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 Proc. R. Soc. Lond. A. 337, 555-567 (1974)
 Printed in Great Britain

 The torque on a magnet

 BY F. J. LOWES

 School of Physics, University of Newcastle, Newcastle-upon-Tyne

 (Communicated by S. K. Runcorn, F.R.S. - Received 5 October 1973)

 The field of a 'soft' ellipsoidal magnet immersed in a permeable fluid, and the torque exerted
 on it by an externally applied uniform field, are obtained by simple direct methods.

 Different ways of defining dipole moment are discussed and it is shown that, with suitable
 definitions, the moments m or j which specify the external field of the magnet also give the
 torque T with T = m0 x B = j x H.

 The permeability of the fluid does not enter simply as a factor, and neither of the conven-
 tional Kennelly or Sommerfeld approaches is correct.

 1. INTRODUCTION

 There is continuing controversy as to the 'correct' formulation for the torque on
 a magnet immersed in a permeable fluid in a magnetic field, even though the
 problem is essentially solved as part of the general discussion of the Coulomb Law
 Committee (1950) and the detailed discussions of Brown (i95I, 1966, ? 2). In the
 hope of ending the controversy the present paper gives a very simple and un-
 ambiguous calculation of the torque, and discusses why other calculations give
 incorrect answers.

 As Brown has shown, arguments as to which of B and H is the 'effective' field
 are not relevant in this context; neither are the units (and dimensions) in which
 B and H are measured. In this paper (rationalized) SI units will be used. (For un-
 rationalized c.g.s. e.m.u. put /o = 1, insert 47 in front ofj, m, J, M, and insert 1/47
 in front of N.)

 In free space the vector fields B and H are related by B = /,t H. In other media
 we have to introduce a third field, which specifies the local magnetization. We use
 either M or J for which

 B =-,o(H+M) =,oH-+ J.

 Clearly M and J differ only by the constant factor /,0. Similarly we have two types
 of dipole moment, m and j, which also differ dimensionally (but not necessarily
 numerically) by /,0.

 In ? 2 of this paper various definitions of dipole moment are compared, and in
 ? 3 the situation for which the torque is to be calculated is rigorously specified.
 ?4 gives the field distribution for a passive ellipsoid in a uniform field, and ? 5
 that from an ellipsoidal magnet. The results of ? 5 are discussed in ? 6 (and a more
 detailed discussion of one aspect given in appendix 1). The torque on any magnet
 in a uniform field is calculated in ? 7 (another calculation of torque is summarized
 in appendix 2), and the defects of other calculations discussed in ? 8. A concluding
 discussion is given in ? 9.

 [ 555 ]
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 F. J. Lowes

 2. DEFINITION OF DIPOLE MOMENT

 A 'point dipole' in free space gives a field which canl equally well be specified
 either by a scalar potential j or a vector potential A, for which

 H=-grads , 0= (l a)
 o047rr2'

 B =curl A, A / *x (1 b)
 4%nr2

 A_ /Cr fcx r -c+3(c-r)r As - grad 4--r 2 = curl (4-r2 -I 4=r3

 and B =I 0 H in this situation, we must have j* =to m .
 The (microscopic) field between atoms is obtained by integrating (1 a) or (I b) over

 all such point sources. It follows that a finite-sized magnet giving a dipole field
 occupying a region V in otherwise free space has dipolet moments m*= mv and
 J* = jv where my and jv are the volume moments defined by

 m-V - fMdr, iv- JdrT (2)

 where M and J are the dipole moments per unit volume. Clearly jv = /o mrv.
 Now consider a magnet giving a dipole field in a permeable medium, where we

 are concerned now with the (differently) macroscopically averaged fields H or B.
 The field originates partly in the magnetization of the magnet, and partly in the
 induced magnetization of the medium, but it is convenient to assign the total field
 to a single dipole moment; we are, in effect, replacing the real situation having dis-
 tributed magnetization by a fictitious point dipole. This is an arbitrary procedure,
 and the definition of the moment of this fictitious dipole is itself arbitrary; several
 conventions have been used, and in particular the presence or absence of the
 factor /e in the definitions (3) below varies between authors. The conventions of (3),
 which are used throughout this paper, are self-consistent and are those which lead
 to the simplest results. The basic controversy cannot be resolved by any change of
 convention!

 Let the medium have relative permeability /e so that B = /t0 H. Again we can
 equally well express H in terms of ', or B in terms of A.

