Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Convergent inducers and effectors of T cell paralysis in the tumour microenvironment

Abstract

Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Both intrinsic and extrinsic factors elicit direct and indirect immunosuppressive signalling by cancer cells.
Fig. 2: Regulation and manifestation of T cell immunosuppression mediated by tumour endothelial cells and pericytes.
Fig. 3: T cell immunosuppression mediated by cancer-associated fibroblasts.
Fig. 4: Multiple ways by which tumour-associated myeloid cells modulate T cell suppression.
Fig. 5: T cell immunosuppression mediated by tumour-associated regulatory lymphocytes.
Fig. 6: Roles of innate lymphoid cells in T cell immunosuppression.
Fig. 7: Multifaceted and congruent suppression of T cell recruitment and antitumour activity by the tumour microenvironment: a hard-wired programme for limiting T cell-mediated immune responses.

Similar content being viewed by others

References

  1. Larkin, J. et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med. 381, 1535–1546 (2019).

    Article  PubMed  CAS  Google Scholar 

  2. Gill, J. & Prasad, V. A reality check of the accelerated approval of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 16, 656–658 (2019).

    Article  PubMed  Google Scholar 

  3. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yi, M. et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol. Cancer 21, 28 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Daly, R. J., Scott, A. M., Klein, O. & Ernst, M. Enhancing therapeutic anti-cancer responses by combining immune checkpoint and tyrosine kinase inhibition. Mol. Cancer 21, 189 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Schoenfeld, A. J. & Hellmann, M. D. Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37, 443–455 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 28, 678–689 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kalbasi, A. & Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 20, 25–39 (2020).

    Article  PubMed  CAS  Google Scholar 

  10. Negi, N. & Das, B. K. CNS: not an immunoprivilaged site anymore but a virtual secondary lymphoid organ. Int. Rev. Immunol. 37, 57–68 (2018).

    Article  PubMed  Google Scholar 

  11. Griffith, T. S., Brunner, T., Fletcher, S. M., Green, D. R. & Ferguson, T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    Article  PubMed  CAS  Google Scholar 

  12. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  PubMed  CAS  Google Scholar 

  13. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. Giles, J. R., Globig, A.-M., Kaech, S. M. & Wherry, E. J. CD8+ T cells in the cancer-immunity cycle. Immunity 56, 2231–2253 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Seo, W., Jerin, C. & Nishikawa, H. Transcriptional regulatory network for the establishment of CD8+ T cell exhaustion. Exp. Mol. Med. 53, 202–209 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chopp, L., Redmond, C., O’Shea, J. J. & Schwartz, D. M. From thymus to tissues and tumors: a review of T-cell biology. J. Allergy Clin. Immunol. 151, 81–97 (2023).

    Article  PubMed  CAS  Google Scholar 

  18. Yuan, S., Almagro, J. & Fuchs, E. Beyond genetics: driving cancer with the tumour microenvironment behind the wheel. Nat. Rev. Cancer 24, 274–286 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. de Visser, K. E. & Joyce, J. A. The evolving tumor microenvironment: from cancer initiation to metastatic outgrowth. Cancer Cell 41, 374–403 (2023).

    Article  PubMed  Google Scholar 

  20. Jardim, D. L., Goodman, A., de Melo Gagliato, D. & Kurzrock, R. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell 39, 154–173 (2021).

    Article  PubMed  CAS  Google Scholar 

  21. Spranger, S. et al. Density of immunogenic antigens does not explain the presence or absence of the T-cell-inflamed tumor microenvironment in melanoma. Proc. Natl Acad. Sci. USA 113, E7759–E7768 (2016). This study shows that neoantigens can be equally abundant in T cell-inflamed versus T cell-uninflamed melanoma tumours, implicating that the immunosuppressive TME, along with cancer cell-intrinsic mechanisms, has a key role in regulating T cell responses.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Leone, P. et al. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J. Natl Cancer Inst. 105, 1172–1187 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Kraemer, A. I. et al. The immunopeptidome landscape associated with T cell infiltration, inflammation and immune editing in lung cancer. Nat. Cancer 4, 608–628 (2023). In this study of lung cancer, neoantigen density does not correlate with T cell inflammation; instead, it is associated with immunoediting in non-inflamed tumours.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  PubMed  CAS  Google Scholar 

  25. Kalluri, R. & Weinberg, R. A. The basics of epithelial–mesenchymal transition. J. Clin. Invest. 119, 1420–1428 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Dongre, A. et al. Direct and indirect regulators of epithelial-mesenchymal transition-mediated immunosuppression in breast carcinomas. Cancer Discov. 11, 1286–1305 (2021). This study in mouse breast cancer models illuminates and functionally validates signals-out that programme immunosuppression in the TME in the context of EMP.

    Article  PubMed  CAS  Google Scholar 

  27. Lüönd, F. et al. Distinct contributions of partial and full EMT to breast cancer malignancy. Dev. Cell 56, 3203–3221.e11 (2021).

    Article  PubMed  Google Scholar 

  28. Gu, Y., Zhang, Z. & Ten Dijke, P. Harnessing epithelial–mesenchymal plasticity to boost cancer immunotherapy. Cell Mol. Immunol. 20, 318–340 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Singh, D. & Siddique, H. R. Epithelial-to-mesenchymal transition in cancer progression: unraveling the immunosuppressive module driving therapy resistance. Cancer Metastasis Rev. 43, 155–173 (2024).

    Article  PubMed  Google Scholar 

  30. Chen, Z., Han, F., Du, Y., Shi, H. & Zhou, W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 8, 70 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Semenza, G. L. Targeting intratumoral hypoxia to enhance anti-tumor immunity. Semin. Cancer Biol. 96, 5–10 (2023).

    Article  PubMed  CAS  Google Scholar 

  32. Sadozai, H. et al. High hypoxia status in pancreatic cancer is associated with multiple hallmarks of an immunosuppressive tumor microenvironment. Front. Immunol. 15, 1360629 (2024). This study illustrates the functional effects of hypoxia on programming the TME, implicating various signals-out.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Chen, S.-Y., Mamai, O. & Akhurst, R. J. TGFβ: signaling blockade for cancer immunotherapy. Annu. Rev. Cancer Biol. 6, 123–146 (2022).

    Article  PubMed  Google Scholar 

  34. Derynck, R., Turley, S. J. & Akhurst, R. J. TGFβ biology in cancer progression and immunotherapy. Nat. Rev. Clin. Oncol. 18, 9–34 (2021).

    Article  PubMed  Google Scholar 

  35. Thomas, D. A. & Massagué, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  PubMed  CAS  Google Scholar 

  36. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-β signaling in T cells. Nat. Med. 7, 1118–1122 (2001). This is a groundbreaking study that functionally validates TGFβ in the suppression of antitumour immunity.

    Article  PubMed  CAS  Google Scholar 

  37. Chen, X.-H. et al. TGF-β and EGF induced HLA-I downregulation is associated with epithelial-mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells. Mol. Immunol. 65, 34–42 (2015).

    Article  PubMed  CAS  Google Scholar 

  38. Chen, L. et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell PD-L1 expression and intratumoral immunosuppression. Nat. Commun. 5, 5241 (2014). This study describes a signalling pathway governing EMP that induces PDL1 expression, facilitating immune evasion in lung cancer.

    Article  PubMed  CAS  Google Scholar 

  39. Mahadevan, K. K. et al. Elimination of oncogenic KRAS in genetic mouse models eradicates pancreatic cancer by inducing FAS-dependent apoptosis by CD8+ T cells. Dev. Cell 58, 1562–1577.e8 (2023). Functional genetic studies in pancreatic cancer reveal that oncogenic KRAS promotes immune evasion by repressing the expression of the cell death receptor FAS.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Mahadevan, K. K. et al. KRASG12D inhibition reprograms the microenvironment of early and advanced pancreatic cancer to promote FAS-mediated killing by CD8+ T cells. Cancer Cell 41, 1606–1620.e8 (2023). This study in mouse models of KRAS-driven pancreatic cancer shows that a KRAS inhibitor can reprogramme the otherwise immunosuppressive TME, thereby enhancing antitumour immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Briere, D. M. et al. The KRASG12C inhibitor MRTX849 reconditions the tumor immune microenvironment and sensitizes tumors to checkpoint inhibitor therapy. Mol. Cancer Ther. 20, 975–985 (2021). This groundbreaking study uses a KRAS inhibitor in multiple models of KRAS-driven tumours to reveal the multifaceted roles of KRAS signalling in programming the immunosuppressive TME.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mou, H. et al. Genetic disruption of oncogenic Kras sensitizes lung cancer cells to Fas receptor-mediated apoptosis. Proc. Natl Acad. Sci. USA 114, 3648–3653 (2017). This article provides further evidence, using a pharmacological knockout, for the programming of immune evasion by oncogenic KRAS.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhang, Z. et al. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy. Cancer Cell 40, 1060–1069.e7 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Boumelha, J. et al. CRISPR–Cas9 screening identifies KRAS-induced COX2 as a driver of immunotherapy resistance in lung cancer. Cancer Res. 84, 2231–2246 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lacher, S. B. et al. PGE2 limits effector expansion of tumour-infiltrating stem-like CD8+ T cells. Nature 629, 417–425 (2024). This study illuminates the functional effects and regulatory circuits of a signal-out from the TME, PGE2, in orchestrating T cell paralysis.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Pelly, V. S. et al. Anti-inflammatory drugs remodel the tumor immune environment to enhance immune checkpoint blockade efficacy. Cancer Discov. 11, 2602–2619 (2021). Using pharmacological inhibitors, including nonsteroidal anti-inflammatory drugs, this study reveals the importance of the COX2–PGE2–PGE2 receptor subtype 2 (EP2) and EP4 pathway in suppressing T cell activation in the TME.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bonavita, E. et al. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53, 1215–1229.e8 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Morotti, M. et al. PGE2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature 629, 426–434 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Tauriello, D. V. F., Sancho, E. & Batlle, E. Overcoming TGFβ-mediated immune evasion in cancer. Nat. Rev. Cancer 22, 25–44 (2022).

    Article  PubMed  CAS  Google Scholar 

  50. Bayne, L. J. et al. Tumor-derived granulocyte–macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21, 822–835 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yuan, B. et al. Targeting IL-1β as an immunopreventive and therapeutic modality for K-ras-mutant lung cancer. JCI Insight 7, e157788 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liao, W. et al. KRAS–IRF2 axis drives immune suppression and immune therapy resistance in colorectal cancer. Cancer Cell 35, 559–572.e7 (2019). This study describes another facet to the roles of oncogenic KRAS in the immunoevasive TME, namely, its induction of CXCL3 that programmes and recruits immunosuppressive myeloid cells within tumours.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pylayeva-Gupta, Y., Lee, K. E., Hajdu, C. H., Miller, G. & Bar-Sagi, D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 21, 836–847 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Zhang, X. et al. The role of tumor metabolic reprogramming in tumor immunity. Int. J. Mol. Sci. 24, 17422 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. De Blander, H. et al. Cooperative pro-tumorigenic adaptation to oncogenic RAS through epithelial-to-mesenchymal plasticity. Sci. Adv. 10, eadi1736 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kortlever, R. M. et al. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 171, 1301–1315.e14 (2017). This study reveals a new dimension to the well-known cooperativity of KRAS and MYC in tumorigenesis, namely, the programming of an immunosuppressive TME, involving in part CCL9 and IL-33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Khandjian, E. W., Robert, C. & Davidovic, L. FMRP, a multifunctional RNA-binding protein in quest of a new identity. Front. Genet. 13, 976480 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Malecki, C., Hambly, B. D., Jeremy, R. W. & Robertson, E. N. The RNA-binding fragile-X mental retardation protein and its role beyond the brain. Biophys. Rev. 12, 903–916 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Richter, J. D. & Zhao, X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat. Rev. Neurosci. 22, 209–222 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Zeng, Q. et al. Aberrant hyperexpression of the RNA binding protein FMRP in tumors mediates immune evasion. Science 378, eabl7207 (2022). This study reveals, via genetic perturbation in multiple tumour models, the unanticipated role of FMRP as a multifaceted master regulator of the immunosuppressive TME, involving in part IL-33, PROS1 and exosomes.

    Article  PubMed  CAS  Google Scholar 

  62. Li, L. et al. GKAP acts as a genetic modulator of NMDAR signaling to govern invasive tumor growth. Cancer Cell 33, 736–751.e5 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  PubMed  CAS  Google Scholar 

  64. Debnath, J., Gammoh, N. & Ryan, K. M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 24, 560–575 (2023).

    Article  PubMed  CAS  Google Scholar 

  65. Young, T. M. et al. Autophagy protects tumors from T cell-mediated cytotoxicity via inhibition of TNFα-induced apoptosis. Sci. Immunol. 5, eabb9561 (2020).

    Article  PubMed  CAS  Google Scholar 

  66. Li, Z.-L. et al. Autophagy deficiency promotes triple-negative breast cancer resistance to T cell-mediated cytotoxicity by blocking tenascin-C degradation. Nat. Commun. 11, 3806 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Chryplewicz, A. et al. Cancer cell autophagy, reprogrammed macrophages, and remodeled vasculature in glioblastoma triggers tumor immunity. Cancer Cell 40, 1111–1127.e9 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chaib, S. et al. The efficacy of chemotherapy is limited by intratumoral senescent cells expressing PD-L2. Nat. Cancer 5, 448–462 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Eggert, T. et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell 30, 533–547 (2016). This study describes dichotomous roles of cancer cell senescence in liver cancer, in particular, the involvement of senescent cancer cells in suppressing NK cell-mediated killing.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Matsuda, S. et al. TGF-β in the microenvironment induces a physiologically occurring immune-suppressive senescent state. Cell Rep. 42, 112129 (2023). This study implicates hypoxia-induced TGFβ in driving the senescence of cancer cells, whose SASP recruits immunosuppressive immune cells, promoting immune evasion.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Marzban, H. et al. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol. Biol. Rep. 50, 9559–9573 (2023).

    Article  PubMed  CAS  Google Scholar 

  72. Li, L. & Jensen, R. A. Understanding and overcoming immunosuppression shaped by cancer stem cells. Cancer Res. 83, 2096–2104 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Miao, Y. et al. Adaptive immune resistance emerges from tumor-initiating stem cells. Cell 177, 1172–1186.e14 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Luan, J. et al. CD80 on skin stem cells promotes local expansion of regulatory T cells upon injury to orchestrate repair within an inflammatory environment. Immunity 57, 1071–1086.e7 (2024).

    Article  PubMed  CAS  Google Scholar 

  75. Erickson, H. L. et al. Cancer stem cells release interleukin-33 within large oncosomes to promote immunosuppressive differentiation of macrophage precursors. Immunity 57, 1908–1922.e6 (2024).

    Article  PubMed  CAS  Google Scholar 

  76. Baldominos, P. et al. Quiescent cancer cells resist T cell attack by forming an immunosuppressive niche. Cell 185, 1694–1708.e19 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  78. Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  PubMed  CAS  Google Scholar 

  79. De Palma, M. & Hanahan, D. Milestones in tumor vascularization and its therapeutic targeting. Nat. Cancer 5, 827–843 (2024).

    Article  PubMed  Google Scholar 

  80. Onrust, S. V., Hartl, P. M., Rosen, S. D. & Hanahan, D. Modulation of L-selectin ligand expression during an immune response accompanying tumorigenesis in transgenic mice. J. Clin. Invest. 97, 54–64 (1996). This study provides an early description of the development of the immunosuppressive TME in a genetically engineered mouse model of pancreatic neuroendocrine tumorigenesis, comparing inflamed pre-malignant lesions with uninflamed malignant tumours that lack HEVs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Allen, E. et al. Combined antiangiogenic and anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017). This study shows that the angiogenic tumour vasculature can be reprogrammed and quasi-normalized by VEGF pathway inhibitors to enable the induction of HEVs and productive antitumour immunity.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hosaka, K. et al. KRAS mutation-driven angiopoietin 2 bestows anti-VEGF resistance in epithelial carcinomas. Proc. Natl Acad. Sci. USA 120, e2303740120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Barleon, B. et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87, 3336–3343 (1996).

    Article  PubMed  CAS  Google Scholar 

  84. Scholz, A. et al. Angiopoietin-2 promotes myeloid cell infiltration in a β2-integrin-dependent manner. Blood 118, 5050–5059 (2011).

    Article  PubMed  CAS  Google Scholar 

  85. Kashyap, A. S. et al. Optimized antiangiogenic reprogramming of the tumor microenvironment potentiates CD40 immunotherapy. Proc. Natl Acad. Sci. USA 117, 541–551 (2020). This study illustrates the immunological benefits of co-targeting VEGF and ANG2 signalling in the tumour vasculature, including the reprogramming of TAMs and the restoration of functionality in TADCs.

    Article  PubMed  CAS  Google Scholar 

  86. Schmittnaegel, M. et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci. Transl. Med. 9, eaak9670 (2017). Functional validation with a bispecific blocking antibody shows the benefits of co-targeting VEGF and ANG2 signalling in the angiogenic vasculature across multiple mouse models of cancer, facilitating T cell extravasation and enhancing antitumour immunity.

    Article  PubMed  Google Scholar 

  87. Amersfoort, J., Eelen, G. & Carmeliet, P. Immunomodulation by endothelial cells — partnering up with the immune system? Nat. Rev. Immunol. 22, 576–588 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Vella, G., Hua, Y. & Bergers, G. High endothelial venules in cancer: regulation, function, and therapeutic implication. Cancer Cell 41, 527–545 (2023).

    Article  PubMed  CAS  Google Scholar 

  89. Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents — overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

    Article  PubMed  Google Scholar 

  90. Verhoeven, J. et al. Tumor endothelial cell autophagy is a key vascular-immune checkpoint in melanoma. EMBO Mol. Med. 15, e18028 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hanahan, D. & Coussens, L. M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309–322 (2012).

    Article  PubMed  CAS  Google Scholar 

  92. Viúdez-Pareja, C., Kreft, E. & García-Caballero, M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front. Immunol. 14, 1235812 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Karakousi, T., Mudianto, T. & Lund, A. W. Lymphatic vessels in the age of cancer immunotherapy. Nat. Rev. Cancer 24, 363–381 (2024).

    Article  PubMed  CAS  Google Scholar 

  94. Kataru, R. P. et al. Tumor lymphatic function regulates tumor inflammatory and immunosuppressive microenvironments. Cancer Immunol. Res. 7, 1345–1358 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Lund, A. W. et al. Lymphatic vessels regulate immune microenvironments in human and murine melanoma. J. Clin. Invest. 126, 3389–3402 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dieterich, L. C. et al. Tumor-associated lymphatic vessels upregulate PDL1 to inhibit T-cell activation. Front. Immunol. 8, 66 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Dabravolski, S. A. et al. The role of pericytes in regulation of innate and adaptive immunity. Biomedicines 11, 600 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Valdor, R. et al. Glioblastoma progression is assisted by induction of immunosuppressive function of pericytes through interaction with tumor cells. Oncotarget 8, 68614–68626 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Valdor, R. et al. Glioblastoma ablates pericytes antitumor immune function through aberrant up-regulation of chaperone-mediated autophagy. Proc. Natl Acad. Sci. USA 116, 20655–20665 (2019). This is an intriguing study, yet to be generalized, that describes an immunosuppressive programme induced in pericytes in glioblastoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Braun, S. et al. Pericytes orchestrate a tumor-restraining microenvironment in glioblastoma. Preprint at bioRxiv https://doi.org/10.1101/2024.08.26.609765 (2024).

  101. Kim, I., Choi, S., Yoo, S., Lee, M. & Kim, I.-S. Cancer-associated fibroblasts in the hypoxic tumor microenvironment. Cancers 14, 3321 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Kennel, K. B., Bozlar, M., De Valk, A. F. & Greten, F. R. Cancer-associated fibroblasts in inflammation and antitumor immunity. Clin. Cancer Res. 29, 1009–1016 (2023).

    Article  PubMed  CAS  Google Scholar 

  103. Cords, L. et al. Cancer-associated fibroblast phenotypes are associated with patient outcome in non-small cell lung cancer. Cancer Cell 42, 396–412.e5 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Luo, H. et al. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat. Commun. 13, 6619 (2022). This study uses single-cell RNA sequencing to characterize CAF subtypes, cell states and phenotypic plasticity across ten cancer types.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 20, 174–186 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Croizer, H. et al. Deciphering the spatial landscape and plasticity of immunosuppressive fibroblasts in breast cancer. Nat. Commun. 15, 2806 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017). This study delineates CAF subtypes and phenotypes in mouse and human PDAC.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bartoschek, M. et al. Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat. Commun. 9, 5150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Milosevic, V. & Östman, A. Interactions between cancer-associated fibroblasts and T-cells: functional crosstalk with targeting and biomarker potential. Ups J. Med. Sci. 129, e10710 (2024).

    Article  Google Scholar 

  111. Yang, D., Liu, J., Qian, H. & Zhuang, Q. Cancer-associated fibroblasts: from basic science to anticancer therapy. Exp. Mol. Med. 55, 1322–1332 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Dominguez, C. X. et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15+ myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov. 10, 232–253 (2020). This study highlights the TGFβ-induced subtype of CAFs expressing LRRC15 in a mouse model of pancreatic cancer; this population is associated with immune evasion and resistance to immune checkpoint inhibitor therapies observed in clinical trials.

    Article  PubMed  CAS  Google Scholar 

  113. Kieffer, Y. et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 10, 1330–1351 (2020).

    Article  PubMed  CAS  Google Scholar 

  114. Krishnamurty, A. T. et al. LRRC15+ myofibroblasts dictate the stromal setpoint to suppress tumour immunity. Nature 611, 148–154 (2022). Genetic deletion of TGFβ-induced LRRC15 CAFs in a mouse model of pancreatic cancer provides functional validation of their role in suppressing T cell activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Belle, J. I. et al. Senescence defines a distinct subset of myofibroblasts that orchestrates immunosuppression in pancreatic cancer. Cancer Discov. 14, 1324–1355 (2024). This study describes and functionally validates senescent myCAFs as potent instigators of T cell immunosuppression in a mouse model of pancreatic cancer, with evidence of their presence in human tumours as well.

    Article  PubMed  Google Scholar 

  116. Kuczek, D. E. et al. Collagen density regulates the activity of tumor-infiltrating T cells. J. Immunother. Cancer 7, 68 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Caligiuri, G. & Tuveson, D. A. Activated fibroblasts in cancer: perspectives and challenges. Cancer Cell 41, 434–449 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Gao, H. et al. 3D extracellular matrix regulates the activity of T cells and cancer associated fibroblasts in breast cancer. Front. Oncol. 11, 764204 (2021). This study demonstrates how elevated ECM density enhances CAF abundance and activity while reducing T cell infiltration in mouse models of breast cancer, with similar associations observed in human breast cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tharp, K. M. et al. Tumor-associated macrophages restrict CD8+ T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment. Nat. Cancer 5, 1045–1062 (2024). This study shows that a stiff and fibrotic TME, in concert with TGFβ signalling, conveys a signal-in to TAMs to induce an immunosuppressive phenotype; in turn, the signal-out of TAMs leads to depletion of arginine, which impairs T cell function.

    Article  PubMed  CAS  Google Scholar 

  120. Tran, L. L., Dang, T., Thomas, R. & Rowley, D. R. ELF3 mediates IL-1α induced differentiation of mesenchymal stem cells to inflammatory iCAFs. Stem Cell 39, 1766–1777 (2021).

    Article  CAS  Google Scholar 

  121. Li, T. et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett. 318, 154–161 (2012).

    Article  PubMed  CAS  Google Scholar 

  122. Gok Yavuz, B. et al. Cancer associated fibroblasts sculpt tumour microenvironment by recruiting monocytes and inducing immunosuppressive PD-1+ TAMs. Sci. Rep. 9, 3172 (2019). This study describes signals-out from CAFs that instruct the differentiation of monocytes into M2-like immunosuppressive TAMs.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Biffi, G. et al. IL1-Induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov. 9, 282–301 (2019).

    Article  PubMed  Google Scholar 

  124. Chen, H. et al. Integrated analysis revealed an inflammatory cancer-associated fibroblast-based subtypes with promising implications in predicting the prognosis and immunotherapeutic response of bladder cancer patients. Int. J. Mol. Sci. 23, 15970 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Nicolas, A. M. et al. Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell 40, 168–184.e13 (2022).

    Article  PubMed  CAS  Google Scholar 

  126. Cassetta, L. & Pollard, J. W. A timeline of tumour-associated macrophage biology. Nat. Rev. Cancer 23, 238–257 (2023).

    Article  PubMed  CAS  Google Scholar 

  127. Kloosterman, D. J. & Akkari, L. Macrophages at the interface of the co-evolving cancer ecosystem. Cell 186, 1627–1651 (2023).

    Article  PubMed  CAS  Google Scholar 

  128. Engblom, C., Pfirschke, C. & Pittet, M. J. The role of myeloid cells in cancer therapies. Nat. Rev. Cancer 16, 447–462 (2016).

    Article  PubMed  CAS  Google Scholar 

  129. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Zhang, Q. et al. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature. PLoS ONE 7, e50946 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Gentles, A. J. et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 21, 938–945 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Engblom, C. et al. Osteoblasts remotely supply lung tumors with cancer-promoting SiglecFhigh neutrophils. Science 358, eaal5081 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Mitchem, J. B. et al. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 73, 1128–1141 (2013).

    Article  PubMed  CAS  Google Scholar 

  134. Kersten, K. et al. Spatiotemporal co-dependency between macrophages and exhausted CD8+ T cells in cancer. Cancer Cell 40, 624–638.e9 (2022). This work shows how TAMs can license the exhaustion of neighbouring T cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Deng, Z. et al. The nuclear factor ID3 endows macrophages with a potent anti-tumour activity. Nature 626, 864–873 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Pucci, F. et al. SCS macrophages suppress melanoma by restricting tumor-derived vesicle-B cell interactions. Science 352, 242–246 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Nalio Ramos, R. et al. Tissue-resident FOLR2+ macrophages associate with CD8+ T cell infiltration in human breast cancer. Cell 185, 1189–1207.e25 (2022).

    Article  PubMed  CAS  Google Scholar 

  138. Hirschhorn, D. et al. T cell immunotherapies engage neutrophils to eliminate tumor antigen escape variants. Cell 186, 1432–1447.e17 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Gungabeesoon, J. et al. A neutrophil response linked to tumor control in immunotherapy. Cell 186, 1448–1464.e20 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Benguigui, M. et al. Interferon-stimulated neutrophils as a predictor of immunotherapy response. Cancer Cell 42, 253–265.e12 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Quail, D. F. et al. Neutrophil phenotypes and functions in cancer: a consensus statement. J. Exp. Med. 219, e20220011 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19, 402–421 (2022).

    Article  PubMed  Google Scholar 

  143. Pittet, M. J., Di Pilato, M., Garris, C. & Mempel, T. R. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 56, 2218–2230 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Broz, M. L. et al. Dissecting the tumor myeloid compartment reveals rare activating antigen-presenting cells critical for T cell immunity. Cancer Cell 26, 638–652 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015). This seminal work shows how a genetic alteration in cancer cells prevents the accumulation of TADCs.

    Article  PubMed  CAS  Google Scholar 

  146. Zilionis, R. et al. Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species. Immunity 50, 1317–1334.e10 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. MacNabb, B. W. et al. Dendritic cells can prime anti-tumor CD8+ T cell responses through major histocompatibility complex cross-dressing. Immunity 55, 982–997.e8 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Garris, C. S. et al. Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity 49, 1148–1161.e7 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Klemm, F. et al. Compensatory CSF2-driven macrophage activation promotes adaptive resistance to CSF1R inhibition in breast-to-brain metastasis. Nat. Cancer 2, 1086–1101 (2021).

    Article  PubMed  CAS  Google Scholar 

  151. Pyonteck, S. M. et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 19, 1264–1272 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Neubert, N. J. et al. T cell-induced CSF1 promotes melanoma resistance to PD1 blockade. Sci. Transl. Med. 10, eaan3311 (2018). This work shows that CD8+ T cells can induce tumour cells to produce CSF1, thereby promoting immunosuppressive TAMs.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Cortez-Retamozo, V. et al. Angiotensin II drives the production of tumor-promoting macrophages. Immunity 38, 296–308 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Di Conza, G. et al. Tumor-induced reshuffling of lipid composition on the endoplasmic reticulum membrane sustains macrophage survival and pro-tumorigenic activity. Nat. Immunol. 22, 1403–1415 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zhang, B. et al. B cell-derived GABA elicits IL-10+ macrophages to limit anti-tumour immunity. Nature 599, 471–476 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Park, E. J. et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Caronni, N. et al. IL-1β+ macrophages fuel pathogenic inflammation in pancreatic cancer. Nature 623, 415–422 (2023).

    Article  PubMed  CAS  Google Scholar 

  160. Wu, J.-Y. et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol. Cell 77, 213–227.e5 (2020).

    Article  PubMed  CAS  Google Scholar 

  161. Bill, R. et al. CXCL9:SPP1 macrophage polarity identifies a network of cellular programs that control human cancers. Science 381, 515–524 (2023). This work reveals that the polarity of TAMs, as defined by the expression of CXCL9 and SPP1, is a critical feature of TMEs and is tightly linked to T cell activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Bader, J. E. et al. Obesity induces PD-1 on macrophages to suppress anti-tumour immunity. Nature 630, 968–975 (2024).

    Article  PubMed  CAS  Google Scholar 

  163. Wang, X. et al. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 184, 5357–5374.e22 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Guan, W. et al. Tumor-associated macrophage promotes the survival of cancer cells upon docetaxel chemotherapy via the CSF1/CSF1R-CXCL12/CXCR4 axis in castration-resistant prostate cancer. Genes 12, 773 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. DeNardo, D. G. et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 1, 54–67 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. Hughes, R. et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res. 75, 3479–3491 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Walens, A. et al. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. eLife 8, e43653 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Mantovani, A., Allavena, P., Marchesi, F. & Garlanda, C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 21, 799–820 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  169. Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity 56, 162–179.e6 (2023).

    Article  PubMed  CAS  Google Scholar 

  170. Kuang, D.-M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327–1337 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Chang, C.-H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Pfirschke, C. et al. Macrophage-targeted therapy unlocks antitumoral cross-talk between IFNγ-secreting lymphocytes and IL12-producing dendritic cells. Cancer Immunol. Res. 10, 40–55 (2022).

    Article  PubMed  CAS  Google Scholar 

  173. Ruffell, B. et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell 26, 623–637 (2014). This seminal work shows how TAMs can suppress TADCs, thereby limiting antitumour T cell activity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Matusiak, M. et al. Spatially segregated macrophage populations predict distinct outcomes in colon cancer. Cancer Discov. 14, 1418–1439 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bianchi, A. et al. Cell-autonomous Cxcl1 sustains tolerogenic circuitries and stromal inflammation via neutrophil-derived TNF in pancreatic cancer. Cancer Discov. 13, 1428–1453 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Gong, Z. et al. Immunosuppressive reprogramming of neutrophils by lung mesenchymal cells promotes breast cancer metastasis. Sci. Immunol. 8, eadd5204 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Zhao, J. et al. Tumor-specific neutrophils originating from meninges promote glioblastoma. Preprint at bioRxiv https://doi.org/10.1101/2023.05.23.542010 (2023).

  179. Simoncello, F. et al. CXCL5-mediated accumulation of mature neutrophils in lung cancer tissues impairs the differentiation program of anticancer CD8 T cells and limits the efficacy of checkpoint inhibitors. Oncoimmunology 11, 2059876 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Sanmamed, M. F. et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin. Cancer Res. 20, 5697–5707 (2014).

    Article  PubMed  CAS  Google Scholar 

  181. Alfaro, C. et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin. Cancer Res. 22, 3924–3936 (2016).

    Article  PubMed  CAS  Google Scholar 

  182. Steele, C. W. et al. CXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinoma. Cancer Cell 29, 832–845 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Guo, C. et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature 623, 1053–1061 (2023). This work shows that inhibiting CXCR2 in patients with prostate cancer not only limits neutrophil accumulation in tumours but also has therapeutic effects.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Bezzi, M. et al. Diverse genetic-driven immune landscapes dictate tumor progression through distinct mechanisms. Nat. Med. 24, 165–175 (2018).

    Article  PubMed  CAS  Google Scholar 

  185. Bodac, A. et al. Bcl-xL targeting eliminates ageing tumor-promoting neutrophils and inhibits lung tumor growth. EMBO Mol. Med. 16, 158–184 (2024).

    Article  PubMed  Google Scholar 

  186. Kowanetz, M. et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc. Natl Acad. Sci. USA 107, 21248–21255 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  187. Bronte, V. et al. Unopposed production of granulocyte–macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J. Immunol. 162, 5728–5737 (1999).

    Article  PubMed  CAS  Google Scholar 

  188. Kohanbash, G. et al. GM-CSF promotes the immunosuppressive activity of glioma-infiltrating myeloid cells through interleukin-4 receptor-α. Cancer Res. 73, 6413–6423 (2013).

    Article  PubMed  CAS  Google Scholar 

  189. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015). This work shows that tumours can promote metastasis through a systemic inflammatory cascade involving neutrophils that suppress antitumour CD8+ T cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Maas, R. R. et al. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 186, 4546–4566.e27 (2023).

    Article  PubMed  CAS  Google Scholar 

  192. Bell, C. R. et al. Chemotherapy-induced COX-2 upregulation by cancer cells defines their inflammatory properties and limits the efficacy of chemoimmunotherapy combinations. Nat. Commun. 13, 2063 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Bancaro, N. et al. Apolipoprotein E induces pathogenic senescent-like myeloid cells in prostate cancer. Cancer Cell 41, 602–619.e11 (2023).

    Article  PubMed  CAS  Google Scholar 

  194. McDowell, S. A. C. et al. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration. Nat. Cancer 2, 545–562 (2021).

    Article  PubMed  CAS  Google Scholar 

  195. Tohme, S. et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res. 76, 1367–1380 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Albrengues, J. et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 361, eaao4227 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Wculek, S. K. & Malanchi, I. Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528, 413–417 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Enfield, K. S. S. et al. Spatial architecture of myeloid and T cells orchestrates immune evasion and clinical outcome in lung cancer. Cancer Discov. 14, 1018–1047 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Siwicki, M. & Pittet, M. J. Versatile neutrophil functions in cancer. Semin. Immunol. 57, 101538 (2021).

    Article  PubMed  CAS  Google Scholar 

  200. Kim, R. et al. Ferroptosis of tumour neutrophils causes immune suppression in cancer. Nature 612, 338–346 (2022). This work shows that ferroptosis in neutrophils suppresses antitumour immunity.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Mousset, A. et al. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation. Cancer Cell 41, 757–775.e10 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. He, X.-Y. et al. Chronic stress increases metastasis via neutrophil-mediated changes to the microenvironment. Cancer Cell 42, 474–486.e12 (2024).

    Article  PubMed  CAS  Google Scholar 

  203. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Vijver, S. V. et al. Collagen fragments produced in cancer mediate T cell suppression through leukocyte-associated immunoglobulin-like receptor 1. Front. Immunol. 12, 733561 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Maier, B. et al. A conserved dendritic-cell regulatory program limits antitumour immunity. Nature 580, 257–262 (2020). This work shows that a population of TADCs involved in antitumour T cell immunity can be suppressed by IL-4 signalling.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Kim, S. et al. IL-6 selectively suppresses cDC1 specification via C/EBPβ. J. Exp. Med. 220, e20221757 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Kobie, J. J. et al. Transforming growth factor β inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Res. 63, 1860–1864 (2003).

    PubMed  CAS  Google Scholar 

  208. Osada, T. et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol. Immunother. 57, 1115–1124 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Bayerl, F. et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity 56, 1341–1358.e11 (2023). This work shows how PGE2 impairs TADC function, thereby limiting CD8+ T cell-mediated antitumour immunity.

    Article  PubMed  CAS  Google Scholar 

  210. Veglia, F. et al. Lipid bodies containing oxidatively truncated lipids block antigen cross-presentation by dendritic cells in cancer. Nat. Commun. 8, 2122 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Cubillos-Ruiz, J. R. et al. ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic. Cell Homeost. Cell 161, 1527–1538 (2015).

    CAS  Google Scholar 

  212. Laumont, C. M., Banville, A. C., Gilardi, M., Hollern, D. P. & Nelson, B. H. Tumour-infiltrating B cells: immunological mechanisms, clinical impact and therapeutic opportunities. Nat. Rev. Cancer 22, 414–430 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Bruni, D., Angell, H. K. & Galon, J. The immune contexture and immunoscore in cancer prognosis and therapeutic efficacy. Nat. Rev. Cancer 20, 662–680 (2020).

    Article  PubMed  CAS  Google Scholar 

  214. Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).

    Article  PubMed  CAS  Google Scholar 

  215. Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).

    Article  PubMed  CAS  Google Scholar 

  217. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    Article  PubMed  CAS  Google Scholar 

  218. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    PubMed  CAS  Google Scholar 

  219. Mizoguchi, A., Mizoguchi, E., Takedatsu, H., Blumberg, R. S. & Bhan, A. K. Chronic intestinal inflammatory condition generates IL-10-producing regulatory B cell subset characterized by CD1d upregulation. Immunity 16, 219–230 (2002).

    Article  PubMed  CAS  Google Scholar 

  220. Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat. Rev. Clin. Oncol. 16, 356–371 (2019).

    Article  PubMed  CAS  Google Scholar 

  221. Holmgaard, R. B. et al. Tumor-expressed IDO recruits and activates MDSCs in a Treg-dependent manner. Cell Rep. 13, 412–424 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Chow, M. T. et al. Intratumoral activity of the CXCR3 chemokine system is required for the efficacy of anti-PD-1 therapy. Immunity 50, 1498–1512.e5 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Moreno Ayala, M. A. et al. CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity 56, 1613–1630.e5 (2023).

    Article  PubMed  CAS  Google Scholar 

  224. Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl. Med. 5, 200ra116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Martinez-Usatorre, A. et al. Overcoming microenvironmental resistance to PD-1 blockade in genetically engineered lung cancer models. Sci. Transl. Med. 13, eabd1616 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Kamada, T. et al. PD-1+ regulatory T cells amplified by PD-1 blockade promote hyperprogression of cancer. Proc. Natl Acad. Sci. USA 116, 9999–10008 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  227. Fidelle, M. et al. A microbiota-modulated checkpoint directs immunosuppressive intestinal T cells into cancers. Science 380, eabo2296 (2023).

    Article  PubMed  CAS  Google Scholar 

  228. Chen, M.-L. et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc. Natl Acad. Sci. USA 102, 419–424 (2005).

    Article  PubMed  CAS  Google Scholar 

  229. Mempel, T. R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    Article  PubMed  CAS  Google Scholar 

  230. Turnis, M. E. et al. Interleukin-35 limits anti-tumor immunity. Immunity 44, 316–329 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Collison, L. W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    Article  PubMed  CAS  Google Scholar 

  232. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  233. Grossman, W. J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    Article  PubMed  CAS  Google Scholar 

  234. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  PubMed  CAS  Google Scholar 

  235. Marangoni, F. et al. Expansion of tumor-associated Treg cells upon disruption of a CTLA-4-dependent feedback loop. Cell 184, 3998–4015.e19 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  236. Mishima, Y. et al. Microbiota maintain colonic homeostasis by activating TLR2/MyD88/PI3K signaling in IL-10-producing regulatory B cells. J. Clin. Invest. 129, 3702–3716 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Shen, P. et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature 507, 366–370 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  238. Yoshizaki, A. et al. Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491, 264–268 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

    Article  PubMed  CAS  Google Scholar 

  240. Andreu, P. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  241. Affara, N. I. et al. B cells regulate macrophage phenotype and response to chemotherapy in squamous carcinomas. Cancer Cell 25, 809–821 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res. 71, 3505–3515 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Horikawa, M., Minard-Colin, V., Matsushita, T. & Tedder, T. F. Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in mice. J. Clin. Invest. 121, 4268–4280 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Xiao, X. et al. PD-1hi identifies a novel regulatory B-cell population in human hepatoma that promotes disease progression. Cancer Discov. 6, 546–559 (2016).

    Article  PubMed  CAS  Google Scholar 

  245. Pylayeva-Gupta, Y. et al. IL35-producing B cells promote the development of pancreatic neoplasia. Cancer Discov. 6, 247–255 (2016).

    Article  PubMed  CAS  Google Scholar 

  246. Ammirante, M., Luo, J.-L., Grivennikov, S., Nedospasov, S. & Karin, M. B-cell-derived lymphotoxin promotes castration-resistant prostate cancer. Nature 464, 302–305 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  247. Bod, L. et al. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature 619, 348–356 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Ruf, B., Greten, T. F. & Korangy, F. Innate lymphoid cells and innate-like T cells in cancer — at the crossroads of innate and adaptive immunity. Nat. Rev. Cancer 23, 351–371 (2023).

    Article  PubMed  CAS  Google Scholar 

  249. Corvino, D., Kumar, A. & Bald, T. Plasticity of NK cells in cancer. Front. Immunol. 13, 888313 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  250. Portale, F. & Di Mitri, D. NK cells in cancer: mechanisms of dysfunction and therapeutic potential. Int. J. Mol. Sci. 24, 9521 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  251. Tong, L. et al. NK cells and solid tumors: therapeutic potential and persisting obstacles. Mol. Cancer 21, 206 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Chung, D. C. et al. Generation of an inhibitory NK cell subset by TGF-β1/IL-15 polarization. J. Immunol. 212, 1904–1912 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Boonpiyathad, T., Sözener, Z. C., Satitsuksanoa, P. & Akdis, C. A. Immunologic mechanisms in asthma. Semin. Immunol. 46, 101333 (2019).

    Article  PubMed  CAS  Google Scholar 

  254. Ercolano, G., Falquet, M., Vanoni, G., Trabanelli, S. & Jandus, C. ILC2s: new actors in tumor immunity. Front. Immunol. 10, 2801 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  255. Panda, S. K. & Colonna, M. Innate lymphoid cells in mucosal immunity. Front. Immunol. 10, 861 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Carrega, P. et al. NCR+ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat. Commun. 6, 8280 (2015).

    Article  PubMed  CAS  Google Scholar 

  257. Eisenring, M., vom Berg, J., Kristiansen, G., Saller, E. & Becher, B. IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat. Immunol. 11, 1030–1038 (2010).

    Article  PubMed  CAS  Google Scholar 

  258. Sonnenberg, G. F. & Hepworth, M. R. Functional interactions between innate lymphoid cells and adaptive immunity. Nat. Rev. Immunol. 19, 599–613 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  259. Wang, W. et al. Nerves in the tumor microenvironment: origin and effects. Front. Cell Dev. Biol. 8, 601738 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Reavis, H. D., Chen, H. I. & Drapkin, R. Tumor innervation: cancer has some nerve. Trends Cancer 6, 1059–1067 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  261. Hanahan, D. & Monje, M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 41, 573–580 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  262. Wrona, D. Neural–immune interactions: an integrative view of the bidirectional relationship between the brain and immune systems. J. Neuroimmunol. 172, 38–58 (2006).

    Article  PubMed  CAS  Google Scholar 

  263. Anisman, H. et al. Neuroimmune mechanisms in health and disease: 1. Health. CMAJ 155, 867–874 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  264. Eckerling, A., Ricon-Becker, I., Sorski, L., Sandbank, E. & Ben-Eliyahu, S. Stress and cancer: mechanisms, significance and future directions. Nat. Rev. Cancer 21, 767–785 (2021).

    Article  PubMed  CAS  Google Scholar 

  265. Bucsek, M. J. et al. β-Adrenergic signaling in mice housed at standard temperatures suppresses an effector phenotype in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 77, 5639–5651 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  266. Qiao, G., Chen, M., Bucsek, M. J., Repasky, E. A. & Hylander, B. L. Adrenergic signaling: a targetable checkpoint limiting development of the antitumor immune response. Front. Immunol. 9, 164 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Globig, A.-M. et al. The β1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 622, 383–392 (2023). Functional studies in mouse models document the T cell-inhibiting effects of stress-induced catecholamines released through sympathetic innervation of tumours, a correlation that translates in human association studies.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  268. Haldar, R. et al. Perioperative COX2 and β-adrenergic blockade improves biomarkers of tumor metastasis, immunity, and inflammation in colorectal cancer: a randomized controlled trial. Cancer 126, 3991–4001 (2020).

    Article  PubMed  CAS  Google Scholar 

  269. Yang, M.-W. et al. Perineural invasion reprograms the immune microenvironment through cholinergic signaling in pancreatic ductal adenocarcinoma. Cancer Res. 80, 1991–2003 (2020). This study demonstrates that acetylcholine released from parasympathetic neurons in the context of perineural invasion by cancer cells is immunosuppressive, acting on both cancer cells and T cells.

    Article  PubMed  CAS  Google Scholar 

  270. Guo, X. et al. Midkine activation of CD8+ T cells establishes a neuron–immune–cancer axis responsible for low-grade glioma growth. Nat. Commun. 11, 2177 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  271. Swanton, C. et al. Embracing cancer complexity: hallmarks of systemic disease. Cell 187, 1589–1616 (2024).

    Article  PubMed  CAS  Google Scholar 

  272. Derosa, L. et al. Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome. Cell 187, 3373–3389.e16 (2024).

    Article  PubMed  CAS  Google Scholar 

  273. Wu, J., Zhang, P., Mei, W. & Zeng, C. Intratumoral microbiota: implications for cancer onset, progression, and therapy. Front. Immunol. 14, 1301506 (2023).

    Article  PubMed  CAS  Google Scholar 

  274. Guan, S.-W., Lin, Q. & Yu, H.-B. Intratumour microbiome of pancreatic cancer. World J. Gastrointest. Oncol. 15, 713–730 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Falcomatà, C. et al. Context-specific determinants of the immunosuppressive tumor microenvironment in pancreatic cancer. Cancer Discov. 13, 278–297 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Pushalkar, S. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8, 403–416 (2018). This study delineates bacteria selectively abundant in pancreatic tumours compared with the gut, which are functionally involved in suppressing adaptive antitumour immunity, implicating the tumour microbiome as an immunomodulatory component of the TME.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  277. Chen, Y. et al. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 40, 818–834.e9 (2022). This study describes the functional activity of a collagen homotrimer expressed by pancreatic cancer cells, which modulates the immunosuppressive phenotype of the tumour microbiome.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Goubet, A.-G. Could the tumor-associated microbiota be the new multi-faceted player in the tumor microenvironment? Front. Oncol. 13, 1185163 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  279. Gihawi, A. et al. Major data analysis errors invalidate cancer microbiome findings. mBio 14, e0160723 (2023).

    Article  PubMed  Google Scholar 

  280. Gihawi, A., Cooper, C. S. & Brewer, D. S. Caution regarding the specificities of pan-cancer microbial structure. Microb. Genom. 9, mgen001088 (2023).

    PubMed  PubMed Central  Google Scholar 

  281. Luo, Z. et al. Modulating tumor physical microenvironment for fueling CAR-T cell therapy. Adv. Drug. Deliv. Rev. 185, 114301 (2022).

    Article  PubMed  CAS  Google Scholar 

  282. Nia, H. T., Munn, L. L. & Jain, R. K. Physical traits of cancer. Science 370, eaaz0868 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  283. Rhim, A. D. et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25, 735–747 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  284. Piersma, B., Hayward, M.-K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  285. Özdemir, B. C. et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25, 719–734 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Menjivar, R. E. et al. Arginase 1 is a key driver of immune suppression in pancreatic cancer. eLife 12, e80721 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  287. Perricone, M. D. & Lyssiotis, C. A. Fibrotic tumors tune metabolism for immune evasion. Nat. Cancer 5, 955–957 (2024).

    Article  PubMed  Google Scholar 

  288. Arner, E. N. & Rathmell, J. C. Metabolic programming and immune suppression in the tumor microenvironment. Cancer Cell 41, 421–433 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  289. Siska, P. J. et al. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2, e93411 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  290. Jiang, H., Hegde, S. & DeNardo, D. G. Tumor-associated fibrosis as a regulator of tumor immunity and response to immunotherapy. Cancer Immunol. Immunother. 66, 1037–1048 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  291. Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  292. Galliverti, G. et al. Myeloid cells orchestrate systemic immunosuppression, impairing the efficacy of immunotherapy against HPV+ cancers. Cancer Immunol. Res. 8, 131–145 (2020).

    Article  PubMed  CAS  Google Scholar 

  293. Allen, B. M. et al. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 26, 1125–1134 (2020). Together with Galliverti et al. (2020), this study describes a new facet of immune evasion, namely, the capability of certain cancer cells in several mouse models to systemically suppress the generation and expansion of tumour-specific T cells in the lymphatic organs.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  294. Biswas, A. K. & Acharyya, S. Understanding cachexia in the context of metastatic progression. Nat. Rev. Cancer 20, 274–284 (2020).

    Article  PubMed  CAS  Google Scholar 

  295. Nakamura, Y., Saldajeno, D. P., Kawaguchi, K. & Kawaoka, S. Progressive, multi-organ, and multi-layered nature of cancer cachexia. Cancer Sci. 115, 715–722 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  296. Ferreira, C. S. et al. Predictive potential of angiopoietin-2 in a mCRC subpopulation treated with vanucizumab in the McCAVE trial. Front. Oncol. 13, 1157596 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  297. Albain, K. S. et al. Neoadjuvant trebananib plus paclitaxel-based chemotherapy for stage II/III breast cancer in the adaptively randomized I-SPY2 trial-efficacy and biomarker discovery. Clin. Cancer Res. 30, 729–740 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  298. Bilen, M. A. et al. Association of neutrophil-to-lymphocyte ratio with efficacy of first-line avelumab plus axitinib vs. sunitinib in patients with advanced renal cell carcinoma enrolled in the phase 3 JAVELIN renal 101 trial. Clin. Cancer Res. 28, 738–747 (2022).

    Article  PubMed  CAS  Google Scholar 

  299. Kuo, H.-Y., Khan, K. A. & Kerbel, R. S. Antiangiogenic-immune-checkpoint inhibitor combinations: lessons from phase III clinical trials. Nat. Rev. Clin. Oncol. 21, 468–482 (2024).

    Article  PubMed  CAS  Google Scholar 

  300. Binnewies, M. et al. Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell Rep. 37, 109844 (2021). This article illustrates the potential for therapeutic targeting of immunosuppressive TAMs to enhance antitumour immunity.

    Article  PubMed  CAS  Google Scholar 

  301. Kaczanowska, S. et al. Genetically engineered myeloid cells rebalance the core immune suppression program in metastasis. Cell 184, 2033–2052.e21 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  302. Klichinsky, M. et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat. Biotechnol. 38, 947–953 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. Mund, A., Brunner, A.-D. & Mann, M. Unbiased spatial proteomics with single-cell resolution in tissues. Mol. Cell 82, 2335–2349 (2022).

    Article  PubMed  CAS  Google Scholar 

  304. Jin, Y. et al. Advances in spatial transcriptomics and its applications in cancer research. Mol. Cancer 23, 129 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Williams, H. L. et al. The current landscape of spatial biomarkers for prediction of response to immune checkpoint inhibition. npj Precis. Oncol. 8, 178 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  306. Evans, S. S., Repasky, E. A. & Fisher, D. T. Fever and the thermal regulation of immunity: the immune system feels the heat. Nat. Rev. Immunol. 15, 335–349 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  307. He, M. et al. The crosstalk between DNA-damage responses and innate immunity. Int. Immunopharmacol. 140, 112768 (2024).

    Article  PubMed  CAS  Google Scholar 

  308. Tong, J. et al. When DNA-damage responses meet innate and adaptive immunity. Cell Mol. Life Sci. 81, 185 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

D.H. acknowledges support from the Ludwig Institute for Cancer Research. O.M. is supported by the University Hospital of Geneva. M.J.P. is supported by the Swiss Institute for Experimental Cancer Research (ISREC) Foundation and the Ludwig Institute for Cancer Research. We thank M. de Palma, C. Jandus and M. Cuendet for comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Douglas Hanahan.

Ethics declarations

Competing interests

None of the research results reviewed and discussed here reflect bona fide competing interests. In the interest of full disclosure, D.H. currently serves on the scientific advisory boards of Pfizer Oncology, Opna Bio, 4D Molecular Therapeutics and Cellestia, and is a founder of Opna Bio, which has licensed an EPFL patent describing the RNA-binding protein FMRP as a new cancer target. O.M. has served as an adviser for Roche, Novartis, GSK, BMS, MSD, Regeneron, Pierre-Fabre, Merck and Amgen, and is a scientific board member of Cellula Therapeutics. M.J.P. has served as an adviser for AstraZeneca, ImmuneOncia, LegoChem Bio, MaxiVax, Merck, Molecular Partners, Third Rock Ventures, Tidal and Unikum.

Peer review

Peer review information

Nature Reviews Cancer thanks Renato Ostuni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Autophagy

A cellular process that degrades and recycles damaged organelles, proteins and other cellular components through the lysosomal pathway. Autophagy is crucial for maintaining cellular homeostasis and responding to stress.

Cachexia

A complex metabolic syndrome associated with underlying illness, characterized by severe weight loss, muscle atrophy and fatigue. Cachexia is commonly seen in cancer, but also in other chronic inflammatory diseases.

Chaperone-mediated autophagy

A selective form of autophagy in which specific cytosolic proteins are recognized by chaperone proteins and directly translocated across the lysosomal membrane for degradation.

Ferroptosis

A form of regulated cell death driven by the accumulation of lipid peroxides resulting in oxidative damage to cell membranes. Ferroptosis is dependent on iron, with iron catalysing the formation of lipid peroxides.

High endothelial venules

(HEVs). Specialized blood vessels that facilitate the entry of lymphocytes from the blood into tissue. HEVs are found in lymphoid organs such as lymph nodes, but can be induced in and around tumours to facilitate the infiltration of T cells.

Interstitial fluid pressure

The pressure exerted by the fluid present in the spaces between cells. This pressure is involved in fluid exchange between blood vessels and tumour tissues and is exacerbated by the leaky angiogenic vasculature in many tumours and by the dense packing of proliferating cancer cells and accessory cells into the tumour microenvironment.

Neutrophil extracellular traps

(NETs). Web-like structures composed of DNA and antimicrobial proteins released by neutrophils during a process called NETosis. NETs in the tumour milieu can also exacerbate inflammation, potentially contributing to tumour progression.

Oncogene-induced senescence

A cell-cycle arrest triggered by the activation of oncogenes. It acts directly as a tumour-suppressive mechanism by preventing the uncontrolled proliferation of cells with oncogenic mutations, although the induced senescence-associated secretory programme can have paracrine effects that are alternatively tumour-promoting and immunosuppressive or tumour-antagonizing and immunostimulatory.

Secondary lymphoid organs

Organs where immune responses are initiated and organized, such as lymph nodes and the spleen. Secondary lymphoid organs provide environments for the activation and proliferation of lymphocytes.

Senescence-associated secretory programme

(SASP). A feature of senescent cells, characterized by the secretion of various cytokines, growth factors, proteases and other molecules. The SASP can variously elicit paracrine immunosuppressive and tumour-promoting effects or, alternatively, immunostimulatory tumour-impairing effects.

Tertiary lymphoid structures

(TLSs). Ectopic lymphoid formations that arise in non-lymphoid tissues, including solid tumours, in response to chronic inflammation. TLSs resemble secondary lymphoid organs and facilitate local immune responses by organizing adaptive immune cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanahan, D., Michielin, O. & Pittet, M.J. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 25, 41–58 (2025). https://doi.org/10.1038/s41568-024-00761-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-024-00761-z

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer