with on-chip learning on neuromorphic circuits. As shown in Fig. 12, we made the activity
of neurons sparse during learning and testing by using a modest range of input stimulation and the suggested
learning.

Conclusion
The methodology proposed in this paper, which includes CORDIC-based hardware design, Spatial-Pow-STDP
learning, and spatiotemporal SNN models, demonstrates noteworthy advancements in applications of spiking
neural networks. The precise CORDIC algorithms, including Exp CORDIC, Ln CORDIC, and Pow CORDIC,
exhibit high accuracy and efficiency, showcasing their applicability within neural network applications. The FPGA
implementation on a Xilinx Zynq FPGA device and performance analysis substantiates the effectiveness of the
proposed algorithms, revealing low average errors and elevated maximum speeds. The large-scale spatiotemporal
SNN, trained using the Spatial-Pow-STDP learning mechanism, achieves superior classification accuracies on
MNIST, EMNIST, and CIFAR10 datasets with reduced training epochs, highlighting its efficacy in comparison
to other spiking neural networks. The results further underscore the advantages of the proposed network, such
as reduced hyper-parameters, adaptability to unsupervised training, event-based operation for lower energy
consumption, and suitability for implementation on low-power neuromorphic boards. The conclusion reaf-
firms the high accuracy and accelerated convergence speed exhibited by the proposed network and its hardware
counterpart, emphasizing their potential contributions to spiking neural networks for image classification and
further applications.

Table 8.   Proposed CORDIC implementations power consumption.

Total power consumption Exp CORDIC Ln CORDIC Pow CORDIC Spatial-Pow-STDP

Power (W) at max speed 0.14609 at 769 MHz 0.14621 at 771 MHz 0.14827 at 685 MHz 0.15548 at 776 MHz

Power (W) at a typical speed 0.14052 at 100 MHz 0.14054 at 100 MHz 0.14094 at 100 MHz 0.14173 at 100 MHz

Table 9.   Accuracy comparison with training epoch on MNIST dataset.

Network platform Neural network Learning mechanism Learning method Accuracy on MNIST (%) Training epochs

Spiking SNN45 Exponential STDP Unsupervised 96.1 10

Spiking SNN46 Exponential STDP Unsupervised 97 8

Spiking SNN29 Variants of STDP Unsupervised 95 15

Spiking Spatiotemporal SNN27 Spatial STDP Unsupervised 97.3 8

Spiking Spatiotemporal SNN Spatial-Pow-STDP (Proposed) Unsupervised 97.5 6

Spiking Spatiotemporal SNN CORDIC based Spatial-Pow-
STDP (Proposed) Unsupervised 97.47 6

20

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

Table 10.   Accuracy comparison with training epoch on letters and digits of EMNIST dataset.

Network platform Neural network
Learning
mechanism Learning method

Accuracy on
EMNIST letters (%)

Accuracy on
EMNIST digits (%)

Training epochs for
letters

Training epochs for
digits

Deep CNN (Spinal FC)47
SpinalNet clas-
sification layers and
transfer learning

Supervised 90.02 99.07 8 8

Deep VGG-5 (Spinal FC)48 STDP Supervised 95.79 99.75 200 50

Spiking SNN using
SpykeFlow48 STDP Supervised 85.47 85.47 25 25

Spiking Spatiotemporal
SNN27 Spatial STDP Unsupervised 93.1 97.45 3 3

Spiking Spatiotemporal SNN Spatial-Pow-STDP
(Proposed) Unsupervised 93.4 97.6 2 2

Spiking Spatiotemporal SNN
CORDIC based
Spatial-Pow-STDP
(Proposed)

Unsupervised 93.4 97.59 2 2

Table 11.   Accuracy comparison with training epoch on CIFAR10 dataset.

Network platform Neural network Learning mechanism Learning method
Accuracy on
CIFAR10 (%) Training epochs

Spiking SNN46 Exponential STDP Unsupervised 92.4 8

Spiking DIET-SNN49 Spike based back
propagation Supervised 92.7  < 20

Hybrid Deep and
Spiking ANN-SNN50 Spike-Norm Supervised 91.55 30

Hybrid Deep and
Spiking SNN-Backprop51 Spike based back

propagation Supervised 91.41 150

Spiking Spatiotemporal SNN27 Spatial STDP Unsupervised 92.9 8

Spiking Spatiotemporal SNN Spatial-Pow-STDP
(Proposed) Unsupervised 93 6

Spiking Spatiotemporal SNN
CORDIC based
Spatial-Pow-STDP
(Proposed)

Unsupervised 92.96 6

21

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

Data availability
Data would be available through corresponding author with reasonable request.

Received: 24 November 2023; Accepted: 7 February 2024

References
	 1.	 Levy, W. B. & Calvert, V. G. Communication consumes 35 times more energy than computation in the human cortex, but both

costs are needed to predict synapse number. Proc. Natl. Acad. Sci. 118(18), e2008173118 (2021).
	 2.	 Nguyen, D. A., Tran, X. T. & Iacopi, F. A review of algorithms and hardware implementations for spiking neural networks. J. Low

Power Electron. Appl. 11(2), 23 (2021).
	 3.	 Rathi, N. et al. Exploring neuromorphic computing based on spiking neural networks: Algorithms to hardware. ACM Comput.

Surv. 55(12), 1–49 (2023).
	 4.	 Yamazaki, K., Vo-Ho, V. K., Bulsara, D. & Le, N. Spiking neural networks and their applications: A review. Brain Sci. 12(7), 863

(2022).
	 5.	 Mathew, A., Amudha, P. & Sivakumari, S. Deep learning techniques: An overview. Adv. Mach. Learn. Technol. Appl. Proc. AMLTA

2020, 599–608 (2021).
	 6.	 Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N. & Eleftheriou, E. Low-power neuromorphic hardware for signal process-

ing applications: A review of architectural and system-level design approaches. IEEE Signal Process. Magaz. 36(6), 97–110 (2019).
	 7.	 Kim, S., Park, S., Na, B. & Yoon, S. Spiking-yolo: Spiking neural network for energy-efficient object detection. Proc. AAAI Conf.

Artif. Intell. 34(07), 11270–11277 (2020).

Number of Spike Activities Before Training

M
N

IS
T

 D
ig

its
 a

s I
np

ut
 S

tim
ul

i Digit 0

Digit 1

Digit 2

Digit 3

Digit 4

Digit 5

Digit 6

Digit 7

Digit 8

Digit 9

D
ig

it
0

D
ig

it
1

D
ig

it
2

D
ig

it
3

D
ig

it
4

D
ig

it
5

D
ig

it
6

D
ig

it
7

D
ig

it
8

D
ig

it
9

MNIST Classifying Neurons

Number of Spike Activities After Training

M
N

IS
T

 D
ig

its
 a

s I
np

ut
 S

tim
ul

i Digit 0

Digit 1

Digit 2

Digit 3

Digit 4

Digit 5

Digit 6

Digit 7

Digit 8

Digit 9

D
ig

it
0

D
ig

it
1

D
ig

it
2

D
ig

it
3

D
ig

it
4

D
ig

it
5

D
ig

it
6

D
ig

it
7

D
ig

it
8

D
ig

it
9

MNIST Classifying Neurons

Number of Spike Activities Before Training

C
IF

A
R

10
 C

la
ss

es
 a

s I
np

ut
 S

tim
ul

i Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

A
ir

pl
an

e

A
ut

om
ob

ile

Bi
rd C
at

D
ee

r

D
og

Fr
og

H
or

se

Sh
ip

Tr
uc

k

CIFAR10 Classifying Neurons

C
IF

A
R

10
 C

la
ss

es
 a

s I
np

ut
 S

tim
ul

i Airplane

Automobile

Bird

Cat

Deer

Dog

Frog

Horse

Ship

Truck

A
ir

pl
an

e

A
ut

om
ob

ile

Bi
rd C
at

D
ee

r

D
og

Fr
og

H
or

se

Sh
ip

Tr
uc

k

CIFAR10 Classifying Neurons

Number of Spike Activities After Training

(a) (b)

(c) (d)

Figure 12.   Correlation of spile activities. Figures (a) and (b) signify the count of spike activities corresponding
to each classifying neuron in the MNIST classification network in response to the activated input image during
the first and last training epochs, respectively. Figures (c) and (d) depict the count of spike activities associated
with each classifying neuron in the CIFAR10 classification network in response to the activated input image
during the initial and final training epochs, respectively. Upon completing the training process, the classifying
neurons accurately recognize the input pattern.

22

Vol:.(1234567890)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

	 8.	 Deng, L. The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process.
Magaz. 29(6), 141–142 (2012).

	 9.	 Cohen, G., Afshar, S., Tapson, J. & Van Schaik, A. EMNIST: Extending MNIST to handwritten letters. In 2017 International Joint
Conference on Neural Networks (IJCNN) (eds Cohen, G. et al.) 2921–2926 (IEEE, 2017).

	10.	 Krizhevsky, A., & Hinton, G. Learning multiple layers of features from tiny images. (2009).
	11.	 Baldominos, A., Saez, Y. & Isasi, P. A survey of handwritten character recognition with mnist and emnist. Appl. Sci. 9(15), 3169

(2019).
	12.	 Niu, L. Y., Wei, Y., Liu, W. B., Long, J. Y. & Xue, T. H. Research progress of spiking neural network in image classification: A review.

Appl. Intell. https://​doi.​org/​10.​1007/​s10489-​023-​04553-0 (2023).
	13.	 Lee, C., Sarwar, S. S., Panda, P., Srinivasan, G. & Roy, K. Enabling spike-based backpropagation for training deep neural network

architectures. Front. Neurosci. https://​doi.​org/​10.​3389/​fnins.​2020.​00119 (2020).
	14.	 Nobari, M. & Jahanirad, H. FPGA-based implementation of deep neural network using stochastic computing. Appl. Soft Comput.

137, 110166 (2023).
	15.	 Ma, D. et al. Darwin: A neuromorphic hardware co-processor based on spiking neural networks. J. Syst. Archit. 77, 43–51 (2017).
	16.	 Deng, B., Fan, Y., Wang, J. & Yang, S. Reconstruction of a fully paralleled auditory spiking neural network and FPGA implementa-

tion. IEEE Trans. Biomed. Circuits Syst. 15(6), 1320–1331 (2021).
	17.	 Farsa, E. Z., Ahmadi, A., Maleki, M. A., Gholami, M. & Rad, H. N. A low-cost high-speed neuromorphic hardware based on spik-

ing neural network. IEEE Trans. Circuits Syst. II Express Briefs 66(9), 1582–1586 (2019).
	18.	 Asgari, H., Maybodi, B. M. N., Payvand, M. & Azghadi, M. R. Low-energy and fast spiking neural network for context-dependent

learning on FPGA. IEEE Trans. Circuits Syst. II Express Briefs 67(11), 2697–2701 (2020).
	19.	 Li, S. et al. A fast and energy-efficient SNN processor with adaptive clock/event-driven computation scheme and online learning.

IEEE Trans. Circuits Syst. I Regul. Pap. 68(4), 1543–1552 (2021).
	20.	 Liu, Y., Chen, Y., Ye, W. & Gui, Y. FPGA-NHAP: A general FPGA-based neuromorphic hardware acceleration platform with high

speed and low power. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6), 2553–2566 (2022).
	21.	 Guo, W., Yantır, H. E., Fouda, M. E., Eltawil, A. M. & Salama, K. N. Toward the optimal design and FPGA implementation of

spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst. 33(8), 3988–4002 (2021).
	22.	 Valls, J., Kuhlmann, M. & Parhi, K. K. Evaluation of CORDIC algorithms for FPGA design. J. VLSI Signal Process. Syst. Signal