 These favouring the magnetostatic, or Kennelly, approach (thinking of a magnetic
 dipole producing a constant external flux of B regardless of /ue, by analogy with
 electrostatic charges) would define an (effective) moment je such that

 4w 1e/t r2 (3a)

 t In the absence of any net mnagnetic pole strength, the dipole (or first-order) moment is
 in fact an invariant, independent of origin: it, and its field, can be considered independently
 of any higher moments. All these moments (dipole and higher) are relevant only outside
 the region of integration.
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 The torque on a magnet

 The B flux is then proportional toje. It is shown later that the torque exerted on this
 dipole by a uniform field Ho isje x H0, and it follows that the mutual torque between
 two dipoles jel, je2 is proportional to jelje2/Je.

 Those favouring the electromagnetic, or Sommerfeld, approach (thinking of
 a current loop producing a constant flux of H) would define an effective moment mn
 such that

 A _ /eto me x (3b)

 with the H flux proportional to me. The torque in a uniform field Bo is shown to be
 me x B0, and the mutual torque between mel and me2 is then proportional to
 /fe mel e2.

 These definitions of effective moment are quite consistent providedje = /te/ao me.
 However it has usually been assumed (see e.g. Whitworth & Stopes-Roe 197 ) that
 the magnet can be specified by its volume moments (2); clearly je and me cannot
 both be equal to the volume moments jv and mv, for which jv = It0 mv. Although
 often expressed as an argument as to whether the torque is given by j x H0 or
 m x B0, essentially the controversy has been as to which of je or me equals jv or
 mv (and is invariant to change of the external medium).
 To resolve the controversy it is necessary to determine unambiguously the field

 distribution of, and torque on, a reasonably unsymmetrical finite-sized magnet
 immersed in a permeable medium. This is now done, and for completeness the
 magnet is allowed to be 'soft'. It turns out that in general none of the four moments
 are invariant or equal, all of them depending on the shape of the magnet and the
 permeability of the outside medium as well as the properties of the magnet material.

 3. SPECIFICATION OF THE PROBLEM

 The external medium is assumed to be an incompressible fluid; it is homogeneous,
 isotropic and linear, and has relative permeability ,Ue (subscript e for external).

 Before the magnet is inserted there exists a uniform field Bo = /etoH0.o The
 medium is of sufficient extent and the field sources sufficiently distant, that the
 insertion of the magnet does not significantly alter the reluctance seen by the
 sources. Nor are the sources affected by the field of the magnet.

 The magnet material is also assumed to be homogeneous, isotropic, and linear,
 with relative permeability 1ui (subscript i for internal), but in addition to any
 induced magnetization there is a constant, uniform, 'permanent' magnetization
 Jo = Ito Mo. Thus

 B = ,o(H- M) = /to(H+ Mind) +o Mo = -tipUoH+1o Mo, (4)

 where H is the total H, due to both the external sources and the magnet itself.
 (This is a reasonable approximation to the behaviour of a well stabilized magnet.
 Mo is the magnetization at zero H, and , the 'reversible' or 'recoil' permeability;
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 for a 'perfectly hard' magnet 1/ = 1.) To enable the problem to be solved algebraic-
 ally the magnet is assumed to be of ellipsoidal shape (so that the internal fields are
 uniform) with semi-axes a, b, c.

 As div B = 0 and curl H = 0 everywhere, both inside and outside the magnet
 (except at current sources of Ho), we can specify the local fields equally well either
 by H and 0 or by B and A. For algebraic simplicity H and 0 will be used. Dipole
 moments are as defined in (3).

 As both media are effectively linear, the field distribution when the magnet is
 in the external field can be obtained by adding that of the magnet in the medium
 (H0 = 0) to that of the passive (magnet) material in the external field (M0 = 0).

 In solving the problem no representation of the magnet in terms of poles or
 currents is made; the field solutions given are simply those which satisfy the
 boundary conditions and the constitutive equations B = f(H), and in calculating
 the torque only these fields are used.

 4. PASSIVE ELLIPSOID IN UNIFORM FIELD IN PERMEABLE MEDIUM

 The ellipsoid is placed with its a axis parallel to the previously uniform field
 H0 == Ho . Inside the ellipsoid, Bf = #iu,oHf, and outside Bf = ae/oHf (subscript f
 for field). The boundary conditions are that Hf x fi and Bf i must be continuous
 on the surface of the ellipsoid, and that Hf should be finite everywhere and tend to
 Ho at large distance.

