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4 Soft Ferrites

1.2.2. Magnetization

Electrons spin about an axis and, by virtue of this spin
and their electrostatic charge, exhibit a magnetic moment.
Normally, in an ion with an even number of electrons,
the spins or moments cancel, and when the number of
electrons is odd there will be one uncompensated spin.
For the transition metals the number of uncompensated
spins is larger, e.g. the trivalent Fe ion has a moment
equivalent to five uncompensated spins.

When the atoms of these transition metals are com-
bined in metallic crystals, as they are, for example, in
iron, the atomic moments are spontaneously held in
parallel alignment over regions within each crystallite.
The net number of uncompensated spins will be less than
for the isolated ion due to the band character of the
electron energies in a metal. The regions in which
alignment occurs are called domains and may extend
over many thousands of unit cells. The spin orientation
is along a direction of minimum energy, ie. external
energy is required to deflect the magnetization from this
direction and if the external constraint is removed the
magnetization will return to a preferred direction. This
directional or anistropic behaviour may arise from a
number of factors. Crystal anisotropy is inherent in the
lattice structure; the magnetization always preferring the
cube diagonal or cube edge. Mechanical strain can cause
anisotropy and the shape of the grain boundary will
nearly always produce anisotropy. The result is that the
magnetization is held to a certain direction, or to one of a
number of directions, as if by a spring. The greater the
anisotropy, the stiffer the spring and the more difficult
it is to deflect the magnetization by an external magnetic
field, ie. the lower the permeability (see Chapter 2 for
definitions of permeability, etc.)

The parallel spin alignment implies that the material
within the domain is magnetically saturated. The mag-
netization is defined as the magnetic moment per unit
volume and is therefore proportional to the density of
magnetic ions and to their magnetic moments. This
magnetism arising from parallel alignment is called
ferromagnetism.

In a ferrite the metal ions are separated by oxygen ions.
As a result of this the ions in the 4 sub-lattice (tetrahedral
sites) are orientated antiparallel to those in the B sub-
lattice (octahedral sites). If these sub-lattices were identical
the net magnetization would be zero in spite of the
alignment and the ferrite would be classified as anti-
ferromagnetic. In the majority of practical ferrites the
two sub-lattices are different in' number and in the type
of ions so that there is a resultant magnetization. Such
materials are classified as ferrimagnetic. For example, in
the foregoing section it was stated that in the general
spinel molecule MeFe,O, one metal ion occupies an 4
site while two occupy B sites ; thus in the case of MnFe,O,

where both metal ions have 5 uncompensated spins the
net magnetization is 5 spins per molecule. This compares
with a net moment of 22 spins per atom in the case of
metallic iron. For this reason a ferrite has a much lower
saturation magnetization (u,M,, ~ 0-5 Wb.m™?) than
metallic iron (about 20 Wb.m™?2). However, in spite of
the partial cancellation of the spin moments, ferrites
possess sufficient saturation magnetization to make them
useful in a wide range of applications.

The crystallite is normally divided into a number of
domains of various spin orientations, e.g. opposite (180°)
and orthogonal (90°), so that the crystallite has very little
external field arising from the internal magnetization, i.e.
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Fig. 1.2. Transition of spin direction at a 180° Bloch wall
(domain boundary)

the demagnetizing fields are small. The domain boun-
daries (Bloch walls) consist of regions many unit cells in
thickness in which there is a gradual transition of spin
orientation, see Fig. 1.2. This transition must act against
the anisotropic forces and the forces which tend to hold
the spins in alignment and therefore involves storage of
energy. The number and arrangement of domains in a
crystallite is such that the sum of the energies, mainly
the wall energy and the demagnetizing field energy, is a
minimum. Fig. 1.3 shows an idealized arrangement of
domains. If an external field is applied, the domain walls
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experience a pressure which tends to make those domains
having a component of magnetization in the direction of
the field grow at the expense of the unfavourably
orientated domains.