Image Video Technol. 32, 207–222 (2002).
	23.	 Cheng, J. F. & Ottosson, T. Linearly approximated log-MAP algorithms for turbo decoding. In VTC2000-Spring 2000. IEEE 51st

Vehicular Technology Conference Proceedings (Cat No. 00CH37026) Vol. 3 (eds Cheng, J. F. & Ottosson, T.) 2252–2256 (IEEE, 2000).
	24.	 Meher, P. K., Valls, J., Juang, T. B., Sridharan, K. & Maharatna, K. 50 years of CORDIC: Algorithms, architectures, and applications.

IEEE Trans. Circuits Syst. I Regul. Pap. 56(9), 1893–1907 (2009).
	25.	 Orhan, E. The leaky integrate-and-fire neuron model. (3), 1-6 (2012).
	26.	 Morrison, A., Aertsen, A. & Diesmann, M. Spike-timing-dependent plasticity in balanced random networks. Neural Computat.

19(6), 1437–1467 (2007).
	27.	 Amiri, M., Jafari‬, A. H., Makkiabadi, B. & Nazari, S. A novel unsupervised spatial-temporal learning mechanism in a bio-inspired

spiking neural network. Cognit. Computat. 15(2), 694–709 (2023).
	28.	 Mazzoni, A., Panzeri, S., Logothetis, N. K. & Brunel, N. Encoding of naturalistic stimuli by local field potential spectra in networks

of excitatory and inhibitory neurons. PLoS Computat. Biol. 4(12), e1000239 (2008).
	29.	 Diehl, P. U. & Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput.

Neurosci. https://​doi.​org/​10.​3389/​fncom.​2015.​00099 (2015).
	30.	 Werginz, P., Benav, H., Zrenner, E. & Rattay, F. Modeling the response of ON and OFF retinal bipolar cells during electric stimula-

tion. Vis. Res. 111, 170–181 (2015).
	31.	 Fohlmeister, J. F., Coleman, P. A. & Miller, R. F. Modeling the repetitive firing of retinal ganglion cells. Brain Res. 510(2), 343–345

(1990).
	32.	 Eshraghian, J. K. et al. Neuromorphic vision hybrid rram-cmos architecture. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(12),

2816–2829 (2018).
	33.	 Sjöström, P. J., Turrigiano, G. G. & Nelson, S. B. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity. Neuron

32(6), 1149–1164 (2001).
	34.	 Munakata, Y. & Pfaffly, J. Hebbian learning and development. Dev. Sci. 7(2), 141–148 (2004).
	35.	 Pfeiffer, M. & Pfeil, T. Deep learning with spiking neurons: Opportunities and challenges. Front. Neurosci. 12, 774 (2018).
	36.	 Yang, G. R. & Wang, X. J. Artificial neural networks for neuroscientists: A primer. Neuron 107(6), 1048–1070 (2020).
	37.	 Lovinger, D. M. Neurotransmitter roles in synaptic modulation, plasticity and learning in the dorsal striatum. Neuropharmacology

58(7), 951–961 (2010).
	38.	 Querlioz, D., Bichler, O., Dollfus, P. & Gamrat, C. Immunity to device variations in a spiking neural network with memristive

nanodevices. IEEE Trans. Nanotechnol. 12(3), 288–295 (2013).
	39.	 Wang, S., Shang, Y., Ding, H., Wang, C. & Hu, J. An FPGA implementation of the natural logarithm based on CORDIC algorithm.