 The solution is (see, for example, Stratton I941, ? 3.27) inside:

 Hf = Hoe/Da (5)
 outside: Hf = HQ- grad qf,
 where 5f H= OxF,a() (,ai -e)/Da. (6)
 The quantity 6 is the ellipsoidal coordinate specifying the size of the ellipsoidal
 surfaces (the magnet surface is 6 = 0),

 ) - abcJ ( 2) [( a2) ( + b) ( 2)]!, T'a(6) ( 8 + a2) (s + b2) ( +'
 and Da Nauti + (1 - Na)/e = /e + Na(ti -e),

 where N- Fa(O)

 is the demagnetizing factor appropriate to the a axis.
 At large distances F(6) tends to abc/3r2, so that of becomes the potential of

 a dipole of moment
 jff/eUo = mrf =- abcHo(tJ?-?,e)/Da; (7)

 the ellipsoid produces this dipole field, together with the fields of higher multipoles.
 If the field HI is not along one of the principal axes of the ellipsoid it can be

 resolved along these axes and the three solutions added; the total internal field,
 and the total dipole moment, are still alined, but are then not parallel to H0.

 For a sphere, N = ? for all axes, and the external field is exactly dipolar.

 F. J. Lowes 558
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 The torque on a magnet

 5. FIELD OF ELLIPSOIDAL MAGNET IN PERMEABLE MEDIUM

 The magnet has M0 = Mo0 along the c axis.

 Inside the magnet Bm = ituo Hm + lo M (8)
 and outside Bm /teloHm,
 where the subscript m indicates fields produced by the magnet. The boundary
 conditions are that Hm x fi and Bm i must be continuous on the magnet surface,
 and that the fields should be finite everywhere and decrease at least as 1/r3 at
 large distance.

 Many texts give the solution for a hard spherical magnet in a vacuum. For
 a permeable medium, Wilberforce (1933) and Smythe (1939, ?12.10) give the
 solution for a hard spherical magnet, and Page (1933), Preston (I950), and Som-
 merfeld & Ramberg (1950) for a hard spheroidal magnet. I have not been able to
 find in the literature any full solution for the 'soft' ellipsoidal magnet, though
 partial solutions are given by Brown (I95I), Diesselhorst (I948), Knapp (i953)
 and Timotkin & Ciric (I971).

 The solution is in fact

 inside: Hm =-Mo NcD, (9)

 Bm =,o Motue( - N,c)IDc, (10)

 Mm = Mo[Nc + (1 - N) e/D, (11)

 outside: Hm = -grad Om, (12)

 where Om = XFc(6)Dc.
 co? ds

 Fc(6) - abc (8 + c2) [(s + a2) (s + b2) (s + c2)]-i'

 and Dc NAti + (1 - Nc)ue = jee + Nc(Cti - e),

 where N Fc(0) is the demagnetizing factor appropriate to the c axis.
 On the external surface of the magnet it can be shown that (12) gives

 Hm(g= 0)ext [- NcMo +(MO ^) f]IDC, (13)

 the result obtained by Diesselhorst (equation (21)) by a different method.
 The external field has a dipole component corresponding to a moment

 jm/ltUejUo = mm = 4abcMo/Dc, (14)

 a result obtained indirectly by Brown ( 951).
 If M0 is not along one of the principal axes of the ellipsoid it can be resolved along

 these axes; the internal fields Hm, Bm and Mm, and the effective dipole moment,
 will then all be in different directions, none of them parallel to M0.

 From (13) and (9) we see that the external H flux is 7rabMo(l - N,)I/D, and the
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 internal H flux rabiM NC/D,; the demagnetizing factor N gives the fraction of the
 total H flux from the surface which returns internally, regardless of the perme-
 ability contrast. (The usually quoted expression Hm = -NMm is true only if
 =e= 1.)

 6. DISCUSSION OF FIELD RESULT

 Equation (14) shows that, even for a hard magnet, neither effective moment
 (and hence neither flux) is independent of the outside medium; a comparison with
 (11) shows also that neither is equal to the integrated moment - for skew mragnetiza-
 tion they are not even parallel. That a volume integral over the magnet cannot in
 general give the correct field is clear from the following consideration.
 The field and potentials at any point can certainly be expressed as volume integrals

 of magnetization, but the integral must include all regions of magnetization,
 induced as well as permanent; only for a magnet in a vacuum can the integral
 be taken only over the magnet. When we represent the field of a magnet in a
 permeable medium by a single moment, this moment includes a contribution from
 the magnetization of the medium. The nature of this contribution is discussed in
 appendix I.

 Also discussed in appendix I is the exact representation of the situation in terms
 of 'fictitious' or 'bound' surface current or pole distributions. In our situation it
 turns out that two quite simple models of the magnet, in which the permanent
 magnetization MO is replaced by (constant) surface sources, also give the correct
 external field. Outside, B = aeao H as before, and the magnet material is replaced
 by a passive medium having B = aui 0o H. A 'real' or 'free' fixed surface pole dis-
 tribution MO n' (for which div B + 0) gives the correct H everywhere (and the
 correct B outside), while a 'real' or 'free' fixed current distribution MOx n/i
 (for which curl H + 0) gives the correct B everywhere (and the correct H outside).t
 It must be emphasized that these models are not exact. However, they do charac-
 terize the Kennelly and Sommerfeld approaches, and show the difficulties of trying
 to use these approaches for a finite sized magnet in a permeable medium rather than
 the classical point dipole in free space. In particular, the B flux is independent of
 iae only if the outside medium is allowed to penetrate the pole or current distribution
 (/zi = /e), or for a long thin magnet (N -> 0), while the H flux is independent only
 for a short fat magnet (N -> 1).

 The way in which Om, the total external (and internal) B flux (and hence the
 external B and H) varies with I/e can be seen by using the surface current model and
 the concept of magnetic reluctance. For a closed magnetic circuit the reluctance
 Rm relates the (constant) flux 0 to the magnetomotive force Fm by Fm = -Rm.
 With our magnet most of the flux 'leaks' sideways, but we can define an effective
 Rm by using the total flux 0m. The (real) surface current density lM X nl/i gives

 t The factor l/,ui is at first surprising, but there is an essential difference between these
 two models: a pole distribution is not changed, but a resistanceless current is reduced by
 a factor ,Ur, as space is filled with a medium of relative permeability u,r.

 560  F. J. Lowes
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 The torque on a magnet

 a m.m.f. 2cMol/,i. From ? 5 we have m = Ie t onabMo(1 - N,)I[NC,i + (1- c) /1e], so
 we obtain for the effective reluctance

 2cab - 1 Nc '1 Bim = ___ 1 N

 (The same expression can be obtained from the real situation by using

 IH = [(0mln7ab)-/oMo]/%i/o,

 and equating the line integral of H along the axis to zero.) In this expression the
 two terms obviously give the internal and external reluctances respectively. For
 constant N,, increasing pUe decreases only the external part of Rm, so Om and B
 increase less rapidly than /ue, and H decreases. For long thin magnets (N -> 0)
 the internal reluctance dominates, so 0m becomes independent of ue; for short fat
 magnets (magnetic shells; c -> 0, Nc -> 1) the internal reluctance is negligible, and
 the whole (constant) m.m.f. acts directly on the fluid, giving Om and B proportional
 to Iae, with H constant.

 7. CALCULATION OF TORQUE

 Given the field distribution, the torque on the magnet can be calculated either
 directly or by calculating the appropriate energy as a function of orientation.

 Energy calculations can be tricky, but Timotkin & Ciric (I97I) have used one
 based on bU = 5(iz) which appears to be valid and which gives the torque in
 terms of a volume integral over the magnet. (The magnet can have arbitrary shape
 and be inhomogeneous, but the resultant internal field distribution must be known.)
 Their calculation is reproduced in appendix II.

 The torque can be determined directly using the Maxwell stress concept, and
 this approach leads to a very simple interpretation. The total torque T, from both
 body and surface forces, is obtained by performing the integral

 T- e/tof rx[(H-n)H-1H2fi]dS (15)

 over any surface in the fluid medium surrounding the magnet; r is the radius vector
 from any origin, and H is the total field from all sources. (The analogous electro-
 static expression is a standard result, and (15) is derived similarly (Brown I951,
 ? 2.4).) Previous authors have integrated over the surface of spheroidal magnets.
 Diesselhorst (1948), by using (13), was able to calculate the torque when both the
 magnetization M0 and the applied field H0 were parallel to the central plane. Preston
 ( 950) calculated the torque for axial magnetization, as did Sommerfeld & Ramburg
 (I950) in the limit of a long thin magnet.

