Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Challenges and future directions for studying effects of host genetics on the gut microbiome

Abstract

The human gut microbiome is a complex ecosystem that is involved in its host’s metabolism, immunity and health. Although interindividual variations in gut microbial composition are mainly driven by environmental factors, some gut microorganisms are heritable and thus can be influenced by host genetics. In the past 5 years, 12 microbial genome-wide association studies (mbGWAS) with >1,000 participants have been published, yet only a few genetic loci have been consistently confirmed across multiple studies. Here we discuss the state of the art for mbGWAS, focusing on current challenges such as the heterogeneity of microbiome measurements and power issues, and we elaborate on potential future directions for genetic analysis of the microbiome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genomic loci reported at genome-wide significance in 12 microbiome GWAS.
Fig. 2: Power analysis for different taxon prevalence.
Fig. 3: Characterizing microbial composition and genetic landscape from MGS.

Similar content being viewed by others

References

  1. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Kurilshikov, A. et al. Large-scale association analyses identify host factors influencing human gut microbiome composition. Nat. Genet. 53, 156–165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lopera-Maya, E. A. et al. Effect of host genetics on the gut microbiome in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. https://doi.org/10.1038/s41588-021-00992-y (2022).

  4. Gacesa, R. et al. The Dutch Microbiome Project defines factors that shape the healthy gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.11.27.401125 (2020).

  5. Qin, Y. et al. Combined effects of host genetics and diet on human gut microbiota and incident disease in a single population cohort. Nat. Genet. https://doi.org/10.1038/s41588-021-00991-z (2022).

  6. Pasolli, E. et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 176, 649–662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goodrich, J. K. et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe 19, 731–743 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Turpin, W. et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet. 48, 1413–1417 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Hughes, D. A. et al. Genome-wide associations of human gut microbiome variation and implications for causal inference analyses. Nat. Microbiol. 5, 1079–1087 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu, F. et al. The interplay between host genetics and the gut microbiome reveals common and distinct microbiome features for complex human diseases. Microbiome 8, 145 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, X. et al. A genome-wide association study for gut metagenome in Chinese adults illuminates complex diseases. Cell Discov. 7, 9 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blekhman, R. et al. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 16, 191 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davenport, E. R. et al. Genome-wide association studies of the human gut microbiota. PLoS ONE 10, e0140301 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Pilia, G. et al. Heritability of cardiovascular and personality traits in 6,148 Sardinians. PLoS Genet. 2, e132 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rühlemann, M. C. et al. Genome-wide association study in 8,956 German individuals identifies influence of ABO histo-blood groups on gut microbiome. Nat. Genet. 53, 147–155 (2021).

    Article  PubMed  Google Scholar 

  19. Bonder, M. J. et al. The effect of host genetics on the gut microbiome. Nat. Genet. 48, 1407–1412 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, J. et al. Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat. Genet. 48, 1396–1406 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pang, X. et al. Mosquito C-type lectins maintain gut microbiome homeostasis. Nat. Microbiol. 1, 16023 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suzuki, T. A. & Ley, R. E. The role of the microbiota in human genetic adaptation. Science 370, eaaz6827 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Hove, H., Nørgaard, H. & Mortensen, P. B. Lactic acid bacteria and the human gastrointestinal tract. Eur. J. Clin. Nutr. 53, 339–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Yang, H. et al. An ancient deletion in the ABO gene affects the composition of the porcine microbiome by altering intestinal N-acetyl-galactosamine concentrations. Preprint at bioRxiv https://doi.org/10.1101/2020.07.16.206219 (2020).

  25. Rausch, P. et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (secretor) genotype. Proc. Natl Acad. Sci. USA 108, 19030–19035 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Folseraas, T. et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J. Hepatol. 57, 366–375 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tong, M. et al. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn’s disease risk polymorphism. ISME J. 8, 2193–2206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgueño-Bucio, E., Mier-Aguilar, C. A. & Soldevila, G. The multiple faces of CD5. J. Leukoc. Biol. 105, 891–904 (2019).

    Article  PubMed  Google Scholar 

  29. Burton, P. R. et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

    Article  CAS  Google Scholar 

  30. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

  32. Timpson, N. J. et al. Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genome-wide association data. Diabetes 58, 505–510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Menzel, S. et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39, 1197–1199 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Uda, M. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl Acad. Sci. USA 105, 1620–1625 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 53, 185–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yengo, L. et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum. Mol. Genet. 27, 3641–3649 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Karlsson Linnér, R. et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet. 51, 245–257 (2019).

