Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,765)

Search Parameters:
Keywords = wireless

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5608 KiB  
Article
WSN Energy Control by Holonic Dynamic Reconfiguration: Application to the Sustainability of Communicating Materials
by William Derigent, Michaël David, Pascal André, Olivier Cardin and Salma Najjar
Sustainability 2024, 16(18), 8193; https://doi.org/10.3390/su16188193 (registering DOI) - 20 Sep 2024
Abstract
Various works propose solutions addressing the sustainability of IoT technologies to reduce their energy consumption, especially in the domain of wireless sensor networks. The diversity of applications, as well as the variability of their long-term constraints, forces them to dynamically adapt the network [...] Read more.
Various works propose solutions addressing the sustainability of IoT technologies to reduce their energy consumption, especially in the domain of wireless sensor networks. The diversity of applications, as well as the variability of their long-term constraints, forces them to dynamically adapt the network through time. Accordingly, this study formalizes the SADHoA-WSN framework to tackle the reconfiguration process. This proposal is a dynamic Holonic Control Architecture, linking the physical network evolution to the decisions made by a virtual multi-agent control system. The potential of such an approach is demonstrated by applying this framework to the energy optimization of communicating materials, i.e., materials equipped with inner wireless sensor nodes. The first implemented components of SADHoA-WSN and their related experimental results validate it as a promising energy-efficient dynamic methodology. This work lays the groundwork for optimized energy control in IoT networks. Full article
(This article belongs to the Section Sustainable Products and Services)
Show Figures

Figure 1

27 pages, 1948 KiB  
Article
A Cross-Layer Approach to Analyzing Energy Consumption and Lifetime of a Wireless Sensor Node
by Fernando Ojeda, Diego Mendez, Arturo Fajardo, Maximilian Gottfried Becker and Frank Ellinger
J. Sens. Actuator Netw. 2024, 13(5), 56; https://doi.org/10.3390/jsan13050056 - 19 Sep 2024
Viewed by 316
Abstract
Several wireless communication technologies, including Wireless Sensor Networks (WSNs), are essential for Internet of Things (IoT) applications. WSNs employ a layered framework to govern data exchanges between sender and recipient, which facilitates the establishment of rules and standards. However, in this conventional framework, [...] Read more.
Several wireless communication technologies, including Wireless Sensor Networks (WSNs), are essential for Internet of Things (IoT) applications. WSNs employ a layered framework to govern data exchanges between sender and recipient, which facilitates the establishment of rules and standards. However, in this conventional framework, network data sharing is limited to directly stacked layers, allowing manufacturers to develop proprietary protocols while impeding WSN optimization, such as energy consumption minimization, due to non-directly stacked layer effects on network performance. A Cross-Layer (CL) framework addresses implementation, modeling, and design challenges in IoT systems by allowing unrestricted data and parameter sharing between non-stacked layers. This holistic approach captures system dynamics, enabling network design optimization to address IoT network challenges. This paper introduces a novel CL modeling methodology for wireless communication systems, which is applied in two case studies to develop models for estimating energy consumption metrics, including node and network lifetime. Each case study validates the resulting model through experimental tests, demonstrating high accuracy with less than 3% error. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