 A more general, and simpler, calculation is now given.
 If in (15) we choose the integration surface to be a sphere about the origin of r,

 the second integrand vanishes. Now expand the H of internal origin in terms of
 fields derived from spherical harmonic potentials q0.(O, A)/rn+l. The torque must

 561
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 562 F. J. Lowes

 be independent of the radius of the integration surface, so it is clear that the only
 non-zero contribution comes from the interaction of the external uniform field H0

 with the field of the central dipole. (If H0, is not uniform, then higher multipoles
 will also contribute to the torque; there will also be a net force.)
 Now at radius r a dipole of moment je = /,e/to me gives a field

 H= 3(F. ) - F,
 where F = je/u,e/,o 4r3 = me/4 Wr3. ()

 Adding this dipole field to Ho we find

 T = euof rx (HI- F)(Ho- + 2F n)dS.
 This consists of four terms of the form f r x A (B. n) dS, where A and B are constant
 vectors. Diesselhorst (I948) showed that in this case

 J rxA(B.n)dS- B x A d, (17)

 a result obtained more easily from the tensor generalization of the divergence
 theorem (Milne 1948, ? 101)

 ,f Cti n dS= tv dT.

 Hence T = 47r3 e/Jto 3F x H

 -jexHo me,x Bo, (18)
 from (16) and (14).
 Thus we have rigorously confirmed that the torque is given by the vector product

 of the appropriate dipole moment and the uniform applied field, where the moment
 is that which specifies the external field of the magnet.
 In (18) je is the total moment producing dipole field. In our situation it is the

 sum of the magnetic momentjm and that induced by the applied fieldjf. The torque
 on jf will be ignored in the following discussion. (If H0 is along one of the principal
 axes of the ellipsoid then jf x Ho = 0. However, if Ho is skew there is a torque; see,
 for example, Stratton (I94I, ? 3.29).)

 8. DISCUSSION OF TORQUE RESULT

 For our ellipsoidal magnet (18) gives

 T=Arabc /te -J xH0

 4=7abe MO x Bo. -3ec Ncti + ( -i c) a eo x 0 (e1.9) = abcNc + (1 _- N)eMo B
 We see that the torque is proportional to H0 and independent of ue only for a long
 thin magnet (N0 -> 0), and proportional to B0 and independent of ae only for a short
 fat magnet (Nc -- 1).
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 The torque on a magnet

 As the torque can be evaluated entirely in terms of the fields outside the magnet,
 it might be thought that any replacement of the magnet by a model which gives
 the same external fields could be used to determine the torque by other methods.
 This is in fact so, but care must be taken to consider all the relevant terms.

 For example, if MO is replaced by a surface current density M0 x f/,ti then
 calculation of the interaction energy by considering flux linkage with the current
 producing Ho leads to the correct torque. So also does calculating the energy re-
 quired to produce a surface pole density M. n by bringing poles either from the
 origin, or from infinity, in the presence of H0, assumed due to permanent magnetiza-
 tion.

 However, direct calculations of torque, by considering the forces on the surface
 currents or poles, give a different torque T' because they involve the demagnetizing
 factor appropriate to the direction of H0 and not that of M0. (To obtain consistent
 results we have to assume that the currents or poles are just inside the surface, so
 that the relevant fields are the internal fields.) In fact, T' is the body torque, and
 these calculations omit the torque exerted on the surface by the pressure of the
 magnetized fluid. For an ellipsoidal magnet T' = T only when /i = /e (in practice
 a hard magnet in a vacuum), when there is no surface torque, and N does not occur.
 T' = T also for a spherical magnet, for which three is no surface pressure torque
 and for which N is independent of direction, giving simplifications which can be
 misleading; Smythe's (1939, ? 12.10) correct result for the torque on a spherical
 hard magnet was obtained this way.

