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Summary

Generaly in the study of magnetism, and specifically for micromagnetics simulations, one

needs to know the magnetic field ~HM inside a macroscopic magnet, that is caused by

the magnetization ~M (the dipole moment per unit volume) of that magnet itself. Some

aspects of how that demagnetization field can be found are discussed. There are two basic

cases: (1) The demagnetization field ~HM inside a finite element, that is caused by ~M of

that particular element; (2) The demagnetization field caused by one finite element, but

measured at the position of another element. The discussion here is based on continuum

description of the magnet and the field, although it can be connected to an alternative

analysis that considers the superposition of many fields from a multitude of individual

magnetic dipoles.

1 The magnetic field inside a magnet: Basic theory

In solving magnetostatics, and even electrodynamics, there there are no magnetic monopoles. So
the magnetic induction ~B obeys a Gauss’ Law where there is no fundamental source charge:

~∇ · ~B = 0, ~B = µ0( ~H + ~M). (1.1)

Here ~M is the dipole moment per unit volume (magnetization) and ~H is called the magnetic field, or
really, for the situation considered here, the demagnetization field. The magnetic field is important
in that it determines part of the magnetic energy in the system, according to a volume integral,

UM = −1

2

∫

dV ~M · ~H. (1.2)

The equation for the divergence-free ~B can be rearranged as

~∇ · ~H = −~∇ · ~M. (1.3)

This suggests the idea that the magnetic field ~H is generated by an effective magnetic charge density,
given by

ρ = −~∇ · ~M. (1.4)

This is not a monopole density! In a situation where there are no free currents (current density of

free charges, ~J = 0), the magnetic field can be found from a magnetic potential,

~H = −~∇Φ (1.5)

This leads to the Poisson equation to be solved to get the demagnetization field inside the magnet:

∇2Φ = −ρ. (1.6)

For three dimensions, this is solved using the potential of a unit point charge as the Green’s function:

G(r) =
1

4π|r| . (1.7)
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Then the solution of the Poisson equation for the potential is:

Φ(r) =

∫

dr′ G(r − r′)ρ(r′) =

∫

dr′
ρ(r′)

4π|r − r′| =

∫

dr′
−~∇′ · ~M(r′)

4π|r − r′| (1.8)

This gives the solution either directly from ρ, or from the divergence of ~M . But in some situations,
these are not as convenient as obtaining Φ directly from ~M . So one can do an integration by parts
here, using some vector calculus manipulations, letting the gradient act instead on the Green’s
function:

Φ(r) =

∫

dr′ ~∇′

(

1

4π|r − r′|

)

· ~M(r′) (1.9)

There would have also been a surface term, but by taking that surface outside of the magnet, its
contribution is zero. So another way to write this is seen to be

Φ(r) =

∫

dr′
(

r− r′

4π|r − r′|3
)

· ~M(r′). (1.10)

This defines another Green’s function, a radial vector to be used acting directly on ~M ,

~K(r) =
r

4π|r|3 → Φ(r) =

∫

dr′ ~K(r − r′) · ~M(r′). (1.11)

Also note the simple relation between the G and the ~K (radial component only) Green’s operators:

Kr(r) = − d

dr
G(r) =

1

4πr2
. (1.12)

This latter form using ~K is preferred if we want to calculate the field without going through the
intermediate step of getting the charge density, which be a confusing physical concept anyway (at
least, if you think there should be some physical experiment to detect ρ, on which its reality could
be based).

In this last form, the Green’s operator ~K acts directly on the magnetization. We could finally
take the gradient w.r.t. r to get ~H , however, without some special averaging procedures, that can
lead to an undefined integral. So it is better to wait to do that. It is interesting to realize that
equation (1.10) is simply a representation of the effective magnetostatic potential around a dipole
(then summed over dipoles). This is because the well-known formula for the potential of a point
dipole ~p (could be magnetic or electric) at the origin, is

Φ(r) =
r · p
4πr3

. (1.13)

In (1.10), each dipole is dV ~M(r′), and thus one needs the displacement from its position, r − r′.
Now, if the gradient of the potential of a point dipole is performed, it leads to the other well-known
expression for the field caused by that point dipole.

~H = −~∇Φ =
1

4πr3
[3r̂(r̂·p) − p] (1.14)

It is good to point out that in a magnet that is “uniformly magnetized,” the internal charge
density ρ is zero within the magnet. So how can there be any ~H? The answer is that at the surface
of the magnet, there is a discontinuous change in the magnetization; it suddenly goes from some
nonzero value to zero. This change corresponds to a delta-function charge density. Stated otherwise,
Gauss’ Law used on ~H (i.e., the divergence theorem applied to a pillbox at the surface) will tell us
that there is a local surface charge density, given by

σ = ~M · n̂, (1.15)
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where n̂ is the outward normal vector from the surface. Mostly, I will use this surface charge density
as generating the field, because this is the most consistent way to think of doing the continuum
field mechanics, that does not have singularities. (One could imagine trying to sum over fields of
individual dipoles. It does not work out well in all cases.)

Usually the demagnetization field, the charge density, and the surface charge density, are given the
subscript M to show they are those associated with or caused by ~M . Here I suppress this subscript;
I only discuss these demagnetization quantities. There is no external field being considered.

2 The magnetic field inside a cylindrical magnet

First, consider a magnet of length L along the z axis, which is the longitudinal axis of a cylinder.
The upper end lies at z = +δ, the lower end at z = −δ, so that the length is L = 2δ, and z = 0 is
at the middle of the cylinder. The cross-section could be a circle of radius R, for most simplicity,
but it doesn’t absolutely have to be. For the circular cross section, there is no need yet to make any
special assumption about the radius R compared to the cylinder length L.

2.1 Longitudinal magnetization Mz

Initially, suppose the cylinder is magnetized in the z direction, that is, along its axis of symmetry.
Then ~M = Mz ẑ. This places surface charge densities of σ = ±Mz at z = ±δ, respectively. So the
top end has positive charge, the bottom end has negative charge.

To find the potential at an observer point r = (x, y, z), inside the magnet, consider the positive
source charges at r′ = (x′, y′, δ), and the negative source charges at r′ = (x′, y′,−δ). From the Green
function integral over charge density, one has now only surface integrals on the ends,

Φ(x, y, z) =
Mz

4π

∫

dx′dy′

{

1
√

r̃2 + (z − δ)2
− 1
√

r̃2 + (z + δ)2

}

. (2.1)

To save space, I wrote r̃2 = (x − x′)2 + (y − y′)2 here, and in what follows this may be used again.
The integral is over the cross-section of the cylinder.

If we want to just find the field in the center of the cylinder, it is not so difficult, putting here
x = y = 0. Then ~Hz can be found as a function of z. In this case there is dependence only on
r′ =

√

x′2 + y′2 and only a radial integration is needed (dx′dy′ → dθ′r′dr′),

Φ(z) =
Mz

4π

∫

dθ′
∫

r′dr′

{

1
√

r′2 + (z − δ)2
− 1
√

r′2 + (z + δ)2

}

. (2.2)

The integration is quite simple, if there is circular symmetry. For a circular cross-section, it gives

Φ(z) =
Mz

2

[

√

r′2 + (z − δ)2 −
√

r′2 + (z + δ)2
]R

0

=
Mz

2

[

√

R2 + (z − δ)2 −
√

R2 + (z + δ)2 − |z − δ| + |z + δ|
]

(2.3)

The resulting field has to be an even function of z. Thus it can be calculated for z > 0; the result
for z < 0 will be symmetrical. Indeed, for any z between ±δ, this is

Φ(z) =
Mz

2

[

√

R2 + (z − δ)2 −
√

R2 + (z + δ)2 + 2z
]

(2.4)

Then the field on the axis of the cylinder is found quickly,

Hz = −dΦ

dz
= −Mz

[

1 +
1

2

z − δ
√

R2 + (z − δ)2
− 1

2

z + δ
√

R2 + (z + δ)2

]

. (2.5)
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Note the somewhat surprizing result. At z = 0, the last terms equal each other and combine, to give

Hz(0) = −Mz

(

1 − δ√
R2 + δ2

)

≈
{

−Mz
R2

2δ2 for δ � R

−Mz

(

1 − δ
R

)

for δ � R
(2.6)

The field points opposite to ~M , which is why it is demagnetization. Further, its strength depends on
the aspect ratio of the cylinder. Note the limiting behaviors. When the cylinder is long and thin, the
longitudinal field at its center gets very small. On the other hand, if the cylinder is short and wide,
the longitudinal field at its center is maximized, nearly equal to the strength of its magnetization.
This latter case corresponds to the strongest demagnetization that can take place.

Note the reason for the name, demagnetization. In some situations, ~M could be generated by
the action of an externally applied field, according to ~M = χ ~Hext, where χ > 0 is a paramagnetic
susceptibility. Then the total magnetic field in the sample will be the conbination of applied field
and this demagnetization field. They oppose each other, hence, the demagnetization field tends to
reduce the internal effect of the applied field. It seems to prevent the applied field from entering the
sample.

2.1.1 Average of Hz

It is common to want to know the average of the magnetic field in the sample. This can be done
easily for the field on the axis of the circular cylinder. The average over z is simple:

Hz =
1

L

∫ δ

−δ

dz Hz(z) = −Mz −
Mz

2L

∫ δ

−δ

dz

[

z − δ
√

R2 + (z − δ)2
− z + δ
√

R2 + (z + δ)2

]

= −Mz −
Mz

2L

[

√

R2 + (z − δ)2 −
√

R2 + (z + δ)2
]δ

−δ

= −Mz

L

(

L + R −
√

R2 + L2
)

≈
{

−Mz
R
L for L � R

−Mz

(

1 − L
2R

)

for L � R
(2.7)

Again, the average has a physical behavior similar to that for the value at z = 0. This is summarized
by saying that the longitudinal demagnetization factor Nz is

Nz =
1

L

(

L + R −
√

L2 + R2
)

, Hz = −NzMz. (2.8)

One can note that there is a theorem which says that the sum of the demagnetization factors for
x, y, z, call them Nx, Ny, and Nz, should add up to 1. Although we haven’t yet solved the case of
Mx or My, if we apply this theorem, and using the symmetry that Nx = Ny for the cylinder, then
there also results

Nx = Ny =
1

2
(1 − Nz) =

1

2L

(

√

L2 + R2 − R
)

. (2.9)

These results are plotted in Figure 2.8. Notably, for very skinny cylinders with R � L, the longitu-
dinal demagnetization factor is Nz → 0 while the transverse factors are Nx → 1

2 . At the other limit,
for a flat cylinder, R � L, we have Nz → 1 and Nx → 0. The flat cylinder has no demagnetization
effect within the xy-plane. Generally, the greatest demagnetization effects will always take place
through the shortest dimension of a object.