Res. J. Appl. Sci. Eng. Technol. 6(1), 119–122 (2013).
	40.	 Luo, Y. et al. Generalized hyperbolic CORDIC and its logarithmic and exponential computation with arbitrary fixed base. IEEE

Trans. Very Large Integr. (VLSI) Syst. 27(9), 2156–2169 (2019).
	41.	 Wu, J. et al. Efficient design of spiking neural network with STDP learning based on fast CORDIC. IEEE Trans. Circuits Syst. I

Regul. Pap. 68(6), 2522–2534 (2021).
	42.	 Heidarpur, M., Ahmadi, A., Ahmadi, M. & Azghadi, M. R. CORDIC-SNN: On-FPGA STDP learning with izhikevich neurons.

IEEE Trans. Circuits Syst. I Regul. Pap. 66(7), 2651–2661 (2019).
	43.	 Chen, H. et al. Low-complexity high-precision method and architecture for computing the logarithm of complex numbers. IEEE

Trans. Circuits Syst. I Regul. Papers 68(8), 3293–3304 (2021).
	44.	 Mopuri, S. & Acharyya, A. Configurable rotation matrix of hyperbolic CORDIC for any logarithm and its inverse computation.

Circuits Syst. Signal Process. 39(5), 2551–2573 (2020).
	45.	 Nazari, S. Spiking pattern recognition using informative signal of image and unsupervised biologically plausible learning. Neuro-

computing 330, 196–211 (2019).
	46.	 Nazari, S., Keyanfar, A. & Van Hulle, M. M. Neuromorphic circuit based on the un-supervised learning of biologically inspired

spiking neural network for pattern recognition. Eng. Appl. Artif. Intell. 116, 105430 (2022).
	47.	 Kabir, H. D., Abdar, M., Khosravi, A., Jalali, S. M. J., Atiya, A. F., Nahavandi, S., & Srinivasan, D. Spinalnet: Deep neural network

with gradual input. IEEE Transactions on Artificial Intelligence, (2022).
	48.	 Vaila, R., Chiasson, J., & Saxena, V. A deep unsupervised feature learning spiking neural network with binarized classification

layers for the EMNIST classification. In: IEEE transactions on emerging topics in computational intelligence, (2020).
	49.	 Rathi, N., & Roy, K. Diet-snn: A low-latency spiking neural network with direct input encoding and leakage and threshold opti-

mization. In: IEEE Transactions on Neural Networks and Learning Systems, (2021).
	50.	 Sengupta, A., Ye, Y., Wang, R., Liu, C. & Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.

Neurosci. 13, 95 (2019).

https://doi.org/10.1007/s10489-023-04553-0
https://doi.org/10.3389/fnins.2020.00119
https://doi.org/10.3389/fncom.2015.00099

23

Vol.:(0123456789)

Scientific Reports | (2024) 14:3388 | https://doi.org/10.1038/s41598-024-54043-7

www.nature.com/scientificreports/

	51.	 Zhang, W., Li, P. Temporal spike sequence learning via backpropagation for deep spiking neural networks. Preprint at https://​
arXiv.​org/​quant-​ph/​2002.​10085 (2020).

Author contributions
S.N. performed conceptualization. M.K.B. wrote original draft. M.K.B. and S.N. performed the analytic calcula-
tions and the numerical simulations, designed the analyses, and reviewed and edited the revised manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2024

https://arXiv.org/quant-ph/2002.10085
https://arXiv.org/quant-ph/2002.10085
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Digital design of a spatial-pow-STDP learning block with high accuracy utilizing pow CORDIC for large-scale image classifier spatiotemporal SNN
	Computational SNN model
	Computational model of excitatory and inhibitory neurons and synapses
	Architecture of spiking image classification networks
	Input layer
	Middle layer
	Classifier layer

	Learning mechanism

	CORDIC based computation: Exp CORDIC, Ln CORDIC, and Pow CORDIC
	Introduction to hyperbolic CORDIC
	Proposed Exp CORDIC, Ln CORDIC, and Pow CORDIC algorithms
	Performance analysis of the proposed CORDIC algorithms

	Hardware design and implementation
	CORDIC-based hardware design
	CORDIC algorithms implementation design
	Learning block implementation design

	FPGA implementation analysis

	Results
	Conclusion
	References