In practice it is energetically favourable for domain
walls to pass through certain imperfections such as voids,
stressed regions, non-magnetic inclusions, etc. Fig. 1.4 is a
simplified representation of the situation. In the absence
of an applied field the walls are straight and might occupy
the positions shown in (a). The dots represent imperfec-
tions. If a small field is applied in the direction shown (b)
the walls remain pinned by the imperfections but bulge

Fig. 1.3. Idealized
domain pattern
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Fig. 14. A simplified representation of the part played by domain boundaries in the process of magnetization
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Fig. 1.5. Hysteresis loop

as would a membrane under pressure. These movements
are reversible. The change in magnetization is restricted
by the stiffness of the walls. Under these circumstances
the lower part of the magnetization curve is traced. As
the field increases, the pressure on the walls overcomes
the pinning effect and the walls move by a series of
jumps (c, d, e). These movements are irreversible, i.e. if a
certain field change is required to produce a jump, the
reversal of that change, ie. the restoration of the field,
will not in general cause the wall to jump back. During
this part of the process the magnetization curve rises
steeply. Finally, when all the domains have been swept
away, further increases in field strength cause the magne-
tization vector to rotate reversibly towards the external
field direction until complete alignment is approached (f)
No further increase in magnetization is then possible
and the material is said to be saturated. Normally in a
polycrystalline material there is a wide distribution of

grain sizes, domain sizes, orientations, etc., and irrevers-
ible and reversible processes merge together. However
the above illustration represents the main stages in the
magnetization process.

If the magnetic field, having reached the maximum
value corresponding to Fig. 1.4(f), is made to alternate
cyclically about zero at the same maximum amplitude,
the initial magnetization curve will not be retraced. Due
to the irreversible domain wall movements the magne-
tization will always lag behind the field and an open loop
will be traced. This phenomenon is known as magnetic
hysteresis and the loop is called a hysteresis loop,
see Fig. 1.5.

The ease with which the magnetization may be changed
by a given magnetic field depends on the anisotropy, i.e.
magnetic stiffness, whether the change is due to reversible
or irreversible wall movements or rotations. A low aniso-
topy leads to a large induced magnetization for a given
magnetic field and therefore to a large value of sus-
ceptibility and permeability (see Chapter 2).

1.3. MANUFACTURE
1.3.1. Manufacturing processes

The processes used in ferrite manufacture on an industrial
scale are similar to those used in the manufacture of
other ceramics. The description of these processes given
in this chapter is intended mainly for the information
of the user, so that the possibilities and limitations of
manufacture may be taken into account when a particular
ferrite core design or application is being considered.



Chapter 2

The Expression of Electrical and Magnetic

Properties

2.1. MAGNETIZATION

The magnetic field strength, H, inside a very long uniform
solenoid having N, turns per axial length ! and carrying
I amperes is given by
NI
H=——
l

Its direction is parallel to the axis of the solenoid and it
is uniform across the internal cross section.
The associated flux density, B, is given by

B = uH

where y, is the magnetic constant or the permeability of
free space. It has the numerical value 4n x 10”7 and has
the dimensions henries/metre or [LMT~2I~2]. Thus in

Am~! @.1)*

teslat (T), i.e. Wb.m ™2 (2.2)

*Many of the quantities used in this section are vector quantities
and therefore the equations involving them are vector equa-
tions. However, in the present limited treatment, the relative
directions of the vectors are implied in the text so no special
symbols will be used to denote vector quantities or vector
operations. For a more general treatment the reader is referred
to textbooks on electromagnetic theory.
+The unit of flux density in the SI units has been named the
‘tesla’ and has the symbol T, (see IEC Publication No. 27).
It has the units Wb.m~2 so there is no change in its value:
1T =1Wbm 2= 10*Gs
1 mT = 10 Gs

the SI units, flux density is dimensionally different from
field strength.

If the solenoid is now filled with a magnetic material,
the applied magnetic field will act upon the magnetic
moments of the ions composing the material. This process
has been described qualitatively in Section 1.2.2. The ions,
by virtue of the spinning electrons, behave as microscopic
current loops each having a magnetic moment. These
moments may, in general, be considered to be aligned
parallel to each other over small regions, or domains,
within the material. In the demagnetized state the
domains are distributed so that the vector sum of the
magnetization of the domains is zero. Under the influence
of an applied field the ion moments are re-orientated,
either by the growth and contraction of the various
domains or by the rotation of the magnetization within
them, so that the ionic moments effectively augment the

4n NI

21) H=
@b 101

Oe

(1 Oe ~ 80 Am™?)

22) B=H Gs

In the CGS system of units H and B have the same
dimensions and therefore the oersted and the gauss are
strictly the same units.
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applied field. This increase in magnetic field is called the
magnetization, M, and it is expressed in A.m~1. It is the
vector sum of the magnetic area moments* of all the
microscopic currents in a given volume of material,
divided by that volume. The internal magnetic field, H,,
becomes

NI

Hy==+M

and the flux density becomes:

Am™! 2.3)

T, (Wb.m~2) 2.4)
T, (Wb.m~2) 2.5)

B = pH; = p(H+M)
or B=puyH+J

where J is the magnetic polarization in teslas; it is
sometimes referred to as intrinsic flux density

J=uM T (2.6)

Thus M is the increase in the field strength due to the
magnetic material and J is the corresponding increase
in flux density. The ratio of the magnetization and the
applied field strength is called the susceptibility, «; it is
dimensionless.