2.2 Transverse magnetization Mx

Next suppose that the magnet is magnetized only along the x direction. Again, it is simplest to look
at the case of a circular cylinder. This is a magnetization along a radius of the cross-section. This
is not really a line of symmetry, so the mathematics is more complicated. Taking ~M = Mxx̂, this
will generate a surface charge distribution, on the curved surface

σ(θ) = Mx cos θ, (2.10)
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Figure 1: The behavior of the demagnetization factors as a function of aspect ratio for right circular
cylinders, based on Equations (2.8) and (2.9), for the averaged field along the cylinder axis. The
point where Nx = Ny = Nz = 1

3 is close to the radius such that 2R = L.

where θ is the angular position of a point on the surface, measured from the x-axis. This produces
positive charges on one side (x > 0) and negative charges on the other side (x < 0), hence, it is easy

to see that the field ~H will point generally towards −x̂. This now gives the integral expression for
the potential, using cylindrical coordinates, with r′ = R,

Φ(r) =
Mx

4π

∫ 2π

0

R dθ′
∫ δ

−δ

dz′
cos θ′

√

r2 + R2 − 2rR cos(θ − θ′) + (z − z′)2
(2.11)

Let’s already do the derivative to get Hx, using points along the x-axis, θ = 0.

Hx(z) = −dΦ

dx
=

Mx

4π

∫ 2π

0

R dθ′
∫ δ

−δ

dz′
(x − R cos θ′) cos θ′

[r2 + R2 − 2rR cos θ′ + (z − z′)2]3/2
(2.12)

Now evaluating on the axis of the cylinder, x = y = r = 0, leaves only one term in the numerator
and simplifies the denominator:

Hx(z) =
Mx

4π

∫ 2π

0

R dθ′
∫ δ

−δ

dz′
−R cos2 θ′

[R2 + (z − z′)2]3/2
(2.13)

The angular integration of cos2 θ′ leads to a factor of 1
2 (2π). So now we have

Hx(z) =
−Mx

4

∫ δ

−δ

dz′
R2

[R2 + (z − z′)2]3/2
(2.14)

To do this integral, it helps to let z′ − z = R tan φ, then dz′ = R sec2 φ, and we will have some
algebra like

∫

R2dz′

[R2 + (z − z′)2]3/2
=

∫

dφ sec2 φ

sec3 φ
=

∫

dφ cosφ = sin φ =
z′ − z

√

R2 + (z′ − z)2
. (2.15)
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This results in

Hx(z) =
−Mx

4

[

δ − z
√

R2 + (δ − z)2
+

δ + z
√

R2 + (δ + z)2

]

(2.16)

Check that is gives a correct order of magnitude by looking at the cylinder center, z = 0. The result
is

Hx(0) =
−Mx

2

δ√
R2 + δ2

≈
{

−Mx

2 for δ � R
−Mx

2
δ
R for δ � R

(2.17)

One can note that compared to Hz(0) = −NzMz calculated for longitudinal magnetization, with
Nz = 1 − δ/

√
R2 + δ2, this demagnetization factor is

Nx = Ny =
1

2

δ√
R2 + δ2

. (2.18)

Then at least for the central point of the cylinder, there results

Nx + Ny + Nz = 1. (2.19)

One can also check the average of Hx(z) over the position z. That result is

Hx =
1

L

∫ δ

−δ

dz

{

−Mx

4

[

δ − z
√

R2 + (δ − z)2
+

δ + z
√

R2 + (δ + z)2

]}

=
−Mx

4L

[

−
√

R2 + (δ − z)2 +
√

R2 + (δ + z)2
]δ

−δ

=
−Mx

2L

[

√

R2 + L2 − R
]

(2.20)

Here we can read off the transverse demagnetization factor (although not averaged over x),

Nx = Ny =
1

2L

[

√

L2 + R2 − R
]

(2.21)

That is completely the same as we expected to get, based on the earlier result for Nz from Hz, and
the symmetry relation, Nx + Ny + Nz = 1. It should be stressed again, that in the limit of a long
skinny cylinder (like a pencil, L � R), this demag factor becoms Nx ≈ 1

2 .

3 A cylindrical magnet with a square cross-section

The demagnetization factors depend on geometry. Here consider a cylinder with a square cross-
section of size a×a; the height is L = 2δ. We should still expect to get demagnetization factors that
have the same limiting values as for the circular cross section. So only a few minor details otherwise
should change.

3.1 Longitudinal magnetization Mz

The first step is the same as before, leaving an integration over the ends with the square area. Go
ahead and evaluate on the axis, x = y = 0:

Φ(z) =
Mz

4π

∫ ∆

−∆

dx′
∫ ∆

−∆

dy′

{

1
√

x′2 + y′2 + (z − δ)2
− 1
√

x′2 + y′2 + (z + δ)2

}

. (3.1)

The end edge is a = 2∆. This time go to the average over z directly, for the field:

Hz =
1

L

∫ δ

−δ

dz Hz(z) =
1

L

∫ δ

−δ

dz

(

−dΦ

dz

)

=
−1

L
[Φ(δ) − Φ(−δ)] (3.2)
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Hz =
−Mz

2πL

∫ ∆

−∆

dx′
∫ ∆

−∆

dy′

{

1
√

x′2 + y′2
− 1
√

x′2 + y′2 + L2

}

(3.3)

Consider the integration over y′. We know the basic indefinite integral,

∫

dy′

√

b2 + y′2
= sinh−1 y′

|b| . (3.4)

The absolute value is needed on b, because the result is independent of its sign. The integrals here
are over a symmetric interval, and the integrands are even. So change the integration to twice that
from 0 to ∆. It means we needs something like

∫ ∆

−∆

dy′

√

b2 + y′2
= 2 sinh−1 ∆

|b| . (3.5)

Now we have

Hz =
−Mz

πL

∫ ∆

0

2dx′

{

sinh−1 ∆

|x′| − sinh−1 ∆√
x′2 + L2

}

(3.6)

Really, absolute value is unnecessary now, because x′ > 0 only. To do this type of integral, note the
other way to write the inverse sinh function,

sinh−1 x = ln
[

x +
√

1 + x2
]

(3.7)

So now this gives for one part, the indefinite integral,

∫

dx′ sinh−1 ∆

x′
=

∫

dx′ ln

[

∆

x′
+

√

1 +
∆2

x′2

]

(3.8)

Here, try the transformation, x′ = ∆cschφ, then dx′ = −∆csch 2φ coshφdφ, and 1 + ∆2/x′2 =
cosh2 φ. The changes the integral into

∫

−∆
coshφ

sinh2 φ
dφ ln [sinhφ + coshφ] = −∆

∫

dφ
φ coshφ

sinh2 φ
= −∆

∫

φ
d(sinh φ)

sinh2 φ
. (3.9)

That is set up for an integration by parts,

integral −→ −∆

{

φ

( −1

sinhφ

)

+

∫

dφ

(

1

sinhφ

)}

= ∆

{

φ

sinhφ
−
∫

d(cosh φ)

cosh2 φ − 1

}

(3.10)

As hyperbolic cosine is always greater than 1, the last integral is aided by doing coshφ = coth s
with sinhφdφ = − csch 2s ds, then,

integral = ∆

{

φ

sinhφ
+

∫

ds

}

= ∆

{

φ

sinhφ
+ coth−1 (coshφ)

}

(3.11)

But the angle φ was defined with sinhφ = ∆/x′ and coshφ =
√

1 + ∆2/x′2 So this demonstrates
the basic integral,

∫

dx′ sinh−1 ∆

x′
= ∆

{

x′

∆
sinh−1 ∆

x′
+ coth−1

√

1 +
∆2

x′2

}

(3.12)

For the limits from 0 to ∆, this definite integral becomes

∫ ∆

0

dx′ sinh−1 ∆

x′
= ∆

{

sinh−1(1) − 1 + coth−1
(√

2
)}

= ∆
(

2 sinh−1(1) − 1
)

≈ 0.7627∆. (3.13)
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There is still the other integral, ugh.

I2 =

∫

dx′ sinh−1 ∆√
x′2 + L2

=

∫

dx′ ln

[

∆√
x′2 + L2

+

√

1 +
∆2

x′2 + L2

]

(3.14)

One can try a similar kind of tranformation. It might help to choose the transformation as

sinhφ =
∆√

x′2 + L2
, cosh2 φ = 1 + sinh2 φ = 1 +

∆2

x′2 + L2
, (3.15)

The forces the argument of the logarithmm to be sinhφ + coshφ = eφ. Then get the derivative,
based on a rearrangment,

x′2 + L2 =
∆2

sinh2 φ
, 2x′ dx′ =

−2∆2 coshφ

sinh3 φ
dφ. (3.16)

But also need

x′ =

√

∆2

sinh2 φ
− L2 = L

√

∆2

L2 sinh2 φ
− 1. (3.17)

So this gives

I2 =

∫

dx′ φ =
−∆2

L

∫

φ coshφdφ

sinh3 φ
√

∆2

L2 sinh2 φ
− 1

(3.18)

This is aided by letting

s =
∆2

L2 sinh2 φ
, ds =

−2∆2 coshφdφ

L2 sinh3 φ
. (3.19)

Now the integral is

I2 =
L

2

∫

φ
ds√
s − 1

(3.20)

Thus it is set up for an integration by parts, doing first the s-integral. That is now trivial, and gives

I2 = L

[

φ
√

s − 1 −
∫

dφ
√

s − 1

]

= L

{

φ

√

∆2

L2 sinh2 φ
− 1 −

∫

dφ

√

∆2

L2 sinh2 φ
− 1

}

(3.21)

Now who knows if this last integral is tractable! We can also write for the differentials, let’s see if
this helps,

ds = −2s cothφdφ, but
cosh2 φ

sinh2 φ
= 1 +

1

sinh2 φ
= 1 +

L2

∆2
s. (3.22)

ds = −2s

√

1 +
L2

∆2
s dφ −→ dφ =

−ds

2s
√

1 + L2

∆2 s
. (3.23)

So in terms of the s-variable, one needs now

I3 = −
∫

dφ
√

s − 1 =
1

2

∫

ds

√
s − 1

s
√

L2

∆2 s + 1
(3.24)

Ehh, not sure if that helped! This is a lot of work for one small integral. And it looked simpler in
terms of hyperbolic functions. Abandon the exact evaluation for now.

Long thin limit, L � a. In this case the second integral can be done, going back to its original
form. A transformation that uses the circular symmetry, but integrates to the square edge, is to do
r′(θ′) = ∆

cos θ′
= ∆sec θ′, applied in each octant of the plane. So this integral is

I2 =

∫ ∆

−∆

dx′
∫ ∆

−∆

dy′ 1√
r′2 + L2

= 8

∫ π/4

0

dθ′
∫ r′(θ′)

0

r′ dr′
1√

r′2 + L2

= 8

∫ π/4

0

dθ′
[

√

r′2(θ′) + L2 − L
]

= 8

∫ π/4

0

dθ′
[

√

∆2 sec2 θ′ + L2 − L
]

(3.25)
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That is still exact. But I don’t see how to integrate it. So go to the large L limit. This is

I2 ≈ 8

∫ π/4

0

dθ′
∆2

2L
sec2 θ′ =

4∆2

L
[tan θ′]

π/4
0 =

4∆2

L
=

a2

L
. (3.26)

Note what is obtained for the first integral by this procedure (a simpler alternative to the mess I
did above):

I1 =

∫ ∆

−∆

dx′
∫ ∆

−∆

dy′ 1√
r′2

= 8

∫ π/4

0

dθ′
∫ r′(θ′)

0

r′ dr′
1

r′
= 8

∫ π/4

0

dθ′ r′(θ′)

= 8

∫ π/4

0

dθ′ ∆sec θ′ = 8∆

∫ π/4

0

dθ′
cos θ′

1 − sin2 θ′
= 8∆

∫ 1/
√

2

0

du

1 − u2
(3.27)

In the last step I used u = sin θ′. But that is the derivative of inverse hyperbolic tangent. So this
gives

I1 = 8∆
[

tanh−1 u
]1/

√
2

0
= 8∆tanh−1 1√

2
= 8∆cosh−1

√
2 = 8∆ sinh−1(1) ≈ 7.0∆ ≈ 3.5a. (3.28)

Putting the parts together, this gives in this limit,

Hz =
−Mz

2πL
(I1 − I2) ≈

−Mz

2πL

(

4a sinh−1(1) − a2

L

)

=
−Mza

2πL

(

4 sinh−1(1) − a

L

)

(3.29)

Here in this limit the I2 integral is just the correction term. This goes to zero when L → ∞, the
correct result for a long thin cylinder, even with a square cross-section. In place of R/L for circular
symmetry, the leading factor here is 4∆

πL sinh−1(1) ≈ 1.122∆
L . So with ∆ playing the role of the

“radius,” it makes little difference if the cross-section is circular or square.

Short wide limit, L � a. The I1 integral is unchanged, it does not depend on L. The I2 integral
is expanded now as

I2 ≈ 8

∫ π/4

0

dθ′
[

∆sec θ′
(

1 +
1

2

L2

∆2 sec2 θ′

)

− L

]

(3.30)

The first term is a copy of I1; it will cancel out. That leaves terms linear and quadratic in L.

I2 = I1 + 8

∫ π/4

0

dθ′
(

L2

2∆
cos θ′ − L

)

= I1 + 8

(

L2

2∆
sin

π

4
− L

π

4

)

. (3.31)

Putting all together, the result is

Hz =
−Mz

2πL
(I1 − I2) ≈

−Mz

2πL
× (−8)

(

L2

2∆
sin

π

4
− L

π

4

)

= −Mz

(

1 − 2L

π∆
sin

π

4

)

. (3.32)

The last term is 2L
π∆ sin π

4 ≈ 0.45 L
∆ . In the circular case, this factor comes in as L

2R , hence, they are
about equivalent, considering ∆ like the radius.

3.2 Transverse magnetization, Mx

Based on the previous case, this is not easy to do exactly analytically. But it is the more important
case, so see how much can be worked out. The potential at an observer point r, due to only the
surface charge density σ = +Mx on the face at x = +∆, is

Φ+(r) =
Mx

4π

∫ ∆

−∆

dy′
∫ δ

−δ

dz′
1

√

(x − ∆)2 + (y − y′)2 + (z − z′)2
(3.33)
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There is another term coming from the negative charge on the left face at x = −∆, to be included
now. Now find the field averaged over the x axis, including both plus and minus charges, is:

Hx =
−2Mx

4πa

∫ ∆

−∆

dy′
∫ δ

−δ

dz′

{

1
√

(y − y′)2 + (z − z′)2
− 1
√

a2 + (y − y′)2 + (z − z′)2

}

(3.34)

This is just the double of the contribution from one face’s charge. This is the same form of integrals
already discussed, but I didn’t get the exact result. I am most interested in the case where ∆ � δ,
the long thin cylinder.

Let me instead do a slightly different approach. First, find the field. without any averaging.
From the positive charges, there is

H+
x (r) = −dΦ

dx
=

Mx

4π

∫ ∆

−∆

dy′
∫ δ

−δ

dz′
x − ∆

[(x − ∆)2 + (y − y′)2 + (z − z′)2]
3/2

(3.35)

The integration over z′ was done in equation (2.15). Using that result here, with the effective
R2 ≡ (x − ∆)2 + (y − y′)2, there results

H+
x (r) =

Mx · (x − ∆)

4π

∫ ∆

−∆

dy′

[

z′ − z

R2
√

R2 + (z′ − z)2

]z′=δ

z′=−δ

=
Mx · (x − ∆)

4π

∫ ∆

−∆

dy′

R2

[

δ − z
√

R2 + (δ − z)2
+

δ + z
√

R2 + (δ + z)2

]

(3.36)

For now, just find the field at the middle of the cylinder, z = 0. Further, consider the long thin
limit, L � a, which means also δ � R. Then this contribution is

H+
x (x, y) =

2Mx(x − ∆)

4π

∫ ∆

−∆

dy′

(x − ∆)2 + (y′ − y)2
(3.37)

The integral is an inverse tangent. Use the fact that x < ∆ for any point inside the system:

H+
x (x, y) =

2Mx

4π

x − ∆

|x − ∆|

[

tan−1 y′ − y

|x − ∆|

]∆

−∆

=
−Mx

2π

[

tan−1 ∆ − y

∆ − x
+ tan−1 ∆ + y

∆ − x

]

(3.38)

That was the contribution from the positive charge at x = +∆. The contribution from the negative
charge at x = −∆ is similar, but with ∆ → −∆ inside R, and the opposite sign:

H−
x (x, y) =

−2Mx

4π

x + ∆

|x + ∆|

[

tan−1 y′ − y

|x + ∆|

]∆

−∆

=
−Mx

2π

[

tan−1 ∆ − y

∆ + x
+ tan−1 ∆ + y

∆ + x

]

(3.39)

So the total in the long thin cylinder limit is

Hx(x, y) =
−Mx

2π

(

tan−1 ∆ − y

∆ − x
+ tan−1 ∆ + y

∆ − x
+ tan−1 ∆ − y

∆ + x
+ tan−1 ∆ + y

∆ + x

)

(3.40)

At the center of the system, the inverse tangents are all π
4 . Then the field at the center of the system

is

Hx(0) = −1

2
Mx. (3.41)

So the demagnetization factor for this point is Nx = 1
2 , as we would expect. Near a corner, say,

x = y = ∆ − ε, or any of the other corners, by symmetry, there is, surprisingly, the same value:

Hx(∆, ∆, 0) =
−Mx

2π

(

tan−1 ε

ε
+ tan−1 2∆

ε
+ tan−1 ε

2∆
+ tan−1 2∆

2∆

)

= −1

2
Mx. (3.42)
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Figure 2: The behavior of the transverse demagnetization field for a rectangular cell of dimensions
a × a × L, with a � L, as a function of position in the cross-section. Note that a = 2∆, and z = 0,
i.e., the middle of a long thin cell.

(Note, this limit might be different if approached in a different direction. See Figure 2.) Trying
instead a point along the x-axis, say, x = ∆ − ε, y = 0, one has

Hx(∆, 0, 0) =
−Mx

2π

(

tan−1 ∆

ε
+ tan−1 ∆

ε
+ tan−1 ∆

2∆
+ tan−1 ∆

2∆

)

= −
(

1

2
+ 0.148

)

Mx.

(3.43)
On the other hand, look at the point x = 0, y = ∆ − ε:

Hx(0, ∆, 0) =
−Mx

2π

(

tan−1 ε

∆
+ tan−1 2∆

∆
+ tan−1 ε

∆
+ tan−1 2∆

∆

)

= −0.3524 Mx. (3.44)

This suggests that there is only little variation within the cross-section, in this limit. Then one can
expect the demagnetization factor when averaging over different points, is to fair approximation,

Nx ≈ 1

2
. (3.45)

See Figure 2 for how the field varies within the cell, verses x, at different y (all with z = 0 in the
long thin approximation).

3.3 About the transverse demagnetization for computations

In actual application in some calculations using computation cells of size a×a×L for thin magnets,
I would like to include the transverse demagnetization effect. However, I don’t have that calculated
exactly. We know that Nx ≈ 1

2 for long thin cells. But what if the cells are not so long and
thin? As a slight improvement on that, one can use as a reasonable approximation, the transverse
demagnetization factor found for the circular cylinder. So instead of simply using Nx = 1

2 , a
reasonable improvement is to apply

Nx =
1

2L

(

√

L2 + R2 − R
)

. (3.46)
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To use this, one needs to choose R. That can be chosen by assuming a a circle with the same area
as the square, that is,

A = a2 = πR2, =⇒ R =
a√
π

(3.47)

This is a type of approximation I have used for the smoothing of the longitudinal Green’s function
(see a following section). So it should be good also for the transverse demagnetization. It means we
take

Nx =
1

2L

(
√

L2 +
a2

π
− a√

π

)

. (3.48)

I’d like to mention one other thing. I like to avoid subtraction in calculations, although it doesn’t
cause any real problme here. Nevertheless, another way to write the transverse demagnetization
factor is by getting rid of the subtraction:

Nx =
1

2L

(

√

L2 + R2 − R
)

×
√

L2 + R2 + R√
L2 + R2 + R

=
1

2

L√
L2 + R2 + R

. (3.49)

Then inserting the effective radius R = a/
√

π gives the formula I actually use in calculations:

Nx =
1
2

√
π L√

πL2 + a2 + a
. (3.50)

Similarly, the longitudinal factor can be written in alternative ways:

Nz =
1

L

(

L + R −
√

L2 + R2
)

=
2R

L + R +
√

L2 + R2
(3.51)

Then with the effective radius, the actual form in the calculations can be

Nz =
2a

√
π L + a +

√
πL2 + a2

(3.52)

4 Thin film magnets: Demagnetization fields outside of a

source cell

This part summarizes some Green’s functions that allow the calculation of the demagnetization field
(numerically) in a model for a thin magnet (thickness L). The thin direction is the z-direction. The
magnet coud have an arbitrary shape in the xy plane. We just do want to assume that L � R,
where R is some transverse diameter of the magnet.

Then, the magnet is partitioned into cells of size a × a × L. Basically, one wants to estimate
the field generated by ~Mi in cell i, but measured at some position r outside of that cell. This is
the “external field” problem. This field will characterize the interaction between the cells of this
magnet.

The source cell has some uniform magnetization ~M . The cells are supposed to be somewhat
“infinitesimal.” So we avoid doing an extremely precise calculation. Let’s see what comes out if we
just treat the source cell as a column of dipole density (along the z′-axis), and get the potential that
dipole density produces in its exterior. We will average that potential over altidtude z of an observer
position, and use that averaged potential to get the averaged field ~H(r) in the observer position.

4.1 The longitudinal field Hz

The calculation of Hz is easy and comes only from Mz. This general case is nearly the same as what
was calculated for a circular cylinder. Start from the potential at r due to the sum over sources at
r′, like we had earlier, with r̃2 = (x − x′)2 + (y − y′)2:

Φ(r) =
1

4π

∫

dx′dy′

{

1
√

r̃2 + (z − δ)2
− 1
√

r̃2 + (z + δ)2

}

Mz(x
′, y′). (4.1)
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There is no sum over z′; this just uses the charges at the surfaces z′ = ±δ. But now we keep the
(x′, y′) dependence of Mz present, as it will depend on the choice of position, i.e., the source cell.
We already know how to get Hz and then average it over z:

Hz(x, y) =
1

L

∫ δ

−δ

dz
−dΦ

dz
=

−1

L
(Φ(δ) − Φ(−δ)) . (4.2)

This gives a familiar-looking result,

Hz(x, y) =
−1

2πL

∫

dx′ dy′

{

1

r̃
− 1√

r̃2 + L2

}

Mz(x
′, y′). (4.3)

Then it is seen that this involves the convolution of a (longitudinal) Green’s function Gzz with the
out-of-plane magnetization component. The Green’s function is apparently,

Gzz(r̃) =
−1

2πL

{

1

r̃
− 1√

r̃2 + L2

}

. (4.4)

Obviously this is written in terms of the difference of source and observer postions. Hence, it is
applied as a convolution with the source magnetization. Note that it is always negative. Thus, it
leads to the usual (negative) demagnetization effect.

There is only one small problem with it. I want to think of the computation cells as squares, yet,
this Green’s function has circular symmetry. Further, it is not defined (technically) if the observer
cell is the same as the source cell. Of course, for that case, we already calculated the demagnetization
field. But we want to apply this object in a computation using these finite element cells. So clearly
the self-interaction at r̃ = 0 needs to be corrected.

I imagine that correction to be done by averaging Gzz over a circle of radius r0 whose area is the
same as the cell area, A = a2. This procedure was mentioned earlier. We need a radius R = a/

√
π.

Look what happens for this averaged Gzz(0), taking x′ = y′ = 0, but summing over (x, y) in this
cirle:

G0
zz ≡ 〈Gzz(0)〉 =

1

a2

∫ R

0

2πrdr
−1

2πL

{

1

r
− 1√

r2 + L2

}

=
−1

a2L

{

R −
√

R2 + L2 + L
}

G0
zz =

−1

a2L

{

a√
π
−
√

a2

π
+ L2 + L

}

(4.5)

Curiously (or not), G0
zz found this way is the same as −Nz for a circular cylinder of length L and

radius R = a/
√

π. This will get applied to an area element dx′dy′ of size a2, hence that factor will
cancel out. The rest is the longitudinal demagnetization factor already encountered. So it is nothing
too new, but to get this, we needed to do this averaging procedure.

A similar averaging can be applied for cells at farther radii from the source, however, it is not
essential. It does help to eliminate some roughness due to using square cross-section cells for a
circularly symmetric function.

Then with this correction at the origin, the finite-element calculation of the demagnetization
field proceeds from a sum over source cells, (discrete convolution)

Hz(x, y) =
∑

i

Gzz(x − xi, y − yi) · Mz(xi, yi) (4.6)

In actual practice, this is best to evaluate using a fast Fourier transform, to get the most speed.

4.2 The transverse field (Hx, Hy)

This could be developed in terms of charge density, but, it is mathematically easier to do in terms
of the superposition of dipole fields from the source cells. Really, it is a superposition of a dipole
field from each layer (at fixed z′) in a source cell. One supposes that dipole is centered in the center
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of the source cell, at height z′. Thus, we apply the expression (1.10) for the potential, to only the
xy components,

Φ(r) =

∫

dr′
r − r′

4π|r − r′|3 · ~M(r′) =

∫

dx′ dy′ dz′
(x − x′)Mx + (y − y′)My

4π[r̃2 + (z − z′)2]3/2
(4.7)

The integration over (x′, y′) is left to become the sum over source cells. The source point (x′, y′) for
this cell is set to the center of the cell; we still need to sum over z′. Mx or My are constant within
a chosen cell. We do need to average over the observation height z.

So doing the integration over z′ gives [see expression (2.15)]:

Φ(x, y) =

∫

dx′ dy′

[

[(x − x′)Mx + (y − y′)My](z′ − z)

4πr̃2
√

r̃2 + (z − z′)2

]δ

−δ

=

∫

dx′ dy′ [(x − x′)Mx + (y − y′)My]

4πr̃2

{

δ − z
√

r̃2 + (δ − z)2
+

δ + z
√

r̃2 + (δ + z)2

}

(4.8)

This has a very familiar look to it, as we had a similar expression for the transverse field within a
cell. Now we can find the transverse field components and also do the averaging over z; the order
in which this is done makes no difference.