 Scott (I959, ? 8.3) showed that for a hard magnet in a vacuum the (body) torque
 due to H0 is given by the volume integral over the magnet of

 Mox Bf = Jox H = Jo x H,

 where Bf and Hf are the fields inside the magnet due to the external sources. (If
 these fields are non-uniform there will also be a contribution to the torque from
 the resultant body forces.) For /e + 1, and for a hard magnet (not explicitly stated),
 Brown (I95I, ? 1.3) also used Mo x Bf. It is likely that in general the body torque
 contribution is

 Mtotai x Btotal = Jtotal X Htotal

 = (JoxHf)+(Jox Hm)

 in our situation. (Note that in general Jo x H 4+ M x B.) The first term again gives
 T', the body torque from Ho. (That it is not the total torque is not stated by either
 author.) The second term is non-zero for skew Jo = Jt Mo, but is presumably
 cancelled by the appropriate surface torque.

 9. DIscusSION

 Papers on (theoretical implications of) the Kennelly/Sommerfeld controversy
 are too numerous to list. A welcome innovation was the paper by Whitworth &
 Stopes-Roe (I971), who showed experimentally that je was in fact constant for

 563
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 F. J. Lowes

 a long thin magnet. Unfortunately they interpreted their result as support for
 Kennelly (though still expected the torque to depend on the shape of the magnet).
 McCaig (1973) discussed their result and, in effect, preferred a different factorization
 of equation (14) for moment, to give the (constant) moment in vacuum together with
 a (different) shape factor, to 'defining the moment of a magnet in a medium by
 T ==j x H m x B'. Knapp (I953) discusses this and other factorizations, some
 of which use the total moment (im +jf). (In some deflexion experiments in the
 Earth's field it is this total moment which is relevant.)

 In conclusion it must be emphasized that all external effects of a (dipolar)
 magnet can be specified by one moment (though there are several ways of defining
 it). This moment is not in general invariant or equal to the volume integral of
 magnetization. Both the Kennelly and Sommerfeld notations are usable, (in the
 sense that J and M are interchangeable, and that the torque can be expressed as
 either x Ho or n x B0), but the usual formulations of both (which equate j or m
 to the volume moment) are not valid.

 I must thank the very large number of colleagues without whose helpful dis-
 cussion over two years this paper would not have been written.

 APPENDIX 1

 Integral expressions for the fields, potentials, and moments

 By considering the moment Mdr of a small volume element of magnetization
 to be an elementary dipole, we see that the resultant field at an observation point is

 H= I M+3(M-R) d7T, (Al)

 where the integration includes all regions of magnetization, induced as well as
 permanent; R is the vector from the integration point to the observation point.
 Similarly A

 J- B2 dcr, (A2)
 ___ fi MxR A J B dT. ( A 3)

 These integrals are all convergent when the observation point is in free space
 (and distant from any magnetization by a large number of lattice spacings).
 However, we would also like to use them to give the macroscopically averaged fields
 inside a region of magnetization. The 1/2 variation now gives difficulty in per-
 forming the integrations at the observation point; we must define the integrals
 as the limiting values as a small volume 6V excluding the observation point is
 shrunk to zero. It turns out that the integral (A 1) is only semi-convergent; it
 gives values ranging from H to B/#o depending on the shape of 8V. The integrals
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 The torque on a magnet

 for 0 and A are themselves convergent, but if differentiated algebraically to give
 the fields of course give (A 1) again.

 However, by using appropriate vector transformations, integrals can be obtained
 which are fully convergent. One such transformation gives

 95 = (divM)dT+ (M )dS (A 4)

 A A

 and H= ;v4: (+ -divM) dr+J (M. i)RdS, (A5) =7C R2 RZLL~I, (A 5)

 each term in the sum being the contribution from one region V of magnetization
 bounded by the surface S, A being the unit outward normal on S. Equations (A 4)
 and (A 5) are in fact mathematically identical to those we would obtain if (- div M)
 and (M- R) were the volume and surface densities of a magnetic pole distribution in
 free space. If we wish we can interpret them in terms of such a distribution of
 'fictitious' or 'bound' magnetic poles. (It is perhaps worth reminding the reader
 that /e, the relative permeability of the medium, is simply one way of representing
 the presence of induced magnetization; it does not enter into equations, such as
 (A 4) or (A 5), which directly consider such induced magnetization.) Equation (A 5)
 gives the correct H everywhere (and hence, by using the constitutive equation
 B = f(H) appropriate to the observation point, the correct B everywhere).
 Similarly, another transformation gives

 .A : (Jf(curlM)7_dr+ (Mxf i) dS (A 6) 4n R RE Jg M
 A A

 and B= /?E( (curlM) x dr+T (Mx )xRdSl (A 7)

 Again, if we wish, we can interpret (curlM) and (M x n) as volume and surface
 densities of a 'fictitious' or 'bound' electric current distribution. (A 7) gives the
 correct B everywhere.

 By expanding the surface integrand in (A 5) and (A 7) and by using the divergence
 theorem it can be confirmed that these equations do in fact give values of (macro-
 scopic) H and B/glo which differ by the local value of M.

 It must be emphasized that these transformations are purely mathematical,
 and are both valid regardless of the physical plausibility of any interpretation we
 may give to the transformed 'sources'.

 Now consider a magnet in a homogeneous permeable linear medium. As (A 5) and
 (A 7) give the correct H and B in the medium, the corresponding integrated dipole
 moments must be equivalent to je and me. In this effectively free space situation
 we must use the moment definitions of (1), i.e. those of (3) without the factor /4e;
 such moments are equal to, and will be denoted by, [j/fte] and [jte m]. If the medium

 36-2
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 is linear, in it div Me curl Me = 0; using the conventional expressions for the
 dipole moment of pole and current distributions we then have

 [jUe] = o {fr(- div Mi)drd+ r(M.i)dS-f r(M n)dS, (A 8)

 0[ee me] = a r X curl Mi dT+ + rx (Mix n) dS- r x (MeX n)dS . { fv iJs fJs }
 (A 9)

 Here V is the region occupied by the magnet, and S its surface; n has the same direc-
 tion in both surface integrals. (The corresponding terms for the outer boundary of
 the medium are omitted. This boundary would give a small uniform field at the
 observation point, and it is assumed that the boundary is sufficiently distant that
 this field can be neglected.)

 In (A 8) and in (A 9) the first two terms together give the contribution of the
 magnet material. By using the divergence theorem it can be shown that these
 'internal' contributions are equal and are in fact the 'volume' moments of ? 2,
 producing field contributions for which B = ,t0 H:

 [jil/e] = /[re mi = aojo M dr-= Ji dr

 =-o mv=Ij. (A 10)
 (It must be remembered that j' and mi are not observable quantities, and that

 the magnetization Mi of the magnet may well have been altered by the presence
 of the external medium.) It is the third term, which gives the contribution of the
 surrounding medium, which makes [je/ae] and [,me mne] differ from Jv and my; it
 can be shown that it does in fact give total moments such that

 ;efje/te] -i oge fme] or je -= eao me. (A 11)
 In the situation considered in ? 5 we have the further simplification that

 div Mi = curl Mi = 0,

 so that the only effective 'sources' are the surface pole and current distributions,
 (Mi - Me) n and (Mi - Me) x n, which turn out to be Mo - n/D0 and te Mo x fi/D.
 Putting these values into (A 5) and (A 7) gives the correct H and B respectively
 everywhere, both inside and outside the magnet. However, such a 'free space'
 representation cannot easily be extended to the externally applied field Bo = ue/o Ho,
 as the details of its sources are not specified.

 APPENDIX 2

 Summary of a calculation given by Timotklin & Ciric (I971)

 A circuit carrying current ia produces the applied field Ba == Ieo Ha. With ia = 0
 a region V is replaced with magnetized material which gives Bm = /ti0o Hm +H Q0 Mo
 inside V, and Bm = /e#oHmr outside (region W). (Here ti, e, , a and MQ can be
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 The torque on a magnet  567

 arbitrary functions of position.) The field Bm has vector potential Am and produces
 a flux linkage 0 with the current circuit.

 The interaction energy is (Stratton I94I, ? 2.14)

 Uam a = i = b Ia - Amdr= f(curlHa) -AmdT

 -f div (HaxAm)dT+ fHa curl Am dr.
 By Gauss's theorem the first integral is zero, so

 Uam f Ha *Bm dT= Ha * (ti /0o Hm +Ito Mo) dr + Ha- (,e/to Hm) dr.
 V+W v W

 -But fW(te/to Ha) Hm dT - (ieto Ha) Hm dT

 as curl Hm = 0 and div (te/uo Ha) = 0 everywhere (Abraham & Becker 1937, p. 39), so

 Uam = fBHa[(/ti - e) I/o Hm + uo Mo] dT.

 If in fact /ue and Ha are constant in the region of interest it follows that the torque
 on the magnet is

 T = [(/i- /e) /o Hm + to Mo] dT x Ha.
 v

 For uniformly magnetized ellipsoide this gives the same result as ? 7.
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