From Egn 2.4

B M

i 1+— =@ 2.7
i uo<+H> Ho(1+K) @7

This quotient of flux density and applied field strength is
called the absolute permeability and is sometimes
denoted by u. However it is more usual to show it as the
product of the magnetic constant and a dimensionless
constant called the relative permeability, u,. In the chapters
that follow, the relative permeability is such a widely used
parameter and is given such a variety of qualifying sub-
scripts that it is convenient to drop the adjective ‘relative’.
Thus permeability will refer to the dimensionless ratio
and in equations it will normally be associated with the
magnetic constant, u,. The absolute permeability, as such,
will not be used.

*Magnetic area moment, m, is the product of a current and
the area of the loop in which it flows, the direction is normal
to the plane of the loop and when viewed in this direction
the current has clockwise rotation.

B

— 238)

from which it follows that
Kk=pu—1 2.9)

The applied field strength may be determined by
measuring the current and using Eqn 2.1. The measure-
ment of flux density depends on the law of induction, i.e.

e=—dg/dt V (2.10)

where ¢ is the magnetic flux i.e. the area integral of the
flux density; it is expressed in Wb.

In the ideal solenoid ¢ = BA where A is the cross-
sectional area of the magnetic material. If N, turns are
wound tightly round the magnetic material the e.m.f.
induced will be

e= —N,AdB/dt V (2.11)

By integration, the average e.m.f. during a change of

flux density, AB, is:

E=—N,AAB V (2.12)

The negative sign indicates that the e.m.f. is in such a
direction that it would produce current opposing the
change of flux. If the flux density is sinusoidal, e.g. if
B = Bsin wt, then from Eqn 2.11, dropping the sign:

e = N,ABw cos wt = E cos wt
SE=wBAN, V
_ wBAN,

/2

If the current in the ideal solenoid is increased from
zero, the field strength increases and the magnetization
will increase non-linearly by the processes illustrated in
Fig. 1.4. It is more usual to consider the dependence of
the flux density on field strength. Such a B-H curve is
shown in Fig. 2.1. Starting with the magnetic material in
an unmagnetized or neutralized state the B—-H curve

will follow the path eba. If, on reaching the point a, the
field strength is decreased, the B~H curve will follow the

or E (2.13)

NI
23) H, = "10[1 +4n M Oe

(2.4)
}B:Hi=H+4nM Gs
2.5)
2.7) 5 = 1-|-47tM = 1+4nK
H H
08 o =u

29) 4nk=pu—1

d¢
210) e= ——x107% V
(2.10) e a =

dB
Q1) e= ~Nydx107° ¥

(212) E= —N,AABx1078 A\
®wBAN,

NG

213) E = x 1078 A"
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Fig. 2.1. Hysteresis loop
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upper limb of the open loop. As explained in Chapter 1,
a reason for this lag in the change of flux density is the
irreversible movement of the domain walls. If, on reaching
point d, symmetrical with a, the field strength is increased
again towards its former positive maximum value, the
lower limb of the loop will be traced. The loop is called a
hysteresis or B-H loop. Although, on the first cycle, the
loop may not close exactly, a number of cycles will result
in a closed loop. If the excursions of H are symmetrical
about the origin the material is then said to be in a
symmetrical cyclic magnetic state.

If the field strength is large enough to take the material
substantially into saturation, ie. to a point where the
magnetization M cannot be significantly increased, then
the intercept of the hysteresis loop with the B-axis, B,
(or —B,), is referred to as the remanence of the material
and the intercept with the H-axis, H, (or —H,), is referred
to as the coercivity. The tips of loops for smaller excur-
sions of H lie very close to the initial magnetization
curve oba.

Since B is a two-valued function of H, the instantaneous
ratio B/H depends on the magnetic history. However in
alternating magnetization it is usually relevant only to

consider the peak amplitudes of B and H, i.e. the tips of
the loops. If the material is in a symmetrical cyclic state
and H is vanishingly small, the permeability is designated
u,, the initial permeability. It is 1/p, times the slope of
the line oe. If H is not vanishingly small, then the per-
meability is referred to as the amplitude permeability
designated p,. It is 1/u, times the slope of the line con-
necting the origin to the tip of the loop produced by that
particular value of H. As H increases, u, increases, until
the tip of the loop reaches b and the slope of the line ob is
the maximum value of pu,. ’

A non-symmetrical or minor loop is traced if, on
reaching a point such as ¢, the field variation is reversed
and the material is cycled between ¢ and f. The slope of
¢f divided by p, is called the incremental permeability,
u,, and if the amplitude of the excursion is made van-
ishingly small it becomes the reversible permeability, ,-
Finally, the slope at any point on a hysteresis loop or
curve is referred to as the differential permeability.

In principle B, H and p have meaning and may be
observed without the need for windings, e.g. in a wave-
guide or a cavity. However; in the present context, it is
by means of windings on magnetic cores that magnetic
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This may be derived more convincingly by considering
the derivation of Eqn 2.78 and replacing the Peterson
coefficient, which depends on p, by the Legg coefficient,
which does not. Using the relation given in Table 2.1,
Eqn 2.76 becomes

n _ @ pwH?
"o 5

If the magnetic circuit has an effective permeability u.,
then this may be substituted for p. It then follows that

B3azlueBa
B, 25
or 1313;.:_.“#33.&

E, 5 2n pu

= 06 tan 5.,5‘; from Eqn 2:68

The other intermodulation amplitude ratios expressed
in terms of tan &, in Table 2.2 may be similarly converted.
The derivation of the relative magnitudes of the dis-
tortion and intermodulation e.m.f's in Section 2.2.7 was
based on the assumption that the current wave is sinu-
soidal. However, the magnitude of the distortion e.m.f.

(a)
Ia
T 1]
E°G'> " ZBé Ug+Ung
Ena
(b)

Fig. 4.6. Distortion voltage across the terminals of a loaded
inductor or transformer

will be substantially the same even if the applied voltage
waveform is sinusoidal, for although, the resulting current
waveform will be non-sinusoidal, the amount of distor-
tion considered in an analysis confined to the Rayleigh
region is so small that the error in neglecting it will be
of second order.

Referring to Fig. 4.6(a), Z,, represents the impedance
due to the magnetic material and it has in series with it a
distortion generator, E,,, where n represents the order
of the distortion product. The impedance Z, represents

the source impedance, the winding resistance being
assumed negligible. If Z, — oo, the situation is in
accordance with the analysis in Section 2.2.7. The sinu-
soidal source generator, E,, will drive a sinusoidal current
at frequency f, through the inductor and the full distortion
e.m.f. will appear across the inductor terminals together
with the fundamental voltage, U,. Therefore the distortion
ratio E,,/U, = U,,/U, may be measured across the
terminals of the inductor.

If Z, is not infinite, the distortion generator will not
have an open-circuit and a distortion current, I,,,, will
flow.

- Ena
 Za+ 2

where Z, and Z,, are the impedances observed at the
distortion frequency.

Assuming that the amplitude of the fundamental e.m.f.
across the inductor is unchanged and the winding
resistance is negligible, the distortion voltage ratio
across the terminals will be

Una Ena_I naZm
u. U
Ena Za
T U, Za+Z,

na

(4.58)

If, as in the low frequency equivalent circuit of a
transformer (see Fig. 7.3), there is also a load impedance,
the circuit appears as in Fig. 4.6(b). In this case

Ua Ena Z
v, U,Z+2Z,

(4.59)

where Z = Z,Zp/(Z ,+ Zg), all impedances corresponding
to the distortion frequency.

In a well designed transformer Z is usually much
greater than Z at the distortion frequencies so the
distortion voltage ratio will be much less than the
distortion e.m.f. ratio.

4.3. OPEN MAGNETIC CORES
4.3.1. General

The magnetic cores considered so far have had either no
air gaps or air gaps so small that the flux could be
assumed approximately constant round the magnetic path,
ie. the lines of flux leave the magnetic material mainly
at the surfaces forming the air gap. When the gap becomes
an appreciable fraction of the total magnetic path length,
the greater reluctance of the gap causes the flux to leave
the magnetic material before crossing the ends of the core
which form the gap and the flux is not constant within
the core. This invalidates the foregoing treatment and calls
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Fig. 4.7. Magnetic flux associated with: (a) a very long air-

cored solenoid; (b) a very long solenoid enclosing a very long

ferromagnetic cylinder; (c) a very long solenoid enclosing a

short cylindrical core; (d) a short cylindrical core immersed in a

uniform magnetic field. (upper half: component fields, lower half:
resultant field)

for an approach which takes this fringing or leakage flux
into account.