Do first the average over z. The integration is trivial, and after dividing by L gives

Φ(x, y) =

∫

dx′ dy′ [(x − x′)Mx + (y − y′)My]

4πL r̃2

{

−
√

r̃2 + (z − δ)2 +
√

r̃2 + (δ + z)2
}z=δ

z=−δ

= −
∫

dx′ dy′ [(x − x′)Mx + (y − y′)My]

2πL r̃2

{√
r̃2 −

√

r̃2 + L2
}

(4.9)

Note that this makes a type of Green’s function to give the potential, based on the source ~M(x′, y′).
It acts on a vector source, hence it is a vector Green’s function, whose direction is radially outward
from the source point. We see that this Green’s function can be written:

~K(r̃) =
1

2πL

(
√

1 +
L2

r̃2
− 1

)

r̃

|r̃| . (4.10)

With that definition, the expression for the potential it produces is

Φ(x, y) =

∫

dx′ dy′ ~K(r − r′) · ~M(r′) (4.11)

The last factor in ~K is a radial unit vecctor. Then it is also interesting to realize that the radial
component only of this Green’s function is

Kr(r̃) =
1

2πL

(
√

1 +
L2

r̃2
− 1

)

. (4.12)

This must be the negative radial gradient of the Green’s function G that produces Φ from the volume
charge density ρ, see Equations (1.11) and (1.12). So it may be interesting to find the effective G

associated with this ~K. We get it from an indefinite integration,

G(r) = −
∫

dr Kr(r) =
−1

2πL

∫

dr

[
√

1 +
L2

r2
− 1

]

(4.13)

This is aided by using

sinhφ =
L

r
,

√

1 +
L2

r2
= cosh φ, coshφdφ =

−L

r2
dr =

− sinh2 φ

L
dr. (4.14)
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Then the integral with the square root is

−
∫

dr

√

1 +
L2

r2
= L

∫

dφ
cosh2 φ

sinh2 φ
= L

∫

dφ(1 + csch 2φ) = L (φ − coth φ)

= L sinh−1 L

r
−
√

r2 + L2. (4.15)

So the whole thing gives

G(r̃) =
1

2πL

(

L sinh−1 L

r̃
−
√

r̃2 + L2 + r̃

)

. (4.16)

This is a well-known expression for the effective 2D in-plane Green function needed, to be applied
on ρ(r′), for finding the magnetic potential Φ(r) for thin-film problems, as

Φ(r) =

∫

dr′ G(r − r′)ρ(r′). (4.17)

Now the gradient of Φ in Equation (4.9) can be done to get the averaged field. To do this, recall
that r̃2 = (x − x′)2 + (y − y′)2. Find only Hx = − dΦ

dx , then Hy will be obtained by switching some
indices.

Hx =

∫

dx′ dy′

2πL

{

Mx[r̃ −
√

r̃2 + L2]

r̃2
− [(x − x′)Mx + (y − y′)My]

2(x − x′)

r̃4
[r̃ −

√

r̃2 + L2]

+
[(x − x′)Mx + (y − y′)My]

r̃2

[

(x − x′)

r̃
− (x − x′)√

r̃2 + L2

]}

(4.18)

This has contributions from both Mx and My. There is nothing coming from Mz, obviously. The
parts involving Mx contain the factors

Mx : Gxx =
r̃ −

√
r̃2 + L2

2πL r̃4

[

r̃2 − 2(x − x′)2 − (x − x′)2
r̃√

r̃2 + L2

]

(4.19)

This can be re-arranged as (and in various other ways...)

Mx : Gxx =

√
r̃2 + L2 − r̃

2πL r̃4

{

(x − x′)2
[

1 +
r̃√

r̃2 + L2

]

− (y − y′)2
}

(4.20)

Similarly, there is a term proportional to My:

My : Gxy =

√
r̃2 + L2 − r̃

2πL r̃4

{

2(x − x′)(y − y′)

[

1 +
r̃√

r̃2 + L2

]}

(4.21)

Thus these define some components of yet another Green function (a matrix) that produces Hα:

Hα(r) =

∫

dx′ dy′
∑

β=x,y

Gαβ(r − r′) · Mβ(r′) (4.22)

Indeed, this expression even applies to the full 3D field, when used with the 3D magnetization (and
let α, β = x, y, x). The other missing components clearly are obtained by swapping xy indices:

Gyy =

√
r̃2 + L2 − r̃

2πL r̃4

{

(y − y′)2
[

1 +
r̃√

r̃2 + L2

]

− (x − x′)2
}

(4.23)

Gyx = Gxy =

√
r̃2 + L2 − r̃

2πL r̃4

{

2(x − x′)(y − y′)

[

1 +
r̃√

r̃2 + L2

]}

(4.24)
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Interestingly, we can note that these components of G reduce to those appropriate to give the usual
far-field of a unit dipole. Some expansion for r̃ � L leads to

Gαβ(r̃) =
L

4πr̃5

(

2x̃2 − ỹ2 3x̃ỹ
3x̃ỹ 2ỹ2 − x̃2

)

(4.25)

The tilde means evaluated with the difference of source and observer points, i.e., r̃ = r− r′.
This last result is good for the field outside of a source cell. It must be remembered, however, to

include the self-demagnetization, if the field within that same source cell is desired. Roughly, this is
an extra field of

~Hlocal = −Nx(Mxx̂ + Myŷ). (4.26)

Nominally Nx is a number near 1/2, but it could be smaller than this, taking, for example, the
value expected for the transverse demagnetization of circular cylinders as discussed at the end of
the previous section, Equations (3.50) and (3.52).
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