15 pages, 12753 KiB  
Article
An Integrated Double-Sided LCC Compensation Based Dual-Frequency Compatible WPT System with Constant-Current Output and ZVS Operation
by Yafei Chen, Yijia Liu, Zhiliang Yang, Pengfei Gao and Jie Wu
Electronics 2024, 13(18), 3714; https://doi.org/10.3390/electronics13183714 - 19 Sep 2024
Viewed by 208
Abstract
This article presents an integrated double-sided inductance and double capacitances (DS-LCC) compensation based dual-frequency compatible wireless power transfer (WPT) system. A cascaded single-phase multi-frequency inverter (CSMI) is constructed to generate the independent dual-frequency power transfer signals. In order to achieve the [...] Read more.
This article presents an integrated double-sided inductance and double capacitances (DS-LCC) compensation based dual-frequency compatible wireless power transfer (WPT) system. A cascaded single-phase multi-frequency inverter (CSMI) is constructed to generate the independent dual-frequency power transfer signals. In order to achieve the load-independent constant-current output (CCO) at two frequencies, an integrated DS-LCC compensated topology is reconstructed. By configuring the frequency-selective resonating compensation (FSRC) network in the primary side, the power transfer signals at two frequencies can be superimposed into a single transmitting coil, reducing the cost and volume of the system. Furthermore, to implement zero-voltage switching (ZVS) of the CSMI throughout the entire power range, a general parameter design method of the proposed system is also introduced. A 1.5-kW experimental prototype is built to validate the practicability of the presented dual-frequency compatible WPT System. The system can supply power to different loads at two frequencies simultaneously with CCO and ZVS properties. The peak efficiency reaches 91.75% at a 1.2-kW output power. Full article
Show Figures

Figure 1

11 pages, 523 KiB  
Article
Reconfigurable Intelligent Surface-Based Backscatter Communication for Data Transmission
by Xingquan Li, Hongxia Zheng, Chunlong He, Yong Wang and Guoqing Wang
Electronics 2024, 13(18), 3702; https://doi.org/10.3390/electronics13183702 - 18 Sep 2024
Viewed by 295
Abstract
Data transmission is one of the critical factors in the future of the Internet of Things (IoT). The techniques of a reconfigurable intelligent surface (RIS) and backscatter communication (BackCom) are in need of a solution of realizing low-power sustainable transmission, which shows great [...] Read more.
Data transmission is one of the critical factors in the future of the Internet of Things (IoT). The techniques of a reconfigurable intelligent surface (RIS) and backscatter communication (BackCom) are in need of a solution of realizing low-power sustainable transmission, which shows great potential in wireless communication. Hence, this paper introduces an RIS-based BackCom system, where the RIS receives energy from a base station (BS) and sends information by backscattering the signals from the BS. To maximize the sum rate of all IoT devices (IoTDs), we jointly optimized the time allocation, the RIS-reflecting phase shifts and the transmit power of the BS by exploiting an alternative optimization algorithm. The simulation results illustrate the effectiveness and the feasibility of the proposed wireless communication scheme and the proposed algorithm in IoT networks. Full article
Show Figures

Figure 1

18 pages, 3241 KiB  
Article
Combining 5G New Radio, Wi-Fi, and LiFi for Industry 4.0: Performance Evaluation
by Jorge Navarro-Ortiz, Juan J. Ramos-Munoz, Felix Delgado-Ferro, Ferran Canellas, Daniel Camps-Mur, Amin Emami and Hamid Falaki
Sensors 2024, 24(18), 6022; https://doi.org/10.3390/s24186022 - 18 Sep 2024
Viewed by 397
Abstract
Fifth-generation mobile networks (5G) are designed to support enhanced Mobile Broadband, Ultra-Reliable Low-Latency Communications, and massive Machine-Type Communications. To meet these diverse needs, 5G uses technologies like network softwarization, network slicing, and artificial intelligence. Multi-connectivity is crucial for boosting mobile device performance by [...] Read more.
Fifth-generation mobile networks (5G) are designed to support enhanced Mobile Broadband, Ultra-Reliable Low-Latency Communications, and massive Machine-Type Communications. To meet these diverse needs, 5G uses technologies like network softwarization, network slicing, and artificial intelligence. Multi-connectivity is crucial for boosting mobile device performance by using different Wireless Access Technologies (WATs) simultaneously, enhancing throughput, reducing latency, and improving reliability. This paper presents a multi-connectivity testbed from the 5G-CLARITY project for performance evaluation. MultiPath TCP (MPTCP) was employed to enable mobile devices to send data through various WATs simultaneously. A new MPTCP scheduler was developed, allowing operators to better control traffic distribution across different technologies and maximize aggregated throughput. Our proposal mitigates the impact of limitations on one path affecting others, avoiding the Head-of-Line blocking problem. Performance was tested with real equipment using 5GNR, Wi-Fi, and LiFi —complementary WATs in the 5G-CLARITY project—in both static and dynamic scenarios. The results demonstrate that the proposed scheduler can manage the traffic distribution across different WATs and achieve the combined capacities of these technologies, approximately 1.4 Gbps in our tests, outperforming the other MPTCP schedulers. Recovery times after interruptions, such as coverage loss in one technology, were also measured, with values ranging from 400 to 500 ms. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 5706 KiB  
Article
Dynamic Routing Using Fuzzy Logic for URLLC in 5G Networks Based on Software-Defined Networking
by Yan-Jing Wu, Menq-Chyun Chen, Wen-Shyang Hwang and Ming-Hua Cheng
Electronics 2024, 13(18), 3694; https://doi.org/10.3390/electronics13183694 - 18 Sep 2024
Viewed by 408
Abstract
Software-defined networking (SDN) is an emerging networking technology with a central point, called the controller, on the control plane. This controller communicates with the application and data planes. In fifth-generation (5G) mobile wireless networks and beyond, specific levels of service quality are defined [...] Read more.
Software-defined networking (SDN) is an emerging networking technology with a central point, called the controller, on the control plane. This controller communicates with the application and data planes. In fifth-generation (5G) mobile wireless networks and beyond, specific levels of service quality are defined for different traffic types. Ultra-reliable low-latency communication (URLLC) is one of the key services in 5G. This paper presents a fuzzy logic (FL)-based dynamic routing (FLDR) mechanism with congestion avoidance for URLLC on SDN-based 5G networks. By periodically monitoring the network status and making forwarding decisions on the basis of fuzzy inference rules, the FLDR mechanism not only can reroute in real time, but also can cope with network status uncertainty owing to FL’s fault tolerance capabilities. Three input parameters, normalized throughput, packet delay, and link utilization, were employed as crisp inputs to the FL control system because they had a more accurate correlation with the network performance measures we studied. The crisp output of the FL control system, i.e., path weight, and a predefined threshold of packet loss ratio on a path were applied to make routing decisions. We evaluated the performance of the proposed FLDR mechanism on the Mininet simulator by installing three additional modules, topology discovery, monitoring, and rerouting with FL, on the traditional control plane of SDN. The superiority of the proposed FLDR over the other existing FL-based routing schemes was demonstrated using three performance measures, system throughput, packet loss rate, and packet delay versus traffic load in the system. Full article
Show Figures

Figure 1

19 pages, 39317 KiB  
Article
A Low-Cost Sensor Network for Monitoring Peatland
by Hazel Louise Mitchell, Simon J. Cox and Hugh G. Lewis
Sensors 2024, 24(18), 6019; https://doi.org/10.3390/s24186019 - 18 Sep 2024
Viewed by 272
Abstract
Peatlands across the world are vital carbon stores. However, human activities have caused the degradation of many sites, increasing their greenhouse gas emissions and vulnerability to wildfires. Comprehensive monitoring of peatlands is essential for their protection, tracking degradation and restoration, but current techniques [...] Read more.
Peatlands across the world are vital carbon stores. However, human activities have caused the degradation of many sites, increasing their greenhouse gas emissions and vulnerability to wildfires. Comprehensive monitoring of peatlands is essential for their protection, tracking degradation and restoration, but current techniques are limited by cost, poor reliability and low spatial or temporal resolution. This paper covers the research, development, deployment and performance of a resilient and modular multi-purpose wireless sensor network as an alternative means of monitoring peatlands. The sensor network consists of four sensor nodes and a gateway and measures temperature, humidity, soil moisture, carbon dioxide and methane. The sensor nodes transmit measured data over LoRaWAN to The Things Network every 30 min. To increase the maximum possible deployment duration, a novel datastring encoder was implemented which reduced the transmitted datastring length by 23%. This system was deployed in a New Forest (Hampshire, UK) peatland site for two months and collected more than 7500 measurements. This deployment demonstrated that low-cost sensor networks have the potential to improve the temporal and spatial resolution of peatland emission monitoring beyond what is achievable with traditional monitoring techniques. Full article
Show Figures

Figure 1

19 pages, 5025 KiB  
Article
Measurement-Based Tapped Delay Line Channel Modeling for Fixed-Wing Unmanned Aerial Vehicle Air-to-Ground Communications at S-Band
by Yue Lyu, Yuanfeng He, Zhiwei Liang, Wei Wang, Junyi Yu and Dan Shi
Viewed by 334
Abstract
Fixed-wing unmanned aerial vehicles (UAVs) are widely considered as a vital candidate of aerial base station in beyond Fifth Generation (B5G) systems. Accurate knowledge of air-to-ground (A2G) wireless propagation is important for A2G communication system development and testing where, however, there is still [...] Read more.
Fixed-wing unmanned aerial vehicles (UAVs) are widely considered as a vital candidate of aerial base station in beyond Fifth Generation (B5G) systems. Accurate knowledge of air-to-ground (A2G) wireless propagation is important for A2G communication system development and testing where, however, there is still a lack of A2G wideband channel models for such a purpose. In this paper, we present a wideband fixed-wing UAV-based A2G channel measurement campaign at 2.7 GHz, and consider typical flight phases, based on which a wide-sense stationary uncorrelated scattering (WSSUS)-based tapped delay line (TDL) wideband channel model is proposed. Parameters of individual channel taps are analyzed in terms of gain, amplitude distribution, Rice factor and delay-Doppler spectrum. It is shown that UAV flight phases significantly influence the channel tap parameters. Particularly, the “Bell”-type spectrum is found to be the most suitable model for the delay-Doppler spectrum under various flight scenarios for A2G propagation. The proposed channel model can provide valuable assistance and guidance for UAV communication system evaluation and network planning. Full article
Show Figures

Figure 1

17 pages, 652 KiB  
Article
Sensor-Based Real-Time Monitoring Approach for Multi-Participant Workout Intensity Management
by José Saias and Jorge Bravo
Electronics 2024, 13(18), 3687; https://doi.org/10.3390/electronics13183687 - 17 Sep 2024
Viewed by 295
Abstract
One of the significant advantages of technological evolution is the greater ease of collecting and analyzing data. Miniaturization, wireless communication protocols and IoT allow the use of sensors to collect data, with all the potential to support decision making in real time. In [...] Read more.
One of the significant advantages of technological evolution is the greater ease of collecting and analyzing data. Miniaturization, wireless communication protocols and IoT allow the use of sensors to collect data, with all the potential to support decision making in real time. In this paper, we describe the design and implementation of a digital solution to guide the intensity of training or physical activity, based on heart rate wearable sensors applied to participants in group sessions. Our system, featuring a unified engine that simplifies sensor management and minimizes user disruption, has been proven effective for real-time monitoring. It includes custom alerts during variable-intensity workouts, and ensures data preservation for subsequent analysis by physiologists or clinicians. This solution has been used in sessions of up to six participants and sensors up to 12 m away from the gateway device. We describe some challenges and constraints we face in collecting data from multiple and possibly different sensors simultaneously via Bluetooth Low Energy, and the approaches we follow to overcome them. We conduct an in-depth questionnaire to identify potential obstacles and drivers for system acceptance. We also discuss some possibilities for extension and improvement of our system. Full article
(This article belongs to the Section Computer Science & Engineering)
Show Figures

Figure 1

20 pages, 3749 KiB  
Article
Buffer with N Policy and Active Management
by Andrzej Chydzinski
Appl. Syst. Innov. 2024, 7(5), 86; https://doi.org/10.3390/asi7050086 - 17 Sep 2024
Viewed by 201
Abstract
The N policy is a buffer and transmission management scheme proposed for nodes in wireless sensor networks to save energy. It exploits the concept that the output radio of a node is initially switched off until a critical queue of packets is built [...] Read more.
The N policy is a buffer and transmission management scheme proposed for nodes in wireless sensor networks to save energy. It exploits the concept that the output radio of a node is initially switched off until a critical queue of packets is built up. Then, the output transmission begins and continues until the buffer is completely flushed. The cycle then repeats. In this study, we analyze a buffer with the N policy, equipped additionally with active queue management, which allows for dropping some packets depending on the current buffer occupancy. This extension enables controlling the performance of the node to a much greater extent than in the original N policy. The main contribution is the formulae for the key performance characteristics of the extended policy: the queue size distribution, throughput, and energy efficiency. These formulae are proven for a model with a general distribution of service time and general parameterizations of active management during the energy-saving and transmission phases. Theoretical results are followed by sample numerical calculations, demonstrating how the system’s performance can be controlled using active management in the transmission phase, the energy-saving phase, or both combined. The influence of the threshold value in an actively managed buffer is then shown and compared with its passive counterpart. Finally, solutions to some optimization problems, with the cost function based on the trade-off between the queue length and throughput, are presented. Full article
(This article belongs to the Section Applied Mathematics)
Show Figures

Figure 1

20 pages, 3488 KiB  
Article
Sea-Based UAV Network Resource Allocation Method Based on an Attention Mechanism
by Zhongyang Mao, Zhilin Zhang, Faping Lu, Yaozong Pan, Tianqi Zhang, Jiafang Kang, Zhiyong Zhao and Yang You
Electronics 2024, 13(18), 3686; https://doi.org/10.3390/electronics13183686 - 17 Sep 2024
Viewed by 306
Abstract
As humans continue to exploit the ocean, the number of UAV nodes at sea and the demand for their services are increasing. Given the dynamic nature of marine environments, traditional resource allocation methods lead to inefficient service transmission and ping-pong effects. This study [...] Read more.
As humans continue to exploit the ocean, the number of UAV nodes at sea and the demand for their services are increasing. Given the dynamic nature of marine environments, traditional resource allocation methods lead to inefficient service transmission and ping-pong effects. This study enhances the alignment between network resources and node services by introducing an attention mechanism and double deep Q-learning (DDQN) algorithm that optimizes the service-access strategy, curbs action outputs, and improves service-node compatibility, thereby constituting a novel method for UAV network resource allocation in marine environments. A selective suppression module minimizes the variability in action outputs, effectively mitigating the ping-pong effect, and an attention-aware module is designed to strengthen node-service compatibility, thereby significantly enhancing service transmission efficiency. Simulation results indicate that the proposed method boosts the number of completed services compared with the DDQN, soft actor–critic (SAC), and deep deterministic policy gradient (DDPG) algorithms and increases the total value of completed services. Full article
(This article belongs to the Special Issue Parallel, Distributed, Edge Computing in UAV Communication)
Show Figures

Figure 1

27 pages, 2484 KiB  
Article
Secure Dynamic Scheduling for Federated Learning in Underwater Wireless IoT Networks
by Lei Yan, Lei Wang, Guanjun Li, Jingwei Shao and Zhixin Xia
J. Mar. Sci. Eng. 2024, 12(9), 1656; https://doi.org/10.3390/jmse12091656 - 16 Sep 2024
Viewed by 337
Abstract
Federated learning (FL) is a distributed machine learning approach that can enable Internet of Things (IoT) edge devices to collaboratively learn a machine learning model without explicitly sharing local data in order to achieve data clustering, prediction, and classification in networks. In previous [...] Read more.
Federated learning (FL) is a distributed machine learning approach that can enable Internet of Things (IoT) edge devices to collaboratively learn a machine learning model without explicitly sharing local data in order to achieve data clustering, prediction, and classification in networks. In previous works, some online multi-armed bandit (MAB)-based FL frameworks were proposed to enable dynamic client scheduling for improving the efficiency of FL in underwater wireless IoT networks. However, the security of online dynamic scheduling, which is especially essential for underwater wireless IoT, is increasingly being questioned. In this work, we study secure dynamic scheduling for FL frameworks that can protect against malicious clients in underwater FL-assisted wireless IoT networks. Specifically, in order to jointly optimize the communication efficiency and security of FL, we employ MAB-based methods and propose upper-confidence-bound-based smart contracts (UCB-SCs) and upper-confidence-bound-based smart contracts with a security prediction model (UCB-SCPs) to address the optimal scheduling scheme over time-varying underwater channels. Then, we give the upper bounds of the expected performance regret of the UCB-SC policy and the UCB-SCP policy; these upper bounds imply that the regret of the two proposed policies grows logarithmically over communication rounds under certain conditions. Our experiment shows that the proposed UCB-SC and UCB-SCP approaches significantly improve the efficiency and security of FL frameworks in underwater wireless IoT networks. Full article
(This article belongs to the Special Issue Underwater Wireless Communications: Recent Advances and Challenges)
Show Figures

Figure 1

21 pages, 13073 KiB  
Article
Research on the Performance of Thermoelectric Self−Powered Systems for Wireless Sensor Based on Industrial Waste Heat
by Yong Jiang, Yupeng Wang, Junhao Yan, Limei Shen and Jiang Qin
Sensors 2024, 24(18), 5983; https://doi.org/10.3390/s24185983 - 15 Sep 2024
Viewed by 384
Abstract
The issue of energy supply for wireless sensors is becoming increasingly severe with the advancement of the Fourth Industrial Revolution. Thus, this paper proposed a thermoelectric self−powered wireless sensor that can harvest industrial waste heat for self−powered operations. The results show that this [...] Read more.
The issue of energy supply for wireless sensors is becoming increasingly severe with the advancement of the Fourth Industrial Revolution. Thus, this paper proposed a thermoelectric self−powered wireless sensor that can harvest industrial waste heat for self−powered operations. The results show that this self−powered wireless sensor can operate stably under the data transmission cycle of 39.38 s when the heat source temperature is 70 °C. Only 19.57% of electricity generated by a thermoelectric power generation system (TPGS) is available for use. Before this, the power consumption of this wireless sensor had been accurately measured, which is 326 mW in 0.08 s active mode and 5.45 μW in dormant mode. Then, the verified simulation model was established and used to investigate the generation performance of the TPGS under the Dirichlet, Neumann, and Robin boundary conditions. The minimum demand for a heat source is cleared for various data transmission cycles of wireless sensors. Low−temperature industrial waste heat is enough to drive the wireless sensor with a data transmission cycle of 30 s. Subsequently, the economic benefit of the thermoelectric self−powered system was also analyzed. The cost of one thermoelectric self−powered system is EUR 9.1, only 42% of the high−performance battery cost. Finally, the SEPIC converter model was established to conduct MPPT optimization for the TEG module and the output power can increase by up to approximately 47%. This thermoelectric self−powered wireless sensor can accelerate the process of achieving energy independence for wireless sensors and promote the Fourth Industrial Revolution. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

19 pages, 6389 KiB  
Article
A Breast Tumor Monitoring Vest with Flexible UWB Antennas—A Proof-of-Concept Study Using Realistic Breast Phantoms
by Rakshita Dessai, Daljeet Singh, Marko Sonkki, Jarmo Reponen, Teemu Myllylä, Sami Myllymäki and Mariella Särestöniemi
Micromachines 2024, 15(9), 1153; https://doi.org/10.3390/mi15091153 - 14 Sep 2024
Viewed by 437
Abstract
Breast cancers can appear and progress rapidly, necessitating more frequent monitoring outside of hospital settings to significantly reduce mortality rates. Recently, there has been considerable interest in developing techniques for portable, user-friendly, and low-cost breast tumor monitoring applications, enabling frequent and cost-efficient examinations. [...] Read more.
Breast cancers can appear and progress rapidly, necessitating more frequent monitoring outside of hospital settings to significantly reduce mortality rates. Recently, there has been considerable interest in developing techniques for portable, user-friendly, and low-cost breast tumor monitoring applications, enabling frequent and cost-efficient examinations. Microwave technique-based breast cancer detection, which is based on differential dielectric properties of malignant and healthy tissues, is regarded as a promising solution for cost-effective breast tumor monitoring. This paper presents the development process of the first proof-of-concept of a breast tumor monitoring vest which is based on the microwave technique. Two unique vests are designed and evaluated on realistic 3D human tissue phantoms having different breast density types. Additionally, the measured results are verified using simulations carried out on anatomically realistic voxel models of the electromagnetic simulations. The radio channel characteristics are evaluated and analyzed between the antennas embedded in the vest in tumor cases and reference cases. Both measurements and simulation results show that the proposed vest can detect tumors even if only 1 cm in diameter. Additionally, simulation results show detectability with 0.5 cm tumors. It is observed that the detectability of breast tumors depends on the frequency, antenna selection, size of the tumors, and breast types, causing differences of 0.5–30 dB in channel responses between the tumorous and reference cases. Due to simplicity and cost-efficiency, the proposed channel analysis-based breast monitoring vests can be used for breast health checks in smaller healthcare centers and for user-friendly home monitoring which can prove beneficial in rural areas and developing countries. Full article
(This article belongs to the Special Issue Biomaterials, Biodevices and Tissue Engineering, Second Edition)
Show Figures

Figure 1

21 pages, 1385 KiB  
Article
Adaptive Control for Underwater Simultaneous Lightwave Information and Power Transfer: A Hierarchical Deep-Reinforcement Approach
by Huicheol Shin, Sangki Jeong, Seungjae Baek and Yujae Song
J. Mar. Sci. Eng. 2024, 12(9), 1647; https://doi.org/10.3390/jmse12091647 - 14 Sep 2024
Viewed by 256
Abstract
In this work, we consider a point-to-point underwater optical wireless communication scenario where an underwater sensor (US) transmits its sensing data to a remotely operated vehicle (ROV). Before the US transmits its data to the ROV, the ROV performs simultaneous lightwave information and [...] Read more.
In this work, we consider a point-to-point underwater optical wireless communication scenario where an underwater sensor (US) transmits its sensing data to a remotely operated vehicle (ROV). Before the US transmits its data to the ROV, the ROV performs simultaneous lightwave information and power transfer (SLIPT), delivering both control data and lightwave power to the US. Under the considered scenario, our objective is to maximize energy harvesting at the US while supporting predetermined communication performance between the two nodes. To achieve this objective, we develop a hierarchical deep Q-network (DQN)–deep deterministic policy gradient (DDPG)-based online algorithm. This algorithm involves two reinforcement learning agents: the ROV and US. The role of the ROV agent is to determine an optimal beam-divergence angle that maximizes the received optical signal power at the US while ensuring a seamless optical link. Meanwhile, the US agent, which is influenced by the decision of the ROV agent, is responsible for determining the time-switching and power-splitting ratios to maximize energy harvesting without compromising the required communication performance. Unlike existing studies that do not account for adaptive parameter control in underwater SLIPT, the proposed algorithm’s adaptive nature allows for the dynamic fine-tuning of optimization parameters in response to varying underwater environmental conditions and diverse user requirements. Full article
(This article belongs to the Special Issue Advances in Wireless Communication Technology in Oceanic Turbulence)
Show Figures

Figure 1

Back to TopTop