The most common form of ferrite core having an air
gap large enough to cause appreciable leakage flux is a
simple cylindrical or rod core and this section will be
mainly concerned with this shape.

Fig. 4.7(a) represents an infinitely long solenoid con-
taining no magnetic material. The solenoid carries -a
current I so the internal field strength is NI/L The flux
density inside the solenoid, represented by the long
arrows, is B = puH and the flux density at all points
outside is zero.

The next diagram (b) shows the same solenoid con-
taining a very long magnetic core. In addition to the

applied field H there is now a field due to the alignment
of the magnetic moments of the atomic currents. In a
ferromagnetic or ferrimagnetic material the net effect
of these atomic currents is to enhance the applied
field giving rise to an increased flux density represented
by the short arrows. The total flux density in the solenoid
is now

B=pH+J T (4.60)

where J is the magnetic polarization or intrinsic mag-
netic flux density in tesla (weber. m™2), see Section 2.1.
The exterior flux density is still zero because the fields
due to the atomic currents cancel at all points outside
the core.

If all but a short centre section of the core is removed
it is clear that the total field acting in the remaining
section will be diminished, since the atomic fields of the
removed portions no longer contribute, (see Fig. 4.7c).
This reduction may be considered to be due to a reverse
or demagnetizing field which has neutralized the atomic
fields that were previously there. The moments of the
atomic currents no longer cancel in their effect outside
the solenoid and so an exterior or leakage field exists.
Within the remaining portion of the cylindrical core the
resultant field will, in general, vary from a maximum in
the centre to a minimum at the ends. This may be re-
garded as due to a non-uniform distribution of the
demagnetizing field. In the special case of the remaining
portion being an elipsoid the internal field and flux
density are constant, and the demagnetizing field is
constant.

The demagnetizing field at the centre of the core may
be expressed as

Hy= —NJJu,= —NM, Am™! (4.61)

where J, is the magnetic polarization at the centre of
the core and N is called the demagnetizing factor. This
factor is considered in more detail later. The flux density
in the centre of the core is now given by

B, = uH+J, +uHp (4.62)
= Jorp (H-N) 1 4.63)
Ho
from 4.61
Bc _Jc c oH
wHe — p N

Jc =Bc_ﬂoHc_BC—'ﬂ0'Hc

(4.60) B=H+4nM  Gs

where M is the intensity of magnetization or magnetic
moment per cm?®

@4.61) Hy— —NM,  Oe
Note: (N)cgs = 4n(N)st

(4.62) B, = H+4nM,+Hp  Gs
(4.63) B, = 4nM+H+NM, Gs
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since the magnetic polarization at the centre, J =
B,—u,H, from Eqn 4.60, where H, (= H—NJ /u,)
is the actual field strength at the centre of the rod. The
permeability of the material is pu = B/u,H, while the
overall permeability is denoted by u,.q and is defined by
Ihoa = Bo/u H (H being the applied field).

Simplifying the above equation

bt/ N N
p=1 peg \1—1/u

Since u is nearly always much greater than unity, this
equation simplifies to

11

H Hroad
So far p,.4 has been defined as the ratio of the flux density
at the centre of the cylindrical core in Fig. 4.7(c) to the
flux density in the centre of the solenoid in Fig. 4.7(a).
If, instead of being enclosed by a long close-fitting sole-
noid, the short cylindrical core were introduced into a
relatively large region in which there existed, before the
presence of the core, a uniform field H, then the situ-
ation would be similar to that depicted in Fig. 4.7(c)
except that the field, H, would no longer be confined to
the interior of the solenoid but would occupy the whole
region. It would combine with the leakage field to give a
resultant field distribution as shown in Fig.- 4.7(d).
The upper part of this figure shows the component
fields while the lower half shows the resultant field.
The value of u,4 derived above may now be given an
additional definition; it is the ratio of the flux density
at the centre of a cylindrical core aligned in a uniform
field, to the flux density existing there in the absence of
the core. piq thus differs from ., the latter referring to
a gapped core in which the total flux does not vary
significantly along the magnetic path length.

The value of the demagnetizing factor N depends on
the geometry of the core and to a lesser extent on its
permeability. Fig. 4.8 gives values for cylinders and
ellipsoids of revolution. These have been calculated
from formulae derived in the literature.%”-8 It will be
noted that the demagnetization factors of the ellipsoids
do not depend on the material permeability. For any
body, the sum of the demagnetization factors, relating to
three orthogonal axes of that body, is unity. Thus all the
ellipsoid demagnetizing factors approach 1/3 as the
ellipsoid shape approaches that of a sphere. The demag-
netization factors of the cylinders depend on both the
dimensional ratio, m (which in this case equals length/
diameter), and also on the material permeability.

(4.64)

-N (4.65)

Using some of these data in Eqn 4.65, u,.q has been
calculated as a function of length/diameter ratio for
cylinders, with the material permeability as a parameter.
The results are shown in Fig. 49. This graph shows that
when the material permeability is low, the value of
Uroq 1S asymptotic to the material permeability as the
rod becomes more slender. This is because the de-
magnetizing factor becomes very small; from another
point of view it could be said that the effective air gap
becomes very small. When the material permeability is
high the demagnetizing factor or the effective air gap
does not become negligible within the practical range of
slenderness considered. Even so, the graph shows that
rod permeabilities of up to 200 may easily be obtained
with practical ferrite rods.

If the ferrite core is a tube having the same material
permeability and the same outside dimensions as a rod,
then u,.q will be the same, i.e. the flux density in the ferrite
half way between the ends of the tube will be y,. y1,,4 times
the field strength which would exist there in the absence
of core. However, the total flux passing through the centre

portion of the core would be less than that for a solid rod

by the ratio of the cross-sectional areas.

4.3.2. Flux distribution along a cylinder immersed in a
uniform magnetic field

It has been seen that when a short cylindrical core is
immersed in a uniform field, the flux density varies along
the length. The distribution depends on the dimensional
ratio of the core and on the permeability. It has been
calculated by Warmuth® for cores of infinite permeability.

Fig. 4.10(a) shows the measured distribution for a

number of cylinders representing typical combinations of
permeability and dimensional ratio. Three types of
distribution may be distinguished :

(a) Magnetically long cylinders, i.e. m large enough to
make p,,q — p. This gives a rather flattened curve
which falls to a low value at the ends of the rod.
The lower the material permeability or the higher
the value of m the flatter the distribution.

(b) Intermediate cylinders, i.e. m such that u.4 is less
than, say, 0-8u. An approximately parabolic dis-
tribution is obtained. This distribution is similar
to that calculated by Warmuth for a cylinder of
infinite permeability. If the rod is geometrically
short, i.e. such that m — 3 or less, then the next
result applies even if p 4 — U

(c) Geometrically short cylinders, ie. where m— 1.
This distribution is approximately parabolic but is
shallower than in (b) ie. it gives a relatively high

1 1 1 N
(4.64) —— = -
u= Hroa 1- 1//"‘ 4n

N

1
(4.65) — ~
I3 Hroa 4n
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(a) Flux density distribution as a function of fractional distance from centre
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(b) E.mf. averaging factor, F », as a function of the averaging length, centrally located

Fig. 4.10. Distribution of flux density measured along various types of ferrite cylinders im-
mersed in a uniform field
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value of flux density at the ends of the rod. In the
limit as m — 0 clearly the flux density will become
uniform along the axis.
Any actual example may be identified by its value of u
and m as corresponding to, or lying between these types.
When the field becomes very large the cylinder may
approach saturation at the centre and the permeability
may vary from a low value at the centre to a high value
at the ends. This tends to make the flux density more
uniform over the centre region and the distribution
approaches that of (a) above.
A short coil placed in the centre of a rod, will have an

Soft Ferrites

em.f, E, induced in it corresponding to the central flux
density B,. If the length of the coil is now increased
without altering the number of turns the e.m.f. will fall
since it will correspond to the average flux density in the
part of the rod covered by the coil. The ratio of this e.m.f.
to the centre em.f, E/E, = B averaged over the length of
coil divided by B.. This ratio is called the e.m.f. averaging
factor, F 4. This factor is given in Fig. 4.10(b) as a function
of the fraction of the rod covered by the coil, for the three
distributions distinguished above. From this graph the
approximate value of F, may be found for any type of
ferrite cylinder immersed in a uniform field.
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(b) E.mf. averaging factor, F 5, as a function of the averaging length, centrally heated

Fig. 4.11. Distribution of flux density measured along a ferrite cylinder energized by a central
solenoid, the parameter being the fraction of the cylinder covered by the solenoid. The result
is almost independent of .,
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