    Article  PubMed  Google Scholar 

  40. Zheng, T. et al. Genome-wide analysis of 944 133 individuals provides insights into the etiology of haemorrhoidal disease. Gut 70, 1538–1549 (2021).

  41. Perola, M. et al. Combined genome scans for body stature in 6,602 European twins: evidence for common Caucasian loci. PLoS Genet. 3, e97 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Weedon, M. N. et al. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 39, 1245–1250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanna, S. et al. Common variants in the GDF5UQCC region are associated with variation in human height. Nat. Genet. 40, 198–203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Galarneau, G. et al. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 42, 1049–1051 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Danjou, F. et al. Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels. Nat. Genet. 47, 1264–1271 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Palmer, C. & Pe’er, I. Statistical correction of the winner’s curse explains replication variability in quantitative trait genome-wide association studies. PLoS Genet. 13, e1006916 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lloréns-Rico, V., Vieira-Silva, S., Gonçalves, P. J., Falony, G. & Raes, J. Benchmarking microbiome transformations favors experimental quantitative approaches to address compositionality and sampling depth biases. Nat. Commun. 12, 3562 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature 493, 45–50 (2013).

    Article  PubMed  Google Scholar 

  51. Xie, H. et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 3, 572–584 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Costea, P. I. et al. metaSNV: a tool for metagenomic strain level analysis. PLoS ONE 12, e0182392 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Olm, M. R. et al. inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains. Nat. Biotechnol. 39, 727–736 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Andreu-Sánchez, S. et al. A benchmark of genetic variant calling pipelines using metagenomic short-read sequencing. Front. Genet. 12, 537 (2021).

  57. Ramiro, R. S., Durão, P., Bank, C. & Gordo, I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol. 18, e3000617 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chen, L. et al. The long-term genetic stability and individual specificity of the human gut microbiome. Cell 184, 2302–2315 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Steri, M. et al. Overexpression of the cytokine BAFF and autoimmunity risk. N. Engl. J. Med. 376, 1615–1626 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Plomin, R., Haworth, C. M. A. & Davis, O. S. P. Common disorders are quantitative traits. Nat. Rev. Genet. 10, 872–878 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Franzosa, E. A. et al. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods 15, 962–968 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schirmer, M. et al. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat. Microbiol. 3, 337–346 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Long, S. et al. Metaproteomics characterizes human gut microbiome function in colorectal cancer. npj Biofilms Microbiomes 6, 14 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zierer, J. et al. The fecal metabolome as a functional readout of the gut microbiome. Nat. Genet. 50, 790–795 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bar, N. et al. A reference map of potential determinants for the human serum metabolome. Nature 588, 135–140 (2020).

    Article  PubMed  Google Scholar 

  66. Chen, S. et al. Runx2+ niche cells maintain incisor mesenchymal tissue homeostasis through IGF signaling. Cell Rep. 32, 108007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350, 1084–1089 (2015).

  68. Matson, V. et al. The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

Download references

Acknowledgements

We thank K. McIntyre for help developing the manuscript. A.Z. is supported by European Research Council Starting grant 715772, Netherlands Organization for Scientific Research (NWO) VIDI grant 016.178.056, CVON grant 806 2018-27 and NWO Gravitation grant ExposomeNL 024.004.017. J.F. is supported by CVON grant 2018-27, European Research Council Consolidator grant 101001678 and NWO VICI grant VI.C.202.022.

Author information

Authors and Affiliations

Authors

Contributions

S.S., A.K., A.v.d.G. and A.Z. performed data analyses; S.S., J.F. and A.Z. wrote the manuscript draft; A.v.d.G. and A.K. provided critical revisions.

Corresponding authors

Correspondence to Serena Sanna or Alexandra Zhernakova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Genetics thanks Andre Franke and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Note

Supplementary Tables

Workbook with multiple tabs containing Supplementary Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanna, S., Kurilshikov, A., van der Graaf, A. et al. Challenges and future directions for studying effects of host genetics on the gut microbiome. Nat Genet 54, 100–106 (2022). https://doi.org/10.1038/s41588-021-00983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-021-00983-z

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology