Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor

Abstract

Artificial receptors provide a promising approach to target T lymphocytes to tumor antigens. However, the receptors described thus far produce either an activation or a co-stimulatory signal alone, thus limiting the spectrum of functions accomplished by the genetically modified cells. Here we show that human primary T lymphocytes expressing fusion receptors directed to prostate-specific membrane antigen (PSMA) and containing combined T-cell receptor-ζ (TCRζ), and CD28 signaling elements, effectively lyse tumor cells expressing PSMA. When stimulated by cell-surface PSMA, retrovirally transduced lymphocytes undergo robust proliferation, expanding by more than 2 logs in three weeks, and produce large amounts of interleukin-2 (IL-2). Importantly, the amplified cell populations retain their antigen-specific cytolytic activity. These data demonstrate that fusion receptors containing both TCR and CD28 signaling moieties are potent molecules able to redirect and amplify human T-cell responses. These findings have important implications for adoptive immunotherapy of cancer, especially in the context of tumor cells that fail to express major histocompatibility complex antigens and co-stimulatory molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of TCRζ–CD28 fusion receptors.
Figure 2: Expression of PSMA-specific TCRζ–CD28 fusion receptors in primary human T lymphocytes (PBLs).
Figure 3: Specific target cell lysis by PSMA-redirected T cells.
Figure 4: The P28z fusion receptor renders human T lymphocytes capable of PSMA-dependent expansion.
Figure 5: Primary and secondary stimulation of transduced T cells in response to PSMA.
Figure 6: PSMA+ tumor cells activate cytolytic and proliferative responses in P28z-transduced PBLs.

Similar content being viewed by others

References

  1. Gilboa, E. How tumors escape immune destruction and what we can do about it. Cancer Immunol. Immunother. 48, 382–385 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Melief, C.J. et al. Strategies for immunotherapy of cancer. Adv. Immunol. 75, 235–282 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrone, S., Finerty, J.F., Jaffee, E.M. & Nabel, G.J. How much longer will tumour cells fool the immune system. Immunol. Today 21, 70–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Houghton, A.N. Cancer antigens: immune recognition of self and altered self. J. Exp. Med. 180, 1–4 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Boon, T., Coulie, P.D. & Van den Eynde, B. Tumor antigens recognized by T cells. Immunol. Today 18, 267–268 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Nanda, N.K. & Sercarz, E.E. Induction of anti-self-immunity to cure cancer. Cell 82, 13–17 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sotomayor, E.M., Borrello, I. & Levitsky, H.I. Tolerance and cancer: a critical issue in tumor immunology. Crit. Rev. Oncog. 7, 433–456 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Kiertscher, S.M., Luo, J., Dubinett, S.M. & Roth, M.D. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J. Immunol. 164, 1269–1276 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Almand, B. et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J. Immunol. 166, 678–689 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, P.P. et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat. Med. 5, 677–685 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Marincola, F.M., Jaffee, E.M., Hicklin, D.J. & Ferrone, S. Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv. Immunol. 74, 181–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Eshhar, Z., Waks, T., Gross, G. & Schindler, D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA 90, 720–724 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Altenschmidt, U., Moritz, D. & Groner, B. Specific cytotoxic T lymphocytes in gene therapy. J. Mol. Med. 75, 259–266 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Paillard, F. Immunotherapy with T cells bearing chimeric antitumor receptors. Hum. Gene Ther. 10, 151–153 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Geiger, T.L., Leitenberg, D. & Flavell, R.A. The TCR ζ-chain immunoreceptor tyrosine-based activation motifs are sufficient for the activation and differentiation of primary T lymphocytes. J. Immunol. 162, 5931–5939 (1999).

    CAS  PubMed  Google Scholar 

  16. Haynes, N.M. et al. Redirecting mouse CTL against colon carcinoma: superior signaling efficacy of single-chain variable domain chimeras containing TCR-ζ vs FcRI-γ. J. Immunol. 166, 182–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Whiteside, T.L. Signaling defects in T lymphocytes of patients with malignancy. Cancer Immunol. Immunother. 48, 346–352 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Gong, M.C. et al. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia 1, 123–127 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harding, F.A., McArthur, J.G., Gross, J.A., Raulet, D.H. & Allison, J.P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T cell clones. Nature 356, 607–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  20. Lenschow, D.J., Walanus, T.L. & Bluestone, J.A. CD28/ B7 system of T cell costimulation. Annu. Rev. Immunol. 14, 233–258 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Ward, S.G. CD28: a signalling perspective. Biochem. J. 318, 361–377 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Greenfield, E.A., Nguyen, K.A. & Kuchroo, V.K. CD28/ B7 costimulation: a review. Crit. Rev. Immunol. 18, 389–418 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Israeli, R.S, Powell, C.T., Corr, J.G., Fair, W.R. & Heston, W.D.W. Expression of the prostate-specific membrane antigen. Cancer Res. 54, 1807–1811 (1994).

    CAS  PubMed  Google Scholar 

  25. Liu, H. et al. Monoclonal antibodies to the extracellular domain of prostate-specific membrane antigen also react with tumor vascular endothelium. Cancer Res. 57, 3629–3634 (1997).

    CAS  PubMed  Google Scholar 

  26. Gong, M.C., Chang, S.S., Sadelain, M., Bander, N.H. & Heston, W.D.W. Prostate-specific membrane antigen (PSMA)-specific monoclonal antibodies in the treatment of prostate and other cancers. Cancer Metastasis Rev. 18, 483–490 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Gallardo, H.F., Tan, C., Ory, D. & Sadelain, M. Recombinant retroviruses pseudotyped with the vesicular stomatitis virus G glycoprotein mediate both stable gene transfer and pseudotransduction in human peripheral blood lymphocytes. Blood 90, 952–957 (1997).

    CAS  PubMed  Google Scholar 

  28. Eshhar, Z., Waks, T., Bendavid, A. & Schindler, D.G. Functional expression of chimeric receptor genes in human T cells. J. Immunol. Meth. 248, 67–76 (2001).

    Article  CAS  Google Scholar 

  29. Liebowitz, D.N., Lee, K.P. & June, C.H. Costimulatory approaches to adoptive immunotherapy. Curr. Opin. Oncol. 10, 533–541 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Alvarez-Vallina, L. & Hawkins, R.E. Antigen-specific targeting of CD28-mediated T cell co-stimulation using chimeric single-chain antibody variable fragment-CD28 receptors. Eur. J. Immunol. 26, 2304–2309 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Finney, H.M., Lawson, A.D.G., Bebbington, C.R. & Weir, A.N.C. Chimeric receptors providing both primary and costimulatory signaling in T cells from a single gene product. J. Immunol. 16, 2791–2797 (1998).

    Google Scholar 

  32. King, P.D. et al. Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J. Immunol. 158, 580–590 (1997).

    CAS  PubMed  Google Scholar 

  33. Marti, F. et al. Negative-feedback regulation of CD28 costimulation by a novel mitogen-activated protein kinase phosphatase, MKP6. J. Immunol. 166, 197–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Stein, P.H., Fraser, J.D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hanson, H.L. et al. Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity 13, 265–276 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Cordaro, T.A. et al. Tumor size at the time of adoptive transfer determines whether tumor rejection occurs. Eur. J. Immunol. 30, 1297–1307 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Gallardo, H.F., Tan, C. & Sadelain, M. The internal ribosome entry site of the encephalomyocarditis virus enables reliable coexpression of two transgenes in primary human T lymphocytes. Gene Ther. 4, 1115–1119 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Rivière, I., Brose, K. & Mulligan, R.C. Effects of retroviral vector design on expression of human adenosine deaminase in murine bone marrow transplant recipients engrafted with genetically modified cells. Proc. Natl. Acad. Sci. USA 92, 6733–6737 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Krause, A., Gong, M., Tan, C. & Sadelain, M. Genetic approaches to sustain the function of tumor-specific T- lymphocytes. Mol. Ther. 1, S260, 713 (2000).

    Google Scholar 

  40. Rivière, I., Gallardo, H.F., Hagani, A.B. & Sadelain, M. Retroviral-mediated gene transfer in primary murine and human T-lymphocytes. Mol. Biotechnol. 15, 133–142 (2000).

    Article  PubMed  Google Scholar 

  41. Jensen, M.C. et al. Human T lymphocyte genetic modification with naked DNA. Mol. Ther. 1, 49–55 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Vukmanovic-Stejic, M., Vyas, B., Gorak-Stolinska, P., Noble, A. & Kemeny, D.M. Human Tc1 and Tc2/Tc0 CD8 T cell clones display distinct cell surface and functional phenotypes. Blood 95, 231–240 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. King and C. Lyddane for critical review of the manuscript. We also thank H. Gallardo and H. Zhu for assistance with T-cell transduction, and J.-B. Latouche for providing NIH3T3-derived feeder cells. This work was supported by the National Institutes of Health, grant CA-59350, the CaP CURE Association, the Jean Shanks Clinical Research Fellowship (Royal College of Pathologists, London, UK), and the Cure for Lymphoma Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Sadelain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maher, J., Brentjens, R., Gunset, G. et al. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRζ /CD28 receptor. Nat Biotechnol 20, 70–75 (2002). https://doi.org/10.1038/nbt0102-70

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0102-70

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing